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Abstract. In the following we generalize the concept of Birkhoff–James
orthogonality of operators on a Hilbert space when a semi-inner product is con-
sidered. More precisely, for linear operators T and S on a complex Hilbert space
H, a new relation T ⊥B

A S is defined if T and S are bounded with respect to
the seminorm induced by a positive operator A satisfying ‖T + γS‖A ≥ ‖T‖A
for all γ ∈ C. We extend a theorem due to Bhatia and Šemrl by proving that
T ⊥B

A S if and only if there exists a sequence of A-unit vectors {xn} in H such
that limn→+∞ ‖Txn‖A = ‖T‖A and limn→+∞ 〈Txn, Sxn〉A = 0. In addition,
we give some A-distance formulas. Particularly, we prove

inf
γ∈C

‖T + γS‖A = sup
{∣∣〈Tx, y〉A∣∣; ‖x‖A = ‖y‖A = 1, 〈Sx, y〉A = 0

}
.

Some other related results are also discussed.

1. Introduction and preliminaries

Let B(H) denote the C∗-algebra of all bounded linear operators on a complex
Hilbert space H with an inner product 〈·, ·〉 and the corresponding norm ‖ · ‖.
The symbol I stands for the identity operator on H. If T ∈ B(H), then we denote

by R(T ) and N (T ) the range and the kernel of T , respectively, and by R(T ) the
norm closure of R(T ). Throughout this article, we assume that A ∈ B(H) is a

positive operator and that P is the orthogonal projection onto R(A). Recall that
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A is called positive if 〈Ax, x〉 ≥ 0 for all x ∈ H. Such an A induces a positive
semidefinite sesquilinear form 〈·, ·〉A : H×H → C defined by

〈x, y〉A = 〈Ax, y〉, x, y ∈ H.

Denote by ‖ · ‖A the seminorm induced by 〈·, ·〉A; that is, ‖x‖A =
√

〈x, x〉A for
every x ∈ H. It can be easily seen that ‖ · ‖A is a norm if and only if A is an
injective operator, and that (H, ‖ · ‖A) is a complete space if and only if R(A)
is closed in H. For x, y ∈ H, we say that x and y are A-orthogonal, denoted by
x ⊥A y, if 〈x, y〉A = 0. Note that this definition is a natural extension of the usual
notion of orthogonality, which represents the I-orthogonality case. Furthermore,
we put

BA1/2(H) =
{
T ∈ B(H) : ∃c > 0 ∀x ∈ H; ‖Tx‖A ≤ c‖x‖A

}
.

We consider an operator T ∈ B(H) to be A-bounded if T belongs to BA1/2(H). It
can be shown that BA1/2(H) is a unital subalgebra of B(H) which, in general, is
neither closed nor dense in B(H) (see [2]). We equip BA1/2(H) with the seminorm
‖ · ‖A defined as follows:

‖T‖A = sup
x∈R(A),x 6=0

‖Tx‖A
‖x‖A

= inf
{
c > 0; ‖Tx‖A ≤ c‖x‖A, x ∈ H

}
< ∞.

In addition, for T ∈ BA1/2(H), we have

‖T‖A = sup
x∈H,‖x‖A=1

‖Tx‖A = sup
{∣∣〈Tx, y〉A∣∣;x, y ∈ H, ‖x‖A = ‖y‖A = 1

}
.

Of course, many difficulties arise. For instance, it may happen that ‖T‖A = ∞
for some T ∈ B(H). In addition, not any operator admits an adjoint operator for
the semi-inner product 〈·, ·〉A. (For more details about this class of operators, we
refer the reader to [2].) In recent years, several results covering some classes of
operators on a complex Hilbert space (H, 〈·, ·〉) have been extended to (H, 〈·, ·〉A)
(see [2], [3], and the references therein).

The notion of orthogonality in B(H) can be introduced in many ways (see,
e.g., [13]). When T, S ∈ B(H), we say that T is Birkhoff–James orthogonal to S,
denoted T ⊥B S, if

‖T + γS‖ ≥ ‖T‖ for all γ ∈ C.

In Hilbert spaces, this orthogonality is equivalent to the usual notion of orthogo-
nality. This notion of orthogonality plays a very important role in the geometry
of Hilbert space operators. For T, S ∈ B(H), Bhatia and Šemrl in [4, Remark 3.1]
and Paul in [14, Lemma 2] independently proved that T ⊥B S if and only if there
exists a sequence of unit vectors {xn} in H such that

lim
n→∞

‖Txn‖ = ‖T‖ and lim
n→∞

〈Txn, Sxn〉 = 0.

