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ABSTRACT. Let (X,d, 1) be a metric measure space such that, for any fixed
x € X, u(B(xz,r)) is a continuous function with respect to r € (0,00). In
this paper, we prove endpoint estimates for the multilinear fractional integral
operators I, o from the product of Lebesgue spaces L'(u) x -+ x L'(u) x
LPre+1(p) x -+ x LPm(u) into the Lebesgue space L9(u), where k € [1,m) NN,
a € [k,m), p; € (1,00) forie {k+1,...,m}and 1/g=k+ 3", 1/pi— .
We furthermore prove that I, o is bounded from LP*(p) x --- x LPm(u) into
L>(p), where p; € (1,00) for i € {1,...,m} and >\, 1/p; = a € [1,m).

1. Introduction

The fractional integral operator is an important tool in the theory of harmonic
analysis, especially in the study of the differentiability and smoothness of func-
tions. In the classical Euclidean spaces with Lebesgue measures, Kenig and Stein
[3] and Grafakos and Kalton [1] respectively studied the boundedness of multi-
linear fractional integral operators. Recently, Komori-Furuya [4] established the
endpoint estimates for these type of operators.

With the development of the theory, people find that many results in the classi-
cal Euclidean spaces still hold true in metric measure spaces (see, e.g., [2], [5]-[9]).
In what follows, we always assume that (X, d, i) is a metric measure space with
i being a Radon measure. Sihwaningrum and Sawano [8] established the bound-
edness of fractional integral operators on Morrey spaces over (X, d, ).
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The purpose of the present article is to generalize the endpoint estimates for
multilinear fractional integral operators on the classical Euclidean spaces with
Lebesgue measure, obtained by Komori-Furuya [4], to the metric measure spaces.
In what follows, let N := {1,2,...}.

Let m € N and a € (0,m). We define the multilinear fractional integral oper-

ator I, , on (X, d, u) by setting, for any f; € Ly°(p), i € {1,....,m}, v € X,
Im,a(fla-"afm)(x)

e fl(yl)"'fm<ym)
= o B g ) d“@mz’l !

where L;°(u) represents the set of L>(u) functions with bounded support, and
for any © € X, r € (0,00), B(z,r) :=={y € X : d(y,z) < r}. When m = 1, we
simply denote I , by I, and, moreover, if we replace 6 with 2, then I, , is the
fractional integral operator introduced by Sihwaningrum and Sawano in [8]. In
what follows, we always assume that m € [2,00) N N.

In this paper, unless otherwise stated, we always assume that (X,d,p) is a
metric measure space such that, for any fixed x € X, pu(B(z,r)) is a continuous
function with respect to r € (0,00). Our main results are stated as follows.

Theorem 1.1. Let k € [1,m) NN, a € [k,m), and the multilinear fractional
integral operator I, o be as in (1.1). Then, for py =--- =pp =1, D41, .,Pm €
(1,00), and 1/q =k + 3", ., 1/pi — a, there exists a positive constant C' such
that, for all f; € Ly°(n), 1 € {1,...,m},

k m
lmalFroees ol < CTTN AN T Wil (12)
i=1

i=k+1
Via Theorem 1.1, we can obtain the following corollary.

Corollary 1.2. Let k,l e Nwithk+1 € (I,m—1], a € [k, k+1), and the multi-

linear fractional integral operator I,, o be asin (1.1). Then, forp; =--- =p, =1,
Phits Dt € (1,00), Pryiy1 = - =ppm =00 and 1 /g = k+ 300, 1/p;—a >
0, there exists a positive constant C' such that, for all f; € Ly*(p), i € {1,...,m},
k k+l m
[maCfise s ol < C 1Ll TT Wfillzrig TT Ifillzeqo-
i=1 i=k+1 i=k+1+1

Theorem 1.3. Let a € [1,m) and the multilinear fractional integral operator
Lno be as in (1.1). Then, for pi,...,pm € (1,00), and >" 1/p; = «, there
ezists a positive constant C' such that, for all f; € L®(n), i € {1,...,m},

