ANNALS of FUNCTIONAL ANALYSIS

Ann. Funct. Anal. 10 (2019), no. 3, 370–380 https://doi.org/10.1215/20088752-2018-0036 ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

COMMUTATOR IDEALS IN C*-CROSSED PRODUCTS BY HEREDITARY SUBSEMIGROUPS

MAMOON AHMED

Communicated by M. de Jeu

ABSTRACT. Let (G, G_+) be a lattice-ordered abelian group with positive cone G_+ , and let H_+ be a hereditary subsemigroup of G_+ . In previous work, the author and Pryde introduced a closed ideal I_{H_+} of the C^* -subalgebra B_{G_+} of $\ell^{\infty}(G_+)$ spanned by the functions $\{1_x : x \in G_+\}$. Then we showed that the crossed product C^* -algebra $B_{(G/H)_+} \times_{\beta} G_+$ is realized as an induced C^* -algebra $\operatorname{Ind}_{H^{\perp}}^{\hat{G}}(B_{(G/H)_+} \times_{\tau} (G/H)_+)$. In this paper, we prove the existence of the following short exact sequence of C^* -algebras:

 $0 \to I_{H_+} \times_{\alpha} G_+ \to B_{G_+} \times_{\alpha} G_+ \to \operatorname{Ind}_{H^{\perp}}^{\widehat{G}} \left(B_{(G/H)_+} \times_{\tau} (G/H)_+ \right) \to 0.$

This relates $B_{G_+} \times_{\alpha} G_+$ to the structure of $I_{H_+} \times_{\alpha} G_+$ and $B_{(G/H)_+} \times_{\beta} G_+$. We then show that there is an isomorphism ι of $B_{H_+} \times_{\alpha} H_+$ into $B_{G_+} \times_{\alpha} G_+$. This leads to nontrivial results on commutator ideals in C^* -crossed products by hereditary subsemigroups involving an extension of previous results by Adji, Raeburn, and Rosjanuardi.

1. Introduction

Suppose that (G, G_+) is a lattice-ordered abelian group. Denote by $\{\varepsilon_x : x \in G_+\}$ the usual basis for the Hilbert space $\ell^2(G_+)$. For each $x \in G_+$, there is an isometry T_x on $\ell^2(G_+)$ satisfying $T_x(\varepsilon_y) = \varepsilon_{x+y}$ for all $y \in G_+$. The *Toeplitz algebra* of G is the C^* -subalgebra $\mathcal{T}(G)$ of $B(\ell^2(G_+))$ generated by the isometries $\{T_x : x \in G_+\}$. Recall that the C^* -algebra $C^*(G, G_+)$ is the crossed product $B_{G_+} \times_{\alpha} G_+$ of the dynamical system (B_{G_+}, G_+, α) .

Copyright 2019 by the Tusi Mathematical Research Group.

Received Sep. 12, 2018; Accepted Dec. 9, 2018.

First published online Jul. 2, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L55; Secondary 22D25.

Keywords. C*-algebra, lattice-ordered group, crossed product, commutator ideal.

In [4], we showed that, for a hereditary subsemigroup H_+ of the positive cone G_+ ,

$$I_{H_+} = \overline{\operatorname{span}}\{1_x - 1_{x+h} : h \in H_+, x \in G_+\}$$

is an extendibly α_z -invariant ideal of B_{G_+} for all $z \in G_+$, where α is the action given by

$$\alpha_x(y) = 1_{xy} \quad \text{for all } x, y \in G_+. \tag{1.1}$$

Then we showed that there is an isomorphism Ω of the crossed product $(B_{G_+}/I_{H_+}) \times_{\widetilde{\alpha}} G_+$ onto the crossed product $B_{(G/H)_+} \times_{\beta} G_+$, where $\widetilde{\alpha}_x(1_y + I_{H_+}) = \alpha_x(1_y) + I_{H_+}$, and β is an action of G_+ on $B_{(G/H)_+}$ by extendible endomorphisms. Indeed $\beta := \tau \circ q$, where $\tau : (G/H)_+ \to \operatorname{End}(B_{(G/H)_+})$ satisfies $\tau_{x+H}(1_{y+H}) = 1_{x+y+H}$ and every τ_{x+H} is extendible because $B_{(G/H)_+}$ is unital. Moreover, $q : G \to G/H$ is the quotient map of G onto G/H. We then showed (see [4, Theorem 6.7]) that $B_{(G/H)_+} \times_{\beta} G_+$ is realized as the induced C^* -algebra $\operatorname{Ind}_{H^{\perp}}^{\widehat{G}}(B_{(G/H)_+} \times_{\tau} (G/H)_+)$. Adji in [1] (see [1, Lemma 3.2] and [1, Remark 3.3]) proved a result about the commutator ideal in the case of totally ordered groups (see also [2] and [3]). Here, we are extending her results to more general cases (lattice-ordered groups) so extra work needs to be done and the proofs are more involved.

