ANNALS of **FUNCTIONAL ANALYSIS**

Ann. Funct. Anal. 10 (2019), no. 4, 537–552 <https://doi.org/10.1215/20088752-2019-0012> ISSN: 2008-8752 (electronic) <http://projecteuclid.org/afa>

GENERALIZED FRAMES FOR CONTROLLED OPERATORS IN HILBERT SPACES

DONGWEI LI^1 LI^1 and JINSONG LENG^{[2](#page-15-1)}

Communicated by K. F. Taylor

ABSTRACT. Controlled frames and g-frames were considered recently as generalizations of frames in Hilbert spaces. In this paper we generalize some of the known results in frame theory to controlled g-frames. We obtain some new properties of controlled g-frames and obtain new controlled g-frames by considering controlled g-frames for its components. And we also find some new resolutions of the identity. Furthermore, we study the stabilities of controlled g-frames under small perturbations.

1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [\[9\]](#page-15-2) in order to study problems in nonharmonic Fourier series, and they were widely studied after the great 1986 work by Daubechies, Grossmann, and Meyer [\[8\]](#page-15-3). Today, frame theory has broad applications in pure mathematics, such as for the Kadison–Singer problem and statistics (see, e.g., $[5]$, $[10]$), as well as in applied mathematics (see, e.g., [\[3\]](#page-14-1)), computer science (see, e.g., [\[11\]](#page-15-5), [\[14\]](#page-15-6)), and emerging applications (see, e.g., [\[16\]](#page-15-7), [\[20\]](#page-15-8)). We refer the reader to [\[7\]](#page-14-2) for an introduction to frame theory and its applications.

In 2006, Sun [\[21\]](#page-15-9) introduced the concept of g-frames, generalized frames which include ordinary frames, bounded invertible linear operators, fusion frames, as well as many recent generalizations of frames (for more details see [\[12\]](#page-15-10), [\[15\]](#page-15-11),

Copyright 2019 by the Tusi Mathematical Research Group.

Received Oct. 15, 2018; Accepted Feb. 7, 2019.

First published online Oct. 30, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 42C15; Secondary 47B99.

Keywords. g-frame, controlled operators, controlled g-frame, perturbation.

[\[17\]](#page-15-12)). G-frames and g-Riesz bases in Hilbert spaces have some properties similar to those of frames, but not all the properties are similar (see $|21|$). Controlled frames for spherical wavelets were introduced in [\[4\]](#page-14-3) and have been used recently to improve the numerical efficiency of iterative algorithms (see [\[2\]](#page-14-4)). The role of controller operators is like the role played by precondition matrices or operators in linear algebra. So we give some new properties of controlled gframes.

Controlled g-frames were introduced in [\[19\]](#page-15-13). In the present article, we give some new properties of controlled g-frames and construct new controlled g-frames from a given controlled g-frame, and we generalize some known results of g-frames to controlled g-frames in Section 2. In Section 3 we obtain some new resolutions of the identity with controlled g-frames, and in Section 4 we study the stability of controlled g-frames under small perturbations.

Throughout this paper, \mathcal{H} and \mathcal{K} are two separable Hilbert spaces and $\{\mathcal{H}_i:$ $i \in I$ is a sequence of subspaces of K, where I is a subset of \mathbb{Z} . We denote by $L(\mathcal{H}, \mathcal{H}_i)$ the collection of all bounded linear operators from \mathcal{H} into \mathcal{H}_i , and $GL(H)$ denotes the set of all bounded linear operators which have bounded inverse. It is easy to see that if $T, U \in GL(H)$, then T^*, T , and TU are also in $GL(\mathcal{H})$. Let $GL^{+}(\mathcal{H})$ be the set of all positive operators in $GL(\mathcal{H})$. Also $I_{\mathcal{H}}$ denotes the identity operator on \mathcal{H} .

Note that for any sequence $\{\mathcal{H}_i : i \in I\}$ of Hilbert spaces, we can always find a large Hilbert space K such that for all $i \in I$, $\mathcal{H}_i \subset \mathcal{K}$ (e.g., $\mathcal{K} = \bigoplus_{i \in I} \mathcal{H}_i$).

Definition 1. A sequence $\Lambda = {\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I}$ is called a generalized frame, or simply g-frame, for H with respect to $\{\mathcal{H}_i : i \in I\}$ if there exist constants $0 < A \leq B < \infty$ such that

$$
A||f||^2 \le \sum_{i \in I} ||\Lambda_i f||^2 \le B||f||^2, \quad \forall f \in \mathcal{H}.
$$
 (1.1)

The numbers A and B are called *g-frame bounds*.

We call Λ a tight g-frame if $A = B$ and a Parseval g-frame if $A = B = 1$. If the second inequality in (1.1) holds, the sequence is called a *q-Bessel sequence*.

 $\Lambda = {\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I}$ is called a *g-frame sequence* if it is a g-frame for $\overline{\text{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i\in I}$. For each sequence $\{\mathcal{H}_i\}_{i\in I}$, we define the space $(\sum_{i\in I}\oplus\mathcal{H}_i)_{\ell_2}$ by

$$
\left(\sum_{i\in I}\oplus\mathcal{H}_i\right)_{\ell_2} = \left\{ \{f_i\}_{i\in I} : f_i \in \mathcal{H}_i, i\in I \text{ and } \sum_{i\in I}||f_i||^2 < +\infty \right\}
$$

with the inner product defined by

$$
\langle \{f_i\}, \{g_i\} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle.
$$

Definition 2. Let $\Lambda = {\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I}$ be a g-frame for \mathcal{H} . Then the synthesis operator for $\Lambda = {\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I}$ is the operator

$$
\Theta_{\Lambda}: \left(\sum_{i\in I}\oplus \mathcal{H}_i\right)_{\ell_2}\longrightarrow \mathcal{H}
$$

defined by

$$
\Theta_{\Lambda}\big(\{f_i\}_{i\in I}\big) = \sum_{i\in I} \Lambda_i^*(f_i).
$$

The adjoint Θ_{Λ}^* of the synthesis operator is called the *analysis operator* which is given by

$$
\Theta_{\Lambda}^* : \mathcal{H} \longrightarrow \left(\sum_{i \in I} \oplus \mathcal{H}_i\right)_{\ell_2}, \qquad \Theta^*(f) = {\{\Lambda_i f\}}_{i \in I}.
$$

By composing Θ_{Λ} and Θ_{Λ}^{*} , we obtain the g-frame operator

$$
S_{\Lambda}: \mathcal{H} \longrightarrow \mathcal{H}, \qquad S_{\Lambda}f = \Theta_{\Lambda}\Theta_{\Lambda}^*f = \sum_{i \in I} \Lambda_i^* \Lambda_i f.
$$

It is easy to see that the g-frame operator is a bounded, positive, and invertible operator.

2. Controlled g-frames and constructing new controlled g-frames

Controlled g-frames with two controller operators were studied in [\[18\]](#page-15-14), [\[19\]](#page-15-13). Next, we give the definition of controlled g-frames.

Definition 3. Let $T, U \in GL^+(\mathcal{H})$. The family $\Lambda = {\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I}$ will be called a (T, U) -controlled g-frame for \mathcal{H} , if Λ is a g-Bessel sequence and there exist constants $0 < A \leq B < \infty$ such that

$$
A||f||^2 \le \sum_{i\in I} \langle \Lambda_i Tf, \Lambda_i Uf \rangle \le B||f||^2, \quad \forall f \in \mathcal{H}.
$$

A and B are called the lower and upper controlled frame bounds, respectively.

If $U = I_H$, then we call $\Lambda = {\Lambda_i}$ a T-controlled g-frame for H with bounds A and B. If the second part of the above inequality holds, then it is called a (T, U) -controlled g-Bessel sequence with bound B. Let $\Lambda = {\Lambda_i \in L(H, H_i)}$: $i \in I$ be a (T, U) -controlled g-frame for H. Then the (T, U) -controlled g-frame operator is defined by

$$
S_{T\Lambda U}: \mathcal{H} \longrightarrow \mathcal{H}, \qquad S_{T\Lambda U}f = \sum_{i \in I} U^* \Lambda_i^* \Lambda_i Tf, \quad \forall f \in \mathcal{H}.
$$

It follows from the definition that for a g-frame, this operator is positive and invertible and

$$
AI_{\mathcal{H}} \leq S_{T\Lambda U} \leq BI_{\mathcal{H}}.
$$

Also $S_{T\Lambda U} = U^* S_{\Lambda} T$. For the reader's convenience, we state the following lemma.