H]m,oc(fla s 7fm)||Loo(M) < CH ||fl||Lpl(M)
=1

From Theorem 1.3, we can deduce the following corollary.
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Corollary 1.4. Let k e N, [ € [2,00) NN with k+1€ (2,m), a € [k + 1,k +1),
and the multilinear fractional integral operator I, . be as in (1.1). Then, for

p=-=p =1 P, s Peyr € (1,00), Prigr = =+ = pm = 00, and
k+ Zfi,iﬂ 1/p; = «, there ezists a positive constant C' such that, for all f; €
L), 1 € {L,...,m},
k k+1 m
[l frse s flll gy < C T ilwin TT Wfillzrigo T fillzocqo-
i=1 i=k+1 i=k+1+1

Remark 1.5. In the case where (X, d, 1) = (R™,|-|,dx) and u(B(z,r)) = |B(x,r)|
for any x € R™ and r € (0,00), Komori-Furuya [4, Theorem 1] proved that
Theorem 1.1 holds true for the classical multilinear fractional integral operator
In 5 defined by setting, for all f; € Li°(R™), i € {1,...,m}, x € R",

fm,ﬁ(fl, - yfm)(l') = /( - (gzlz(é/ll?w _fyrj‘()zln:l)ﬁ dy1 . dym

with 8 = an. In [4] it was also demonstrated that the range of the indices k and g
in the above result cannot be improved by giving counterexamples. Checking the
argument used in [4], we see that it is also valid for the operator I, , in classical
Euclidean space R™ with n-dimensional Lebesgue measure. Thus, the range of the
indices k and « in Theorem 1.1 cannot be improved.

We end this section by establishing some notational conventions. Throughout
this paper, C' denotes a positive constant independent of the main parameters,
but which may differ from line to line. The positive constants with subscript such
as Cy do not vary in different situations. The expression f < g means that there
exists a constant C' such that f < Cg. For any given p € (1,00), p’ represents the
conjugate of p. We denote by Li (1) the function space of all u-locally integrable
functions.

2. Proofs of Theorem 1.1 and Corollary 1.2

We begin this section with an important tool of the p times modified centered
maximal function. Let p € (1,00). For all f € L. _(u), the p times modified

loc
centered maximal function is defined by setting, for all x € X,

1
Nazarov, Treil, and Volberg [0] first introduced the modified centered maximal
function with p = 3, and proved that M;f is weak-(1,1) bounded on the sepa-
rable metric measure space. In the metric space (X, d, u) with pu(B(x,-)) being
a continuous function in (0, 00), Terasawa [9] obtained that M, (f) is weak-(1,1)
bounded when p € [2,00). Sawano in [7, Theorem 1.2] obtained the same result
when (X, d, p) is separable and in [7, Section 2.3] proved, moreover, that the
range of p is sharp by giving a counterexample.

Applying the fact that M,(f) is weak-(1,1) bounded when p € [2,00) along
with the Marcinkiewicz interpolation theorem, one can deduce the following
result.
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Lemma 2.1. For any p € (1,00), M, is bounded on LP(u) when p € [2,00).

Via [8, Theorem 1.2], we obtain the following boundedness of the fractional
integral operator I, on the Lebesgue spaces over (X, d, ).

Lemma 2.2. Let o € (0,1), p € (1,1/«a), 1/qg = 1/p — . Then 1, is bounded
from LP(u) to L(u).

By Lemma 2.2 and an argument used in [3, Lemma 7], we obtain the following
boundedness of the multilinear fractional integral operator I,,, on the product
Lebesgue spaces over (X, d, u).

Lemma 2.3. Let the multilinear fractional integral operators I, , be as in (1.1).
Then, for p1,...,pm € (1,00), a € (0,m), and 1/qg =", 1/p; —a >0, L, is
bounded from LP*(p) x -+ x LPm(u) to L9(p).