It follows then that if the Hilbert space H is finite-dimensional, T ⊥B S if and
only if there is a unit vector x ∈ H such that ‖Tx‖ = ‖T‖ and 〈Tx, Sx〉 = 0.

A number of authors have recently extended the well-known result of Bhatia
and Šemrl (see, e.g., [6], [17], [19]). Moreover, Wójcik [17], [19] showed other
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ways of proving the Bhatia–Šemrl theorem. Other authors have studied different
aspects of orthogonality of operators on various Banach spaces and elements of
an arbitrary Hilbert C∗-module (see, e.g., [1], [5], [7], [10], [11], [15], [18], [20]).

Now, let us introduce the notion of A-Birkhoff–James orthogonality of opera-
tors in semi-Hilbertian spaces.

Definition 1.1. An element T ∈ BA1/2(H) is called A-Birkhoff–James orthogonal
to another element S ∈ BA1/2(H), denoted by T ⊥B

A S, if

‖T + γS‖A ≥ ‖T‖A for all γ ∈ C.

This is a generalization of the notion of Birkhoff–James of Hilbert space oper-
ators. Notice that the A-Birkhoff–James orthogonality is homogenous; that is,
T ⊥B

A S ⇔ (αT ) ⊥B
A (βS) for all α, β ∈ C.

This paper is organized as follows. In Section 2, we obtain characterizations of
A-Birkhoff–James orthogonality for bounded linear operators in semi-Hilbertian
spaces. In particular, for T, S ∈ BA1/2(H), we show that T ⊥B

A S if and only if
there exists a sequence of A-unit vectors {xn} in H such that

lim
n→+∞

‖Txn‖A = ‖T‖A and lim
n→+∞

〈Txn, Sxn〉A = 0.

Furthermore, for the finite-dimensional Hilbert space H, we show that T ⊥B
A S

if and only if there exists an A-unit vector x ∈ H such that ‖Tx‖A = ‖T‖A and

〈Tx, Sx〉A = 0. The mentioned property extends the Bhatia–Šemrl theorem.
Finally, in Section 3, some specific formulas for infγ∈C ‖T + γS‖A, where we

have that T, S ∈ BA1/2(H), are given. In particular, we show that

inf
γ∈C

‖T + γS‖A = sup
{∣∣〈Tx, y〉A∣∣; ‖x‖A = ‖y‖A = 1, Sx ⊥A y

}
.

We then apply it to prove that infγ∈C ‖T + γS‖2A = sup‖x‖A=1Φ
(T,S)
A (x), where

Φ
(T,S)
A (x) =

{
‖Tx‖2A − |〈Tx,Sx〉A|2

‖Sx‖2A
if ‖Sx‖A 6= 0,

‖Tx‖2A if ‖Sx‖A = 0.

Our results cover and extend the works of Fujii and Nakamoto in [9] and Bhatia
and Šemrl in [4].

2. A-Birkhoff–James orthogonality of operators

We first prove a technical lemma that we need in what follows. We use tech-
niques from [3, Theorem 3.2] to prove this result. In fact, the following lemma
extends Magajna’s lemma in [12].

Lemma 2.1 ([12, Lemma 2.1]). Let T, S ∈ BA1/2(H). Then the set

WA(T, S) =
{
ξ ∈ C;∃{xn} ⊂ H, ‖xn‖A = 1, lim

n→+∞
‖Txn‖A = ‖T‖A,

and lim
n→+∞

〈Txn, Sxn〉A = ξ
}

is nonempty, compact, and convex.
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Proof. Since the seminorm of T ∈ BA1/2(H) is given by

‖T‖A = sup
{
‖Tx‖A;x ∈ R(A), ‖x‖A = 1

}
,

there exists a sequence of A-unit vectors {xn} in R(A) such that

lim
n→+∞

‖Txn‖A = ‖T‖A.

Furthermore, using the Cauchy–Schwarz inequality, we have∣∣〈Txn, Sxn〉A
∣∣ ≤ ‖Txn‖A‖Sxn‖A ≤ ‖T‖A‖S‖A.