We begin with a preliminaries section in which we discuss lattice-ordered groups (G, G_+) and hereditary subsemigroups. We then review semigroup dynamical systems, recall the basic properties, and set up our notation. In Section 3, we show the existence of a surjective homomorphism

$$\theta_H: B_{G_+} \times_{\alpha} G_+ \to B_{(G/H)_+} \times_{\beta} G_+.$$

We then describe our structure theorem, which is the existence of the following short exact sequence of C^* -algebras:

$$0 \to I_{H_+} \times_{\alpha} G_+ \to B_{G_+} \times_{\alpha} G_+ \to \operatorname{Ind}_{H^{\perp}}^G \left(B_{(G/H)_+} \times_{\tau} (G/H)_+ \right) \to 0.$$

This enables us to show that the ideal $I_{H_+} \times_{\alpha} G_+$ is generated by $\{i_{B_{G_+}}(1-1_u): u \in H_+\}$. In Section 4, we present an interesting result that allows us to view the crossed product $B_{H_+} \times_{\alpha} H_+$ as a C^* -subalgebra of the crossed product $B_{G_+} \times_{\alpha} G_+$. Then we show the existence of the exact sequence of C^* -algebras

$$0 \to B_{H_+,\infty} \times_{\alpha} H_+ \xrightarrow{\phi} B_{H_+} \times_{\alpha} H_+ \to C(\widehat{H}) \to 0,$$

which leads us to identify the commutator ideal of $B_{H_+} \times_{\alpha} H_+$.

2. Preliminaries

Let G be a discrete group. A binary relation " \leq " defined on G is a *partial order* if for $x, y, z \in G$, we have

- (1) $x \leq x$ (reflexivity),
- (2) $x \leq y$ and $y \leq x \Rightarrow x = y$ (antisymmetry),
- (3) $x \leq y$ and $y \leq z \Rightarrow x \leq z$ (transitivity),
- (4) $x \leq y \Rightarrow zx \leq zy$ and $xz \leq yz$.

A nonempty group G together with a partial order \leq is called a *partially ordered* group. The positive cone of a partially ordered group G is the set of all positive elements of G ($x \in G$ is positive if $x \geq e$, where e is the identity element of G), which is a semigroup.

Let G_+ be a subsemigroup of a group G with identity e such that $G_+ \cap G_+^{-1} = \{e\}$. There is a relation \leq on G with respect to G_+ where $x \leq y$ if $x^{-1}y \in G_+$. This relation is a partial order on G which is left invariant in the sense that $x \leq y$ implies $zx \leq zy$ for any $x, y, z \in G$. It is the natural partial order determined by G_+ .

Convention. We now use (G, G_+) to refer to the group G with the natural partial order \leq on G determined by G_+ .

Definition 2.1. The partially ordered group (G, G_+) is said to be a *lattice-ordered* group if every two elements of G have a least upper bound in G.

Notation. The least upper bound or sup of the elements x and y will be denoted by $x \lor y$.

One can easily verify that for a lattice-ordered group (G, G_+) , every two elements of G_+ have a least upper bound in G_+ .

Definition 2.2. Let (G, G_+) be a lattice-ordered group, and let $H \subset G_+$. Then H is said to be *hereditary* if for any $x, y \in G_+$, $e \leq x \leq y$ and $y \in H$ imply that $x \in H$ (see [8, Definition 2.3]).

Let (G, G_+) be a lattice-ordered group. We now consider a particular C^* -subalgebra of $\ell^{\infty}(G_+)$. Denote by 1_x the function on G_+ defined by

$$1_x(y) = \begin{cases} 1 & \text{if } y \ge x, \\ 0 & \text{otherwise.} \end{cases}$$
(2.1)

The lattice condition gives

$$1_x 1_y = \begin{cases} 1_{x \lor y} & \text{if } x, y \text{ have a common upper bound,} \\ 0 & \text{otherwise.} \end{cases}$$
(2.2)

The algebra $B_{G_+} := \overline{\text{span}}\{1_x : x \in G_+\}$ is an abelian C^* -algebra with multiplication satisfying (2.2) (see [5, Section 2]).

Definition 2.3. Let (G, G_+) be a lattice-ordered group, let B be a unital C^* -algebra, and let V be a map from G_+ to B. Then V is said to be an isometric representation of G_+ if it satisfies the following three conditions:

- (i) $V_e = 1_B;$
- (ii) $V_x^*V_x = 1_B$ for all $x \in G_+$;
- (iii) $V_x V_y = V_{xy}$ for all $x, y \in G_+$.

If in addition V satisfies $V_x V_x^* V_y V_y^* = V_{x \vee y} V_{x \vee y}^*$ for all $x, y \in G_+$, then V is a covariant isometric representation.

We now give our definition of semigroup dynamical systems.

Definition 2.4. A semigroup dynamical system is a triple (A, G_+, α) where A is a C^* -algebra and α is an action of the semigroup G_+ on A by endomorphisms (i.e., $\alpha : G_+ \to \operatorname{End}(A)$ is a homomorphism such that α_x is an endomorphism of A for each $x \in G_+$). Two dynamical systems (A, G_+, α) and (B, G_+, β) are equivalent (isomorphic) if there is an isomorphism $\phi : A \to B$ such that $\phi \circ \alpha_x = \beta_x \circ \phi$ for all $x \in G_+$. A covariant representation of a dynamical system (A, G_+, α) is a pair (π, V) , where π is a nondegenerate representation of A on a Hilbert space \mathcal{H} , and V is an isometric representation of G_+ on \mathcal{H} satisfying

$$\pi(\alpha_x(a)) = V_x \pi(a) V_x^* \quad \text{for all } x \in G_+, a \in A.$$

Definition 2.5. A crossed product for a dynamical system (A, G_+, α) is a C^* -algebra B together with a nondegenerate homomorphism $i_A : A \to B$ and a homomorphism i_{G_+} of G_+ into the semigroup of isometries in M(B) (the multiplier algebra of B) such that:

- (1) $i_A(\alpha_x(a)) = i_{G_+}(x)i_A(a)i_{G_+}(x)^*$ for $x \in G_+$ and $a \in A$;
- (2) for every covariant representation (π, V) of (A, G_+, α) there is a nondegenerate representation $\pi \times V$ of B such that

$$(\pi \times V) \circ i_A = \pi$$
 and $\overline{\pi \times V} \circ i_{G_+} = V;$

(3) B is generated by $\{i_A(a)i_{G_+}(x) : a \in A, x \in G_+\}$.