Proof. Without loss of generality, we may assume that f; is a nonnegative function
for i € {1,...,m}. We note that if there exist positive constants ¢;, i = 1,...,m
satisfying a € (0,)_:", ¢;), then one can choose a; € (0, ¢;) such that a = Y| «.
Let ¢; = 1/p; and 1/¢; = 1/p; — a; with oy € (0,¢;). By o = > | o, we have
1/g=>",1/¢;. Inview of a; € (0,1/p;) C (0,1) and m —ax = > " | (1 — a;), we
deduce that, for all z,y; € X with i € {1,...,m},

H [,u(B(x, 6d(x, yz)))} ta < [,u(B(J:, Gmax{d(x, y1),-..,d(z, ym)}))}m_a,

which implies that, for any = € X,

Im,a(fb ceey fm)(x) é H[ozz<f1)(x>
i=1
By Lemma 2.2, we know that I, is bounded from LPi(u) to L% (u). This together
with Holder’s inequality gives us the desired result of Lemma 2.3. O
Now we turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, we may assume that f; is non-
negative for each i € {1,...,m}. We consider the following two cases.
Case (1): a € (k,m). In this case, for any z € X,

Im,a(fh RS fm)(x)

k
s SrrWrr1) -+ fin(Ym)
<INVl [, oSt d T

X dp(Yrr1) - - - dp(Ym)

k
= [T/l 6o Tnetomi(frsrs - ) (@)
=1

By the fact that 1/¢ =>"", ., 1/p; — (a — k) and Lemma 2.3, we have
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HIm k,a—k fk-l—la'--v ||Lq(M ~ H ||fz||Lpz

i=k+1

The above two estimates yield that (1.2) holds true in this case.

Case (II): a = k. In this case, we use mathematical induction on m. Consider
m = 2 at first. It then follows that o = 1. Without loss of generality, we assume
that p; = 1 and p, € (1, 00). For any nonnegative function g € LP2(u), we have

/X La(fu, £2)(@)g(x) dp(z)

_ . fl(yl)fz(?JQ) "
_ /X 4(z) /X T () di(y)dilc)

— fo(y2)g(x) .
— [ 50) [ g s ) () du)

By duality, to prove Theorem 1.1 with m = 2, we only need to prove that, for
any y; € X,

f2(y2)9(x)
/. A(B(e, 6 max{d(w, yo), d(w, go)}) 82 B0 S lolallpn - (21)

To this end, for any y; € X, write

f2(y2)9()
/Xa w(B(x, 6 max{d(z,y1),d(z,y2)})) du(y2) dp(z)

(
fa(y2)g(x)
< /d(x,y2)<2d(x,y1) w(B(x, 6 max{d(x,y1),d(x,y2)})) du(ys) du(z)

fo(y2)g()
- /d(x,y2)>2d(x,y1) p(B(x, 6 max{d(x,y1), d(z,y2)}))
= E(y1) + F(y).

For the term E(y;), by Holder’s inequality and Lemma 2.1, we obtain that for
any y; € X,

g9(x)
Ely) < /X w(B(z,6d(x,y1))) /d(x,y2)§2d(a:,y1) folya) dpu(ye) dpl)

1
Stolpsof | —mmsio T

P2 1/p2
<[/ o) dia(y)|” ()}
d(xvyZ)SQd(x’yl)
< N5 | M gy S 19 1l
We now turn to estimate F(y;). Noting that d(z,ys) > 2d(z,y;), we deduce that

d(.ﬁlf, yl) S d(ylayQ) S Qd(xayZ)

From the fact that B(ys, 4d(ys, ) C B(x,5d(x,y2)), and by Holder’s inequality
and Lemma 2.1, we deduce that, for any y; € X,

du(yz) du(x)
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f2(y2)

Fly) < /X e /d(%yl)gdw)g<x>du<x>dﬂ<yg>
1

< HfZHLm(u){/X [(B(y2, 4d(y, 7)) )7

Ph 1/p,
<[/ () du()]” du(y) )
d(y2,y1)<2d(y2,z)

< F 2 0 | M2(9) | ) S N N2 191 o3

Therefore, we have proved Theorem 1.1 for m = 2.