Hence, {〈Txn, Sxn〉A} is a bounded sequence of complex numbers, so there exists a
subsequence {〈Txnk

, Sxnk
〉A} that converges to some ξ0 ∈ C. Thus ξ0 ∈ WA(T, S)

and hence WA(T, S) is nonempty.
On the other hand, considering the definition of WA(T, S), it follows that

WA(T, S) ⊂
{
ξ ∈ C; |ξ| ≤ ‖T‖A‖S‖A

}
.

Therefore, to prove that WA(T, S) is compact, it is enough to show that WA(T, S)
is closed. Let ξn ∈ WA(T, S), and let limn→+∞ ξn = ξ. Since ξn ∈ WA(T, S), there
exists a sequence of A-unit vectors {xn

m} inH such that limm→+∞‖Txn
m‖A = ‖T‖A

and limm→+∞〈Txn
m, Sx

n
m〉A = ξn. Now, let ε > 0. Hence∣∣‖Txn

m‖A − ‖T‖A
∣∣ < ε (2.1)

and also ∣∣〈Txn
m, Sx

n
m〉A − ξn

∣∣ < ε

2
(2.2)

for all sufficiently large m. From (2.1) and (2.2), we get∣∣‖Txn
m‖A − ‖T‖A

∣∣ < ε

and ∣∣〈Txn
m, Sx

n
m〉A − ξ

∣∣ ≤ ∣∣〈Txn
m, Sx

n
m〉A − ξn

∣∣+ |ξn − ξ| < ε

2
+

ε

2
= ε

for all sufficiently large m. Therefore, we deduce that limm→+∞‖Txn
m‖A = ‖T‖A

and limm→+∞〈Txn
m, Sx

n
m〉A = ξ. Thus ξ ∈ WA(T, S) and so WA(T, S) is closed.

We next show that WA(T, S) is convex. Since H can be decomposed as H =

N (A)⊕R(A), every x ∈ H can be written in a unique way into x = y + z with

y ∈ N (A) and z ∈ R(A). Furthermore, since A ≥ 0, it follows that N (A) =
N (A1/2) which implies that ‖x‖A = ‖z‖A. Thus

WA(T, S) =
{
ξ ∈ C;∃

{
(yn, zn)

}
⊂ N (A)×R(A), ‖zn‖A = 1,

lim
n→+∞

∥∥T (yn + zn)
∥∥
A
= ‖T‖A, and

lim
n→+∞

〈Tyn, Szn〉A + 〈Tzn, Szn〉A = ξ
}
.

Since T, S ∈ BA1/2(H), then T (N (A)) ⊂ N (A) and S(N (A)) ⊂ N (A). Hence,
we get
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WA(T, S) =
{
ξ ∈ C;∃{zn} ⊂ R(A), ‖zn‖A = 1,

lim
n→+∞

‖Tzn‖A = ‖T‖A, and lim
n→+∞

〈Tzn, Szn〉A = ξ
}

=
{
ξ ∈ C;∃{zn} ⊂ R(A), ‖zn‖A = 1,

lim
n→+∞

‖PTzn‖A = ‖PT |R(A)‖A, and lim
n→+∞

〈PTzn, PSzn〉A = ξ
}

= WA0(T̃ , S̃),

where A0 = A|R(A), T̃ = PT |R(A), and S̃ = PS|R(A). By [12, Lemma 2.1], we

conclude that WA(T, S) is convex. �

Recall that the minimum modulus of S ∈ B(H) is defined by

m(S) = inf
{
‖Sx‖ : x ∈ H, ‖x‖ = 1

}
.

This concept is useful in studying linear operators (see [13] and the references
therein). The A-minimum modulus of S ∈ BA1/2(H) can be defined by

mA(S) = inf
{
‖Sx‖A : x ∈ H, ‖x‖A = 1

}
.

We are now in a position to establish the main result of this section. To establish
the following theorem, we use some ideas from [16, Theorem 2].

Theorem 2.2. Let T, S ∈ BA1/2(H). Then the following conditions are equivalent:

(i) there exists a sequence of A-unit vectors {xn} in H such that

lim
n→+∞

‖Txn‖A = ‖T‖A and lim
n→+∞

〈Txn, Sxn〉A = 0,

(ii) ‖T + γS‖2A ≥ ‖T‖2A + |γ|2m2
A(S) for all γ ∈ C,

(iii) T ⊥B
A S.

