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Abstract. Let (G,G+) be a lattice-ordered abelian group with positive cone
G+, and let H+ be a hereditary subsemigroup of G+. In previous work, the
author and Pryde introduced a closed ideal IH+

of the C∗-subalgebra BG+
of

`∞(G+) spanned by the functions {1x : x ∈ G+}. Then we showed that the
crossed product C∗-algebra B(G/H)+×βG+ is realized as an induced C∗-algebra

IndĜH⊥(B(G/H)+ ×τ (G/H)+). In this paper, we prove the existence of the fol-
lowing short exact sequence of C∗-algebras:

0 → IH+
×α G+ → BG+

×α G+ → IndĜH⊥

(
B(G/H)+ ×τ (G/H)+

)
→ 0.

This relates BG+
×α G+ to the structure of IH+

×α G+ and B(G/H)+ ×β G+.
We then show that there is an isomorphism ι of BH+

×α H+ into BG+
×α G+.

This leads to nontrivial results on commutator ideals in C∗-crossed products
by hereditary subsemigroups involving an extension of previous results by Adji,
Raeburn, and Rosjanuardi.

1. Introduction

Suppose that (G,G+) is a lattice-ordered abelian group. Denote by {εx : x ∈
G+} the usual basis for the Hilbert space `2(G+). For each x ∈ G+, there is
an isometry Tx on `2(G+) satisfying Tx(εy) = εx+y for all y ∈ G+. The Toeplitz
algebra of G is the C∗-subalgebra T (G) of B(`2(G+)) generated by the isometries
{Tx : x ∈ G+}. Recall that the C∗-algebra C∗(G,G+) is the crossed product
BG+ ×α G+ of the dynamical system (BG+ , G+, α).
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In [4], we showed that, for a hereditary subsemigroup H+ of the positive cone
G+,

IH+ = span{1x − 1x+h : h ∈ H+, x ∈ G+}
is an extendibly αz-invariant ideal of BG+ for all z ∈ G+, where α is the action
given by

αx(y) = 1xy for all x, y ∈ G+. (1.1)

Then we showed that there is an isomorphism Ω of the crossed product
(BG+/IH+)×α̃G+ onto the crossed product B(G/H)+ ×βG+, where α̃x(1y+IH+) =
αx(1y) + IH+ , and β is an action of G+ on B(G/H)+ by extendible endomor-
phisms. Indeed β := τ ◦ q, where τ : (G/H)+ → End(B(G/H)+) satisfies
τx+H(1y+H) = 1x+y+H and every τx+H is extendible because B(G/H)+ is uni-
tal. Moreover, q : G → G/H is the quotient map of G onto G/H. We then
showed (see [4, Theorem 6.7]) that B(G/H)+ ×β G+ is realized as the induced

C∗-algebra IndĜ
H⊥(B(G/H)+ ×τ (G/H)+). Adji in [1] (see [1, Lemma 3.2] and [1,

Remark 3.3]) proved a result about the commutator ideal in the case of totally
ordered groups (see also [2] and [3]). Here, we are extending her results to more
general cases (lattice-ordered groups) so extra work needs to be done and the
proofs are more involved.

We begin with a preliminaries section in which we discuss lattice-ordered groups
(G,G+) and hereditary subsemigroups. We then review semigroup dynamical
systems, recall the basic properties, and set up our notation. In Section 3, we
show the existence of a surjective homomorphism

θH : BG+ ×α G+ → B(G/H)+ ×β G+.

We then describe our structure theorem, which is the existence of the following
short exact sequence of C∗-algebras:

0 → IH+ ×α G+ → BG+ ×α G+ → IndĜ
H⊥

(
B(G/H)+ ×τ (G/H)+

)
→ 0.

This enables us to show that the ideal IH+ ×αG+ is generated by {iBG+
(1− 1u) :

u ∈ H+}. In Section 4, we present an interesting result that allows us to view the
crossed product BH+×αH+ as a C∗-subalgebra of the crossed product BG+×αG+.
Then we show the existence of the exact sequence of C∗-algebras

0 → BH+,∞ ×α H+
φ→ BH+ ×α H+ → C(Ĥ) → 0,

which leads us to identify the commutator ideal of BH+ ×α H+.