Now assume that, for any positive integers m € [2,00), k € [I,m — 1] (k =1
when m = 2) and o = k, Theorem 1.1 holds true. We will prove that Theorem
1.1 remains true when m + 1 and o = k. We consider the following two cases.

Case (i): k = m. In this case, a = m, py = -+ = p,, = 1 and ppy1 € (1, 00),
¢ = Pms1. For any nonnegative function g € LPm+1(p), we have

[ Bl ) @) dn)

_ " H?Sl i(yi)
[ [ W(Be, 6max(d(@, 1), ... @ ymr)]))
X dp(yr) - - dp(Ymsr) dp(z)

_ = (. fm+1(ym+1)g(x>
B / E fily:) /){2 pu(B(x, 6 max{d(x,y1),...,d(x,Yms1)}))

X dp(Ym1) dp() dp(yr) - - - dp(ym).-

Similar to the proof of (2.1), we obtain that, for any yi,...,ym € X,

fm+1(ym+1)9($)
/xz u(B(z, 6 max{d(z, 1), . ..,d(x,Yms1)})) Ap(Ym1) dpp(x)

which implies that, for any nonnegative function g € LPm+1(p),

m

[ Bwinieo i) @at) i) € Tl lzress ol

i=1

It then follows from duality that our desired result holds true for k = m.
Case (i1): k € [1,m — 1]. For any « € X, write

Im—‘rl,k(flv sy fm-i—l)(x)

</ fm(ym)
" Jd@ym) <d@ymen) (B, 6 max{d(z,y1), ..., d(®, ymi1)}))]"HF
m—1

o T £:00) F ) i) - A1) i)

i=1

dpt(Ym)
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+ / fm+1 (ym—H)
d(x,ym)>d(Z,Ym+1) [,U,(B(l’, 6 max{d<x7 yl)? R d(l‘, ym+1)}))]m+1_k

X dpt(Yom1) H Filys) du(yr) -+ dpe(ym)

=: L(z) + N(z).
For any z € X,

lezl fi(yi>fm+1<ym+1)
L) < /m [1(B(x, 6 max{d(z,y1),...,d(x,Ym—1), d(T, Ym+1)}))]" "
Satemr<d(egmry Frm (Ym) dp(Ym)
u(B(z, 6d(z, Ym+1)))
< Log(frs o5 fets fmsa) (@) Mo (fn) ().

Let 7 be a positive constant satisfying that 1/r = 37" " 1/p; + 1/ppy1. It
then follows that 1/¢ = 1/p,, + 1/r. This, together with the above estimate,
Holder’s inequality, Lemma 2.1, and the hypothesis that Theorem 1.1 is true for
any m, k € [1,m — 1] and a = k, shows that

1L 00 S 16U gt Frnets i)

dp(yr) - - dp(Ym—1) dp(Yms1)

L7 (p)

k m—1
S W amllomony [Tl TT 1illzrgoll fmsall o oy -
=1

i=k+1
Similarly,
k m-+1
INOW S Tz T 15l
i=1 i=k+1
Combining the estimates for L(z) and N(z) yields that Theorem 1.1 holds true
in this case, which completes the proof of Theorem 1.1. 0

Proof of Corollary 1.2. We still assume that f; is a nonnegative function for
each i € {1,...,m}. It is easy to see that there exists igc € {1,...,k + [}
such that d(z,y;,) = max{d(x,y1,),...,d(z,yx+1)}. Let By := B(x,6d(x,y,,)),
Ry := 6d(x,y;,). For s € N, set