Lemma 1 ([\[2,](#page-14-4) Proposition 2.4]). Let $T : \mathcal{H} \longrightarrow \mathcal{H}$ be a linear operator. Then the following conditions are equivalent.

- (i) There exist $m > 0$ and $M < \infty$ such that $mI_{\mathcal{H}} \leq T \leq MI_{\mathcal{H}}$.
- (ii) T is positive and there exist $m > 0$ and $M < \infty$ such that

$$
m||f||^2 \le ||T^{1/2}f||^2 \le M||f||^2.
$$

(iii) $T \in GL^+(\mathcal{H})$.

Proposition 1. Let $T, U \in GL^+(\mathcal{H})$, and let $\Lambda = {\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I}$ be a family of operators. Then the following statements hold.

- (i) If $\{\Lambda_i : i \in I\}$ is a (T, U) -controlled g-frame for $\mathcal H$, then $\{\Lambda_i : i \in I\}$ is a *g*-frame for H .
- (ii) If $\{\Lambda_i : i \in I\}$ is a frame for $\mathcal H$ and $T, U \in \text{GL}^+(\mathcal H)$, which commute with each other and commute with S_{Λ} , then $\{\Lambda_i : i \in I\}$ is a (T, U) -controlled q -frame for H .

Proof. The proof consists of two parts.

(i). For $f \in \mathcal{H}$, since the operator

$$
S_{\Lambda}(f) = (U^*)^{-1} S_{T\Lambda U} T^{-1}(f) = \sum_{i \in I} \Lambda_i^* \Lambda_i f
$$

is well defined, we can show that it is a bounded and invertible operator and also that it is a positive linear operator on $\mathcal H$ because

$$
\langle S_{\Lambda}f, f \rangle = \sum_{i \in I} \|\Lambda_i f\|^2.
$$

Also, we have

$$
||S_{\Lambda}^{-1}|| = ||TS_{T\Lambda U}^{-1}U^*|| \le ||T|| ||S_{T\Lambda U}^{-1}|| ||U^*|| \le \frac{1}{A} ||T|| ||U^*||.
$$

So $S \in GL^+(\mathcal{H})$. Therefore, by Lemma [1,](#page-2-0) we have $CI_{\mathcal{H}} \leq S_{\Lambda} \leq DI_{\mathcal{H}}$ for some $0 < C \leq D < \infty$. So the result follows.

(ii). Let $\{\Lambda_i : i \in I\}$ be a g-frame with bounds C, D, and let $m, m' > 0$, $M, M' < \infty$ be such that

$$
mI_{\mathcal{H}} \le T \le MI_{\mathcal{H}}, \qquad m'I_{\mathcal{H}} \le U^* \le M'I_{\mathcal{H}}.
$$

By Lemma [1,](#page-2-0) we then have

$$
mAI_{\mathcal{H}} \leq S_{\Lambda}T \leq MBI_{\mathcal{H}}
$$

because T commutes with S_{Λ} . Again U^* commutes with $S_{\Lambda}T$ and then

$$
mm'AI_{\mathcal{H}} \leq S_{T\Lambda U} \leq MM'BI_{\mathcal{H}}.
$$

So we have the result. \Box

Theorem 2.8 in [\[1\]](#page-14-5) leads us to the following result.

Proposition 2. Let $T, U \in GL(H)$, and let $\{\Lambda_i : i \in I\}$ be a (T, U) -controlled g-frame for H with lower and upper bounds A and B, respectively. Let $\{\Gamma_i : i \in I\}$ be a q-complete family of bounded operators. If there exists a number $0 < R < A$ such that

$$
0 \leq \sum_{i \in I} \left\langle U^*(\Lambda_i^* \Lambda_i - \Gamma_i^* \Gamma_i) T f, f \right\rangle \leq R \|f\|^2, \quad \forall f \in \mathcal{H},
$$

then $\{\Gamma_i : i \in I\}$ is also a (T, U) -controlled g-frame for $\mathcal H$.

Proof. Let f be an arbitrary element of H. Since $\{\Lambda_i : i \in I\}$ is a (T, U) -controlled g-frame for \mathcal{H} , we have

$$
C||f||^2 \le \sum_{i \in I} \langle U^* \Lambda_i^* \Lambda_i Tf, f \rangle \le B||f||^2.
$$

Hence,

$$
\sum_{i \in I} \langle U^* \Gamma_i^* \Gamma_i T f, f \rangle = \sum_{i \in I} \langle U^* (\Gamma_i^* \Gamma_i - \Lambda_i^* \Lambda_i) T f, f \rangle + \sum_{i \in I} \langle U^* \Lambda_i^* \Lambda_i T f, f \rangle
$$

$$
\leq R \|f\|^2 + B \|f\|^2 = (R + B) \|f\|^2.
$$

On the other hand,

$$
\sum_{i \in I} \langle U^* \Gamma_i^* \Gamma_i T f, f \rangle = \sum_{i \in I} \langle U^* \Lambda_i^* \Lambda_i T f, f \rangle + \sum_{i \in I} \langle U^* (\Gamma_i^* \Gamma_i - \Lambda_i^* \Lambda_i) T f, f \rangle
$$

\n
$$
\geq \sum_{i \in I} \langle U^* \Lambda_i^* \Lambda_i T f, f \rangle - \sum_{i \in I} \langle U^* (\Gamma_i^* \Gamma_i - \Lambda_i^* \Lambda_i) T f, f \rangle
$$

\n
$$
\geq A \|f\| - R \|f\|^2 = (A - R) \|f\|^2 > 0.
$$

So we have the result. \Box

Proposition 3. Let $T, U \in GL(H)$, and let $\{\Lambda_i : i \in I\}$ be a (T, U) -controlled g-frame for H. Let $\{\Gamma_i : i \in I\}$ be a g-complete family of bounded operators. Suppose that $\Phi : \mathcal{H} \longrightarrow \mathcal{H}$ defined by

$$
\Phi(f) = \sum_{i \in I} U^*(\Gamma_i^*\Gamma_i - \Lambda_i^*\Lambda_i)Tf, \quad \forall f \in \mathcal{H},
$$

is a positive and compact operator. Then $\{\Gamma_i : i \in I\}$ is a (T, U) -controlled *g*-frame for H .

Proof. Let $\{\Lambda_i : i \in I\}$ be a (T, U) -controlled g-frame for H . Then by Proposi-tion [1](#page-3-0) it is a g-frame for H . On the other hand, since Φ is a positive compact operator, $U^{-1}\Phi T^{-1}$ is also a positive compact operator. Hence,

$$
(U^*)^{-1}\Phi T^{-1}f = \sum_{i\in I} \Gamma_i^* \Gamma_i^* f - \Lambda_i^* \Lambda_i f, \quad \forall f \in \mathcal{H}.
$$

Let $\Psi = (U^*)^{-1} \Phi T^{-1}$, and let $P : \mathcal{H} \longrightarrow \mathcal{H}$ be an operator defined by

$$
P=S_{\Lambda}+\Psi.
$$

A simple computation shows that Ψ is bounded and self-adjoint and that P is bounded, linear, and self-adjoint. Let f be an arbitrary element of H . We have

$$
||Pf|| = ||S_{\Lambda}f + \Psi f|| \le ||S_{\Lambda}f|| + ||\Psi f|| \le (B + ||\Psi||) ||f||.
$$

Therefore,

$$
\sum_{i\in I} \|\Gamma_i f\|^2 \langle Pf, f \rangle \le (B + \|\Psi\|) \|f\|^2.
$$