The extension of a faithful nondegenerate representation ϕ of a C^* -algebra B to its multiplier algebra M(B) is denoted $\overline{\phi}$.

Notation. We write $A \times_{\alpha} G_+$ to denote the crossed product for the dynamical system (A, G_+, α) . The homomorphisms (i_A, i_{G_+}) are the universal covariant representation.

Remark 2.6.

- (1) If A is unital and (A, G_+, α) has a nontrivial covariant representation, then it is shown in [5, Proposition 2.1] that there is a crossed product and it is unique up to isomorphism.
- (2) Let G_+ be an Ore semigroup (a cancellative semigroup which is rightreversible, in the sense that $G_+x \cap G_+y \neq \emptyset$ for all $x, y \in G_+$), and let (A, G_+, α) be a dynamical system with extendible endomorphisms that has a nonzero covariant representation. Then there exists a crossed product for the system which is unique up to isomorphism (see [6, Proposition 1.4]).
- (3) If A has a unit (see [7, p. 11]), then the representation π of Definition 2.4 and the homomorphism i_A of Definition 2.5 must be unital, and condition (2) of Definition 2.5 reduces to the existence of a unital representation π × V of B such that

$$(\pi \times V) \circ i_A = \pi$$
 and $(\pi \times V) \circ i_{G_+} = V.$

Definition 2.7. An endomorphism ϕ of a C^* -algebra A is called *extendible* if it extends to a strictly continuous endomorphism $\overline{\phi}$ of the multiplier algebra M(A). This happens precisely when there is an approximate identity (i_{λ}) and a projection $p \in M(A)$ such that $\phi(i_{\lambda})$ converges strictly to p in M(A) (see [1, Section 2]).

Definition 2.8. Suppose that α is an extendible endomorphism of a C^* -algebra Aand that I is an ideal of A. Let $\psi : A \to M(I)$ denote the canonical nondegenerate homomorphism defined by $\psi(a)b = ab$, $a \in A$, $b \in I$. Let $\overline{\psi}$ be the strictly continuous extension of M(A) into M(I). Then I is called *extendibly* α -invariant if it is α -invariant, in the sense that $\alpha(I) \subset I$, and there exists an approximate identity (i_{λ}) for I such that $\alpha(i_{\lambda})$ converges strictly to $\overline{\psi}(\overline{\alpha}(1_{M(A)}))$ in M(I) (see [1, Section 3]).

3. Structure theorem

If H is a subgroup of G, then $(G/H)^{\wedge}$ is isomorphic to $H^{\perp} = \{\xi \in \widehat{G} : \xi(x) = 1 \text{ for all } x \in H\}$ and \widehat{G}/H^{\perp} is isomorphic to \widehat{H} (see [4, Remark 6.4]). Recall that the *induced algebra* $\operatorname{Ind}_{H^{\perp}}^{\widehat{G}}(B_{(G/H)_{+}} \times_{\tau} (G/H)_{+})$ consists of the continuous functions $f: \widehat{G} \to B_{(G/H)_{+}} \times_{\tau} (G/H)_{+}$ satisfying $f(\gamma \mu) = \widehat{\tau}_{\mu}^{-1}(f(\gamma))$ for $\mu \in H^{\perp}$.

Proposition 3.1. Let $(i_{B_{G_+}}, i_{G_+})$ and $(j_{B_{(G/H)_+}}, j_{G_+})$ denote the universal representations of the dynamical systems (B_{G_+}, G_+, α) and $(B_{(G/H)_+}, G_+, \beta)$, respectively, and let q be the quotient map of G onto G/H. Then there exists a surjective homomorphism

 $\theta_H : B_{G_+} \times_{\alpha} G_+ \to B_{(G/H)_+} \times_{\beta} G_+$ such that $\theta_H \circ i_{B_{G_+}}(1_x) = j_{B_{(G/H)_+}}(1_{q(x)})$ and $\theta_H \circ i_{G_+}(y) = j_{G_+}(y)$ for all $x, y \in G_+$.

