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Abstract. In this paper, we establish the boundedness estimates for the
composition of the homotopy operator T and the potential operator TΦ on
differential forms with Orlicz–Lipschitz norm and Orlicz-BMO norm which are
defined by a Young function. Moreover, we derive the two-weight norm inequal-
ities for the composite operator T ◦TΦ using the Poincaré-type inequality with
Aλ

r (Ω)-weight. Finally, we demonstrate some applications of our main results.

1. Introduction

The main purpose of this paper is to characterize the boundedness of the
composition of homotopy operator T and potential operator TΦ on differential
forms with Orlicz–Lipschitz norm and Orlicz-BMO norm, which were defined by
a Young function ϕ in our recent work [13]. Recall that a systematic study of
homotopy operator on differential forms was initiated by Iwaniec and Lutoborski
in [11], where the authors showed the famous decomposition theorem for any
differential form u by the homotopy operator T . Since then, homotopy opera-
tors have been playing a critical role in the theory of differential forms (see, e.g.,
[1]–[3], [6]–[8], and [10] for more elegant results on homotopy operators). In 2014,
Wang and Xing [20] defined the convolution-type potential operator TΦ on dif-
ferential forms and proved the basic Lp-norm inequalities for TΦ, including the
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local strong (p, p)-inequality and the Caccioppoli-type inequality. In particular,
the convolution-type potential operator TΦ is a kind of generalized operator which
includes many classical operators when the kernel function Φ takes some special
functions or satisfies certain conditions, such as the fractional integral operator
Iα with the kernel Φ(t) = |t|α−n, 0 < α < n, and the Bessel potential Jβ,λ with

the kernel Φ = Kβ,λ defined by its Fourier transform K̂β,λ(ξ) = (λ2 + |ξ|2)−β
2 ,

β, λ > 0. (For more applications of the convolution-type potential operator in
potential theory, quantum mechanics, and partial differential equations, see [17]
and [18].) Recently, we introduced two new spaces in [13], called the Orlicz–
Lipschitz space and the Orlicz-BMO space, which generalize the notions of the
traditional Lipchitz space and BMO space by the Young function ϕ and give the
estimates of Orlicz–Lipschitz norm and Orlicz-BMO norm for homotopy operator
T . In the present article, we explore the boundedness estimates for the compo-
sition of homotopy operator T and convolution-type potential operator TΦ with
Orlicz–Lipschitz norm and Orlicz-BMO norm which are more complicated than
that of the single one. We also prove the two-weight norm inequalities for the
composite operator T ◦ TΦ using the Poincaré-type inequality with Aλ

r (Ω)-weight
(see [4]). It is worth pointing out that our estimates for the composite operator
T ◦ TΦ provide a technique to deal with the Orlicz–Lipschitz norm and Orlicz-
BMO norm estimates for other composite operators, such as the composition of
homotopy T and projection operator H (see [19]), and the composition of homo-
topy T and Green’s operator G (see [9]). Additionally, the results in this paper
still hold when the convolution-type potential operator TΦ is replaced by the
fractional integral operator Iα or Bessel potential Jβ,λ, which, due to the kernel
function Φ, could take some functions as special cases.

Our work here is organized as follows. Section 2 introduces preliminary mate-
rial including some definitions and the main lemmas. Theorems 3.2 and 3.3 in
Section 3 give the estimates for the composite operator T ◦ TΦ with Orlicz–
Lipschitz norm and Orlicz-BMO norm when the Young function ϕ belongs to
the G(p, q, c)-class. In particular, the condition in Theorem 3.2 that a differen-
tial form u satisfies weak reverse Hölder (WRH) class (see [12]) is not required
in Theorem 3.3. In Section 4, we first prove the Poincaré-type inequality with
Aλ

r (Ω)-weight for the composite operator T ◦ TΦ in Theorem 4.1. Based on this,
the two-weight norm inequalities for the composite operator T ◦TΦ are derived in
Theorem 4.4. Finally, as applications, we give some estimates for other composite
operators in Section 5 using the results and methods developed in the preceding
sections.

2. Preliminaries

Before specifying the main results precisely, we introduce some notation. Let
Ω be a bounded, convex domain in Rn, n ≥ 2, let B and σB be the balls with the
same center, and let diam(σB) = σ diam(B). We denote by |E| the n-dimensional
Lebesgue measure of a set E ⊆ Rn. Let Λl(Rn) = Λl, l = 1, 2, . . . , n, be the set of
all l-forms u(x) =

∑
I uI(x) dxI =

∑
ui1···il(x) dxi1∧· · ·∧dxil with summation over

all ordered l-tuples I = (i1, i2, . . . , il), 1 ≤ i1 < · · · < il ≤ n. We use D′(Ω,Λl)
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to denote the space of all differential l-forms on Ω—namely, the coefficient of
the l-forms is differential on Ω. The direct sum Λ = Λ(Rn) =

⊕n
l=0 Λ

l(Rn) is a
graded algebra with respect to the exterior products. The operator ∗ : Λl(Rn) →
Λn−l(Rn) is the Hodge star operator which is an isometric isomorphism on Λ,
and the linear operator d : D′(Ω,Λl) → D′(Ω,Λl+1), 0 ≤ l ≤ n − 1, is called
the exterior differential. The Hodge codifferential operator d∗ : D′(Ω,Λl+1) →
D′(Ω,Λl), the formal adjoint of d, is defined by d∗ = (−1)nl+1 ∗ d∗ (see [16]
for more details). We will denote by Lp(Ω,Λl) the space of differential l-forms

with coefficients in Lp(Ω,Rn) and with norm ‖u‖p,Ω = (
∫
Ω
(
∑

I |uI(x)|2)
p
2 dx)

1
p .