Since Ψ is a compact operator, ΨS_{Λ}^{-1} Λ ¹ is also a compact operator on H. By The-orem 2.8 in [\[1\]](#page-14-5), P has closed range. Now we show that P is injective. Let g be an

element of H such that $P f = 0$. Then

$$
\sum_{i \in I} \|\Gamma_i g\|^2 = \langle Pg, g \rangle = 0.
$$

Hence, $\Gamma_i g = 0$ for each $i \in I$. Since $\{\Gamma_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is g-complete, we have $g = 0$. Furthermore, we have

Range
$$
(P) = (N(P^*))^{\perp} = N(P)^{\perp} = \mathcal{H}.
$$

Hence P is onto and therefore invertible on H . Similar to the proof of Theorem 2.8 of $[1]$, we have

$$
\sum_{i\in I} \|\Gamma_i g\|^2 \ge (B + \|\Psi\|)^{-1} \|P^{-1}\|^{-2} \|f\|^2.
$$

Then $\{\Gamma_i : i \in I\}$ is a g-frame for \mathcal{H} . Since $\Phi = U^* S_{\Gamma} T - U^* S_{\Lambda} T$, $U^* S_{\Gamma} T =$ $\Phi + U^* S_\Lambda T$. It is easy to see that $U^* S_\Gamma T$ is a bounded positive operator. By Lemma [1,](#page-2-0) we have that $\{\Gamma_i : i \in I\}$ is a (T, U) -controlled g-frame for \mathcal{H} .

The next result is a generalization of Theorem 3.3 of [\[6\]](#page-14-6).

Theorem 1. Let $T, U \in GL(H)$, and let $\{\Lambda_i \in L(H, H_i) : i \in I\}$ be a family of bounded operators. Let $\{\Gamma_{ij} \in L(\mathcal{H}_i, \mathcal{H}_{ij}) : j \in J_i\}$ be a (C_i, D_i) - (T, U) -controlled g-frame for each \mathcal{H}_i , and suppose that they are (C, D) -bounded. Then the following conditions are equivalent.

- (i) $\{\Lambda_i \in L(H, H_i) : i \in I\}$ is a (T, U) -controlled g-frame for H .
- (ii) $\{\Gamma_{ij}\Lambda_i \in L(\mathcal{H}_i, \mathcal{H}_{ij}) : i \in I, j \in J_i\}$ is a (T, U) -controlled g-frame for \mathcal{H} .

Proof. The proofs consists of two parts.

(i) \Rightarrow (ii). Let $\{\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a (T, U) -controlled g-frame with bounds (A, B) for H . Then for all $f \in H$ we have

$$
\sum_{i \in I} \sum_{j \in J_i} \langle \Gamma_{ij} \Lambda_i T f, \Gamma_{ij} \Lambda_i U f \rangle
$$

=
$$
\sum_{i \in I} \sum_{j \in J_i} \langle \Gamma_{ij}^* \Gamma_{ij} \Lambda_i T f, \Lambda_i U f \rangle
$$

$$
\leq \sum_{i \in I} D_i \langle \Lambda_i T f, \Lambda_i U f \rangle
$$

$$
\leq D B \|f\|^2.
$$

Also, we have

$$
\sum_{i \in I} \sum_{j \in J_i} \langle \Gamma_{ij} \Lambda_i Tf, \Gamma_{ij} \Lambda_i Uf \rangle
$$

=
$$
\sum_{i \in I} \sum_{j \in J_i} \langle \Gamma_{ij}^* \Gamma_{ij} \Lambda_i Tf, \Lambda_i Uf \rangle
$$

$$
\geq \sum_{i \in I} C_i \langle \Lambda_i Tf, \Lambda_i Uf \rangle
$$

$$
\geq CA \|f\|^2.
$$

(ii) \Rightarrow (i). Let $\{\Gamma_{ij}\Lambda_i \in L(\mathcal{H}_i, \mathcal{H}_{ij}) : i \in I, j \in J_i\}$ be a (T, U) -controlled g-frame with bounds A, B for H . Since $\Lambda_i f \in \mathcal{H}_i$, we have

$$
\sum_{i\in I} \langle \Lambda_i Tf, \Lambda_i Uf \rangle \leq \sum_{i\in I} \frac{1}{C_i} \sum_{j\in J_i} \langle \Gamma_{ij} \Lambda_i Tf, \Gamma_{ij} \Lambda_i Uf \rangle \leq \frac{B}{C} ||f||^2.
$$

Also,

$$
\sum_{i \in I} \langle \Lambda_i Tf, \Lambda_i Uf \rangle \ge \sum_{i \in I} \frac{1}{D_i} \sum_{j \in J_i} \langle \Gamma_{ij} \Lambda_i Tf, \Gamma_{ij} \Lambda_i Uf \rangle \ge \frac{A}{D} ||f||^2.
$$

Our next result is a characterization theorem for (T, U) -controlled g-frames.

Theorem 2. Let $T, U \in GL(H)$, and let $\{\Lambda_i \in L(H, H_i) : i \in I\}$ be a family of bounded operators. Suppose that $\{e_{ij} : j \in J_i\}$ is an orthonormal basis for \mathcal{H}_i for each $i \in I$. Then $\{\Lambda_i : i \in I\}$ is a (T, U) -controlled g-frame for $\mathcal H$ if and only if ${T^*u_{ij} : i \in I, j \in J_i}$ is a $U^*(T^*)^{-1}$ -controlled frame for H , where $u_{ij} = \Lambda_i^* e_{ij}$.

Proof. Let $\{e_{ij} : j \in J_i\}$ be an orthonormal basis for \mathcal{H}_i for each $i \in I$. For any $f \in \mathcal{H}$, since $\Lambda_i f \in \mathcal{H}_i$, we have

$$
\Lambda_i(Tf) = \sum_{j \in J_i} \langle \Lambda_i(Tf), e_{ij} \rangle e_{ij} = \sum_{j \in J_i} \langle f, T^* \Lambda_i^* e_{ij} \rangle e_{ij}.
$$

Also,

$$
\Lambda_i(Uf) = \sum_{j \in J_i} \langle \Lambda_i(Uf), e_{ij} \rangle e_{ij} = \sum_{j \in J_i} \langle f, U^* \Lambda_i^* e_{ij} \rangle e_{ij}.
$$

Hence,

$$
\langle \Lambda_i Tf, \Lambda_i Uf \rangle = \sum_{j \in J_i} \langle f, T^* \Lambda_i^* e_{ij} \rangle \langle U^* \Lambda^* e_{ij}, f \rangle.
$$

Now, if we take $u_{ij} = \Lambda_i^* e_{ij}$, $f_{ij} = T^* u_{ij}$, and $\Omega = U^*(T^*)^{-1}$, then

$$
A||f||^2 \le \sum_{i \in I} \langle \Lambda_i Tf, \Lambda_i Uf \rangle \le B||f||^2
$$

is equivalent to

$$
A||f|| \leq \sum_{i \in I} \sum_{j \in J_i} \langle f, f_{ij} \rangle \langle \Omega f_{ij}, f \rangle \leq B||f||^2.
$$

So we have the result. \Box

Note that $\{u_{ij}: i \in I, j \in J_i\}$ is the sequence induced by $\{\Lambda_i : i \in I\}$ with respect to $\{e_{ij} : j \in J_i\}.$

By the above result, finding suitable operators T and U such that $\{\Lambda_i : i \in I\}$ forms a (T, U) -controlled fusion frame for H with optimal bounds, is equivalent to finding suitable operators T and U such that $\{T^*u_{ij} : i \in I, j \in J_i\}$ is a $U^*(T^*)^{-1}$ -controlled frame for $\mathcal H$ with optimal frame bounds.

Let H and K be two Hilbert spaces. We recall that $\mathcal{H} \oplus \mathcal{K} = \{(f,g) : f \in$ $\mathcal{H}, g \in \mathcal{K}$ is a Hilbert space with pointwise operations and inner product

$$
\langle (f,g),(f',g')\rangle := \langle f,f'\rangle_{\mathcal{H}} + \langle g,g'\rangle_{\mathcal{K}}, \quad \forall f,f' \in \mathcal{H}, g,g' \in \mathcal{K}.
$$

Also, if $\Lambda \in L(\mathcal{H}, V)$ and $\Gamma \in L(\mathcal{K}, W)$, then for all $f \in \mathcal{H}$, $g \in \mathcal{K}$ we define

$$
\Lambda \oplus \Gamma \in L(\mathcal{H} \oplus \mathcal{K}, V \oplus W) \quad \text{by } (\Lambda \oplus \Gamma)(Tf, Ug) := (\Lambda Tf, \Gamma Ug),
$$

where V, W are Hilbert spaces and $T \in GL(H)$, $U \in GL(K)$.