Ry :=sup{R > 0: pu(B(z,5R)) < 2°u(6By)} >0
and
AO = Bo, As = B(SE, Rs) \ B(I, Rsfl).
For s € N, we have u(As) < pu(B(z, Rs)) < 2°1(6By), and if y € A, then d(z,y) >
R_1, which implies that u(B(z,6(x,y))) > u(B(x,6Rs 1)) > 2°11u(6By). It then
follows that, for all s € N and y € A,
pA) _ 2u(B)
p(B(z,6d(z,y))) = 271 u(6By)’

from which we can deduce that, for any z € X,
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1
/Xm ot (Bl Smax{d(z, ). . dla, g D Ap(yrrin) -~ dp(ym)

H / ! e dp(y;)

=kt (,6d(x, yi,))) + (B(x, 6d(x, y;)))] T m=r
11 /Ao 1+k+lka dﬂ(yj)
Jj=k+l+

1
+Z/ (Bl ey )+ d”(yj)}
Il

+
j=k+1+1 [ 0) Z 2

< 1
~ (B, 6 max{d(x,y1), . .., d(x, ye1) })FH

Applying (2.2), we have that, for any = € X,
]m,oc(fla cee 7fm)( )

IN

k+l—a

s—1 6B0)]m - l}

(2.2)

Hk—H ( )
H 1 fill 2o N)/ o [p(B(x, 6 max{d(x,y1),...,d(x,yr)}))]FH—=

1=k+1
X dp(yr) - - - dp(Yrt)

S T il Tnrnafrs - frsd) ().

i=k+1
Then, by the assumption that p; = -+ = pp = 1, pry1,-- ., Per € (1,00), a €
[k, k+1), and 1/g =k + 3"/ 1/pi — a > 0, and Theorem 1.1, we deduce that
k k+1
[ Testalfro- - )l pag §H||fz||u w LT 1illersgo-
i=k+1

Combining the above two estimates, we obtain

k k+l1 m
(e S § [T § WL § A
i=1 i=k+1 i=k+1+1
which completes the proof of Corollary 1.2. O

3. Proofs of Theorem 1.3 and Corollary 1.4

Proof of Theorem 1.5. Without loss of generality, we assume that f; is nonnega-
tive for ¢ € {1,...,m}. To prove this theorem, we will adopt induction on m. We
first prove that Theorem 1.3 is valid when m = 2. For any x € X,
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Lo(f1, f2)()

J1(y1) fa(y2)
/( <d(zyy) 1Bz, 6 max{d(z,y1), d(z,y2)}))]>~ dp(y1) dp(y2)
f1(y1) f2(12)
/ryz)>da:y1 (B(x,6 max{d(z,y1),d(x,y2)}))]?>~ dp(yr) dp(ys2)

z)+ P(x).

To deal with O(x), notice that, for any z € X', and yy, yo € X satisfying d(z, y2) <
d(z,y1), we have d(yi,y2) < 2d(z,y1) and B(yi,4d(y1, 7)) C B(x,5d(z,y1))-
Then, for any z,y; € X,

1
d
w(B(z,6d(z,y1))) /d(fr,yz)<d(z,y1) fo(yo) dp(yo)

1
= u(Blys, 4. ) /d<y1 y2)<2d(y1,0) Jalye) duly2) < Mo o) (). (3:1)

Due to o € [1,2), we have 1/p; + 1/ps = o > 1, which means that p| > ps. It
then follows from Hélder’s inequality, (3.1), and Lemma 2.1 that, for any x € X,

filyr)
O(x> = /X [/l(B(ZL‘, 6d(ff, yl)))]Q_a /d(:c,yg)<d(x,y1) f2(y2) d/L(yQ) dlu(yl)

[fd(w7y2)§d(x7y1) fa(y2) du(yQ)]p’l "
SHleLm(H){/x [(B(z, 6d(x,y,)))] P du(yl)}

1
< ||f1||L”1(u){/X [1(B(yy, 4d(y1, x)))] @~ Pi—p2
[fd(ym)szd(yw) F2(32) d“(yz)]m
1(B(y1,4d(y1, z)))

pi—DP2 1/p}
<[/ folyn) ()] (o)}
d(y1,y2)<2d(y1,7)