Similarly, we denote by W 1,p(Ω,Λl) = Lp(Ω,Λl) ∩ Lp
1(Ω,Λ

l) the Sobolev space of
l-forms with norm ‖u‖W 1,p(Ω,Λl) = (diam(Ω))−1‖u‖p,Ω + ‖∇u‖p,Ω. A nonnegative
function w is called a weight if w ∈ L1

loc(Rn) and w > 0 almost everywhere. Also,
the norm of u ∈ Lp(Ω,Λl, w) is defined by ‖u‖p,Ω,w = (

∫
Ω
|u|pw(x) dx)1/p.

The homotopy operator T : C∞(Ω,Λl) → C∞(Ω,Λl−1) is a very important
operator in differential-form theory, given by

Tu =

∫
Ω

ψ(y)Kyu dy,

where ψ ∈ C∞
0 (Ω) is normalized by

∫
Ω
ψ(y) dy = 1, and Ky is a linear operator

defined by

(Kyu)(x; ξ1, . . . , ξl−1) =

∫ 1

0

tl−1u(tx+ y − ty;x− y; ξ1, . . . , ξl−1) dt.

From [11], we have the decomposition

u = d(Tu) + T (du)

for any differential form u ∈ Lp(Ω,Λl), 1 ≤ p < ∞. A closed form uΩ is
defined by uΩ = d(Tu), l = 1, . . . , n, and when u is a differential 0-form,
uΩ = |Ω|−1

∫
Ω
u(y) dy.

From [20], given a nonnegative, locally integrable function Φ, the convolution-
type potential operator TΦ is defined by a convolution integral as

TΦu(x) =
∑
I

(∫
Rn

Φ(x− y)uI(y) dy
)
dxI ,

provided that the integral exists for almost all x ∈ Rn, where u(x) is a dif-
ferential l-form defined on Rn and the summation is over all ordered l-tuples
I = (i1, i2, . . . , il), 1 ≤ i1 < · · · < il ≤ n. Here, the function Φ is a wide class of
kernels satisfying the following weak growth condition (D). There are constants
δ, c > 0, and 0 ≤ ε < 1 with the property that

sup
2k<|x|<2k+1

Φ(x) ≤ c

2kn

∫
δ(1−ε)2k<|y|<2δ(1+ε)2k

Φ(y) dy

for all k ∈ Z.
As for the weak growth condition, we refer the reader to [17] for details. When

u(x) is a 0-form, the operator TΦ we study in this paper naturally degenerates
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into the operator discussed by Pérez in [17]. Namely, for any Lebesgue measurable
function f ,

TΦf(x) =

∫
Rn

Φ(x− y)f(y) dy.

The Orlicz space Lϕ(Ω) consists of all measurable functions f on Ω such that∫
Ω
ϕ( |f |

λ
) dx < ∞ for some λ = λ(f) > 0, and is equipped with the nonlinear

Luxemburg functional

‖f‖ϕ,Ω = inf
{
λ > 0 :

∫
Ω

ϕ
( |f |
λ

)
dx ≤ 1

}
.

A convex Orlicz function ϕ is often called a Young function. If ϕ is a Young
function, then ‖·‖ϕ(Ω) defines a norm in Lϕ(Ω), which is called the Orlicz norm or
Luxemburg norm. We say that the Young function ϕ belongs to theG(p, q, c)-class,
1 ≤ p < q < ∞, c ≥ 1, if ϕ satisfies that: (1) 1

c
≤ ϕ(t1/p)/g(t) ≤ c; and (2)

1
c
≤ ϕ(t1/q)/h(t) ≤ c, for every t > 0, where g is a convex increasing function and

h is a concave increasing function on [0,∞]. From [5], each of ϕ, g, and h in the
above definition is doubling in the sense that its values at t and 2t are uniformly
comparable for all t > 0, and the consequent fact that

c1t
q ≤ h−1

(
ϕ(t)

)
≤ c2t

q, c1t
p ≤ g−1

(
ϕ(t)

)
≤ c2t

p,

where c1 and c2 are constants.
In [13], the following definitions about the Orlicz–Lipschitz norm and the

Orlicz-BMO norm of differential forms were given.

Definition 2.1. For u ∈ L1
loc(Ω,Λ

l), l = 0, 1, . . . , n, ϕ is a Young function. We
write u ∈ Lϕ-Liploc,k(Ω,Λ

l), 0 < k < 1, if

‖u‖ϕloc Lipk,Ω = sup
σB⊂Ω

|B|
−(n+k)

n ‖u− uB‖ϕ,B <∞

for some σ > 1.

Definition 2.2. For u ∈ L1
loc(Ω,Λ

l), l = 0, 1, . . . , n, ϕ is a Young function. We
write u ∈ Lϕ-BMO(Ω,Λl) if

‖u‖ϕ∗,Ω = sup
σB⊂Ω

|B|−1‖u− uB‖ϕ,B <∞

for some σ > 1.