2. Preliminaries

Let G be a discrete group. A binary relation “≤” defined on G is a partial order
if for x, y, z ∈ G, we have

(1) x ≤ x (reflexivity),
(2) x ≤ y and y ≤ x⇒ x = y (antisymmetry),
(3) x ≤ y and y ≤ z ⇒ x ≤ z (transitivity),
(4) x ≤ y ⇒ zx ≤ zy and xz ≤ yz.
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A nonempty group G together with a partial order ≤ is called a partially ordered
group. The positive cone of a partially ordered group G is the set of all positive
elements of G (x ∈ G is positive if x ≥ e, where e is the identity element of G),
which is a semigroup.

Let G+ be a subsemigroup of a group G with identity e such that G+ ∩G−1
+ =

{e}. There is a relation ≤ on G with respect to G+ where x ≤ y if x−1y ∈ G+.
This relation is a partial order on G which is left invariant in the sense that x ≤ y
implies zx ≤ zy for any x, y, z ∈ G. It is the natural partial order determined by
G+.

Convention. We now use (G,G+) to refer to the group G with the natural partial
order ≤ on G determined by G+.

Definition 2.1. The partially ordered group (G,G+) is said to be a lattice-ordered
group if every two elements of G have a least upper bound in G.

Notation. The least upper bound or sup of the elements x and y will be denoted
by x ∨ y.

One can easily verify that for a lattice-ordered group (G,G+), every two ele-
ments of G+ have a least upper bound in G+.

Definition 2.2. Let (G,G+) be a lattice-ordered group, and let H ⊂ G+. Then H
is said to be hereditary if for any x, y ∈ G+, e ≤ x ≤ y and y ∈ H imply that
x ∈ H (see [8, Definition 2.3]).

Let (G,G+) be a lattice-ordered group. We now consider a particular C∗-sub-
algebra of `∞(G+). Denote by 1x the function on G+ defined by

1x(y) =

{
1 if y ≥ x,

0 otherwise.
(2.1)

The lattice condition gives

1x1y =

{
1x∨y if x, y have a common upper bound,

0 otherwise.
(2.2)

The algebra BG+ := span{1x : x ∈ G+} is an abelian C∗-algebra with multiplica-
tion satisfying (2.2) (see [5, Section 2]).

Definition 2.3. Let (G,G+) be a lattice-ordered group, let B be a unital
C∗-algebra, and let V be a map from G+ to B. Then V is said to be an
isometric representation of G+ if it satisfies the following three conditions:

(i) Ve = 1B;
(ii) V ∗

x Vx = 1B for all x ∈ G+;
(iii) VxVy = Vxy for all x, y ∈ G+.

If in addition V satisfies VxV
∗
x VyV

∗
y = Vx∨yV

∗
x∨y for all x, y ∈ G+, then V is a

covariant isometric representation.

We now give our definition of semigroup dynamical systems.
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Definition 2.4. A semigroup dynamical system is a triple (A,G+, α) where A is a
C∗-algebra and α is an action of the semigroup G+ on A by endomorphisms (i.e.,
α : G+ → End(A) is a homomorphism such that αx is an endomorphism of A for
each x ∈ G+). Two dynamical systems (A,G+, α) and (B,G+, β) are equivalent
(isomorphic) if there is an isomorphism φ : A → B such that φ ◦ αx = βx ◦ φ for
all x ∈ G+. A covariant representation of a dynamical system (A,G+, α) is a pair
(π, V ), where π is a nondegenerate representation of A on a Hilbert space H, and
V is an isometric representation of G+ on H satisfying

π
(
αx(a)

)
= Vxπ(a)V

∗
x for all x ∈ G+, a ∈ A.

Definition 2.5. A crossed product for a dynamical system (A,G+, α) is a
C∗-algebra B together with a nondegenerate homomorphism iA : A → B
and a homomorphism iG+ of G+ into the semigroup of isometries in M(B) (the
multiplier algebra of B) such that:

(1) iA(αx(a)) = iG+(x)iA(a)iG+(x)
∗ for x ∈ G+ and a ∈ A;

(2) for every covariant representation (π, V ) of (A,G+, α) there is a nonde-
generate representation π × V of B such that

(π × V ) ◦ iA = π and π × V ◦ iG+ = V ;

(3) B is generated by {iA(a)iG+(x) : a ∈ A, x ∈ G+}.
The extension of a faithful nondegenerate representation φ of a C∗-algebra B to
its multiplier algebra M(B) is denoted φ.