1 P2 (p1—p2)
Sl | s M) 0] LRI

X [M(B(yl,4d<y1,$)))](l 1/p2)(Py—p2) du(yl)}l/pl

S Wllsan Il { | (Va2 )] o)}

S 1 fillzer g | foll 2oz ()

Similarly, for any z € X,

1/p}

P(a) S [llze ol f2ll ez -
Combining the estimates for O(z) and P(x) yields that

[ L2 (frs f2) || ooy S Il zor ol f2ll 22
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Now assuming that Theorem 1.3 holds true for any positive integer m € [2, 00)
and a € [1,m), we will prove that Theorem 1.3 is valid when m + 1 and « €
[1,m + 1). To this end, we consider the following two cases.

Case (I): « € [(m+1)/m,m + 1). In this case, an argument similar to that of
estimate (2.2) together with Holder’s inequality gives us that, for any = € X,

Im-l—l,oc(fla cee >fm; fm-i—l)(x)
1

= /m [/X [u(B(:is,Gmax{d(x,yl), o d(T, Ymgr ) )] TP
]1/pm+1

X d:u(ym-i-l)

m

<\ s gy [T fi i) dinlon) - - dpa(ym)

i=1

IT2, fi(y:)
< /m |

~Y

p(B(z, 6 max{d(z,vy1),...,d(z, ym)}))](m+1)_a_pi:+1

x dp(yr) -+ - dp(ym)
X A frmt1 | Lomer ()
= Hfm+1HL”"“rl(u)Im,a—l/pmH(fla ceey fm)(x)

We may assume that 1 < p; < py < -+ < pm < Pmy1 < 00. From this and
ZmH 1/p; = a, we deduce that

m

1
Di pm-‘rl

pm+1

25

which implies that 1/p,11 < a/(m+1). By a € [(m + 1)/m, m + 1), we further
have

(0]
>a— ——>1. 3.2
pm+1_a m+1" ( )

a —
On the other hand, since py,...,p, € (1,00), we have
DN E
—~ p;

which, together with (3.2), shows that o — ]ﬁ“ € [1,m). Thus, from the hypoth-
esis of induction, we conclude that

pm+1

H]m-i—l,oz(fla s 7fm> fm-l—l)”Loo(u) 5 ||fm+1l|me+1(H) Hlm:afl/Pm-»-l (flv s ’fm)HLoo(u)
m+1

S T 1 fllwego
=1

Case (II): a € [1,(m + 1)/m). For any x € X, write
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]m—‘rl,oz(fla sy fm7 fm—i—l)(‘r)
</ 124 iy
" Jatwyman)<d@yn) (B2, 6 max{d(z,y1), ..., d(2, Ymi1)}))" T
X dp(yr) -+ - dp(Ym) dp(Yme1)

12 fily)
- /d(x,ym+1)>d(x,ym) [M(B('r’ 6 max{d(m, yl)? R d(ZE, ym+1)}))]m+1—a
X dp(yr) -+ - dp(Ym) dp(Ym+1)
=: Q(x) + R(x).

We first deal with Q(x). By using an argument similar to that of estimate (3.1),
we have that, for any = € X,

[I, fiy) 1
Qz) = /m [1(B(x, 6 max{d(z,y1),...,d(z,ym)}))]" > W(B(z,6d(z,ym)))

« / Pt Gas) dps(gess) disCan) - - dpa(ym)
d(z,ym+1)<d(z,ym)

/ HZI filyi) 1
m [(B(z, 6 max{d(z, y1), ..., d(z, ym)})]™* W(B(Ym, 4d(Ym, T)))

X / fm+1(ym+1) d,u(ym+1) d,u(yl) oo d,u,(ym)
A(Ym,Ym+1)<2d(Yym )