The following definition of Aλ
r (Ω)-weight comes from [4]. (For more results on

Aλ
r (Ω)-weight, see, e.g., [14], [15].)

Definition 2.3. A pair of weights (w1, w2) satisfies the Aλ
r (Ω)-condition in a

domain Ω ⊂ Rn, and we write (w1, w2) ∈ Aλ
r (Ω) for some r > 0 and λ > 0

if

sup
B

( 1

|B|

∫
B

w1 dx
)( 1

|B|

∫
B

( 1

w2

)1/(r−1)

dx
)λ(r−1)

<∞

for any balls B ⊂ Ω.

The following definition for the WRH(Λl,Ω)-class appears in [12].
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Definition 2.4. We say that u(x) ∈ D′(Ω,Λl) belongs to the WRH(Λl,Ω)-class,
l = 0, 1, . . . , n, if there exists a constant C > 0 such that u(x) satisfies

‖u‖s,B ≤ C|B|
t−s
st ‖u‖t,ρB

for every 0 < s, t <∞, where B ⊂ Ω with ρB ⊂ Ω and ρ > 1 is a constant.

In order to prove our results, we need the following three lemmas which were
proved by Iwaniec and Lutoborski in [11, pp. 39–42].

Lemma 2.5. Let u ∈ Ls(Ω,Λl), l = 1, 2, . . . , n, 1 < s < ∞, be a differential
form, and let T : Ls(Ω,Λl) → W 1,s(Ω,Λl−1) be the homotopy operator. Then we
have that

‖Tu‖s,Ω ≤ C|Ω| diam(Ω)‖u‖s,Ω
holds for any bounded and convex domain Ω, where C is a constant independent
of u.

Lemma 2.6. Let u ∈ D′(Ω,Λl) be such that du ∈ Lt(Ω,Λl+1). Then u− uΩ is in

L
nt
n−t (Ω,Λl) and (∫

Ω

|u− uΩ|
nt
n−t

)n−t
nt ≤ C

(∫
Ω

| du|t
) 1

t
,

where l = 1, 2, . . . , n, 1 < t < n.

Lemma 2.7. Let u ∈ Lp(Ω,Λl), l = 1, 2, . . . , n. Then uΩ ∈ Lp(Ω,Λl) and

‖uΩ‖p,Ω ≤ C(n, p)|Ω|‖u‖p,Ω,
where C is a constant independent of u and 1 < p <∞.

The following strong (p, p)-inequality for potential operator TΦ was given in
[20].

Lemma 2.8 ([20, Corollary 2.1]). Let u ∈ Lp(Rn,Λl), l = 0, 1, . . . , n, 1 < p <∞,
and let TΦ be the potential operator. We have that Φ satisfies the weak growth
condition (D), and there exists a positive constant K such that

Φ̃
(
l(Q)

)
≤ K

for any cube Q. Then there exists a constant C > 0, independent of u, such that

‖TΦu‖p,B ≤ C‖u‖p,B
for all balls B ⊂ Rn, where Φ̃(t) is taken as Φ̃(t) =

∫
|z|≤t

Φ(z) dz for t > 0.

The following lemma appears in [5].

Lemma 2.9 ([5, p. 1613]). Let ψ defined on [0,+∞) be a strictly increasing,
convex function, ψ(0) = 0, and let Ω ⊂ Rn be a domain. Assume that u(x) ∈
D′(Ω,Λl) satisfies ψ(k(|u|+ |uΩ|)) ∈ L1(Ω, µ) for any real number k > 0, and let
µ(x ∈ Ω : |µ − µΩ| > 0) > 0, where µ is a Radon measure defined by dµ(x) =
ω(x) dx with a weight ω(x). Then for any a > 0, we obtain∫

Ω

ψ
(
a|u|

)
dµ ≤ C

∫
Ω

ψ
(
2a|u− uΩ|

)
dµ,

where C is a positive constant.
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3. Boundedness estimates for the composite operator

In this section, we give the boundedness estimates for the composite operator
T ◦TΦ on differential forms with the Orlicz–Lipschitz and Orlicz-BMO norms. We
also establish the comparison theorems between the Orlicz–Lipschitz norm and
the Orlicz-BMO norm for the composite operator. In order to prove our results,
we first state the Poincaré-type inequality for T ◦ TΦ.

Lemma 3.1. Let u ∈ Ls(Ω,Λl), l = 1, 2, . . . , n, 1 < s <∞, let T be the homotopy
operator, and let TΦ be the potential operator. Then there exists a constant C,
independent of u, such that∥∥T(TΦ(u))− (

T
(
TΦ(u)

))
B

∥∥
s,B

≤ C|B|2 diam(B)‖u‖s,B

for any balls B ⊂ Ω.

Proof. Applying the decomposition theorem for differential forms to T (TΦ(u)),
we have

T
(
TΦ(u)

)
= T d

(
T
(
TΦ(u)

))
+ dT

(
T
(
TΦ(u)

))
. (3.1)

Noting that dT (T (TΦ(u))) = (T (TΦ(u)))B, and combining (3.1) and Lemma 2.5,
we get ∥∥T(TΦ(u))− (

T
(
TΦ(u)

))
B

∥∥
s,B

=
∥∥Td(T(TΦ(u)))∥∥s,B

≤ C1|B| diam(B)
∥∥dT(TΦ(u))∥∥s,B

.