Proof. (i)⇒(ii) Suppose that (i) holds. We have

‖T + γS‖2A ≥
∥∥(T + γS)xn

∥∥2

A

= ‖Txn‖2A + γ〈Txn, Sxn〉A + γ〈Sxn, Txn〉A + |γ|2‖Sxn‖2A
for all γ ∈ C and n ∈ N. Thus

‖T + γS‖2A ≥ ‖T‖2A + |γ|2 lim
n→∞

sup ‖Sxn‖2A ≥ ‖T‖2A + |γ|2m2
A(S)

for all γ ∈ C.
(ii)⇒(iii) This implication is trivial.
(iii)⇒(i) If ‖S‖A = 0, then since T is a seminorm, there exists a sequence of

A-unit vectors {xn} in H such that limn→+∞ ‖Txn‖A = ‖T‖A. So, the Cauchy–
Schwarz inequality implies that∣∣〈Txn, Sxn〉A

∣∣ ≤ ‖Txn‖A‖Sxn‖A ≤ ‖T‖A‖S‖A = 0.

Hence, limn→+∞ 〈Txn, Sxn〉A = 0. Now let ‖S‖A 6= 0. It is enough to show that
0 ∈ WA(T, S), where WA(T, S) is defined as in Lemma 2.1. Let 0 /∈ WA(T, S).
Lemma 2.1 implies that WA(T, S) is a nonempty, compact, and convex sub-
set of the complex plane C; hence, because of the rotation, we may suppose
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that WA(T, S) is contained in the right half-plane. Therefore there is a line
that separates 0 from WA(T, S). In other words, there exists τ > 0 such that
ReWA(T, S) > τ . Let

Hτ =
{
x ∈ H; ‖x‖A = 1, and ReWA(T, S) ≤

τ

2

}
and

δ = sup
{
‖Tx‖A;x ∈ Hτ

}
.

We first claim that δ < ‖T‖A. Suppose that δ ≥ ‖T‖A. Hence δ = ‖T‖A. Thus
there exists a sequence of vectors {xn} in Hτ such that limn→+∞ ‖Txn‖A =
‖T‖A. As xn ∈ Hτ , so ‖xn‖A = 1 and ReWA(T, S) ≤ τ

2
. Now the sequence

{〈Txn, Sxn〉A} is bounded, and hence it has a convergent subsequence; so with-
out loss of generality we can assume that {〈Txn, Sxn〉A} is convergent. If we set
ξ = limn→+∞ 〈Txn, Sxn〉A, then Re(ξ) ≤ τ

2
, and this contradicts the fact that

ReWA(T, S) >
τ
2
. Thus δ < ‖T‖A. Let γ0 = max{ −τ

2‖S‖2A
,
δ−‖T‖A
2‖S‖A

}. Then γ0 < 0.

We claim that ‖T + γ0S‖A < ‖T‖A. Let x be an A-unit vector in H. If x ∈ Hτ ,
then ∥∥(T + γ0S)x

∥∥
A
≤ ‖Tx‖A + |γ0|‖Sx‖A ≤ δ − γ0‖S‖A

≤ δ +
‖T‖A − δ

2‖S‖A
‖S‖A =

δ

2
+

‖T‖A
2

and so ‖(T + γ0S)x‖A ≤ δ
2
+

‖T‖A
2

.
If x /∈ Hτ , then we can write Tx = (r + it)Sx + y with r, t ∈ R and Sx ⊥A y.

Thus

2r‖S‖2A ≥ 2r‖Sx‖2A = 2Re 〈Tx, Sx〉A >
τ

2
≥ −γ0‖S‖2A,

and hence 2r + γ0 > 0. Now, let us put

θ := inf
{
‖Sx‖2A;x /∈ Hτ , ‖x‖A = 1

}
.

Since γ2
0 + 2rγ0 < 0, we obtain∥∥(T + γ0S)x

∥∥2

A
=

〈(
(r + γ0) + it

)
Sx+ y,

(
(r + γ0) + it

)
Sx+ y

〉
A

=
(
(r + γ0)

2 + t2
)
‖Sx‖2A + ‖y‖2A

= ‖Tx‖2A + (γ2
0 + 2rγ0)‖Sx‖2A

≤ ‖Tx‖2A + (γ2
0 + 2rγ0) inf

{
‖Sx‖2A;x /∈ Hτ , ‖x‖A = 1

}
≤ ‖T‖2A + (γ2

0 + 2rγ0)θ.