Notation. We write A ×α G+ to denote the crossed product for the dynamical
system (A,G+, α). The homomorphisms (iA, iG+) are the universal covariant rep-
resentation.

Remark 2.6.

(1) If A is unital and (A,G+, α) has a nontrivial covariant representation,
then it is shown in [5, Proposition 2.1] that there is a crossed product and
it is unique up to isomorphism.

(2) Let G+ be an Ore semigroup (a cancellative semigroup which is right-
reversible, in the sense that G+x ∩ G+y 6= ∅ for all x, y ∈ G+), and let
(A,G+, α) be a dynamical system with extendible endomorphisms that
has a nonzero covariant representation. Then there exists a crossed prod-
uct for the system which is unique up to isomorphism (see [6, Proposi-
tion 1.4]).

(3) If A has a unit (see [7, p. 11]), then the representation π of Definition 2.4
and the homomorphism iA of Definition 2.5 must be unital, and condition
(2) of Definition 2.5 reduces to the existence of a unital representation
π × V of B such that

(π × V ) ◦ iA = π and (π × V ) ◦ iG+ = V.

Definition 2.7. An endomorphism φ of a C∗-algebra A is called extendible if it
extends to a strictly continuous endomorphism φ of the multiplier algebraM(A).
This happens precisely when there is an approximate identity (iλ) and a projection
p ∈M(A) such that φ(iλ) converges strictly to p in M(A) (see [1, Section 2]).
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Definition 2.8. Suppose that α is an extendible endomorphism of a C∗-algebra A
and that I is an ideal of A. Let ψ : A→M(I) denote the canonical nondegenerate
homomorphism defined by ψ(a)b = ab, a ∈ A, b ∈ I. Let ψ be the strictly
continuous extension of M(A) into M(I). Then I is called extendibly α-invariant
if it is α-invariant, in the sense that α(I) ⊂ I, and there exists an approximate
identity (iλ) for I such that α(iλ) converges strictly to ψ(α(1M(A))) in M(I) (see
[1, Section 3]).

3. Structure theorem

If H is a subgroup of G, then (G/H)∧ is isomorphic to H⊥ = {ξ ∈ Ĝ : ξ(x) =

1 for all x ∈ H} and Ĝ/H⊥ is isomorphic to Ĥ (see [4, Remark 6.4]). Recall

that the induced algebra IndĜ
H⊥(B(G/H)+ ×τ (G/H)+) consists of the continuous

functions f : Ĝ→ B(G/H)+ ×τ (G/H)+ satisfying f(γµ) = τ̂−1
µ (f(γ)) for µ ∈ H⊥.

Proposition 3.1. Let (iBG+
, iG+) and (jB(G/H)+

, jG+) denote the universal repre-

sentations of the dynamical systems (BG+ , G+, α) and (B(G/H)+ , G+, β), respec-
tively, and let q be the quotient map of G onto G/H. Then there exists a surjective
homomorphism

θH : BG+ ×α G+ → B(G/H)+ ×β G+

such that θH ◦ iBG+
(1x) = jB(G/H)+

(1q(x)) and θH ◦ iG+(y) = jG+(y) for all x, y ∈
G+.

Proof. Lemma 5.5 in [4] says that there is a surjective homomorphism φ : BG+ →
B(G/H)+ satisfying φ(1x) = 1q(x) for x ∈ G+, so the map jB(G/H)+

◦ φ : BG+ →
B(G/H)+ ×β G+ is a unital homomorphism. The map jG+ is a covariant isometric
representation of G+ into the semigroup of isometries of B(G/H)+ ×β G+. For
x, y ∈ G+, we have

jB(G/H)+
◦ φ

(
αx(1y)

)
= jB(G/H)+

(1q(x+y))

= jB(G/H)+

(
βx(1q(y))

)
= jG+(x)jB(G/H)+

(1q(y))jG+(x)
∗

= jG+(x)jB(G/H)+

(
φ(1y)

)
jG+(x)

