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Abstract. Let T1 and T2 be two piecewise smooth circle homeomorphisms
with countably many break points and identical irrational rotation number. We
provide a sufficient condition for C1-smoothness of the conjugation between T1

and T2.

1. Introduction

The first properties of circle homeomorphisms were studied in a classical work
of Poincaré in [19]. Every circle homeomorphism T : S1 → S1 is given as T =
π ◦ LT ◦ π−1, where π : R → S1 is the projection mapping that “winds” a
straight line on the circle. The homeomorphism LT : R → R with property
LT (x + 1) = LT (x) + 1 is the lift of the homeomorphism T of the circle and is
defined up to an integer term. The most important arithmetic characteristic of
the homeomorphism T is the rotation number, which is defined as

ρ(T ) = lim
i→∞

Li
T (x)

i
mod 1,

where LT is the lift of T with S1 to R and F i is ith iteration of F . Poincaré
proved that the above limit exists, does not depend on the initial point x ∈ R of
the lifted trajectory, and, up to addition of an integer, does not depend on the
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lift LT (see [9]). The rotation number ρ = ρ(T ) is irrational if and only if the
homeomorphism T has no periodic point.

Denjoy [10] proved that if T is an orientation-preserving C1-diffeomorphism
with irrational rotation number ρ, and logDT is of bounded variation, then T
is conjugate to the rigid rotation Rρ—that is, there exists an essentially unique
homeomorphism ψ of the circle such that T = ψ−1 ◦ Rρ ◦ ψ, where DT is the
derivative of T . The homeomorphism ψ is called the conjugation map between T
and Rρ. At the end of the 1970s the problem of smoothness of the conjugacy of
smooth diffeomorphisms was one of the fundamental problems of the theory of
circle maps. Nowadays, the problem of smoothness of the conjugacy of smooth
diffeomorphisms has come to be very well understood due to several deep results
obtained by Katznelson and Ornstein in [15] and [16] and by Sinăı and Khanin in
[20]. Recently, a remarkable result in this direction was obtained by Akhadkulov,
Dzhalilov, and Khanin [5]: it was shown that there exists a subset of irrational
numbers of unbounded type such that every circle diffeomorphism satisfying a
certain Zygmund condition is absolutely continuously conjugate to the linear
rotation, provided that its rotation number belongs to the above set. Natural
generalizations of diffeomorphisms are smooth homeomorphisms with breaks, the
so-called P-homeomorphisms.

Definition 1.1. A homeomorphism T of the circle is called a P-homeomorphism
if it satisfies the following conditions:

(i) T is differentiable away from countably many points xb ∈ BP (T ), the
so-called break points of T , with BP (T ) the set of break points of T on
S1, at which left and right derivatives, denoted respectively by DT− and
DT+, exist, and

DT−(xb)

DT+(xb)
6= 1

for all xb ∈ BP (T );
(ii) there exist constants 0 < c1 < c2 < ∞ with c1 < DT (x) < c2 for all

x ∈ S1\BP (T ), c1 < DT−(xb) < c2, and c1 < DT+(xb) < c2 for all
xb ∈ BP (T );

(iii) logDT has bounded variation.

The ratio σT (c) := (DT−(c))/(DT+(c)) is called the jump of T in c or the
T -jump. The class of P-homeomorphisms was introduced by Herman [14]. He
investigated the invariant measures of piecewise linear circle homeomorphisms
with two break points. The existence of the conjugation between Rρ and a
P-homeomorphism with irrational rotation number ρ follows directly from Den-
joy’s theorem. Since the first paper [11], in which it was shown that the conjuga-
tion between Rρ and a P-homeomorphism with a single break and with irrational
rotation number ρ is singular, there have appeared a number of publications
proving the singularity of the conjugation measure in different cases (see, e.g.,
[2], [4]). In this direction, some remarkable results were obtained by two groups
of scientists independently in [3] and [12], where the following most general result
was shown to hold: if the product of the sizes of all breaks is a nonunit, then the
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conjugation between Rρ and a P-homeomorphism with a finite number of breaks
is singular.