Theorem 3. Let $T \in GL(H)$, $U \in GL(K)$. Let $\{\Lambda_i \in L(H, V_i) : i \in I\}$ and $\{\Gamma_i \in L(K, W_i) : i \in I\}$ be a (T, T) -controlled g-frame with bounds (A, B) and a (U, U) -controlled g-frame with bounds (C, D) , respectively. Then $\{\Lambda_i \oplus$ $\Gamma_i \in L(H \oplus \mathcal{K}, V_i \oplus W_i) : i \in I$ is a (T, U) -controlled g-frame with bounds $(\min\{A, C\}, \max\{B, D\}).$

Proof. Let (f, g) be an arbitrary element of $\mathcal{H} \oplus \mathcal{K}$. Then we have

$$
\sum_{i \in I} ||(\Lambda_i \oplus \Gamma_i)(Tf, Ug)||^2 = \sum_{i \in I} \langle (\Lambda_i \oplus \Gamma_i)(Tf, Ug), (\Lambda_i \oplus \Gamma_i)(Tf, Ug) \rangle
$$

\n
$$
= \sum_{i \in I} \langle (\Lambda_i Tf, \Gamma_i Ug), (\Lambda_i Tf, \Gamma_i Ug) \rangle
$$

\n
$$
= \sum_{i \in I} \langle \Lambda_i Tf, \Lambda_i f \rangle + \langle \Gamma_i Ug, \Gamma_i Ug \rangle
$$

\n
$$
= \sum_{i \in I} ||\Lambda_i Tf||^2 + \sum_{i \in I} ||\Gamma_i Uf||^2
$$

\n
$$
\leq B||f||^2 + D||g||^2
$$

\n
$$
\leq \max\{B, D\} (||f||^2 + ||g||^2)
$$

\n
$$
= \max\{B, D\} ||(f, g)||^2.
$$

Similarly, we have

$$
\min\{A, C\} \big(\|f\|^2 + \|g\|^2\big) \le \sum_{i \in I} \big\| (\Lambda_i \oplus \Gamma_i)(Tf, Ug)\big\|^2.
$$

So we have the result. \Box

Our next result is a generalization of Proposition 3.9 in [\[18\]](#page-15-14).

Proposition 4. Let $\{\Lambda_i \in L(H, H_i) : i \in I\}$ be a g-frame for H with frame operator S_{Λ} and bounds A, B, and let $\varepsilon > 0$ be a real number. Let $T \in GL(H)$ be an operator such that $||T - S_{\Lambda}^{-1}||$ $\|A^{-1}\| \leq \varepsilon \|T\|.$ If $\|T\| < \frac{1}{B\sqrt{\varepsilon^2}}$ $\frac{1}{B\sqrt{\varepsilon^2+2\varepsilon}}$, then $\{\Lambda_i \in$ $L(\mathcal{H}, \mathcal{H}_i): i \in I$ is a (T, T) -controlled g-frame for $\mathcal H$ with bounds

$$
\frac{1}{B} - B(\varepsilon^2 + 2\varepsilon) \|T\|^2 \qquad and \qquad B\Big(\varepsilon\|T\| + \frac{1}{A}\Big)^2.
$$

Proof. Let $f \in \mathcal{H}$ be an arbitrary element, and let Θ_{Λ} be the synthesis operator of $\{\Lambda_i \in L(H, H_i) : i \in I\}$. Then we have

$$
\|\Theta_{\Lambda T}^* f\|^2 = \|\Theta_{\Lambda (T - S_{\Lambda}^{-1})}^* f\|^2 + \langle \Theta_{\Lambda (T - S_{\Lambda}^{-1})}^* f, \Theta_{\Lambda S_{\Lambda}^{-1}}^* f \rangle + \langle \Theta_{\Lambda S_{\Lambda}^{-1}}^* f, \Theta_{\Lambda (T - S_{\Lambda}^{-1})}^* f \rangle + \|\Theta_{\Lambda S_{\Lambda}^{-1}}^* f\|^2.
$$

Now by the hypothesis and the Cauchy–Schwarz inequality, we have

$$
\|\Theta_{\Lambda T}^* f\|^2 \le B \left(\|T - S_{\Lambda}^{-1}\|^2 + 2\|T - S_{\Lambda}^{-1}\|\|S_{\Lambda}^{-1}\| + \|S_{\Lambda}^{-1}\|^2 \right) \|f\|^2
$$

\n
$$
\le B \left(\varepsilon^2 \|T\|^2 + 2\varepsilon \|t\| \frac{1}{A} + \frac{1}{A^2} \right) \|f\|^2
$$

\n
$$
= B \left(\varepsilon \|T\| + \frac{1}{A} \right)^2 \|f\|^2.
$$

On the other hand, since $\{\Lambda_i S_{\Lambda}^{-1}\}$ $\binom{-1}{\Lambda} i \in I$ is also a g-frame with lower frame bound $\frac{1}{B}$, we have

$$
\frac{1}{B}||f||^{2} \leq ||\Theta_{\Lambda S_{\Lambda}^{-1}}^{*}f||^{2}
$$
\n
$$
= ||\Theta_{\Lambda (S_{\Lambda}^{-1}-T)}^{*}f||^{2} + \langle \Theta_{\Lambda (S_{\Lambda}^{-1}-T)}^{*}f, \Theta_{\Lambda T}^{*}f \rangle
$$
\n
$$
+ \langle \Theta_{\Lambda T}^{*}f, \Theta_{\Lambda (S_{\Lambda}^{-1}-T)}^{*}f \rangle + ||\Theta_{\Lambda T}^{*}f||^{2}
$$
\n
$$
= B(||S_{\Lambda}^{-1} - T||^{2} + 2||S_{\Lambda}^{-1} - T|| ||T||) ||f||^{2} + ||\Theta_{\Lambda T}^{*}f||^{2}.
$$

Therefore, we have

$$
\left(\frac{1}{B} - B(\varepsilon^2 + 2\varepsilon) \|T\|^2\right) \|f\|^2 \le \|\Theta_{\Lambda T}^* f\|^2
$$

.

Now the result holds. \Box

We end this section by giving the following results concerning the constructions of new controlled g-frames.

Theorem 4. Let $T \in GL(H)$, and let $\{\Lambda_i \in L(H, H_i) : i \in I\}$ be a (T, T) -controlled g-frame with bounds (A, B) . Let $\{\Gamma_i\}_{i \in I}$ be a g-sequence with synthesis operator Θ_{Γ} . For any two positively confined sequences $\{a_i\}_{i\in I}$ and ${b_i}_{i \in I}$, if $||\Theta_{\Gamma}||^2 < \frac{A \inf_{i \in I} a_i^2}{2||T||^2 \sup_{i \in I} b_i^2}$, then ${a_i \Lambda_i + b_i \Gamma_i}_{i \in I}$ is a (T, T) -controlled g-frame for H .