Hence ‖(T + γ0S)x‖2A ≤ ‖T‖2A + (γ2
0 + 2rγ0)θ. Thus in all cases∥∥(T + γ0S)x

∥∥2

A
≤ max

{(δ
2
+

‖T‖A
2

)2

, ‖T‖2A + (γ2
0 + 2rγ0)θ

}
,

whence
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‖T + γ0S‖2A ≤ max
{(δ

2
+

‖T‖A
2

)2

, ‖T‖2A + (γ2
0 + 2rγ0)θ

}
.

Since max{( δ
2
+

‖T‖A
2

)2, ‖T‖2A + (γ2
0 + 2rγ0)θ} < ‖T‖2A, we obtain ‖T + γ0S‖A <

‖T‖A. Therefore we deduce that T 6⊥B
A S, which contradicts our hypothesis. The

proof is thus completed. �

The following corollary gives a direct application of Theorem 2.2 for the case
A = I.

Corollary 2.3 ([4, Remark 3.1], [14, Lemma 2]). Let H be a complex Hilbert
space, and let T, S ∈ B(H). Then the following statements are equivalent:

(i) T ⊥B S,
(ii) there exists a sequence of unit vectors {xn} in H such that

lim
n→+∞

‖Txn‖ = ‖T‖ and lim
n→+∞

〈Txn, Sxn〉 = 0.

In what follows, for T ∈ BA1/2(H), we denote by MT
A the set of all A-unit

vectors at which T attains the seminorm ‖ · ‖A; that is,

MT
A =

{
x ∈ H : ‖x‖A = 1, ‖Tx‖A = ‖T‖A

}
.

(For more information on norm-attaining sets, see [8].) In the next theorem, we
consider a finite-dimensional Hilbert space and we characterize the A-Birkhoff–
James orthogonality of operators in semi-Hilbertian spaces.

Theorem 2.4. Let H be a finite-dimensional Hilbert space, and let T, S ∈
BA1/2(H). Then the following conditions are equivalent:

(i) there exists x ∈ MT
A such that Tx ⊥A Sx,

(ii) T ⊥B
A S.

Proof. (i)⇒(ii) Suppose that (i) holds. Then there exists an A-unit vector x ∈ H
such that ‖Tx‖A = ‖T‖A and Tx ⊥A Sx. Put xn = x for all n ∈ N. So, by the
equivalence (i)⇔(iii) in Theorem 2.2, we deduce that T ⊥B

A S.

(ii)⇒(i) First note that, by using the decomposition H = N (A) ⊕ R(A) and

letting A0 = A|R(A), it can be seen that the set {x ∈ R(A); ‖x‖A0
= 1} is

homeomorphic to the set {x ∈ R(A); ‖x‖ = 1}, which is compact since R(A) is

finite-dimensional. Thus we get that the set {x ∈ R(A); ‖x‖A0
= 1} is compact.

Now, suppose that (ii) holds. Put T̃ = PT |R(A) and S̃ = PS|R(A). Therefore,

by the equivalence (i)⇔(iii) in Theorem 2.2, there exists a sequence of A0-unit

vectors {xn} in R(A) such that

lim
n→+∞

‖T̃ xn‖A0
= ‖T̃‖A0

and lim
n→+∞

〈T̃ xn, S̃xn〉A0
= 0.

Since the set {x ∈ R(A); ‖x‖A0
= 1} is compact, then {xn} has a subsequence

{xnk
} that converges to some x ∈ R(A) with ‖x‖A0

= 1. This yields ‖T̃ x‖A0
=

limk→+∞‖T̃ xnk
‖A0

= ‖T̃‖A0
and 〈T̃ x, S̃x〉A0

= limk→+∞〈T̃ xnk
, S̃xnk

〉A0
= 0. From

this it follows that x ∈ MT
A and Tx ⊥A Sx. �
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As an immediate consequence of Theorem 2.4, we have the following result.

Corollary 2.5. Let H be finite-dimensional, and let T, S ∈ BA1/2(H). Then the
following statements are equivalent:

(i) T ⊥B
A S;

(ii) there exists x ∈ MT
A such that, for every γ ∈ C,

‖Tx+ γSx‖2A = ‖Tx‖2A + |γ|2‖Sx‖2A.

3. Some A-distance formulas

In this section, we give some formulas for the A-distance of an operator to
the class of multiple scalars of another operator in semi-Hilbertian spaces. For
T, S ∈ BA1/2(H) we have, by definition, dA(T,CS) := infγ∈C ‖T + γS‖A. The
following auxiliary lemma is needed for next results.