∗. (3.1)

Hence by linearity and continuity of jB(G/H)+
, φ, and αx, the pair (jB(G/H)+

◦
φ, jG+) is a covariant representation of the dynamical system (BG+ , G+, α) in the
C∗-algebra B(G/H)+ ×β G+. Thus, there exists a unital homomorphism

θH : BG+ ×α G+ → B(G/H)+ ×β G+

such that θH ◦ iG+(y) = jG+(y) and θH ◦ iBG+
(1x) = jB(G/H)+

(φ(1x)) =

jB(G/H)+
(1q(x)) for all x, y ∈ G+. Moreover, since the range of θH is a C∗-subalgebra

of B(G/H)+ ×β G+ containing all the generators, θH is surjective. �

Recall the following facts from [4]. For a lattice-ordered group (G,G+) and a
hereditary subsemigroup H+ of the positive cone G+,

IH+ = span{1x − 1x+h : h ∈ H+, x ∈ G+}
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is an extendibly αz-invariant ideal of BG+ for all z ∈ G+. Moreover, in [4, The-
orem 6.7] we showed that there is an isomorphism Ψ of the crossed product

B(G/H)+ ×β G+ onto the induced C∗-algebra IndĜ
H⊥(B(G/H)+ ×τ (G/H)+) such

that Ψ(a)(γ) = Q(β̂−1
γ (a)) for a ∈ B(G/H)+ ×β G+ and γ ∈ Ĝ. We now give our

structure theorem.

Theorem 3.2. Let IH+ be the extendibly αx-invariant ideal of BG+ in [4,
Corollary 4.8], let Ψ be the isomorphism of [4, Theorem 6.7], let (iBG+

, iG+)

and (jB(G/H)+
, jG+) denote the universal homomorphisms of the crossed products

BG+ ×αG+ and B(G/H)+ ×β G+, respectively, and let θH be the homomorphism of
Proposition 3.1. Define Υ = Ψ ◦ θH . Then the following is a short exact sequence
of C∗-algebras

0 → IH+ ×α G+
φ→ BG+ ×α G+

Υ→ IndĜ
H⊥

(
B(G/H)+ ×τ (G/H)+

)
→ 0 (3.2)

in which φ is an isomorphism of IH+ ×α G+ onto the ideal

D := span
{
iG+(x)

∗iBG+
(a)iG+(y) : a ∈ IH+ , x, y ∈ G+

}
.

Proof. We will apply Theorem 1.7 of [6]. To do so, we first need to check that G+

is an Ore semigroup of G. Since G+ is a subset of G, it is cancellative. We still
need G+ to be right-reversible, so for y, z ∈ G+, we have y + G+ ∩ z + G+ 6= ∅
since y+z ∈ y+G+ and z+y ∈ z+G+; therefore, z+y ∈ y+G+∩z+G+. Hence
G+ is an Ore semigroup of G. Therefore, [6, Theorem 1.7] implies that there is a
short exact sequence

0 → IH+ ×α G+
φ→ BG+ ×α G+

ϕ→ BG+/IH+ ×α̃ G+ → 0

in which

ϕ ◦ iBG+
(1x) = jBG+

/IH+
(1x + IH+) and ϕ ◦ iG+(y) = jG+(y),

and IH+ ×α G+ is isomorphic to the ideal D := span{iG+(x)
∗iBG+

(a)iG+(y) : a ∈
IH+ , x, y ∈ G+} in BG+ ×αG+. But Lemma 6.2 of [4] says that B(G/H)+ ×β G+ is
isomorphic to BG+/IH+ ×α̃ G+. Therefore, there is a short exact sequence

0 → IH+ ×α G+
φ→ BG+ ×α G+

θH→ B(G/H)+ ×β G+ → 0 (3.3)

in which

θH ◦ iBG+
(1x) = jB(G/H)+

(1q(x)) and θH ◦ iG+(y) = jG+(y).