Noting that dT (TΦ(u)) = (TΦ(u))B, by Lemmas 2.7 and 2.8 it follows that∥∥T(TΦ(u))− (
T
(
TΦ(u)

))
B

∥∥
s,B

≤ C1|B| diam(B)
∥∥(TΦ(u))B∥∥s,B

≤ C2|B|2 diam(B)
∥∥TΦ(u)∥∥s,B

≤ C3|B|2 diam(B)‖u‖s,B. �

Now we are ready to estimate the Orlicz–Lipschitz norm of the composite
operator T ◦ TΦ.

Theorem 3.2. Let ϕ be a Young function in the G(p, q, c)-class, 1 ≤ p < q <
∞, c ≥ 1, and let u be a differential form such that u ∈ WRH(Λl,Ω)-class,
l = 1, 2, . . . , n, and ϕ(|u|) ∈ L1

loc(Ω). Assume that T is the homotopy operator
and that TΦ is the potential operator. Then there exists a constant C, independent
of u, such that ∥∥T(TΦ(u))∥∥ϕloc Lipk,Ω

≤ C‖u‖ϕ,Ω,

where 0 < k < 1 is a constant and Ω is a bounded domain.
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Proof. By the definition of G(p, q, c)-class and Jensen’s inequality, we have∫
B

ϕ
(∣∣T(TΦ(u))− (

T
(
TΦ(u)

))
B

∣∣) dx
= h

(
h−1

(∫
B

ϕ
(∣∣T(TΦ(u))− (

T
(
TΦ(u)

))
B

∣∣) dx))
≤ h

(∫
B

h−1
(
ϕ
(∣∣T(TΦ(u))− (

T
(
TΦ(u)

))
B

∣∣)) dx)
≤ h

(
C1

∫
B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣q dx)
≤ C2ϕ

((
C1

∫
B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣q dx)1/q)
≤ C3ϕ

((∫
B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣q dx)1/q)
. (3.2)

Replacing s by q in Lemma 3.1, we get(∫
B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣q dx)1/q

≤ C4(n, q)|B|2 diam(B)
(∫

B

|u|q dx
)1/q

. (3.3)

Since u ∈ WRH(Λl,Ω)-class, we have by Definition 2.4 the inequality(∫
B

|u|q dx
)1/q

≤ C5|B|(p−q)/pq
(∫

σB

|u|p dx
)1/p

, (3.4)

where σ > 1 is a constant. Combining (3.3) and (3.4) yields that(∫
B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣q dx)1/q

≤ C6|B|2 diam(B)|B|(p−q)/pq
(∫

σB

|u|p dx
)1/p

.

Taking into account the fact that 1 < p, q < ∞, and so 1 + (p − q)/pq > 0, we
then obtain(∫

B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣q dx)1/q

≤ C7|B|1+1/n
(∫

σB

|u|p dx
)1/p

. (3.5)

Noting that ϕ is an increasing function, and using Jensen’s inequality, (3.5), and
the definition of G(p, q, c)-class, we have

ϕ
((∫

B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣q dx)1/q)
≤ ϕ

(
C8|B|1+1/n

(∫
σB

|u|p dx
)1/p)

= ϕ
((
Cp

8 |B|p(1+1/n)

∫
σB

|u|p dx
)1/p)
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≤ C9g
(
Cp

8 |B|p(1+1/n)

∫
σB

|u|p dx
)

= C9g
(∫

σB

Cp
8 |B|p(1+1/n)|u|p dx

)
≤ C9

∫
σB

g
(
Cp

8 |B|p(1+1/n)|u|p
)
dx

≤ C10

∫
σB

ϕ
(
C8|B|1+1/n|u|

)
dx

≤ C11

∫
σB

ϕ
(
|B|1+1/n|u|

)
dx. (3.6)

Combining (3.2) and (3.6) yields that∫
B

ϕ
(∣∣T(TΦ(u))− (

T
(
TΦ(u)

))
B

∣∣) dx ≤ C12

∫
σB

ϕ
(
|B|1+1/n|u|

)
dx.

We see that ϕ is doubling, so we obtain∫
B

ϕ
( |T (TΦ(u))− (T (TΦ(u)))B|

λ

)
dx ≤ C12

∫
σB

ϕ
( |B|1+1/n|u|

λ

)
dx

for any λ > 0. Then by the definition of the Orlicz norm, we have∥∥T(TΦ(u))− (
T
(
TΦ(u)

))
B

∥∥
ϕ,B

≤ C12

∥∥(|B|1+1/nu
)∥∥

ϕ,σB

≤ C12|B|1+1/n‖u‖ϕ,σB. (3.7)

We see from the definition of the Lϕ-Lipschitz norm and (3.7) that∥∥T(TΦ(u))∥∥ϕloc Lipk,Ω

= sup
σ′B⊂Ω

|B|
−(n+k)

n

∥∥T(TΦ(u))− (
T
(
TΦ(u)

))
B

∥∥
ϕ,B

≤ sup
σ′B⊂Ω

|B|
−(n+k)

n C12|B|1+1/n‖u‖ϕ,σB

≤ sup
σ′B⊂Ω

C12|B|1+
1
n
+

−(n+k)
n ‖u‖ϕ,σB

for all balls σ′B ⊂ Ω with σ′ > σ.
Noting that 1+ 1

n
+ −(n+k)

n
> 0 since 0 < k < 1 and 1 < n <∞, we can obtain

|B|1+ 1
n
+

−(n+k)
n ≤ |Ω|1+ 1

n
+

−(n+k)
n for any ball B ⊂ Ω. Then it follows that∥∥T(TΦ(u))∥∥ϕloc Lipk,Ω

≤ sup
σ′B⊂Ω

C12|Ω|1+
1
n
+

−(n+k)
n ‖u‖ϕ,σB

≤ C13 sup
σ′B⊂Ω

‖u‖ϕ,σB

≤ C13 sup
σ′B⊂Ω

‖u‖ϕ,σ′B

≤ C14‖u‖ϕ,Ω.