Lemma 3.1. Let T, S ∈ BA1/2(H). Then there exists ζ0 ∈ C such that

dA(T,CS) = ‖T + ζ0S‖A.

Proof. If ‖S‖A = 0, then

‖T + γS‖A ≥ ‖T‖A − |γ|‖S‖A = ‖T‖A
for all γ ∈ C. It is therefore enough to put ζ0 = 0. If ‖S‖A 6= 0, then put D :=

{γ ∈ C; |γ| ≤ 2‖T‖A
‖S‖A

} and define f : D → R by the formula f(γ) = ‖T + γS‖A.
Clearly, f is continuous and attains its minimum at, say, ζ0 ∈ D (of course, there
may be many such points). Then ‖T + γS‖A ≥ ‖T + ζ0S‖A for all γ ∈ D. If
γ /∈ D, then |γ| > 2‖T‖A

‖S‖A
. Since 0 ∈ D, we obtain

‖T + γS‖A ≥ |γ|‖S‖A − ‖T‖A > 2‖T‖A − ‖T‖A = ‖T‖A ≥ ‖T + ζ0S‖A.

Thus ‖T + γS‖A ≥ ‖T + ζ0S‖A for all γ /∈ D. Therefore, ‖T + γS‖A ≥
‖T + ζ0S‖A for all γ ∈ C. So, we conclude that infγ∈C ‖T + γS‖A = ‖T + ζ0S‖A
and hence dA(T,CS) = ‖T + ζ0S‖A. �

The following result is a kind of Pythagorean relation for bounded operators
in semi-Hilbertian spaces.

Theorem 3.2. Let T, S ∈ BA1/2(H) with mA(S) > 0. Then there exists a unique
ζ0 ∈ C such that∥∥(T + ζ0S) + γS

∥∥2

A
≥ ‖T + ζ0S‖2A + |γ|2m2

A(S)

for every γ ∈ C.

Proof. By Lemma 3.1, there exists ζ0 ∈ C such that

inf
γ∈C

‖T + γS‖A = ‖T + ζ0S‖A;

equivalently,

inf
ξ∈C

∥∥(T + ζ0S) + ξS
∥∥
A
= ‖T + ζ0S‖A.
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Thus (T + ζ0S) ⊥B
A S. So, by the equivalence (i)⇔(ii) in Theorem 2.2, for every

γ ∈ C, we have ∥∥(T + ζ0S) + γS
∥∥2

A
≥ ‖T + ζ0S‖2A + |γ|2m2

A(S).

Now, suppose that ζ1 is another point satisfying the inequality∥∥(T + ζ1S) + γS
∥∥2

A
≥ ‖T + ζ1S‖2A + |γ|2m2

A(S) (γ ∈ C).

Choose γ = ζ0 − ζ1 to get

‖T + ζ0S‖2A =
∥∥(T + ζ1S) + (ζ0 − ζ1)S

∥∥2

A

≥ ‖T + ζ1S‖2A + |ζ0 − ζ1|2m2
A(S)

≥ ‖T + ζ0S‖2A + |ζ0 − ζ1|2m2
A(S).

Hence 0 ≥ |ζ0 − ζ1|2m2
A(S). Since m2

A(S) > 0, we get |ζ0 − ζ1|2 = 0; equivalently,
ζ0 = ζ1. This shows that ζ0 is unique. �

We now establish one of our main results. In fact, in what follows, we provide
a version of the Bhatia–Šemrl theorem (see [4, p. 84]) in the setting of operators
in semi-Hilbertian spaces.

Theorem 3.3. Let T, S ∈ BA1/2(H). Then

dA(T,CS) = sup
{∣∣〈Tx, y〉A∣∣; ‖x‖A = ‖y‖A = 1, Sx ⊥A y

}
.

Proof. Let x, y ∈ H, ‖x‖A = ‖y‖A = 1, and let Sx ⊥A y. The Cauchy–Schwarz
inequality implies that∣∣〈Tx, y〉A∣∣ = ∣∣〈(T + γS)x, y

〉
A

∣∣ ≤ ∥∥(T + γS)x
∥∥
A
‖y‖A ≤ ‖T + γS‖A

for all γ ∈ C. Thus

sup
{∣∣〈Tx, y〉A∣∣; ‖x‖A = ‖y‖A = 1, Sx ⊥A y

}
≤ ‖T + γS‖A

for all γ ∈ C and so

sup
{∣∣〈Tx, y〉A∣∣; ‖x‖A = ‖y‖A = 1, Sx ⊥A y

}
≤ inf

γ∈C
‖T + γS‖A.