Proof. For any $f \in \mathcal{H}$, we have

$$
\sum_{i \in I} ||(a_i \Lambda_i + b_i \Gamma_i) Tf||^2
$$
\n
$$
= \sum_{i \in I} ||a_i \Lambda_i Tf||^2 + \sum_{i \in I} ||b_i \Gamma_i Tf||^2
$$
\n
$$
+ 2 \operatorname{Re} \sum_{i \in I} \langle a_i \Lambda_i Tf, b_i \Gamma_i Tf \rangle
$$
\n
$$
\leq 2 \Big(\sum_{i \in I} ||a_i \Lambda_i Tf||^2 + \sum_{i \in I} ||b_i \Gamma_i Tf||^2 \Big)
$$
\n
$$
\leq 2 \Big(\big(\sup_{i \in I} a_i^2 \big) \sum_{i \in I} ||\Lambda_i Tf||^2 + \big(\sup_{i \in I} b_i^2 \big) \sum_{i \in I} ||\Gamma_i Tf||^2 \Big)
$$
\n
$$
\leq 2 \Big(\big(\sup_{i \in I} a_i^2 \big) B ||f||^2 + \big(\sup_{i \in I} b_i^2 \big) ||\Theta_{\Gamma}^* Tf||^2 \Big)
$$
\n
$$
\leq 2 \Big(\big(\sup_{i \in I} a_i^2 \big) B ||f||^2 + \big(\sup_{i \in I} b_i^2 \big) ||\Theta_{\Gamma}^* Tf||^2 \Big)
$$
\n
$$
\leq 2 \Big(\big(\sup_{i \in I} a_i^2 \big) B + \big(\sup_{i \in I} b_i^2 \big) ||T||^2 ||\Theta_{\Gamma}||^2 \Big) ||f||^2.
$$

Since

$$
\sum_{i\in I} ||a_i \Lambda_i Tf||^2 = \sum_{i\in I} ||(a_i \Lambda_i + b_i \Gamma_i) Tf - b_i \Gamma_i Tf||^2
$$

$$
\leq 2 \Big(\sum_{i\in I} ||(a_i \Lambda_i + b_i \Gamma_i) Tf||^2 + \sum_{i\in I} ||b_i \Gamma_i Tf||^2 \Big),
$$

we have

$$
2\sum_{i\in I} \left\| (a_i \Lambda_i + b_i \Gamma_i) T f \right\|^2 \ge \sum_{i\in I} \|a_i \Lambda_i Tf\|^2 - 2\sum_{i\in I} \|b_i \Gamma_i Tf\|^2
$$

$$
\ge \left(\inf_{i\in I} a_i^2 \right) \sum_{i\in I} \|\Lambda_i Tf\|^2 - 2\left(\sup_{i\in I} b_i^2 \right) \|\Theta_\Gamma^* Tf\|^2
$$

$$
\ge \left(\left(\inf_{i\in I} a_i^2 \right) A - 2\left(\sup_{i\in I} b_i^2 \right) \|T\|^2 \|\Theta_\Gamma\|^2 \right) \|f\|^2.
$$

From $\|\Theta_{\Gamma}\|^2 < \frac{A \inf_{i \in I} a_i^2}{2||T||^2 \sup_{i \in I} b_i^2}$, we obtain that $\{a_i \Lambda_i + b_i \Gamma_i\}_{i \in I}$ is a (T, T) -controlled g-frame for \mathcal{H} .

3. Resolutions of the identity

In this section, we will find new resolutions of the identity. In fact, let $T, U \in$ $GL(\mathcal{H})$, and let $\{\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a (T, U) -controlled g-frame. Then we have

$$
f = \sum_{i \in I} S_{T\Lambda U}^{-1} U^* \Lambda_i^* \Lambda_i T f = \sum_{i \in I} U^* \Lambda_i^* \Lambda_i T S_{T\Lambda U}^{-1} f, \quad \forall f \in \mathcal{H}.
$$

By choosing suitable control operators we may obtain more suitable approximations. Now we will give a new resolution of the identity by using two controlled operators.

Definition 4. Let $T, U \in GL(H)$, and let $\{\Lambda_i \in L(H, H_i) : i \in I\}$ and $\{\Gamma_i \in$ $L(\mathcal{H}, \mathcal{H}_i): i \in I$ be (T, T) -controlled and (U, U) -controlled g-Bessel sequences, respectively. We define a (T, U) -controlled g-frame operator for this pair of controlled g-Bessel sequences as follows:

$$
S_{T\Gamma\Lambda U}(f) = \sum_{i \in I} U^* \Gamma_i^* \Lambda_i T(f), \quad \forall f \in \mathcal{H}.
$$

As mentioned before, $\{\Lambda_i \in L(H, H_i) : i \in I\}$ and $\{\Gamma_i \in L(H, H_i) : i \in I\}$ I} are also two Bessel g-sequences. So by [\[13\]](#page-15-15), the g-frame operator $S_{\Gamma\Lambda}(f) =$ $\sum_{i\in I} \Gamma_i^* \Lambda_i(f)$ for this pair of g-Bessel sequences is well defined and bounded. Since $S_{TT\Lambda U} = U^* S_{\Gamma\Lambda} T$, $S_{TT\Lambda U}$ is a well-defined and bounded operator.

Lemma 2. Let $T, U \in GL(H)$, and let $\{\Lambda_i : i \in I\}$ and $\{\Gamma_i : i \in I\}$ be (T, T) -controlled and (U, U) -controlled g-Bessel sequences, respectively. If $S_{TT\Lambda U}$ is bounded below, then $\{\Lambda_i : i \in I\}$ and $\{\Gamma_i : i \in I\}$ are (T, T) -controlled and (U, U) -controlled g-frames, respectively.

Proof. Suppose that there exists a number $\lambda > 0$ such that for all $f \in \mathcal{H}$,

$$
\lambda \|f\| \le \|S_{TT\Lambda U}\|.
$$

Then we have

$$
\lambda ||f|| \le ||S_{T\Gamma\Lambda U}|| = \sup_{g \in \mathcal{H}, ||g||=1} \left| \left\langle \sum_{i \in I} U^* \Gamma_i^* \Lambda_i T f, g \right\rangle \right|
$$

\n
$$
= \sup_{||g||=1} \left| \left\langle \sum_{i \in I} \Lambda_i T f, \Gamma_i U g \right\rangle \right|
$$

\n
$$
\le \sup_{||g||=1} \left(\sum_{i \in I} ||\Lambda_i T f||^2 \right)^{1/2} \left(\sum_{i \in I} ||\Gamma_i U g||^2 \right)^{1/2}
$$

\n
$$
\le \sqrt{B} \left(\sum_{i \in I} ||\Lambda_i T f||^2 \right)^{1/2}.
$$

Hence,

$$
\frac{\lambda^2}{D}||f||^2 \le \sum_{i \in I} ||\Lambda_i Tf||^2.
$$

On the other hand, since

$$
S_{T\Gamma\Lambda U}^* = (U^* S_{\Gamma\Lambda} T)^* = T^* S_{\Gamma\Lambda}^* U = T^* S_{\Lambda\Gamma} U = S_{U\Lambda\Gamma T},
$$

we can say that $S_{U\Lambda\Gamma T}$ is also bounded below. So by the above result, $\{\Gamma_i : i \in I\}$ is a (U, U) -controlled g-frame.

Theorem 5. Let $T \in GL(H)$, and let $\Lambda = {\Lambda_i \in L(H, H_i) : i \in I}$ be a (T, T) -controlled g-Bessel sequence. Then the following conditions are equivalent.

- (i) Λ is a (T, T) -controlled g-frame for $\mathcal H$.
- (ii) There exists an operator $U \in GL(H)$ and a (U, U) -controlled g-Bessel sequence $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in I\}$ such that $S_{UT\Lambda T} \geq mI_{\mathcal{H}}$ on \mathcal{H} , for some $m > 0$.

Proof. The proofs consists of two parts.

(i) \Rightarrow (ii). Let Λ be a (T, T) -controlled g-frame with lower and upper g-frame bounds A_T and B_T , respectively. Then we take $U = T$, $\Gamma_i = \Lambda_i$, for all $i \in I$. Hence, we have

$$
\langle S_{T\Lambda\Lambda T}f, f \rangle = \left\langle \sum_{i \in I} T^* \Lambda_i^* \Lambda_i T f, f \right\rangle = \sum_{i \in I} \langle \Lambda_i T f, \Lambda_i T f \rangle \ge A_T ||f||^2
$$

for all $f \in \mathcal{H}$. Moreover,

$$
C_T \|f\|^2 \le \|S_{T\Lambda\Lambda T}^{1/2}\|^2 \le D_T \|f\|^2.
$$

By Lemma [1,](#page-2-0) $S_{T\Lambda\Lambda T} \in GL^+(\mathcal{H})$.