Proof. Lemma 5.5 in [4] says that there is a surjective homomorphism $\phi : B_{G_+} \to B_{(G/H)_+}$ satisfying $\phi(1_x) = 1_{q(x)}$ for $x \in G_+$, so the map $j_{B_{(G/H)_+}} \circ \phi : B_{G_+} \to B_{(G/H)_+} \times_{\beta} G_+$ is a unital homomorphism. The map j_{G_+} is a covariant isometric representation of G_+ into the semigroup of isometries of $B_{(G/H)_+} \times_{\beta} G_+$. For $x, y \in G_+$, we have

$$j_{B_{(G/H)_{+}}} \circ \phi(\alpha_{x}(1_{y})) = j_{B_{(G/H)_{+}}}(1_{q(x+y)})$$

$$= j_{B_{(G/H)_{+}}}(\beta_{x}(1_{q(y)}))$$

$$= j_{G_{+}}(x)j_{B_{(G/H)_{+}}}(1_{q(y)})j_{G_{+}}(x)^{*}$$

$$= j_{G_{+}}(x)j_{B_{(G/H)_{+}}}(\phi(1_{y}))j_{G_{+}}(x)^{*}.$$
(3.1)

Hence by linearity and continuity of $j_{B_{(G/H)_+}}$, ϕ , and α_x , the pair $(j_{B_{(G/H)_+}} \circ \phi, j_{G_+})$ is a covariant representation of the dynamical system (B_{G_+}, G_+, α) in the C^* -algebra $B_{(G/H)_+} \times_{\beta} G_+$. Thus, there exists a unital homomorphism

$$\theta_H: B_{G_+} \times_{\alpha} G_+ \to B_{(G/H)_+} \times_{\beta} G_+$$

such that $\theta_H \circ i_{G_+}(y) = j_{G_+}(y)$ and $\theta_H \circ i_{B_{G_+}}(1_x) = j_{B_{(G/H)_+}}(\phi(1_x)) = j_{B_{(G/H)_+}}(1_{q(x)})$ for all $x, y \in G_+$. Moreover, since the range of θ_H is a C^* -subalgebra of $B_{(G/H)_+} \times_{\beta} G_+$ containing all the generators, θ_H is surjective. \Box

Recall the following facts from [4]. For a lattice-ordered group (G, G_+) and a hereditary subsemigroup H_+ of the positive cone G_+ ,

$$I_{H_+} = \overline{\operatorname{span}}\{1_x - 1_{x+h} : h \in H_+, x \in G_+\}$$

is an extendibly α_z -invariant ideal of B_{G_+} for all $z \in G_+$. Moreover, in [4, Theorem 6.7] we showed that there is an isomorphism Ψ of the crossed product $B_{(G/H)_+} \times_{\beta} G_+$ onto the induced C^* -algebra $\operatorname{Ind}_{H^{\perp}}^{\widehat{G}}(B_{(G/H)_+} \times_{\tau} (G/H)_+)$ such that $\Psi(a)(\gamma) = Q(\widehat{\beta}_{\gamma}^{-1}(a))$ for $a \in B_{(G/H)_+} \times_{\beta} G_+$ and $\gamma \in \widehat{G}$. We now give our structure theorem.

Theorem 3.2. Let I_{H_+} be the extendibly α_x -invariant ideal of B_{G_+} in [4, Corollary 4.8], let Ψ be the isomorphism of [4, Theorem 6.7], let $(i_{B_{G_+}}, i_{G_+})$ and $(j_{B_{(G/H)_+}}, j_{G_+})$ denote the universal homomorphisms of the crossed products $B_{G_+} \times_{\alpha} G_+$ and $B_{(G/H)_+} \times_{\beta} G_+$, respectively, and let θ_H be the homomorphism of Proposition 3.1. Define $\Upsilon = \Psi \circ \theta_H$. Then the following is a short exact sequence of C^* -algebras

$$0 \to I_{H_+} \times_{\alpha} G_+ \xrightarrow{\phi} B_{G_+} \times_{\alpha} G_+ \xrightarrow{\Upsilon} \operatorname{Ind}_{H^{\perp}}^{\widehat{G}} \left(B_{(G/H)_+} \times_{\tau} (G/H)_+ \right) \to 0$$
(3.2)

in which ϕ is an isomorphism of $I_{H_+} \times_{\alpha} G_+$ onto the ideal

$$D := \overline{\operatorname{span}} \{ i_{G_+}(x)^* i_{B_{G_+}}(a) i_{G_+}(y) : a \in I_{H_+}, x, y \in G_+ \}.$$

Proof. We will apply Theorem 1.7 of [6]. To do so, we first need to check that G_+ is an Ore semigroup of G. Since G_+ is a subset of G, it is cancellative. We still need G_+ to be right-reversible, so for $y, z \in G_+$, we have $y + G_+ \cap z + G_+ \neq \emptyset$ since $y + z \in y + G_+$ and $z + y \in z + G_+$; therefore, $z + y \in y + G_+ \cap z + G_+$. Hence G_+ is an Ore semigroup of G. Therefore, [6, Theorem 1.7] implies that there is a short exact sequence

$$0 \to I_{H_+} \times_{\alpha} G_+ \xrightarrow{\phi} B_{G_+} \times_{\alpha} G_+ \xrightarrow{\varphi} B_{G_+} / I_{H_+} \times_{\widetilde{\alpha}} G_+ \to 0$$

in which

$$\varphi \circ i_{B_{G_+}}(1_x) = j_{B_{G_+}/I_{H_+}}(1_x + I_{H_+})$$
 and $\varphi \circ i_{G_+}(y) = j_{G_+}(y)$,

and $I_{H_+} \times_{\alpha} G_+$ is isomorphic to the ideal $D := \overline{\operatorname{span}}\{i_{G_+}(x)^* i_{B_{G_+}}(a) i_{G_+}(y) : a \in I_{H_+}, x, y \in G_+\}$ in $B_{G_+} \times_{\alpha} G_+$. But Lemma 6.2 of [4] says that $B_{(G/H)_+} \times_{\beta} G_+$ is isomorphic to $B_{G_+}/I_{H_+} \times_{\widetilde{\alpha}} G_+$. Therefore, there is a short exact sequence

$$0 \to I_{H_+} \times_{\alpha} G_+ \xrightarrow{\phi} B_{G_+} \times_{\alpha} G_+ \xrightarrow{\theta_H} B_{(G/H)_+} \times_{\beta} G_+ \to 0$$
(3.3)

in which

$$\theta_H \circ i_{B_{G_+}}(1_x) = j_{B_{(G/H)_+}}(1_{q(x)})$$
 and $\theta_H \circ i_{G_+}(y) = j_{G_+}(y).$