We have thus completed the proof of Theorem 3.2. �
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Next, we give the estimate of the Orlicz-BMO norm of the composite operator
T ◦ TΦ.

Theorem 3.3. Let ϕ be a Young function in the G(p, q, c)-class, 1 < p < q <∞,
c ≥ 1, q(n− p) < np, and let u ∈ Lp(Ω,Λl), l = 1, 2, . . . , n, be a differential form
such that ϕ(|u|) ∈ L1

loc(Ω). Assume that T is the homotopy operator and that TΦ
is the potential operator. Then there exists a constant C, independent of u, such
that ∥∥T(TΦ(u))∥∥ϕ∗,Ω ≤ C‖u‖ϕ,Ω,

where Ω is a bounded domain.

Proof. We first consider the case that 1 < p < n, q(n− p) < np means q < np
n−p

.

Then by the monotonic property of the Lp-space and Lemmas 2.6, 2.7, and 2.8,
we have (∫

B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣q dx)1/q

≤ |B|
1
q
− 1

p
+ 1

n

(∫
B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣ np
n−p dx

)n−p
np

≤ C1|B|
1
q
− 1

p
+ 1

n

(∫
B

∣∣ dT(TΦ(u))∣∣p dx) 1
p

= C1|B|
1
q
− 1

p
+ 1

n

(∫
B

∣∣(TΦ(u))B∣∣p dx) 1
p

≤ C2|B|
1
q
− 1

p
+ 1

n
+1
(∫

B

∣∣TΦ(u)∣∣p dx) 1
p

≤ C3|B|
1
q
− 1

p
+ 1

n
+1
(∫

B

|u|p dx
) 1

p
. (3.8)

Next, we consider the case that n ≤ p < q < ∞. Taking into account that
ns
n−s

→ ∞, as s → n, we can select s with 1 < s < n such that q < ns
n−s

. Now, by
Lemmas 2.6 and 2.7 and the monotonic property of the Lp space with s < p, we
have (∫

B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣ ns
n−s dx

)n−s
ns

≤ C4

(∫
B

∣∣dT(TΦ(u))∣∣s dx) 1
s

= C4

(∫
B

∣∣(TΦ(u))B∣∣s dx) 1
s

≤ C5|B|
(∫

B

∣∣TΦ(u)∣∣s dx) 1
s

≤ C5|B|1+
1
s
− 1

p

(∫
B

|u|p dx
) 1

p
. (3.9)

Applying the monotonic property of the Lp space with q < ns
n−s

and (3.9) yields
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B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣q dx)1/q

≤ |B|
1
q
− 1

s
+ 1

n

(∫
B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣ ns
n−s dx

)n−s
ns

≤ C6|B|
1
q
− 1

s
+ 1

n |B|1+
1
s
− 1

p

(∫
B

|u|p dx
) 1

p

= C6|B|1+
1
q
− 1

p
+ 1

n

(∫
B

|u|p dx
) 1

p
. (3.10)

Noting that 1
q
− 1

p
+ 1

n
> 0, we see from (3.8) and (3.10) that(∫

B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣q dx)1/q

≤ C7|B|
(∫

B

|u|p dx
) 1

p
(3.11)

holds for all 1 < p < q < ∞ with q(n − p) < np. Starting with (3.11) and
repeating the similar proof from (3.5) to (3.7), we get∥∥T(TΦ(u))− (

T
(
TΦ(u)

))
B

∥∥
ϕ,B

≤ C8

∥∥|B|u
∥∥
ϕ,B

≤ C8|B|‖u‖ϕ,B. (3.12)

By the definition of the Lϕ-BMO norm and (3.12), we obtain∥∥T(TΦ(u))∥∥ϕ∗,Ω = sup
σB⊂Ω

|B|−1
∥∥T(TΦ(u))− (

T
(
TΦ(u)

))
B

∥∥
ϕ,B

≤ sup
σB⊂Ω

|B|−1C8|B|‖u‖ϕ,B

= sup
σB⊂Ω

C8‖u‖ϕ,B

≤ C9‖u‖ϕ,Ω. �

When assuming that the Lebesgue measure |{x ∈ B : |u − uB| > 0}| > 0,
we can derive the following comparison theorems for the composite operator by
Lemma 2.9 with ψ(t) = ϕ(t), ω(x) = 1 over the ball B.