(ii) \Rightarrow (i). Suppose that there exist an operator $U \in GL(H)$ and a (U, U) controlled g-Bessel sequence $\Gamma = {\{\Gamma_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}}$ with Bessel bound B_U . Also, let $m > 0$ be a constant such that

$$
\langle S_{U\Gamma\Lambda T}f, f\rangle \ge m\|f\|^2
$$

for all $f \in \mathcal{H}$. Then we have

$$
m||f||^2 \leq \langle S_{U\Gamma\Lambda T}f, f \rangle
$$

= $\sum_{i \in I} \langle \Lambda_i Tf, \Gamma_i Uf \rangle$
 $\leq \left(\sum_{i \in I} \|\Lambda_i Tf\|^2\right)^{1/2} \left(\sum_{i \in I} \|\Gamma_i Uf\|^2\right)^{1/2}$
 $\leq \sqrt{B_U}||f||\left(\sum_{i \in I} \|\Lambda_i Tf\|^2\right)^{1/2},$

by the Cauchy–Schwarz inequality. Hence,

$$
\frac{m^2}{B_U}||f||^2 \le \sum_{i \in I} ||\Lambda_i Tf||^2 \le B_T ||f||^2.
$$

So Λ is a (T, T) -controlled g-frame for $\mathcal H$.

Theorem 6. Let $T, U \in GL(H)$, and let $\{\Lambda_i \in L(H, H_i) : i \in I\}$ be a (T, T) -controlled g-frame with bounds (A, B) for H . Let the family $\{\Gamma_i \in$ $L(\mathcal{H}, \mathcal{H}_i) : i \in I$ be a (U, U) -controlled g-Bessel sequence. Suppose that there exists a number $0 < \lambda \leq A$ such that

$$
\|(S_{TT\Lambda U} - S_{T\Lambda T})f\| \le \lambda \|f\|, \quad \forall f \in \mathcal{H}.
$$

Then $S_{TT\Lambda U}$ is invertible and also $\{\Gamma_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a (U, U) -controlled *g*-frame for H .

Proof. Let $f \in \mathcal{H}$ be an arbitrary element of \mathcal{H} . Then we have

$$
||S_{TT\Lambda U}f|| = ||S_{TT\Lambda U}f - S_{T\Lambda T}f + S_{T\Lambda T}f||
$$

\n
$$
\ge ||S_{T\Lambda T}f|| - ||S_{TT\Lambda U}f - S_{T\Lambda T}f||
$$

\n
$$
\ge (A - \lambda) ||f||.
$$

So $S_{TT\Lambda U}$ is bounded below and therefore one-to-one with closed range. On the other hand, since

$$
||S_{UT\Lambda T} - S_{T\Lambda T}|| = ||(S_{TT\Lambda U} - S_{T\Lambda T})^*|| \le \lambda,
$$

by the above result $S_{UT\Lambda T}$ is also bounded below $(A - \lambda)$ and therefore one-to-one with closed range. Hence, both $S_{TT\Lambda U}$ and $S_{UT\Lambda T}$ are invertible. And

$$
(A - \lambda) \|f\| \le \|S_{U\Gamma\Lambda T}\| = \sup_{g \in \mathcal{H}, \|g\|=1} \Big| \Big\langle \sum_{i \in I} T^* \Lambda_i^* \Gamma_i U f, g \Big\rangle \Big|
$$

$$
= \sup_{\|g\|=1} \Big| \Big\langle \sum_{i \in I} \Gamma_i U f, \Lambda_i T g \Big\rangle \Big|
$$

$$
\le \sup_{\|g\|=1} \Big(\sum_i \| \Gamma_i U f \|^2 \Big)^{1/2} \Big(\sum_i \| \Lambda_i T g \|^2 \Big)^{1/2}
$$

$$
\le \sqrt{B} \Big(\sum_i \| \Gamma_i U f \|^2 \Big)^{1/2}.
$$

Hence,

$$
\frac{(A - \lambda)^2}{B} ||f||^2 \le \sum_{i \in I} ||\Gamma_i U f||^2.
$$

Another version of these cases is as follows.

Proposition 5. Let Λ and Γ be controlled g-Bessel sequences as mentioned in Definition [3](#page-9-0). Suppose that there exists $0 < \varepsilon < 1$ such that

$$
||f - S_{TT\Lambda U}f|| \leq \varepsilon ||f||, \quad \forall f \in \mathcal{H}.
$$

Then Λ and Γ are (T, T) -controlled and (U, U) -controlled q-frames, respectively. Furthermore, $S_{TT\Lambda U}$ is invertible.

Proof. First,

$$
||I_{\mathcal{H}} - S_{T\Gamma\Lambda U}|| \leq \varepsilon < 1;
$$

therefore, $S_{TT\Lambda U}$ is invertible. Second, let f be an arbitrary element of H of H. Then we have

$$
||S_{TT\Lambda U}f|| \ge ||f|| - ||f - S_{TT\Lambda U}f|| \ge (1 - \varepsilon) ||f||.
$$

Hence, $S_{TT\Lambda U}$ is bounded below. By Lemma [2,](#page-9-1) we know that Λ is a (T, T) -controlled g-frame.

On the other hand, we have

$$
||I_{\mathcal{H}} - S_{U\Lambda\Gamma T}|| = ||(I_{\mathcal{H}} - S_{T\Gamma\Lambda U})^*|| \le \varepsilon.
$$

Hence, we can similarly say that Γ is a (U, U) -controlled g-frame.

With the hypotheses, both $S_{TT\Lambda U}$ and $S_{UT\Lambda T}$ are invertible. Then the family

$$
\{S_{T\Gamma\Lambda U}^{-1}U^*\Gamma_i^*\Lambda_iT\}_{i\in I}
$$

is a resolution of the identity. Also, we have the new reconstruction formulas

$$
f = \sum_{i \in I} S_{TT\Lambda U}^{-1} U^* \Gamma_i^* \Lambda_i T f = \sum_{i \in I} \Gamma_i^* \Lambda_i T S_{TT\Lambda U}^{-1} f
$$

and

$$
f = \sum_{i \in I} S_{U\Lambda \Gamma T}^{-1} T^* \Lambda_i^* \Gamma_i U f = \sum_{i \in I} T^* \Lambda_i^* \Gamma_i U S_{U\Lambda \Gamma T}^{-1} f.
$$

Suppose that $||I_{\mathcal{H}} - S_{TT\Lambda U}|| < 1$. Then as we mentioned in Proposition [5,](#page-12-0) $S_{TT\Lambda U}$ is invertible and we have

$$
S_{TT\Lambda U}^{-1} = \sum_{n=0}^{\infty} (I_{\mathcal{H}} - S_{TT\Lambda U})^n.
$$

Then we have

$$
f = \sum_{i \in I} \sum_{n=0}^{\infty} (I_{\mathcal{H}} - S_{T\Gamma\Lambda U})^n U^* \Gamma_i^* \Lambda_i T f = \sum_{i \in I} \sum_{n=0}^{\infty} U^* \Gamma_i^* \Lambda_i T (I_{\mathcal{H}} - S_{T\Gamma\Lambda U})^n f.
$$

Furthermore,

$$
||S_{TT\Lambda U}^{-1}|| \le (1 - ||I_{\mathcal{H}} - S_{TT\Lambda U}||)^{-1}.
$$

Therefore,

$$
\left\{ (I_{\mathcal{H}} - S_{T\Gamma\Lambda U})^n U^* \Gamma_i^* \Lambda_i T \right\}_{i \in I, n \in \mathbb{Z}} +
$$

is a new resolution of the identity.

4. Perturbation of controlled g-frames

The perturbation of frames is important for constructing new frames from a given one. In this section we give new definitions of perturbations of g-frames with respect to the operators T, U .