Now as $B_{(G/H)_+} \times_{\beta} G_+$ is isomorphic to $\operatorname{Ind}_{H^{\perp}}^{\hat{G}}(B_{(G/H)_+} \times_{\tau} (G/H)_+)$, then $\Upsilon = \Psi \circ \theta_H$ is a map from $B_{G_+} \times_{\alpha} G_+$ onto $\operatorname{Ind}_{H^{\perp}}^{\hat{G}}(B_{(G/H)_+} \times_{\tau} (G/H)_+)$ with kernel $I_{H_+} \times_{\alpha} G_+$ (this is true by exactness of (3.3) and because Ψ is an isomorphism of $B_{(G/H)_+} \times_{\beta} G_+$ onto $\operatorname{Ind}_{H^{\perp}}^{\hat{G}}(B_{(G/H)_+} \times_{\tau} (G/H)_+)$). Thus, we have the following short exact sequence

$$0 \to I_{H_+} \times_{\alpha} G_+ \xrightarrow{\phi} B_{G_+} \times_{\alpha} G_+ \xrightarrow{\Upsilon} \operatorname{Ind}_{H^{\perp}}^{\widehat{G}} \left(B_{(G/H)_+} \times_{\tau} (G/H)_+ \right) \to 0.$$

Corollary 3.3. Let $(i_{B_{G_+}}, i_{G_+})$ be the universal homomorphisms of the crossed product $B_{G_+} \times_{\alpha} G_+$. Then the ideal $D = \overline{\text{span}}\{i_{G_+}(x)^* i_{B_{G_+}}(a)i_{G_+}(y) : a \in I_{H_+}, x, y \in G_+\}$ of $B_{G_+} \times_{\alpha} G_+$ in Theorem 3.2 is generated by $\{i_{B_{G_+}}(1-1_u) : u \in H_+\}$.

Proof. Since $i_{G_+}(x)^*$, $i_{G_+}(y) \in B_{G_+} \times_{\alpha} G_+$, D is generated by $\{i_{B_{G_+}}(a) : a \in I_{H_+}\}$. So to prove this corollary, it suffices to show that, for $a \in I_{H_+}$, $i_{B_{G_+}}(a)$ is in the ideal generated by $\{i_{B_{G_+}}(1-1_u) : u \in H_+\}$. To see this, fix $x \in G_+$ and $h \in H_+$. Then

$$i_{B_{G_{+}}}(1_{x} - 1_{x+h}) = i_{B_{G_{+}}}(1_{x}) - i_{B_{G_{+}}}(1_{x+h})$$

= $i_{G_{+}}(x)i_{G_{+}}(x)^{*} - i_{G_{+}}(x+h)i_{G_{+}}(x+h)^{*}$
= $i_{G_{+}}(x)(1 - i_{G_{+}}(h)i_{G_{+}}(h)^{*})i_{G_{+}}(x)^{*}$
= $i_{G_{+}}(x)i_{B_{G_{+}}}(1 - 1_{h})i_{G_{+}}(x)^{*}.$

Hence $i_{B_{G_+}}(1_x - 1_{x+h})$ is in the ideal generated by $\{i_{B_{G_+}}(1 - 1_u) : u \in H_+\}$. Therefore, by continuity of $i_{B_{G_+}}$ we have that $i_{B_{G_+}}(a)$ is in the ideal generated by $\{i_{B_{G_+}}(1 - 1_u) : u \in H_+\}$ for all $a \in I_{H_+}$.

Remark 3.4. Let $(i_{B_{G_+}}, i_{G_+})$ be the universal covariant representation of the dynamical system (B_{G_+}, G_+, α) . Then $i_{B_{G_+}}(1_x) = i_{G_+}(x)i_{G_+}(x)^*$ and from [5, Corollary 2.4] we know that the map $i_{B_{G_+}}$ is injective, so for simplicity we write 1_x for $i_{G_+}(x)i_{G_+}(x)^*$. Hence one can say that the crossed product $I_{H_+} \times_{\alpha} G_+$ in (3.3) is generated by the set $\{1 - 1_u : u \in H_+\}$.

4. The crossed product $B_{H_+} \times_{\alpha} H_+$ and its commutator ideal

The following proposition is interesting as it allows us to view the crossed product $B_{H_+} \times_{\alpha} H_+$ as a C^{*}-subalgebra of the crossed product $B_{G_+} \times_{\alpha} G_+$.