Hence

sup
{∣∣〈Tx, y〉A∣∣; ‖x‖A = ‖y‖A = 1, Sx ⊥A y

}
≤ dA(T,CS). (3.1)

On the other hand, by Lemma 3.1, there exists ζ0 ∈ C such that dA(T,CS) =
‖T + ζ0S‖A. We assume that ζ0 = 0 (otherwise, we just replace T by T +
ζ0S). Thus dA(T,CS) = ‖T‖A; equivalently, T ⊥B

A S. Then, by the equivalence
(i)⇔(iii) in Theorem 2.2, there exists a sequence of A-unit vectors {xn} in H
such that limn→+∞ ‖Txn‖A = ‖T‖A and limn→+∞ 〈Txn, Sxn〉A = 0. Now, let
Txn = αnSxn + βnyn with Sxn ⊥A yn, ‖yn‖A = 1, and αn, βn ∈ C. Then we have
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d2A(T,CS) = ‖T‖2A = lim
n→+∞

‖Txn‖2A
= lim

n→+∞
〈αnSxn + βnyn, αnSxn + βnyn〉A

= lim
n→+∞

〈αnSxn, αnSxn〉A + |βn|2

= lim
n→+∞

〈Txn − βnyn, αnSxn〉A + |βn|2

= lim
n→+∞

αn〈Txn, Sxn〉A − αnβn〈yn, Sxn〉A + |βn|2 = lim
n→+∞

|βn|2.

Consequently, we obtain

dA(T,CS) = lim
n→+∞

|βn| = lim
n→+∞

∣∣〈βnyn, yn〉A
∣∣

= lim
n→+∞

∣∣〈Txn − αnSxn, yn〉A
∣∣ = lim

n→+∞

∣∣〈Txn, yn〉A
∣∣

≤ sup
{∣∣〈Tx, y〉A∣∣; ‖x‖A = ‖y‖A = 1, Sx ⊥A y

}
,

whence

dA(T,CS) ≤ sup
{∣∣〈Tx, y〉A∣∣; ‖x‖A = ‖y‖A = 1, Sx ⊥A y

}
. (3.2)

From (3.1) and (3.2), we conclude that

dA(T,CS) = sup
{∣∣〈Tx, y〉A∣∣; ‖x‖A = ‖y‖A = 1, Sx ⊥A y

}
. �

For T ∈ B(H), Fujii and Nakamoto in [9] proved that dA(T,CI) can be written
in the form

d(T,CI) =
(
sup
‖x‖=1

(
‖Tx‖2 −

∣∣〈Tx, x〉∣∣2))1/2 = sup
‖x‖=1

∥∥Tx− 〈Tx, x〉x
∥∥, (3.3)

which shows that dA(T,CI) is the supremum over the lengths of all perpendiculars
from Tx to x, where x passes over the set of unit vectors. In the following theorem,
for T, S ∈ BA1/2(H), we show that dA(T,CS) can also be expressed in the form
generalizing (3.3).

Theorem 3.4. Let T, S ∈ BA1/2(H). Then

d2A(T,CS) = sup
‖x‖A=1

Φ
(T,S)
A (x),

where

Φ
(T,S)
A (x) =

{
‖Tx‖2A − |〈Tx,Sx〉A|2

‖Sx‖2A
if ‖Sx‖A 6= 0,

‖Tx‖2A if ‖Sx‖A = 0.

Proof. For every γ ∈ C and every A-unit vector x ∈ H such that ‖Sx‖A 6= 0, we
have

‖Tx+ γSx‖2A − |〈Tx+ γSx, Sx〉A|2

‖Sx‖2A
= ‖Tx‖2A + |γ|2‖Sx‖2A + 2Re 〈Tx, γSx〉A

− |〈Tx, Sx〉A|2 + |γ|2‖Sx‖4A + 2‖Sx‖2A Re 〈Tx, γSx〉A
‖Sx‖2A
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= ‖Tx‖2A − |〈Tx, Sx〉A|2

‖Sx‖2A
.

Thus

Φ
(T,S)
A (x) = ‖Tx+ γSx‖2A − |〈Tx+ γSx, Sx〉A|2

‖Sx‖2A
≤ ‖Tx+ γSx‖2A ≤ ‖T + γS‖2A.