Next we consider the problem of the regularity of the conjugating map of two
P-homeomorphisms with identical irrational rotation numbers. In general, the
renormalizations and also rigidity properties of P-homeomorphisms are rather
different from those of diffeomorphisms (see [6]–[8]). A remarkable achievement
in this direction is due to Adouani [1] and Dzhalilov, Mayer, and Safarov [13],
which was obtained independently. They proved that if two P-homeomorphisms
with a finite number of breaks with the same irrational rotation number have
different products of sizes of breaks, then every conjugacy between them is a
singular function. It is well known that for the conjugation map between two
P-homeomorphisms there are two possibilities: it is either absolutely continuous
or singular. In the case of the absence of D-property (for the definition see [3]),
the problem of regularity (absolute continuity and smoothness) of the conjugation
between two P-homeomorphisms is one of the complicated problems of this direc-
tion. Recently, the problem of C1-smoothness of the conjugacy between two C2+ε

smooth P-homeomorphisms with one break point has been solved by Khanin,
Kocić, and Mazzeo [17].

This problem remains open for P-homeomorphisms with several break points.
In this paper we provide a sufficient condition for the C1-smoothness of the con-
jugating map of two P-homeomorphisms with countably many break points. In
order to formulate our main result, let us first recall some necessary notions and
facts.

Henceforth, we will always assume that ρ is irrational and we will use its decom-
position in an infinite continued fraction (see [18]).

ρ =
1

k1 +
1

k2+
1
...

kn+ 1
...

:= [k1, k2, . . . , kn, . . .]. (1.1)

The value of a “countable-floor” fraction is the limit of the sequence of rational
convergents pn/qn = [k1, k2, . . . , kn]. The positive integers kn, n ≥ 1 are called
incomplete multiples and defined uniquely for irrational ρ. The mutually prime
positive integers pn and qn satisfy the recurrent relations pn = knpn−1 + pn−2 and
qn = knqn−1+qn−2 for n ≥ 1, where it is convenient to define p−1 = 0, q−1 = 1 and
p0 = 1, q0 = k1. Given a circle homeomorphism T with irrational rotation number
ρ, one may consider a marked trajectory (i.e., the trajectory of a marked point)
ξi = T iξ0 ∈ S1, where i ≥ 0, and pick out of it the sequence of the dynamical
convergents ξqn , n ≥ 0 indexed by the denominators of consecutive rational con-
vergents to ρ. We will also conventionally use ξq−1 = ξ0 − 1. The well-understood
arithmetical properties of rational convergents and the combinatorial equivalence
between T and rigid rotation Rρ : ξ → ξ + ρ mod 1 imply that the dynamical
convergents approach the marked point, alternating their order in the following
way:

ξq−1 < ξq1 < ξq3 < · · · < ξq2m+1 < · · · < ξq0 < · · · < ξq2m < · · · < ξq2 < ξq0 .
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We define the nth fundamental interval ∆n(ξ0) as the circle arc [ξ0, ξqn ] for even
n and as [ξqn , ξ0] for odd n. For the marked trajectory, we use the notation ∆n

0 =
∆n(ξ0), ∆

n
i = ∆n(ξi) = T i∆n

0 . It is well known that the set Pn(ξ0;T ) = Pn(T ) of
intervals with mutually disjoint interiors defined as

Pn(T ) = {∆n−1
i , 0 ≤ i < qn; ∆

n
j , 0 ≤ j < qn−1}

determines a partition of the circle S1. The partition Pn(T ) is called the nth
dynamical partition of the circle. Obviously the partition Pn+1(T ) is a refinement
of the partition Pn(T )—indeed, the intervals of order n are members of Pn+1(T )
and each interval ∆n−1

i ∈ Pn(T ), 0 ≤ i < qn is partitioned into kn+1 + 1 intervals
belonging to Pn+1(T ) such that

∆n−1
i = ∆n+1

i ∪
kn+1−1⋃
s=0

∆n
i+qn−1+sqn . (1.2)

Let T1 and T2 be P-homeomorphisms with identical irrational rotation number ρ,
and let ψ be the conjugating homeomorphism between them. Consider dynamical
partitions Pn(ξ, T1) = Pn(T1) and Pn(ψ(ξ), T2) = Pn(T2) appropriate to the

homeomorphisms T1 and T2. Denote by ∆̂n the intervals of the partition Pn(T2).