Now as B(G/H)+ ×β G+ is isomorphic to IndĜ
H⊥(B(G/H)+ ×τ (G/H)+), then Υ =

Ψ ◦ θH is a map from BG+ ×α G+ onto IndĜ
H⊥(B(G/H)+ ×τ (G/H)+) with kernel

IH+ ×α G+ (this is true by exactness of (3.3) and because Ψ is an isomorphism

of B(G/H)+ ×βG+ onto IndĜ
H⊥(B(G/H)+ ×τ (G/H)+)). Thus, we have the following

short exact sequence

0 → IH+ ×α G+
φ→ BG+ ×α G+

Υ→ IndĜ
H⊥

(
B(G/H)+ ×τ (G/H)+

)
→ 0. �
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Corollary 3.3. Let (iBG+
, iG+) be the universal homomorphisms of the crossed

product BG+ ×α G+. Then the ideal D = span{iG+(x)
∗iBG+

(a)iG+(y) : a ∈
IH+ , x, y ∈ G+} of BG+ ×α G+ in Theorem 3.2 is generated by {iBG+

(1 − 1u) :

u ∈ H+}.

Proof. Since iG+(x)
∗, iG+(y) ∈ BG+×αG+, D is generated by {iBG+

(a) : a ∈ IH+}.
So to prove this corollary, it suffices to show that, for a ∈ IH+ , iBG+

(a) is in the

ideal generated by {iBG+
(1− 1u) : u ∈ H+}. To see this, fix x ∈ G+ and h ∈ H+.

Then

iBG+
(1x − 1x+h) = iBG+

(1x)− iBG+
(1x+h)

= iG+(x)iG+(x)
∗ − iG+(x+ h)iG+(x+ h)∗

= iG+(x)
(
1− iG+(h)iG+(h)

∗)iG+(x)
∗

= iG+(x)iBG+
(1− 1h)iG+(x)

∗.

Hence iBG+
(1x − 1x+h) is in the ideal generated by {iBG+

(1 − 1u) : u ∈ H+}.
Therefore, by continuity of iBG+

we have that iBG+
(a) is in the ideal generated

by {iBG+
(1− 1u) : u ∈ H+} for all a ∈ IH+ . �

Remark 3.4. Let (iBG+
, iG+) be the universal covariant representation of the

dynamical system (BG+ , G+, α). Then iBG+
(1x) = iG+(x)iG+(x)

∗ and from [5,

Corollary 2.4] we know that the map iBG+
is injective, so for simplicity we write

1x for iG+(x)iG+(x)
∗. Hence one can say that the crossed product IH+ ×α G+ in

(3.3) is generated by the set {1− 1u : u ∈ H+}.

4. The crossed product BH+ ×α H+ and its commutator ideal

The following proposition is interesting as it allows us to view the crossed
product BH+ ×α H+ as a C∗-subalgebra of the crossed product BG+ ×α G+.

Proposition 4.1. Let (G,G+) be a lattice-ordered group with G abelian, let H+

be a hereditary subsemigroup of G+, and let (iBG+
, iG+) denote the universal rep-

resentation of the dynamical system (BG+ , G+, α). Then there is an isomorphism
ι of BH+ ×α H+ into BG+ ×α G+.

Proof. The existence of the crossed product BH+ ×α H+ follows directly from
Remark 2.6. Let V := iG+|H+ . Then V is a covariant isometric representation of
H+. Since BH+ ×αH+ is universal for covariant isometric representations, there is
a unital representation πV : BH+ → BG+ ×α G+ such that πV (1x) = VxV

∗
x for all

x ∈ H+. Hence, there is a unital representation πV ×V : BH+×αH+ → BG+×αG+

such that (πV × V ) ◦ iBH+
= πV and (πV × V ) ◦ iH+ = V .

Note that

πV (1x) = VxV
∗
x = iG+(x)iG+(x)

∗

= iBG+
(1x).

This is true since (iBG+
, iG+) is the universal representation.
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Then πV and iBG+
agree on the generators of BH+ . Therefore, πV = iBG+

|BH+

and so πV is faithful. By Proposition 3.1 and Theorem 3.7 of [5], πV ×α V is
faithful. Taking ι := πV ×α V , we obtain the desired result. �

Definition 4.2. Let A be a C∗-algebra. The commutator ideal C of A is the closed
ideal generated by {ab− ba : a, b ∈ A}.

Remark 4.3. The commutator ideal of a C∗-algebra A is the smallest closed ideal
C in A such that A/C is commutative (see [9, Section 3.5]).