Definition 5. Let $T, U \in GL(H)$, and let $\{\Lambda_i \in L(H, H_i) : i \in I\}$ and $\{\Gamma_i \in$ $L(\mathcal{H}, \mathcal{H}_i) : i \in I$ be two g-complete families of bounded operators. Let $0 \leq$ λ_1, λ_2 < 1 be real numbers, and let $\mathcal{C} = \{c_i\}_{i \in I}$ be an arbitrary sequence of positive numbers such that $\|\mathcal{C}\|_2 < \infty$. We say that the family $\{\Gamma_i \in L(\mathcal{H}, \mathcal{H}_i):$ $i \in I$ is a $(\lambda_1, \lambda_2, \mathcal{C}, T, U)$ -perturbation of $\{\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ if we have

$$
\|\Lambda_i Tf - \Gamma_i Uf\| \leq \lambda_1 \|\Lambda_i Tf\| + \lambda_2 \|\Gamma_i Uf\| + c_i \|f\|, \quad \forall f \in \mathcal{H}.
$$

We have the following important result.

Proposition 6. Let $\{\Lambda_i \in L(H, H_i) : i \in I\}$ be a g-frame for H with frame bounds A, B. Suppose that $T, U \in GL(H)$. Let $\{\Gamma_i \in L(H, H_i) : i \in I\}$ be a $(\lambda_1, \lambda_2, \mathcal{C}, T, U)$ -perturbation of $\{\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$, in which

$$
(1 - \lambda_1)\sqrt{A} ||T^{-1}||^{-1} > ||C||_2.
$$

Then $\{\Gamma_i \in L(H, H_i) : i \in I\}$ is a g-frame for H with g-frame bounds

$$
\left(\frac{(1-\lambda_1)\sqrt{A}\|T^{-1}\|^{-1}-\|C\|_2}{1+\lambda_2}\|U\|^{-1}\right)^2, \qquad \left(\frac{(1+\lambda_1)\sqrt{B}\|T\|+\|C\|_2}{1-\lambda_2}\|U\|^{-1}\right)^2
$$

Proof. Since $\{\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for H with frame bounds A, B, for all $f \in \mathcal{H}$, we have √

$$
\frac{\sqrt{A}}{\|T^{-1}\|}\|f\| \le \sum_{i \in I} \left(\|\Lambda_i Tf\|^2\right)^{\frac{1}{2}} \le \sqrt{B}\|T\|f\|.
$$

Then by triangular inequality we have

$$
\left(\sum_{i\in I} \|\Gamma_i U f\|^2\right)^{\frac{1}{2}} \le \left(\sum_{i\in I} \left(\|\Lambda_i Tf\| + \|\Lambda_i Tf - \Gamma_i U f\|\right)^2\right)^{\frac{1}{2}}
$$

$$
\le \left(\sum_{i\in I} \left(\|\Lambda_i Tf\| + \lambda_1 \|\Lambda_i Tf\| + \lambda_2 \|\Gamma_i U f\| + c_i \|f\|\right)^2\right)^{\frac{1}{2}}
$$

$$
\le (1 + \lambda_1) \sum_{i\in I} \left(\|\Lambda_i Tf\|^2\right)^{\frac{1}{2}} + \lambda_2 \sum_{i\in I} \left(\|\Gamma_i U f\|^2\right)^{\frac{1}{2}}
$$

$$
+ \|\mathcal{C}\|_2 \|f\|.
$$

Hence,

$$
(1 - \lambda_2) \sum_{i \in I} \left(\|\Gamma_i U f\|^2 \right)^{\frac{1}{2}} \le (1 + \lambda_1) \sqrt{B} \|T\| \frac{\|Uf\|}{\|U\|^{-1}} + \|C\|_2 \frac{\|Uf\|}{\|U\|^{-1}}.
$$

Since $Uf \in \mathcal{H}$, finally we have

$$
\sum_{i\in I} \|\Gamma_i f\|^2 \le \left(\frac{(1+\lambda_1)\sqrt{B}\|T\| + \|\mathcal{C}\|_2)}{1-\lambda_2} \|U\|^{-1}\right)^2 \|f\|^2.
$$

Now for the lower bound we have

$$
\left(\sum_{i\in I} \|\Gamma_i U f\|^2\right)^{\frac{1}{2}} \ge \left(\sum_{i\in I} \left(\|\Lambda_i Tf\| - \|\Lambda_i Tf - \Gamma_i U f\|\right)^2\right)^{\frac{1}{2}}
$$

$$
\ge \left(\sum_{i\in I} \left(\|\Lambda_i Tf\| - \lambda_1 \|\Lambda_i Tf\| - \lambda_2 \|\Gamma_i U f\| - c_i \|f\|\right)^2\right)^{\frac{1}{2}}
$$

$$
\ge (1 - \lambda_1) \sum_{i\in I} \left(\|\Lambda_i Tf\|^2\right)^{\frac{1}{2}} - \lambda_2 \sum_{i\in I} \left(\|\Gamma_i U f\|^2\right)^{\frac{1}{2}}
$$

$$
- \|\mathcal{C}\|_2 \|f\|.
$$

Hence,

$$
(1+\lambda_2)\sum_{i\in I} \left(\|\Gamma_i U f\|^2\right)^{\frac{1}{2}} \ge (1-\lambda_1)\sqrt{A}\|T^{-1}\|^{-1}\frac{\|Uf\|}{\|U\|^{-1}} - \|\mathcal{C}\|_2\frac{\|Uf\|}{\|U\|^{-1}},
$$

which yields

$$
\sum_{i\in I} \|\Gamma_i f\|^2 \ge \left(\frac{(1-\lambda_1)\sqrt{A}\|T^{-1}\|^{-1} - \|\mathcal{C}\|_2}{1+\lambda_2} \|U\|^{-1}\right)^2 \|f\|^2.
$$

Acknowledgments. The authors were partially supported by Natural Science Foundation of Anhui Province grant 1908085MF175 and by Fundamental Research Funds for the Central Universities grant JZ2019HGBZ0129.