Since ψ is a conjugacy between T1 and T2, we have ψ(∆n) = ∆̂n for any ∆n ∈
Pn(T1). Denote by |A| the Lebesgue measure of the corresponding set of A ⊂ S1.
Our main result is the following theorem.

Theorem 1.2. Let T1 and T2 be P-homeomorphisms with identical irrational
rotation number. If there exists a sequence (τn) such that

∑∞
n=1 τn ≤ ∞ and∣∣∣log |∆̂1|

|∆1|
− log

|∆̂2|
|∆2|

∣∣∣ ≤ τn (1.3)

for each pair of adjacent intervals ∆1,∆2 ∈ Pn(T1) or ∆1,∆2 ⊂ ∆ ∈ Pn−1(T1)
for all n > 1, then the conjugation ψ between T1 and T2 is C1 smooth.

2. Proof of main result

Here we first briefly describe the sketch of the proof of our main theorem.
To prove the main theorem, we get a sequence of step functions defined on the
circle and we show the convergence of this sequence to a continuous function.
Then using the limit function, we construct a C1 smooth conjugation function.
The following inequalities will be used in the proof of the main theorem. For any
a, b, c, d > 0, the following inequalities hold:

min
{a
b
,
c

d

}
≤ a+ c

b+ d
≤ max

{a
b
,
c

d

}
. (2.1)

The proofs of these inequalities are simple; indeed, consider the points A = (a, b),
B = (c, d), and C = (a+ c, b+ d) on the plan xOy. The slope of the ray OC lies
between the slopes of the rays OA and OB.
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Proof of Theorem 1.2. Consider the sequence of step functions on S1 as

ϕn(x) = log
|∆̂n|
|∆n|

, x ∈ ∆n \ {rn}, (2.2)

where ∆n ∈ Pn(T1) and r
n is the right endpoint of ∆n. Since the set of intervals

{∆n \ {rn} : ∆n ∈ Pn(T1)} are mutually disjoint and cover S1, the step functions
ϕn are well defined on S1 for all n ≥ 1. We show that the sequence (ϕn) is a
Cauchy sequence. It is clear that

∣∣ϕn(x)− ϕn+m(x)
∣∣ ≤ n+m−1∑

s=n

∣∣ϕs(x)− ϕs+1(x)
∣∣. (2.3)

Next we estimate |ϕs(x)− ϕs+1(x)|. By the property of the dynamical partition,
|ϕs(x)− ϕs+1(x)| = 0 if x ∈ ∆s

j \ {rsj} for some 0 ≤ j < qs−1 and

∣∣ϕs(x)− ϕs+1(x)
∣∣ = ∣∣∣log |∆̂s−1

i |
|∆s−1

i |
− log

|∆̂s+1
? |

|∆s+1
? |

∣∣∣ (2.4)

if x ∈ ∆s−1
i \{rs−1

i } for some 0 ≤ i < qs, where ∆
s+1
? ∈ Ps+1(T1) and ∆s+1

? ⊂ ∆s−1
i .

By relation (1.2), we have

|∆̂s−1
i |

|∆s−1
i |

=
|∆̂s+1

i |+ |∆̂s
i+qs−1

|+ |∆̂s
i+qs−1+qs|+ · · ·+ |∆̂s

i+qs−1+(ks+1−1)qs
|

|∆s+1
i |+ |∆s

i+qs−1
|+ |∆s

i+qs−1+qs
|+ · · ·+ |∆s

i+qs−1+(ks+1−1)qs
|
.

Applying inequality (2.1), we get

|∆̂s+1
† |

|∆s+1
† |

≤ |∆̂s−1
i |

|∆s−1
i |

≤ |∆̂s+1
∗ |

|∆s+1
∗ |

, (2.5)

where

|∆̂s+1
† |

|∆s+1
† |

= min
{ |∆̂s+1

i |
|∆s+1

i |
,
|∆̂s

i+qs−1+`qs
|

|∆s
i+qs−1+`qs

|
, 0 ≤ ` < ks+1

}
,

|∆̂s+1
∗ |

|∆s+1
∗ |

= max
{ |∆̂s+1

i |
|∆s+1

i |
,
|∆̂s

i+qs−1+`qs
|

|∆s
i+qs−1+`qs

|
, 0 ≤ ` < ks+1

}
.