Proposition 4.1. Let (G, G_+) be a lattice-ordered group with G abelian, let H_+ be a hereditary subsemigroup of G_+ , and let $(i_{B_{G_+}}, i_{G_+})$ denote the universal representation of the dynamical system (B_{G_+}, G_+, α) . Then there is an isomorphism ι of $B_{H_+} \times_{\alpha} H_+$ into $B_{G_+} \times_{\alpha} G_+$.

Proof. The existence of the crossed product $B_{H_+} \times_{\alpha} H_+$ follows directly from Remark 2.6. Let $V := i_{G_+}|_{H_+}$. Then V is a covariant isometric representation of H_+ . Since $B_{H_+} \times_{\alpha} H_+$ is universal for covariant isometric representations, there is a unital representation $\pi_V : B_{H_+} \to B_{G_+} \times_{\alpha} G_+$ such that $\pi_V(1_x) = V_x V_x^*$ for all $x \in H_+$. Hence, there is a unital representation $\pi_V \times V : B_{H_+} \times_{\alpha} H_+ \to B_{G_+} \times_{\alpha} G_+$ such that $(\pi_V \times V) \circ i_{B_{H_+}} = \pi_V$ and $(\pi_V \times V) \circ i_{H_+} = V$.

Note that

$$\pi_V(1_x) = V_x V_x^* = i_{G_+}(x) i_{G_+}(x)^*$$
$$= i_{B_{G_+}}(1_x).$$

This is true since $(i_{B_{G_{+}}}, i_{G_{+}})$ is the universal representation.

376

Then π_V and $i_{B_{G_+}}$ agree on the generators of B_{H_+} . Therefore, $\pi_V = i_{B_{G_+}}|_{B_{H_+}}$ and so π_V is faithful. By Proposition 3.1 and Theorem 3.7 of [5], $\pi_V \times_{\alpha} V$ is faithful. Taking $\iota := \pi_V \times_{\alpha} V$, we obtain the desired result.

Definition 4.2. Let A be a C^{*}-algebra. The commutator ideal C of A is the closed ideal generated by $\{ab - ba : a, b \in A\}$.

Remark 4.3. The commutator ideal of a C^* -algebra A is the smallest closed ideal \mathcal{C} in A such that A/\mathcal{C} is commutative (see [9, Section 3.5]).

The following results will allow us to identify the commutator ideal of the C^* -algebra $B_{H_+} \times_{\alpha} H_+$. We first introduce the algebra

$$B_{H_{+,\infty}} := \left\{ f \in B_{H_{+}} : \lim_{h \to \infty} f(h) = 0 \right\}.$$
(4.1)

Proposition 4.4. Suppose that (G, G_+) is a lattice-ordered group with G abelian and that H_+ is a hereditary subsemigroup of G_+ . Then the algebra $B_{H_+,\infty}$ is the closed span of $\{1 - 1_h : h \in H_+\}$.

Proof. Let A be the closed span of $\{1 - 1_h : h \in H_+\}$. Fix $h \in H_+$. For $u \ge h$, we have

$$(1 - 1_h)(u) = 1(u) - 1_h(u) = 0.$$

Therefore, $\lim_{u\to\infty}(1-1_h)(u) = 0$ and so $1-1_h \in B_{H_+,\infty}$.

For any $f \in A$, $f = \lim_{n \to \infty} f_n$ where $f_n = \sum_{h_i \in F_n} \lambda_i (1 - 1_{h_i})$ and F_n is a finite subset of H_+ . Fix $\varepsilon > 0$. Then there exists $n \in \mathbb{N}$ such that $||f - f_n|| < \varepsilon$. Let $h_n = \vee F_n$. Then for $u \ge h_n$, we have

$$\begin{aligned} |f(u)| &= |f(u) - f_n(u) + f_n(u)| \\ &\leq |f(u) - f_n(u)| + |f_n(u)| \\ &< \varepsilon + 0 = \varepsilon, \quad \text{since } |f(u) - f_n(u)| \leq ||f - f_n||. \end{aligned}$$

Hence $f \in B_{H_{+,\infty}}$ and so $A \subset B_{H_{+,\infty}}$.

To show that $B_{H_{+,\infty}} \subset A$, we first need to show that for any $f \in B_{H_{+}}$, $\lim_{u\to\infty} f(u)$ exists. To see this, suppose that $f \in B_{H_{+}}$. Then $f = \lim_{n\to\infty} f_n$, where $f_n = \sum_{h_i \in F_n} \lambda_i \mathbf{1}_{h_i}$ and F_n is a finite subset of H_{+} .

Claim. Suppose that $x_n := \lim_{u \to \infty} f_n(u)$. Then $\{x_n\}$ converges.

Proof. Note that every $x_n \in \mathbb{C}$ so it is enough to show that $\{x_n\}$ is a Cauchy sequence (this is true since \mathbb{C} is a Hilbert space). But $\{f_n\}$ is a Cauchy sequence in B_{H_+} ; therefore, $\{x_n\}$ is a Cauchy sequence. To see this, fix $\varepsilon > 0$. Then there exists N such that