Corollary 3.4. Let ϕ be a Young function in the G(p, q, c)-class, 1 ≤ p < q <
∞, c ≥ 1, and let u be a differential form such that u ∈ WRH(Λl,Ω)-class,
l = 1, 2, . . . , n, |{x ∈ B : |u − uB| > 0}| > 0 (for any balls B ⊂ Ω) and
ϕ(|u|) ∈ L1

loc(Ω). Assume that T is the homotopy operator and that TΦ is the
potential operator. Then there exists a constant C, independent of u, such that∥∥T(TΦ(u))∥∥ϕloc Lipk,Ω

≤ C‖u‖ϕ∗,Ω,

where 0 < k < 1 is a constant and Ω is a bounded domain.

4. The two-weight norm inequalities

In this section, we establish the comparison theorems with two-weight for the
composite operator T ◦TΦ, which is based on the following Poincaré-type inequal-
ity with Aλ

r (Ω)-weight for T ◦ TΦ.
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Theorem 4.1. Let u ∈ Ls(Ω,Λl) ∩ WRH(Λl,Ω)-class, l = 1, 2, . . . , n. Assume
that T is the homotopy operator, that TΦ is the potential operator, and that
(w1(x), w2(x)) ∈ Aλ

r (Ω) for some r > 1, λ > 0. Then there exists a constant
C, independent of u, such that(∫

B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣swα
1 dx

) 1
s ≤ C|B|1+

1
n

(∫
σB

|u|swαλ
2 dx

) 1
s

for all balls B with σB ⊂ Ω, where 0 < α < 1, σ > 1, s > αλ(r − 1) + 1.

Proof. Choosing t = s
1−α

so that 1 < s < t, and using Hölder’s inequality with
1
s
= 1

t
+ t−s

ts
, we obtain(∫
B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣swα
1 dx

) 1
s

=
(∫

B

(∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣w α
s
1

)s
dx

) 1
s

≤
(∫

B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣t dx) 1
t
(∫

B

w
αt
t−s

1 dx
) t−s

st

=
∥∥T(TΦ(u))− (

T
(
TΦ(u)

))
B

∥∥
t,B

(∫
B

w1 dx
)α

s
. (4.1)

Applying Lemma 3.1 and Definition 2.4, we have∥∥T(TΦ(u))− (
T
(
TΦ(u)

))
B

∥∥
t,B

≤ C1|B|2 diam(B)‖u‖t,B

≤ C2|B|2 diam(B)|B|
m−t
mt ‖u‖m,σB

= C2|B|2+
1
n |B|

m−t
mt ‖u‖m,σB (4.2)

for all balls B with σB ⊂ Ω, σ > 1. Next, selecting m = s
αλ(r−1)+1

so that m > 1

and applying Hölder’s inequality with 1
m

= 1
s
+ s−m

sm
gives

‖u‖m,σB =
(∫

σB

(
|u|w

αλ
s

2 w
−αλ

s
2

)m
dx

) 1
m

≤
(∫

σB

|u|swαλ
2 dx

) 1
s
(∫

σB

( 1

w2

)mαλ
s−m

dx
) s−m

sm

=
(∫

σB

|u|swαλ
2 dx

) 1
s
(∫

σB

( 1

w2

) 1
r−1

dx
) (r−1)αλ

s
. (4.3)

Combining (4.2) and (4.3) yields that∥∥T(TΦ(u))− (
T
(
TΦ(u)

))
B

∥∥
t,B

≤ C3|B|2+
1
n |B|

m−t
mt

(∫
σB

|u|swαλ
2 dx

) 1
s

×
(∫

σB

( 1

w2

) 1
r−1

dx
) (r−1)αλ

s
. (4.4)

Substituting (4.4) into (4.1), we have
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B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣swα
1 dx

) 1
s

≤ C3|B|2+
1
n |B|

m−t
mt

(∫
B

w1 dx
)α

s

×
(∫

σB

( 1

w2

) 1
r−1

dx
) (r−1)αλ

s
(∫

σB

|u|swαλ
2 dx

) 1
s
. (4.5)

Since (w1(x), w2(x)) ∈ Aλ
r (Ω), it follows that(∫

B

w1 dx
)α

s
(∫

σB

( 1

w2

) 1
r−1

dx
) (r−1)αλ

s

≤
(∫

σB

w1 dx
)α

s
(∫

σB

( 1

w2

) 1
r−1

dx
) (r−1)αλ

s

=
[(∫

σB

w1 dx
)(∫

σB

( 1

w2

) 1
r−1

dx
)λ(r−1)]α

s

=
[
|σB|λ(r−1)+1

( 1

|σB|

∫
σB

w1 dx
)( 1

|σB|

∫
σB

( 1

w2

) 1
r−1

dx
)λ(r−1)]α

s

≤ C4|σB|
αλ(r−1)

s
+α

s

≤ C5|B|
αλ(r−1)

s
+α

s . (4.6)

Combining (4.5) and (4.6), and noting that m−t
mt

= −(αλ(r−1)
s

+ α
s
), we get(∫

B

∣∣T(TΦ(u))− (
T
(
TΦ(u)

))
B

∣∣swα
1 dx

) 1
s ≤ C6|B|2+

1
n

(∫
σB

|u|swαλ
2 dx

) 1
s
.

This completes the proof of Theorem 4.1. �

By selecting λ = 1 in Theorem 4.1, we can immediately obtain the following
symmetric two-weight Poincaré-type inequality for T ◦ TΦ, which will be used to
establish the comparison theorems with two-weight in the next theorem.