T S M) () N
= / m [(B(w, 6 max{d(z, y1), . d(a: e ) - dpiym)

5 Im,a(fla-- fm 17me2 fm-i—l ) I

<

We may assume that 1 < p; < py < -+ < pp < Prus1 < 0. Then
1 1 2 1 1
— < — ( ek —).
Pm Pm+t1 —1\py Pm—1

From 1/py, + 1/pme1 =a— (1/py + -+ 1/ppm_1), we deduce that

1 1 2 1 1
I ) . L )
D1 Pm—1 —1\p Pm—1

It then follows that

1 1 m—1
— 4t >« .
p1 Pm—1 m+1

Taking « € [1, (m + 1)/m) into account, we have

1 1 m—1 2
— 4+ <oa—«o < —<1.
Pm Pm+1 m+1 m

Let r be a positive constant satisfying that 1/r = 1/p,,+1/pms1. Thenr € (1, 00),
which together with the hypothesis of induction, Holder’s inequality, and Lemma
2.1, implies that
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m+1

i < Tl

m—1
HQ(')HLOO(M H ||fz |L1’1(u HmeQ fm+1
=1

Similarly,
m+1

HR(')”Loo(M) N H ||fi||LPi(u)
i=1

Combining the estimates for Q(z) and R(z), we obtain

m+1

||Im+1,a(f17 ) fm7 fm+1)HLoo(u) 5 H “fi“Lpi(H)7
i=1

which completes the proof of Theorem 1.3. O

Proof of Corollary 1./. We still suppose that f; is nonnegative for ¢ € {1,...,m}.
From (2.2), we know that, for any x € X,

Im,a(fb cet fm)(ﬂf)

k
SHHfi“Ll(,u) H Il fill oo (10)
i=1

=kt 41
m—k—t [p(B(z, 6 max{d(z, yg+1), ..., d(x, yrs1) }))]FHe
X dp(Yrsr) - dp(Yrgr)

k m
:HHfiHLl(u) H HszLOO [la k(fk+1a---7fk+l)(x)-
i=1 i=k+1+1

Notice that « € [k + 1,k + 1), that is, « — k € [1,1). This together with
S 1/pi = (a — k) and Theorem 1.3 shows that

i=k+1

k+1
aelfioes folll gy S TT Mfilleri

i=k+1

Therefore,

k k41 m
[Ema(frs s Fon)l| e, anfzuw T Wil T 1l
i=k+1 i=kHl+1
which completes the proof of Corollary 1.4. O
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tions and remarks that improved the presentation of this article. Indeed, it was
because of one such suggestion that we were able to obtain (2.2) without any
extra assumptions, allowing us to prove that the ranges of all the indices in this
work are the same as those in the classical Euclidean spaces.



MULTILINEAR FRACTIONAL INTEGRAL OPERATORS 349

References

. L. Grafakos and N. Kalton, Some remarks on multilinear maps and interpolation, Math.
Ann. 319 (2001), no. 1, 151-180. Zbl 0982.46018. MR1812822. DOT 10.1007/PL00004426.
337

. Y. Han, D. Miiller, and D. Yang, A theory of Besov and Triebel-Lizorkin spaces on met-
ric measure spaces modeled on Carnot-Carathéodory spaces, Abstr. Appl. Anal. 2008, no.
893409. Zbl 1193.46018. MR2485404. DOI 10.1155/2008/893409. 337

. C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res.
Lett. 6 (1999), no. 1, 1-15. Zbl 0952.42005. MR1682725. DOT 10.4310/MRL.1999.v6.nl.al.
337, 340

. Y. Komori-Furuya, Notes on endpoint estimates for multilinear fractional integral operators,
Proc. Amer. Math. Soc. 145 (2017), no. 4, 1515-1526. Zbl 1362.42031. MR3601544. DOI
10.1090/proc/13389. 337, 338, 339