 $||f_n - f_m|| < \varepsilon \quad \text{for all } n, m > N,$

where $||f_n - f_m|| = \sup_{x \in H_+} |f_n(x) - f_m(x)|$. Now

$$|x_n - x_m| = \left| \lim_{u \to \infty} f_n(u) - \lim_{u \to \infty} f_m(u) \right|$$
$$= \left| \lim_{u \to \infty} \left(f_n(u) - f_m(u) \right) \right|$$
$$= \lim_{u \to \infty} \left| f_n(u) - f_m(u) \right|$$

$$\leq \|f_n - f_m\| \\< \varepsilon.$$

Fix $\varepsilon > 0$, and choose $m \in \mathbb{N}$ such that $||f - f_m|| < \varepsilon/2$ and $|\lim_{n \to \infty} x_n - x_m| < \varepsilon/2$. Let $h_n = \vee F_n$. Then for $u \ge h_n$, we have

$$\begin{aligned} \left| f(u) - \lim_{n \to \infty} x_n \right| &= \left| f(u) - f_m(u) + f_m(u) - \lim_{n \to \infty} x_n \right| \\ &\leq \left| f(u) - f_m(u) \right| + \left| f_m(u) - \lim_{n \to \infty} x_n \right| \\ &< \varepsilon/2 + \left| x_m - \lim_{n \to \infty} x_n \right|, \quad \text{as } u \ge h_n \\ &< \varepsilon/2 + \varepsilon/2 = \varepsilon. \end{aligned}$$

Hence $\lim_{u\to\infty} f(u)$ exists.

To complete the proof, take $f \in B_{H_+}$ such that $\lim_{u\to\infty} f(u) = 0$. Then there exists $\{f_n\}$ such that $f_n \to f$, where $f_n = \sum_{h_i \in F_n} \lambda_i \mathbf{1}_{h_i}$ and F_n is a finite subset of H_+ . Let $x_n = \lim_{u\to\infty} f_n(u)$. Then $\lim_{n\to\infty} x_n = 0$ (by the previous part of this proof). Define $g_n := f_n - x_n \mathbf{1}$. Then $g_n = \sum_{h_i \in F_n} -\lambda_i (1 - \mathbf{1}_{h_i}) \in A$ and

$$\lim_{n \to \infty} g_n = \lim_{n \to \infty} (f_n - x_n 1) = f$$

Therefore, $B_{H_{+,\infty}} \subset A$. Consequently, $A = B_{H_{+,\infty}}$.

Lemma 4.5. Suppose that (G, G_+) is a lattice-ordered group with G abelian, that H_+ is a hereditary subsemigroup of G_+ , and that α is the action in (1.1). Then the algebra $B_{H_+,\infty}$ is an extendibly α -invariant ideal of B_{H_+} .

Proof. To see that $B_{H_{+},\infty}$ is a closed ideal, fix $t, u \in H_{+}$. Then

$$1_t(1-1_u) = 1_t - 1_{t \lor u} = (1-1_{t \lor u}) - (1-1_t) \in B_{H_+,\infty}$$

and by continuity of multiplication in B_{H_+} we conclude that $B_{H_+,\infty}$ is a closed ideal of B_{H_+} . Calculations show that the set $S = \{1 - 1_u : u \in H_+\}$ is an approximate identity for $B_{H_+,\infty}$.

For $z \in H_+$, α_z is linear and continuous so routine calculations show that $B_{H_+,\infty}$ is α -invariant. Another routine calculation shows that for $(1 - 1_t) \in B_{H_+,\infty}$ the approximate identity S satisfies

$$\alpha_z(1-1_u)(1-1_t) \to \psi(\alpha_z(1))(1-1_u),$$
(4.2)

where ψ is the canonical map in Definition 2.8. For any $b \in B_{H_{+,\infty}}$, a standard $\varepsilon/3$ argument shows that it satisfies (4.2) with $(1 - 1_t)$ replaced by b. Thus this completes the proof that $B_{H_{+,\infty}}$ is an extendibly α -invariant ideal of $B_{H_{+}}$. \Box

Remark 4.6. In [1, Section 3], Adji shows that for a totally ordered group Γ with positive cone Γ^+ , there is a short exact sequence

$$0 \to B_{\Gamma^+,\infty} \stackrel{\iota}{\to} B_{\Gamma^+} \stackrel{\delta}{\to} \mathbb{C} \to 0,$$

where $\delta : B_{\Gamma^+} \to \mathbb{C}$ is defined by $\delta(f) = \lim_{x \to \infty} f(x)$. This result still holds for a lattice-ordered group (G, G_+) .

Corollary 4.7. Suppose that (G, G_+) is a lattice-ordered group with G abelian, that H_+ is a hereditary subsemigroup of G_+ , that α is the action in (1.1), that $(i_{B_{H_+}}, i_{H_+})$ is the universal covariant representation of (B_{H_+}, H_+, α) , and that $B_{H_+,\infty}$ is the extendibly α -invariant ideal in Lemma 4.5. Then there is a short exact sequence of C^* -algebras

$$0 \to B_{H_+,\infty} \times_{\alpha} H_+ \xrightarrow{\phi} B_{H_+} \times_{\alpha} H_+ \to C(\widehat{H}) \to 0$$

in which ϕ is an isomorphism of $B_{H_+,\infty} \times_{\alpha} H_+$ onto the ideal $D = \overline{\text{span}}\{i_{G_+}(x)^* \times i_{B_{G_+}}(a)i_{G_+}(y) : a \in B_{H_+,\infty}, x, y \in H_+\}$ of $B_{H_+} \times_{\alpha} H_+$. Moreover, $B_{H_+,\infty} \times_{\alpha} H_+$ is the commutator ideal of $B_{H_+} \times_{\alpha} H_+$.