Corollary 4.2. Let u ∈ Ls(Ω,Λl) ∩ WRH(Λl,Ω)-class, l = 1, 2, . . . , n. Assume
that T is the homotopy operator, that TΦ is the potential operator, and that
(w1(x), w2(x)) ∈ A1

r(Ω) for some r > 1. Then there exists a constant C, indepen-
dent of u, such that∥∥T(TΦ(u))− (

T
(
TΦ(u)

))
B

∥∥
s,B,wα

1
≤ C|B|2 diam(B)‖u‖s,σB,wα

2

for all balls B with σB ⊂ Ω, where 0 < α < 1, σ > 1, s > α(r − 1) + 1.

Lemma 4.3. Let ϕ be a Young function such that ϕ(x) ≤ xt for any x > 0, and
let u ∈ Ls(Ω,Λl), l = 1, 2, . . . , n, be a differential form in Ω. Then for any weight
ω, we have

‖u‖ϕ,B,ω ≤ C‖u‖t,ω,B,
where 1 < t < s <∞ and C is a constant independent of u.
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Proof. The Young function ϕ ≥ 0 gives∫
B

ϕ
( |u(x)|
‖u(x)‖t,B,ω

)
ω(x) dx ≤

∫
B

( |u(x)|
‖u(x)‖t,B,ω

)t

ω(x) dx

=

∫
B
|u(x)|tω(x) dx
‖u(x)‖tt,B,ω

= 1.

That, according to the definition of Lϕ-norm, then implies that

inf
{
λ > 0 :

∫
B

ϕ
( |u(x)|

λ

)
ω(x) dx ≤ 1

}
≤

∥∥u(x)∥∥
t,B,ω

.

That is,

‖u‖ϕ,B,ω ≤ ‖u‖t,B,ω. �

Now we are ready to state the two-weight comparison theorem using the
Poincaré-type inequality derived in Corollary 4.2.

Theorem 4.4. Let ϕ be a Young function such that ϕ(x) ≤ xt, u ∈ Ls(Ω,Λl)
and in WRH(Λl,Ω)-class, t < s < ∞. Assume that T is the homotopy operator,
that TΦ is the potential operator, that (w1(x), w2(x)) ∈ A1

r(Ω) for some r > 1 with
w1(x) ≥ ε > 0 for any x ∈ Ω, and that the Radon measures µ and ν are defined
by dµ = wα

1 dx, dν = wα
2 dx. Then there exist constants C1 and C2, independent

of u, such that∥∥T(TΦ(u))∥∥ϕ∗,Ω,wα
1
≤ C1

∥∥T(TΦ(u))∥∥ϕloc Lipk,Ω,wα
1
≤ C2‖u‖s,Ω,wα

2
, (4.7)

where 0 < k < 1 and 0 < α < 1 are constants, s > α(r − 1) + 1.

Proof. The first inequality in (4.7) follows directly from the definitions of the
weighted Lϕ-Lipschitz and Lϕ-BMO norms; that is,∥∥T(TΦ(u))∥∥ϕ∗,Ω,wα

1

= sup
σB⊂Ω

(
µ(B)

)−1∥∥T(TΦ(u))− (
T
(
TΦ(u)

))
B

∥∥
ϕ,B,wα

1

= sup
σB⊂Ω

(
µ(B)

)k/n(
µ(B)

)−(n+k)/n∥∥T(TΦ(u))− (
T
(
TΦ(u)

))
B

∥∥
ϕ,B,wα

1

≤ C1 sup
σB⊂Ω

(
µ(B)

)−(n+k)/n∥∥T(TΦ(u))− (
T
(
TΦ(u)

))
B

∥∥
ϕ,B,wα

1

≤ C2

∥∥T(TΦ(u))∥∥ϕloc Lipk,Ω,wα
1
.

We now prove the second inequality in (4.7). Applying Lemma 4.3 and the
monotonic property of the Lp space with t < s <∞ and Corollary 4.2, we have∥∥T(TΦ(u))− (

T
(
TΦ(u)

))
B

∥∥
ϕ,B,wα

1

≤
∥∥T(TΦ(u))− (

T
(
TΦ(u)

))
B

∥∥
t,B,wα

1

≤ |B|
1
t
− 1

s

∥∥T(TΦ(u))− (
T
(
TΦ(u)

))
B

∥∥
s,B,wα

1

≤ C3|B|
1
t
− 1

s
+2+ 1

n‖u‖s,σB,wα
2
. (4.8)
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By the definition of the weighted Lϕ-Lipschitz-norm and (4.8), we obtain∥∥T(TΦ(u))∥∥ϕloc Lipk,Ω,wα
1
= sup

σB⊂Ω

(
µ(B)

)−n+k
n
∥∥T(TΦ(u))− (

T
(
TΦ(u)

))
B

∥∥
ϕ,B,wα

1

≤ C3 sup
σB⊂Ω

(
µ(B)

)−1− k
n |B|

1
t
− 1

s
+2+ 1

n‖u‖s,σB,wα
2
.