The following results will allow us to identify the commutator ideal of the
C∗-algebra BH+ ×α H+. We first introduce the algebra

BH+,∞ :=
{
f ∈ BH+ : lim

h→∞
f(h) = 0

}
. (4.1)

Proposition 4.4. Suppose that (G,G+) is a lattice-ordered group with G abelian
and that H+ is a hereditary subsemigroup of G+. Then the algebra BH+,∞ is the
closed span of {1− 1h : h ∈ H+}.

Proof. Let A be the closed span of {1 − 1h : h ∈ H+}. Fix h ∈ H+. For u ≥ h,
we have

(1− 1h)(u) = 1(u)− 1h(u) = 0.

Therefore, limu→∞(1− 1h)(u) = 0 and so 1− 1h ∈ BH+,∞.
For any f ∈ A, f = limn→∞ fn where fn =

∑
hi∈Fn

λi(1−1hi
) and Fn is a finite

subset of H+. Fix ε > 0. Then there exists n ∈ N such that ‖f − fn‖ < ε. Let
hn = ∨Fn. Then for u ≥ hn, we have∣∣f(u)∣∣ = ∣∣f(u)− fn(u) + fn(u)

∣∣
≤

∣∣f(u)− fn(u)
∣∣+ ∣∣fn(u)∣∣

< ε+ 0 = ε, since
∣∣f(u)− fn(u)

∣∣ ≤ ‖f − fn‖.
Hence f ∈ BH+,∞ and so A ⊂ BH+,∞ .

To show that BH+,∞ ⊂ A, we first need to show that for any f ∈ BH+ ,
limu→∞ f(u) exists. To see this, suppose that f ∈ BH+ . Then f = limn→∞ fn,
where fn =

∑
hi∈Fn

λi1hi
and Fn is a finite subset of H+.

Claim. Suppose that xn := limu→∞ fn(u). Then {xn} converges.

Proof. Note that every xn ∈ C so it is enough to show that {xn} is a Cauchy
sequence (this is true since C is a Hilbert space). But {fn} is a Cauchy sequence
in BH+ ; therefore, {xn} is a Cauchy sequence. To see this, fix ε > 0. Then there
exists N such that

‖fn − fm‖ < ε for all n,m > N,

where ‖fn − fm‖ = supx∈H+
|fn(x)− fm(x)| . Now

|xn − xm| =
∣∣ lim
u→∞

fn(u)− lim
u→∞

fm(u)
∣∣

=
∣∣ lim
u→∞

(
fn(u)− fm(u)

)∣∣
= lim

u→∞

∣∣fn(u)− fm(u)
∣∣
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≤ ‖fn − fm‖
< ε. �

Fix ε > 0, and choosem ∈ N such that ‖f−fm‖ < ε/2 and | limn→∞ xn−xm| <
ε/2. Let hn = ∨Fn. Then for u ≥ hn, we have∣∣f(u)− lim

n→∞
xn

∣∣ = ∣∣f(u)− fm(u) + fm(u)− lim
n→∞

xn
∣∣

≤
∣∣f(u)− fm(u)

∣∣+ ∣∣fm(u)− lim
n→∞

xn
∣∣

< ε/2 +
∣∣xm − lim

n→∞
xn

∣∣, as u ≥ hn

< ε/2 + ε/2 = ε.

Hence limu→∞ f(u) exists.
To complete the proof, take f ∈ BH+ such that limu→∞ f(u) = 0. Then there

exists {fn} such that fn → f , where fn =
∑

hi∈Fn
λi1hi

and Fn is a finite subset
of H+. Let xn = limu→∞ fn(u). Then limn→∞ xn = 0 (by the previous part of this
proof). Define gn := fn − xn1. Then gn =

∑
hi∈Fn

−λi(1− 1hi
) ∈ A and

lim
n→∞

gn = lim
n→∞

(fn − xn1) = f.

Therefore, BH+,∞ ⊂ A. Consequently, A = BH+,∞ . �

Lemma 4.5. Suppose that (G,G+) is a lattice-ordered group with G abelian, that
H+ is a hereditary subsemigroup of G+, and that α is the action in (1.1). Then
the algebra BH+,∞ is an extendibly α-invariant ideal of BH+.