It follows from inequalities (2.4) and (2.5) and the assumptions of Theorem 1.2
that ∣∣ϕs(x)− ϕs+1(x)

∣∣ ≤ ∣∣∣log |∆̂s+1
∗ |

|∆s+1
∗ |

− log
|∆̂s+1

† |
|∆s+1

† |

∣∣∣ ≤ τs+1.

Therefore, the right-hand side of (2.3) does not exceed the following:

∣∣ϕn(x)− ϕn+m(x)
∣∣ ≤ n+m−1∑

s=n

τs+1. (2.6)

Since the series
∑∞

n=1 τn is convergent, we have
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n+m−1∑
s=n

τs+1 → 0, n,m→ ∞.

Hence, the sequence (ϕn) is a Cauchy sequence. Let

lim
n→∞

ϕn(x) = ϕ(x).

We now show that ϕ is continuous. For any ε > 0 there exists n0 ∈ N such that
3
∑∞

s=n0
τs ≤ ε. Choose δ := δn0(ε) = minx∈S1 |∆n0(x)|/2. Consider any x, y ∈ S1

with |x−y| ≤ δ. Since |x−y| ≤ δ, there can be two cases: either x, y ∈ ∆n0 \{rn0}
or x and y lie on the two adjacent half-open intervals ∆n0

1 \{rn0
1 } and ∆n0

2 \{rn0
2 }

of Pn0(T1), respectively. It is obvious that∣∣ϕ(x)− ϕ(y)
∣∣ ≤ ∣∣ϕ(x)− ϕn0(x)

∣∣+ ∣∣ϕn0(x)− ϕn0(y)
∣∣+ ∣∣ϕn0(y)− ϕ(y)

∣∣. (2.7)

If x, y ∈ ∆n0 \ {rn0}, then∣∣ϕn0(x)− ϕn0(y)
∣∣ = ∣∣∣ |∆̂n0|

|∆n0|
− |∆̂n0|

|∆n0|

∣∣∣ = 0.

The first and third differences on the right-hand side of the inequality (2.7) can
be estimated as∣∣ϕ(x)− ϕn0(x)

∣∣ ≤ ∞∑
s=n0+1

τs,
∣∣ϕ(y)− ϕn0(y)

∣∣ ≤ ∞∑
s=n0+1

τs. (2.8)

Thus, the relation (2.7) takes the form∣∣ϕ(x)− ϕ(y)
∣∣ ≤ 2

∞∑
s=n0+1

τs ≤
2ε

3
. (2.9)

Now, if x and y lie on the two adjacent half-open intervals ∆n0
1 \ {rn0

1 } and
∆n0

2 \ {rn0
2 } of Pn0(T1), respectively, then by the condition of the main theorem,∣∣ϕn0(x)− ϕn0(y)

∣∣ = ∣∣∣log |∆̂n0
1 |

|∆n0
1 |

− log
|∆̂n0

2 |
|∆n0

2 |

∣∣∣ ≤ τn0 ≤
ε

3
. (2.10)

And again by (2.8) and (2.10), the relation (2.7) takes the form∣∣ϕ(x)− ϕ(y)
∣∣ ≤ ε. (2.11)

Hence, the inequalities (2.9) and (2.11) give the continuity of the function ϕ. Next
we define a new function h on S1 as

h(x) =

∫ x

0

eϕ(t) dt.

It is clear that h ∈ C1 and h′(x) = eϕ(x). On the other hand, for any x ∈ S1 there
is a sequence of intervals (∆n), ∆n ∈ Pn such that x ∈ ∆n for all n ∈ N. By
(2.2), for such intervals we have

|ψ(∆n)|
|∆n|

=
|∆̂n|
|∆n|

= eϕn(x). (2.12)
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Taking the limit from (2.12), we get

ψ′(x) = eϕ(x) = h′(x)

for all x ∈ S1. Integrating this, we obtain the equality

ψ(x) = h(x) + ψ(0) (2.13)

for all x ∈ S1. Hence, since h is C1 and by the equality (2.13), the conjugation ψ
is also C1. Theorem 1.2 is completely proved. �
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