Since µ(B) =
∫
B
wα

1 dx ≥
∫
B
εα dx = C4|B|, then for all balls B ⊂ Ω, we have

1

µ(B)
≤ C5

|B|
. (4.9)

According to (4.9), we have (µ(B))−1− k
n ≤ C2|B|−1− k

n , and it follows that∥∥T(TΦ(u))∥∥ϕloc Lipk,Ω,wα
1
≤ C6 sup

σB⊂Ω
|B|−1− k

n |B|
1
t
− 1

s
+2+ 1

n‖u‖s,σB,wα
2

= C6 sup
σB⊂Ω

|B|1+
1
t
− 1

s
+ 1

n
− k

n‖u‖s,σB,wα
2
.

Noting that 1 + 1
t
− 1

s
+ 1

n
− k

n
> 0 and |B|1+ 1

t
− 1

s
+ 1

n
− k

n ≤ |Ω|1+ 1
t
− 1

s
+ 1

n
− k

n , we have∥∥T(TΦ(u))∥∥ϕloc Lipk,Ω,wα
1
≤ C6 sup

σB⊂Ω
|Ω|1+

1
t
− 1

s
+ 1

n
− k

n‖u‖s,σB,wα
2

≤ C7 sup
σB⊂Ω

‖u‖s,σB,wα
2

≤ C8‖u‖s,Ω,wα
2
,

which completes the proof of Theorem 4.4. �

5. Applications

In this section, we present the estimates for some other composite operators
with the Orlicz–Lipschitz norm and the Orlicz-BMO norm as applications. First,
we consider the composition of homotopy operator T and Green’s operator G.
We will need the following lemma from [19].

Lemma 5.1 ([19, p. 2088]). Let u be a smooth differential form defined in Ω
and 1 < s < ∞, and let G be the Green’s operator. Then there exists a positive
constant C = C(s), independent of u, such that∥∥dd∗G(u)∥∥

s,B
+
∥∥d∗dG(u)∥∥

s,B
+
∥∥dG(u)∥∥

s,B
+
∥∥d∗G(u)∥∥

s,B
+
∥∥G(u)∥∥

s,B

≤ C(s)‖u‖s,B
for all balls B ⊂ Ω.

Based on Lemma 5.1 and the similar method in Lemma 3.1, we can derive the
following Poincaré-type inequality for the composite operator T ◦G.
Lemma 5.2. Let u ∈ Ls(Ω,Λl), l = 1, 2, . . . , n, 1 < s <∞, let T be the homotopy
operator, and let G be the Green’s operator. Then there exists a constant C,
independent of u, such that∥∥T (G)− (

T (G)
)
B

∥∥
s,B

≤ C|B|2 diam(B)‖u‖s,B
for any balls B ⊂ Ω.
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Now, using Lemma 5.2 and the analogous technique developed in Theorems
3.2, 3.3, and 4.4, we can obtain the following results for the composite operator
T ◦G.

Theorem 5.3. Let ϕ be a Young function in the G(p, q, c)-class, 1 ≤ p < q <
∞, c ≥ 1, and let u be a differential form such that u ∈ WRH(Λl,Ω)-class,
l = 1, 2, . . . , n, and ϕ(|u|) ∈ L1

loc(Ω). Assume that T is the homotopy operator
and that G is the Green’s operator. Then there exists a constant C, independent
of u, such that ∥∥T(G(u))∥∥

ϕloc Lipk,Ω
≤ C‖u‖ϕ,Ω,

where 0 < k < 1 is a constant and Ω is a bounded domain.

Theorem 5.4. Let ϕ be a Young function in the G(p, q, c)-class, 1 < p < q <∞,
c ≥ 1, q(n− p) < np, and let u ∈ Lp(Ω,Λl), l = 1, 2, . . . , n, be a differential form
such that ϕ(|u|) ∈ L1

loc(Ω). Assume that T is the homotopy operator and that G
is the Green’s operator. Then there exists a constant C, independent of u, such
that ∥∥T(G(u))∥∥

ϕ∗,Ω ≤ C‖u‖ϕ,Ω,

where Ω is a bounded domain.

Theorem 5.5. Let ϕ be a Young function such that ϕ(x) ≤ xt, and let u ∈
Ls(Ω,Λl) ∩WRH(Λl,Ω)-class, t < s <∞. Assume that T is the homotopy oper-
ator, that G is the Green’s operator, that (w1(x), w2(x)) ∈ A1

r(Ω) for some r > 1
with w1(x) ≥ ε > 0 for any x ∈ Ω, and that the Radon measures µ and ν
are defined by dµ = wα

1 dx, dν = wα
2 dx. Then there exist constants C1 and C2,

independent of u and du, such that∥∥T (G)∥∥
ϕ∗,Ω,wα

1
≤ C1

∥∥T (G)∥∥
ϕloc Lipk,Ω,wα

1
≤ C2‖u‖s,Ω,wα

2
,

where 0 < k < 1, 0 < α < 1, and s > α(r − 1) + 1.

Remark 5.6. Note that the main results in Theorems 3.2, 3.3, and 4.4 still hold
when TΦ is replaced by the Riesz potential operator Iα, Bessel potential Jβ,λ, and
Calderón–Zygmund singular integral operator on differential forms for the reason
that the kernels Φ of these operators also satisfy the conditions in Lemma 2.8.
It should be pointed out that the method developed in the present article could
also be used to study the Orlicz–Lipschitz and Orlicz-BMO norm estimates for
the composition of homotopy operator T and projection operator H (see [19]).
We leave these proofs to the reader.

Acknowledgment. The authors would like to thank the anonymous referees for
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