Proof. To see that BH+,∞ is a closed ideal, fix t, u ∈ H+. Then

1t(1− 1u) = 1t − 1t∨u = (1− 1t∨u)− (1− 1t) ∈ BH+,∞,

and by continuity of multiplication in BH+ we conclude that BH+,∞ is a closed
ideal of BH+ . Calculations show that the set S = {1 − 1u : u ∈ H+} is an
approximate identity for BH+,∞.

For z ∈ H+, αz is linear and continuous so routine calculations show that BH+,∞
is α-invariant. Another routine calculation shows that for (1 − 1t) ∈ BH+,∞ the
approximate identity S satisfies

αz(1− 1u)(1− 1t) → ψ
(
αz(1)

)
(1− 1u), (4.2)

where ψ is the canonical map in Definition 2.8. For any b ∈ BH+,∞, a standard
ε/3 argument shows that it satisfies (4.2) with (1 − 1t) replaced by b. Thus this
completes the proof that BH+,∞ is an extendibly α-invariant ideal of BH+ . �

Remark 4.6. In [1, Section 3], Adji shows that for a totally ordered group Γ with
positive cone Γ+, there is a short exact sequence

0 → BΓ+,∞
ι→ BΓ+

δ→ C → 0,

where δ : BΓ+ → C is defined by δ(f) = limx→∞ f(x). This result still holds for
a lattice-ordered group (G,G+).
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Corollary 4.7. Suppose that (G,G+) is a lattice-ordered group with G abelian,
that H+ is a hereditary subsemigroup of G+, that α is the action in (1.1), that
(iBH+

, iH+) is the universal covariant representation of (BH+ , H+, α), and that

BH+,∞ is the extendibly α-invariant ideal in Lemma 4.5. Then there is a short
exact sequence of C∗-algebras

0 → BH+,∞ ×α H+
φ→ BH+ ×α H+ → C(Ĥ) → 0

in which φ is an isomorphism of BH+,∞×αH+ onto the ideal D = span{iG+(x)
∗ ×

iBG+
(a)iG+(y) : a ∈ BH+,∞, x, y ∈ H+} of BH+ ×α H+. Moreover, BH+,∞ ×α H+

is the commutator ideal of BH+ ×α H+.

Proof. Since H+ is an Ore semigroup of H (this is true, because in the proof of
Theorem 3.2 we showed that G+ is an Ore semigroup of G and as H+ is a subset
of H), then [6, Theorem 1.7] implies that there exists the following short exact
sequence

0 → BH+,∞ ×α H+ → BH+ ×α H+ → (BH+/BH+,∞)×α̃ H+ → 0, (4.3)

with BH+,∞ ×αH+ isomorphic to the ideal D = span{iG+(x)
∗iBG+

(a)iG+(y) : a ∈
BH+,∞, x, y ∈ H+} of BH+ ×α H+.

We know from Remark 4.6 that BH+/BH+,∞ is isomorphic to C. Moreover,
note that C has only the trivial action, that is, id, so the crossed product
BH+/BH+,∞ ×α̃ H+ will be isomorphic to C×id H+. Since C has only the unital
representation z 7→ z1, then the covariance condition gives that the system
(C, H+, id) consists of unitaries. Moreover, since H = H+ − H+, [10] gives that
C ×id H+ is isomorphic to C∗(H), and as H is abelian, C∗(H) is isomorphic to

C(Ĥ). Thus we have the desired short exact sequence.
We know from Corollary 3.3 that the ideal D = span{iG+(x)

∗iBG+
(a)iG+(y) :

a ∈ BH+,∞, x, y ∈ H+} of BH+ ×α H+ is generated by {1 − 1u : u ∈ H+}.
For u ∈ H+, 1 − 1u = iH+(u)

∗iH+(u) − iH+(u)iH+(u)
∗ ∈ CH (the commutator

ideal) of BH+ ×α HH+ , which means that BH+,∞ ×α H+ ⊂ CH . Moreover, since

(BH+ ×α H+/BH+,∞ ×α H+)' C(Ĥ) is commutative, CH ⊂ BH+,∞ ×α H+. Thus
BH+,∞ ×α H+ is the commutator ideal of BH+ ×α H+. �
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