Also, in the case ‖Sx‖A = 0 we have

Φ
(T,S)
A (x) = ‖Tx‖2A ≤

(
‖Tx+ γSx‖A + ‖γSx‖A

)2
= ‖Tx+ γSx‖2A ≤ ‖T + γS‖2A.

Hence we obtain Φ
(T,S)
A (x) ≤ ‖T + γS‖2A for every A-unit vector x ∈ H and

every γ ∈ C. Therefore, sup‖x‖A=1Φ
(T,S)
A (x) ≤ ‖T + γS‖2A for every γ ∈ C and

consequently,

sup
‖x‖A=1

Φ
(T,S)
A (x) ≤ inf

γ∈C
‖T + γS‖2A.

Thus

sup
‖x‖A=1

Φ
(T,S)
A (x) ≤ d2A(T,CS). (3.4)

Now, take A-unit vectors x, y ∈ H such that Sx ⊥A y. If ‖Sx‖A = 0, then∣∣〈Tx, y〉A∣∣2 ≤ ‖Tx‖2A‖y‖
2
A = Φ

(T,S)
A (x) ≤ sup

‖x‖A=1

Φ
(T,S)
A (x).

If ‖Sx‖A 6= 0, then∣∣〈Tx, y〉A∣∣2 = ∣∣∣〈Tx− 〈Tx, Sx〉A
‖Sx‖2A

Sx, y
〉
A

∣∣∣2
≤

〈
Tx− 〈Tx, Sx〉A

‖Sx‖2A
Sx, Tx− 〈Tx, Sx〉A

‖Sx‖2A
Sx

〉
A

= ‖Tx‖2A − |〈Tx, Sx〉A|2

‖Sx‖2A
= Φ

(T,S)
A (x) ≤ sup

‖x‖A=1

Φ
(T,S)
A (x).

So, we conclude that |〈Tx, y〉A|2 ≤ sup‖x‖A=1 Φ
(T,S)
A (x) for all A-unit vectors x, y ∈

H such that Sx ⊥A y. Therefore, Theorem 3.3 implies that

d2A(T,CS) ≤ sup
‖x‖A=1

Φ
(T,S)
A (x). (3.5)

Now, the result follows from (3.4) and (3.5). �

We close this paper with the following inf-sup equality in semi-Hilbertian
spaces.

Theorem 3.5. Let T, S ∈ BA1/2(H). Then

inf
γ∈C

sup
‖x‖A=1

∥∥(T + γS)x
∥∥2

A
= sup

‖x‖A=1

inf
γ∈C

∥∥(T + γS)x
∥∥2

A
.
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Proof. Let x ∈ H with ‖x‖A = 1. If ‖Sx‖A = 0, then∥∥(T + γS)x
∥∥
A
≥ ‖Tx‖A − |γ|‖Sx‖A = ‖Tx‖A

for all γ ∈ C. Thus

‖Tx‖2A ≥ inf
γ∈C

∥∥(T + γS)x
∥∥2

A
≥ ‖Tx‖2A,

whence infγ∈C ‖(T + γS)x‖2A = ‖Tx‖2A. Hence infγ∈C ‖(T + γS)x‖2A = Φ
(T,S)
A (x).

If ‖Sx‖A 6= 0, then simple computations show that∥∥(T + γS)x
∥∥2

A
= ‖Sx‖2A

∣∣∣〈Tx, Sx〉A
‖Sx‖2A

+ γ
∣∣∣2 + ‖Tx‖2A − |〈Tx, Sx〉A|2

‖Sx‖2A
.

Thus ‖(T + γS)x‖2A achieves its minimum at − 〈Tx,Sx〉A
‖Sx‖2A

and the minimum value

is ‖Tx‖2A − |〈Tx,Sx〉A|2

‖Sx‖2A
. Hence infγ∈C ‖(T + γS)x‖2A = Φ

(T,S)
A (x) for every A-unit

vector x ∈ H. From this, by Theorem 3.4, we conclude that

sup
‖x‖A=1

inf
γ∈C

∥∥(T + γS)x
∥∥2

A
= sup

‖x‖A=1

Φ
(T,S)
A (x)

= d2A(T,CS)

= inf
γ∈C

‖T + γS‖2A = inf
γ∈C

sup
‖x‖A=1

∥∥(T + γS)x
∥∥2

A
.
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