Proof. Since H_+ is an Ore semigroup of H (this is true, because in the proof of Theorem 3.2 we showed that G_+ is an Ore semigroup of G and as H_+ is a subset of H), then [6, Theorem 1.7] implies that there exists the following short exact sequence

$$0 \to B_{H_{+},\infty} \times_{\alpha} H_{+} \to B_{H_{+}} \times_{\alpha} H_{+} \to (B_{H_{+}}/B_{H_{+},\infty}) \times_{\widetilde{\alpha}} H_{+} \to 0, \qquad (4.3)$$

with $B_{H_{+,\infty}} \times_{\alpha} H_{+}$ isomorphic to the ideal $D = \overline{\operatorname{span}}\{i_{G_{+}}(x)^{*}i_{B_{G_{+}}}(a)i_{G_{+}}(y) : a \in B_{H_{+,\infty}}, x, y \in H_{+}\}$ of $B_{H_{+}} \times_{\alpha} H_{+}$.

We know from Remark 4.6 that $B_{H_+}/B_{H_+,\infty}$ is isomorphic to \mathbb{C} . Moreover, note that \mathbb{C} has only the trivial action, that is, id, so the crossed product $B_{H_+}/B_{H_+,\infty} \times_{\tilde{\alpha}} H_+$ will be isomorphic to $\mathbb{C} \times_{\mathrm{id}} H_+$. Since \mathbb{C} has only the unital representation $z \mapsto z1$, then the covariance condition gives that the system $(\mathbb{C}, H_+, \mathrm{id})$ consists of unitaries. Moreover, since $H = H_+ - H_+$, [10] gives that $\mathbb{C} \times_{\mathrm{id}} H_+$ is isomorphic to $C^*(H)$, and as H is abelian, $C^*(H)$ is isomorphic to $C(\hat{H})$. Thus we have the desired short exact sequence.

We know from Corollary 3.3 that the ideal $D = \overline{\operatorname{span}}\{i_{G_+}(x)^*i_{B_{G_+}}(a)i_{G_+}(y):$ $a \in B_{H_+,\infty}, x, y \in H_+\}$ of $B_{H_+} \times_{\alpha} H_+$ is generated by $\{1 - 1_u : u \in H_+\}$. For $u \in H_+, 1 - 1_u = i_{H_+}(u)^*i_{H_+}(u) - i_{H_+}(u)i_{H_+}(u)^* \in \mathcal{C}_H$ (the commutator ideal) of $B_{H_+} \times_{\alpha} H_{H_+}$, which means that $B_{H_+,\infty} \times_{\alpha} H_+ \subset \mathcal{C}_H$. Moreover, since $(B_{H_+} \times_{\alpha} H_+/B_{H_+,\infty} \times_{\alpha} H_+) \simeq C(\widehat{H})$ is commutative, $\mathcal{C}_H \subset B_{H_+,\infty} \times_{\alpha} H_+$. Thus $B_{H_+,\infty} \times_{\alpha} H_+$ is the commutator ideal of $B_{H_+} \times_{\alpha} H_+$. \Box

References

- S. Adji, Semigroup crossed products and the structure of Toeplitz algebras, J. Operator Theory 44 (2000), no. 1, 139–150. Zbl 0998.46036. MR1774697. 371, 373, 374, 378
- S. Adji, Crossed products of C^{*}-algebras by semigroups of endomorphisms, Ph.D. dissertation, University of Newcastle, Callaghan, Australia, 1995. 371
- S. Adji, I. Raeburn, and R. Rosjanuardi, Group extensions and the primitive ideal spaces of Toeplitz algebras, Glasg. Math. J. 49 (2007), no. 1, 81–92. Zbl 1127.46046. MR2337868. DOI 10.1017/S0017089507003436. 371
- M. A. Ahmed and A. J. Pryde, Semigroup crossed products and the induced algebras of lattice-ordered groups, J. Math. Anal. Appl. 364 (2010), no. 2, 498–507. Zbl 1192.46061. MR2576201. DOI 10.1016/j.jmaa.2009.11.011. 371, 374, 375
- M. Laca and I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal. 139 (1996), no. 2, 415–440. Zbl 0887.46040. MR1402771. DOI 10.1006/jfan.1996.0091. 372, 373, 376, 377

- N. S. Larsen, Non-unital semigroup crossed products, Math. Proc. R. Ir. Acad. 100A (2000), no. 2, 205–218. Zbl 1005.46032. MR1883104. 373, 375, 379
- 7. N. S. Larsen, *Operator algebras and applications*, conference lecture at Ritsumeikan University, Japan, 2001. 373
- J. Lorch and Q. Xu, Quasi-lattice ordered groups and Toeplitz algebras, J. Operator Theory 50 (2003), no. 2, 221–247. Zbl 1049.47061. MR2050127. 372
- 9. G. J. Murphy, C^{*}-algebras and Operator Theory, Academic Press, Boston, 1990. Zbl 0714.46041. MR1074574. 377
- G. J. Murphy, Ordered groups and crossed products of C*-algebras, Pacific J. Math. 148 (1991), no. 2, 319–349. Zbl 0741.46026. MR1094493. 379

DEPARTMENT OF BASIC SCIENCES, PRINCESS SUMAYA UNIVERSITY FOR TECHNOLOGY, AMMAN, JORDAN.

E-mail address: m.ahmed@psut.edu.jo