References

- 1. M. S. Asgari and A. Khosravi, Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl. 308 (2005), no. 2, 541–553. [Zbl 1091.46006.](http://www.emis.de/cgi-bin/MATH-item?1091.46006) [MR2150106.](http://www.ams.org/mathscinet-getitem?mr=2150106) [DOI 10.1016/](https://doi.org/10.1016/j.jmaa.2004.11.036) [j.jmaa.2004.11.036.](https://doi.org/10.1016/j.jmaa.2004.11.036) [540,](#page-3-1) [541,](#page-4-0) [542](#page-5-0)
- 2. P. Balazs, J.-P. Antoine, and A. Grybos, Weighted and controlled frames: Mutual relationship and first numerical properties, Int. J. Wavelets, Multiresolut. Inf. Process. 8 (2010), no. 1, 109–132. [Zbl 1192.42016.](http://www.emis.de/cgi-bin/MATH-item?1192.42016) [MR2654396.](http://www.ams.org/mathscinet-getitem?mr=2654396) [DOI 10.1142/S0219691310003377.](https://doi.org/10.1142/S0219691310003377) [538,](#page-1-1) [539](#page-2-1)
- 3. B. G. Bodmann and V. I. Paulsen, Frames, graphs and erasures, Linear Algebra Appl. 404 (2005), no. 1, 118–146. [Zbl 1088.46009.](http://www.emis.de/cgi-bin/MATH-item?1088.46009) [MR2149656.](http://www.ams.org/mathscinet-getitem?mr=2149656) [DOI 10.1016/j.laa.2005.02.016.](https://doi.org/10.1016/j.laa.2005.02.016) [537](#page-0-0)
- 4. I. Bogdanova, P. Vandergheynst, J.-P. Antoine, L. Jacques, and M. Morvidone, Stereographic wavelet frames on the sphere, Appl. Comput. Harmon. Anal. 19 (2005), no. 2, 223–252. [Zbl 1082.42026.](http://www.emis.de/cgi-bin/MATH-item?1082.42026) [MR2163079.](http://www.ams.org/mathscinet-getitem?mr=2163079) [DOI 10.1016/j.acha.2005.05.001.](https://doi.org/10.1016/j.acha.2005.05.001) [538](#page-1-1)
- 5. P. G. Casazza, O. Christensen, A. M. Lindner, and R. Vershynin, Frames and the Feichtinger conjecture, Proc. Amer. Math. Soc. 133 (2005), no. 4, 1025–1033. [Zbl 1082.46018.](http://www.emis.de/cgi-bin/MATH-item?1082.46018) [MR2117203.](http://www.ams.org/mathscinet-getitem?mr=2117203) [DOI 10.1090/S0002-9939-04-07594-X.](https://doi.org/10.1090/S0002-9939-04-07594-X) [537](#page-0-0)
- 6. P. G Casazza, G. Kutyniok, and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25 (2008), no. 1, 114–132. [Zbl 1258.42029.](http://www.emis.de/cgi-bin/MATH-item?1258.42029) [MR2419707.](http://www.ams.org/mathscinet-getitem?mr=2419707) [DOI](https://doi.org/10.1016/j.acha.2007.10.001) [10.1016/j.acha.2007.10.001.](https://doi.org/10.1016/j.acha.2007.10.001) [542](#page-5-0)
- 7. O. Christensen, An Introduction to Frames and Riesz Bases, 2nd ed., Birkhäuser/Springer, Cham, 2016. [Zbl 1348.42033.](http://www.emis.de/cgi-bin/MATH-item?1348.42033) [MR3495345.](http://www.ams.org/mathscinet-getitem?mr=3495345) [DOI 10.1007/978-3-319-25613-9.](https://doi.org/10.1007/978-3-319-25613-9) [537](#page-0-0)
- 8. I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), no. 5, 1271–1283. [Zbl 0608.46014.](http://www.emis.de/cgi-bin/MATH-item?0608.46014) [MR0836025.](http://www.ams.org/mathscinet-getitem?mr=0836025) [DOI 10.1063/1.527388.](https://doi.org/10.1063/1.527388) [537](#page-0-0)
- 9. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), no. 2, 341–366. [Zbl 0049.32401.](http://www.emis.de/cgi-bin/MATH-item?0049.32401) [MR0047179.](http://www.ams.org/mathscinet-getitem?mr=0047179) [DOI 10.2307/1990760.](https://doi.org/10.2307/1990760) [537](#page-0-0)
- 10. M. Ehler, Random tight frames, J. Fourier Anal. Appl. 18 (2012), no. 1, 1–20. [Zbl 1247.42026.](http://www.emis.de/cgi-bin/MATH-item?1247.42026) [MR2885555.](http://www.ams.org/mathscinet-getitem?mr=2885555) [DOI 10.1007/s00041-011-9182-5.](https://doi.org/10.1007/s00041-011-9182-5) [537](#page-0-0)
- 11. V. K. Goyal, J. Kovačević, and J. A. Kelner, *Quantized frame expansions with erasures*, Appl. Comput. Harmon. Anal. 10 (2001), no. 3, 203–233. [Zbl 0992.94009.](http://www.emis.de/cgi-bin/MATH-item?0992.94009) [MR1829801.](http://www.ams.org/mathscinet-getitem?mr=1829801) [DOI 10.1006/acha.2000.0340.](https://doi.org/10.1006/acha.2000.0340) [537](#page-0-0)
- 12. X. Guo, Characterizations of disjointness of g-frames and constructions of g-frames in Hilbert spaces, Complex Anal. Oper. Theory 8 (2014), no. 7, 1547–1563. [Zbl 1304.42072.](http://www.emis.de/cgi-bin/MATH-item?1304.42072) [MR3261712.](http://www.ams.org/mathscinet-getitem?mr=3261712) [DOI 10.1007/s11785-014-0364-4.](https://doi.org/10.1007/s11785-014-0364-4) [537](#page-0-0)
- 13. A. Khosravi and K. Musazadeh, Fusion frames and g-frames, J. Math. Anal. Appl. 342 (2008), no. 2, 1068–1083. [Zbl 1143.42033.](http://www.emis.de/cgi-bin/MATH-item?1143.42033) [MR2445260.](http://www.ams.org/mathscinet-getitem?mr=2445260) [DOI 10.1016/j.jmaa.2008.01.002.](https://doi.org/10.1016/j.jmaa.2008.01.002) [546](#page-9-2)
- 14. J. Leng, D. Han, and T. Huang, Optimal dual frames for communication coding with probabilistic erasures, IEEE Trans. Signal Process. 59 (2011), no. 11, 5380–5389. [Zbl 1393.94747.](http://www.emis.de/cgi-bin/MATH-item?1393.94747) [MR2883607.](http://www.ams.org/mathscinet-getitem?mr=2883607) [DOI 10.1109/TSP.2011.2162955.](https://doi.org/10.1109/TSP.2011.2162955) [537](#page-0-0)
- 15. D. Li, J. Leng, and T. Huang, Generalized frames for operators associated with atomic systems, Banach J. Math. Anal. 12 (2018), no. 1, 206–221. [Zbl 1382.42019.](http://www.emis.de/cgi-bin/MATH-item?1382.42019) [MR3745581.](http://www.ams.org/mathscinet-getitem?mr=3745581) [DOI 10.1215/17358787-2017-0050.](https://doi.org/10.1215/17358787-2017-0050) [537](#page-0-0)
- 16. D. Li, J. Leng, T. Huang, and Q. Gao, Frame expansions with probabilistic erasures, Digit. Signal Process. 72 (2018), 75–82. [MR3726074.](http://www.ams.org/mathscinet-getitem?mr=3726074) [DOI 10.1016/j.dsp.2017.10.002.](https://doi.org/10.1016/j.dsp.2017.10.002) [537](#page-0-0)
- 17. D. Li, J. Leng, T. Huang, and G. Sun, On sum and stability of g-frames in Hilbert spaces, Linear Multilinear Algebra 66 (2018), no. 8, 1578–1592. [Zbl 1392.42029.](http://www.emis.de/cgi-bin/MATH-item?1392.42029) [MR3806240.](http://www.ams.org/mathscinet-getitem?mr=3806240) [DOI](https://doi.org/10.1080/03081087.2017.1364338) [10.1080/03081087.2017.1364338.](https://doi.org/10.1080/03081087.2017.1364338) [538](#page-1-1)
- 18. K. Musazadeh and H. Khandani, Some results on controlled frames in Hilbert spaces, Acta Math. Sci. Ser. B (Engl. Ed.) 36 (2016), no. 3, 655–665. [Zbl 1363.42059.](http://www.emis.de/cgi-bin/MATH-item?1363.42059) [MR3479244.](http://www.ams.org/mathscinet-getitem?mr=3479244) [DOI](https://doi.org/10.1016/S0252-9602(16)30029-7) [10.1016/S0252-9602\(16\)30029-7.](https://doi.org/10.1016/S0252-9602(16)30029-7) [539,](#page-2-1) [544](#page-7-0)
- 19. A. Rahimi and A. Fereydooni, Controlled g-frames and their g-multipliers in Hilbert spaces, An. Stiint Univ. "Ovidius" Constanta Ser. Mat. 21 (2013), no. 2, 223–236. [Zbl 1313.42094.](http://www.emis.de/cgi-bin/MATH-item?1313.42094) [MR3096895.](http://www.ams.org/mathscinet-getitem?mr=3096895) [DOI 10.2478/auom-2013-0035.](https://doi.org/10.2478/auom-2013-0035) [538,](#page-1-1) [539](#page-2-1)
- 20. T. Strohmer and R. W. Heath, Jr., Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal. 14 (2003), no. 3, 257–275. [Zbl 1028.42020.](http://www.emis.de/cgi-bin/MATH-item?1028.42020) [MR1984549.](http://www.ams.org/mathscinet-getitem?mr=1984549) [DOI 10.1016/S1063-5203\(03\)00023-X.](https://doi.org/10.1016/S1063-5203(03)00023-X) [537](#page-0-0)
- 21. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437–452. [Zbl 1129.42017.](http://www.emis.de/cgi-bin/MATH-item?1129.42017) [MR2239250.](http://www.ams.org/mathscinet-getitem?mr=2239250) [DOI 10.1016/j.jmaa.2005.09.039.](https://doi.org/10.1016/j.jmaa.2005.09.039) [537,](#page-0-0) [538](#page-1-1)

¹School of Mathematics, HeFei University of Technology, 230009, People's Republic of China.

E-mail address: dongweili@hfut.edu.cn

2School of Mathematical Sciences, University of Electronic Science and Technology of China, 611731, People's Republic of China.

E-mail address: jinsongleng@126.com