. F. Nagarov, S. Treil, and A. Volberg, Cauchy integral and Calderdn-Zygmund operators on
nonhomogeneous spaces, Int. Math. Res. Not. IMRN 1997, no. 15, 703-726. Zbl 0889.42013.
MR1470373. DOI 10.1155/S1073792897000469. 337

. F. Nazarov, S. Treil, and A. Volberg, Weak type estimates and Cotlar inequalities for
Calderdn-Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Not. IMRN 1998,
no. 9, 463-487. Zbl 0918.42009. MR1626935. DOI 10.1155/S1073792898000312. 337, 339

. Y. Sawano, Sharp estimates of the modified Hardy-Littlewood maximal operator on the non-
homogeneous space via covering lemmas, Hokkaido Math. J. 34 (2005), no. 2, 435-458.
Zbl 1088.42010. MR2159006. DOT 10.14492 /hokmj/1285766231. 337, 339

. I. Sihwaningrum and Y. Sawano, Weak and strong type estimates for fractional integral
operators on Morrey spaces over metric measure spaces, Eurasian Math. J. 4 (2013), no. 1,
76-81. Zbl 1277.42019. MR3118893. 337, 338, 340

. Y. Terasawa, Outer measures and weak type (1,1) estimates of Hardy-Littlewood maximal
operators, J. Inequal. Appl. 2006, no. 15063. Zbl 1090.42012. MR2215476. DOI 10.1155/
JIA/2006/15063. 337, 339

'COLLEGE OF SCIENCE, CHINA AGRICULTURAL UNIVERSITY, BELJIING 100083, PEOPLE’S

REPUBLIC OF CHINA.

E-mail address: zhaoyuancau®@126.com; haibolincau@126.com

2SCHOOL OF MATHEMATICS, RENMIN UNIVERSITY OF CHINA, BEIJING 100872, PEOPLE’S

REPUBLIC OF CHINA.

E-mail address: mengyan@ruc.edu.cn


http://www.emis.de/cgi-bin/MATH-item?0982.46018
http://www.ams.org/mathscinet-getitem?mr=1812822
https://doi.org/10.1007/PL00004426
http://www.emis.de/cgi-bin/MATH-item?1193.46018
http://www.ams.org/mathscinet-getitem?mr=2485404
https://doi.org/10.1155/2008/893409
http://www.emis.de/cgi-bin/MATH-item?0952.42005
http://www.ams.org/mathscinet-getitem?mr=1682725
https://doi.org/10.4310/MRL.1999.v6.n1.a1
http://www.emis.de/cgi-bin/MATH-item?1362.42031
http://www.ams.org/mathscinet-getitem?mr=3601544
https://doi.org/10.1090/proc/13389
https://doi.org/10.1090/proc/13389
http://www.emis.de/cgi-bin/MATH-item?0889.42013
http://www.ams.org/mathscinet-getitem?mr=1470373
https://doi.org/10.1155/S1073792897000469
http://www.emis.de/cgi-bin/MATH-item?0918.42009
http://www.ams.org/mathscinet-getitem?mr=1626935
https://doi.org/10.1155/S1073792898000312
http://www.emis.de/cgi-bin/MATH-item?1088.42010
http://www.ams.org/mathscinet-getitem?mr=2159006
https://doi.org/10.14492/hokmj/1285766231
http://www.emis.de/cgi-bin/MATH-item?1277.42019
http://www.ams.org/mathscinet-getitem?mr=3118893
http://www.emis.de/cgi-bin/MATH-item?1090.42012
http://www.ams.org/mathscinet-getitem?mr=2215476
https://doi.org/10.1155/JIA/2006/15063
https://doi.org/10.1155/JIA/2006/15063
mailto:zhaoyuancau@126.com
mailto:haibolincau@126.com
mailto:mengyan@ruc.edu.cn

	1 Introduction
	2 Proofs of Theorem 1.1 and Corollary 1.2
	3 Proofs of Theorem 1.3 and Corollary 1.4
	Acknowledgments
	References
	Author's addresses

