ANNALS of **FUNCTIONAL ANALYSIS**

Ann. Funct. Anal. 10 (2019), no. 3, 291–307 <https://doi.org/10.1215/20088752-2018-0030> ISSN: 2008-8752 (electronic) <http://projecteuclid.org/afa>

BOUNDEDNESS CHARACTERIZATION OF COMPOSITE OPERATOR WITH ORLICZ–LIPSCHITZ NORM AND ORLICZ-BMO NORM

JINLING NIU,^{[1](#page-16-0)} XUEXIN LI,^{[2](#page-16-1)} and YUMING XING^{1[*](#page-0-0)}

Communicated by J. Soria

Abstract. In this paper, we establish the boundedness estimates for the composition of the homotopy operator T and the potential operator T_{Φ} on differential forms with Orlicz–Lipschitz norm and Orlicz-BMO norm which are defined by a Young function. Moreover, we derive the two-weight norm inequalities for the composite operator $T \circ T_{\Phi}$ using the Poincaré-type inequality with $A_r^{\lambda}(\Omega)$ -weight. Finally, we demonstrate some applications of our main results.

1. Introduction

The main purpose of this paper is to characterize the boundedness of the composition of homotopy operator T and potential operator T_{Φ} on differential forms with Orlicz–Lipschitz norm and Orlicz-BMO norm, which were defined by a Young function φ in our recent work [\[13\]](#page-15-0). Recall that a systematic study of homotopy operator on differential forms was initiated by Iwaniec and Lutoborski in [\[11\]](#page-15-1), where the authors showed the famous decomposition theorem for any differential form u by the homotopy operator T . Since then, homotopy operators have been playing a critical role in the theory of differential forms (see, e.g., $[1]-[3], [6]-[8],$ $[1]-[3], [6]-[8],$ $[1]-[3], [6]-[8],$ $[1]-[3], [6]-[8],$ $[1]-[3], [6]-[8],$ $[1]-[3], [6]-[8],$ $[1]-[3], [6]-[8],$ $[1]-[3], [6]-[8],$ and $[10]$ for more elegant results on homotopy operators). In 2014, Wang and Xing [\[20\]](#page-15-6) defined the convolution-type potential operator T_{Φ} on differential forms and proved the basic L^p -norm inequalities for T_{Φ} , including the

Copyright 2019 by the Tusi Mathematical Research Group.

Received Sep. 11, 2018; Accepted Oct. 29, 2018.

First published online Jul. 19, 2019.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A63; Secondary 47G10, 58A15.

Keywords. differential forms, homotopy operator, potential operator, Orlicz–Lipschitz norm, Orlicz-BMO norm.

local strong (p, p) -inequality and the Caccioppoli-type inequality. In particular, the convolution-type potential operator T_{Φ} is a kind of generalized operator which includes many classical operators when the kernel function Φ takes some special functions or satisfies certain conditions, such as the fractional integral operator I_{α} with the kernel $\Phi(t) = |t|^{\alpha - n}$, $0 < \alpha < n$, and the Bessel potential $J_{\beta,\lambda}$ with the kernel $\Phi = K_{\beta,\lambda}$ defined by its Fourier transform $\widehat{K_{\beta,\lambda}}(\xi) = (\lambda^2 + |\xi|^2)^{-\frac{\beta}{2}}$, $\beta, \lambda > 0$. (For more applications of the convolution-type potential operator in potential theory, quantum mechanics, and partial differential equations, see [\[17\]](#page-15-7) and [\[18\]](#page-15-8).) Recently, we introduced two new spaces in [\[13\]](#page-15-0), called the $Orlicz-$ Lipschitz space and the Orlicz-BMO space, which generalize the notions of the traditional Lipchitz space and BMO space by the Young function φ and give the estimates of Orlicz–Lipschitz norm and Orlicz-BMO norm for homotopy operator T. In the present article, we explore the boundedness estimates for the composition of homotopy operator T and convolution-type potential operator T_{Φ} with Orlicz–Lipschitz norm and Orlicz-BMO norm which are more complicated than that of the single one. We also prove the two-weight norm inequalities for the composite operator $T \circ T_{\Phi}$ using the Poincaré-type inequality with $A_r^{\lambda}(\Omega)$ -weight (see [\[4\]](#page-15-9)). It is worth pointing out that our estimates for the composite operator $T \circ T_{\Phi}$ provide a technique to deal with the Orlicz–Lipschitz norm and Orlicz-BMO norm estimates for other composite operators, such as the composition of homotopy T and projection operator H (see [\[19\]](#page-15-10)), and the composition of homo-topy T and Green's operator G (see [\[9\]](#page-15-11)). Additionally, the results in this paper still hold when the convolution-type potential operator T_{Φ} is replaced by the fractional integral operator I_{α} or Bessel potential $J_{\beta,\lambda}$, which, due to the kernel function Φ , could take some functions as special cases.

Our work here is organized as follows. Section [2](#page-1-0) introduces preliminary material including some definitions and the main lemmas. Theorems [3.2](#page-5-0) and [3.3](#page-8-0) in Section [3](#page-5-1) give the estimates for the composite operator $T \circ T_{\Phi}$ with Orlicz– Lipschitz norm and Orlicz-BMO norm when the Young function φ belongs to the $G(p, q, c)$ -class. In particular, the condition in Theorem [3.2](#page-5-0) that a differen-tial form u satisfies weak reverse Hölder (WRH) class (see [\[12\]](#page-15-12)) is not required in Theorem [3.3.](#page-8-0) In Section [4,](#page-9-0) we first prove the Poincaré-type inequality with $A_r^{\lambda}(\Omega)$ -weight for the composite operator $T \circ T_{\Phi}$ in Theorem [4.1.](#page-10-0) Based on this, the two-weight norm inequalities for the composite operator $T \circ T_{\Phi}$ are derived in Theorem [4.4.](#page-12-0) Finally, as applications, we give some estimates for other composite operators in Section [5](#page-13-0) using the results and methods developed in the preceding sections.

2. Preliminaries

Before specifying the main results precisely, we introduce some notation. Let Ω be a bounded, convex domain in \mathbb{R}^n , $n \geq 2$, let B and σB be the balls with the same center, and let $\text{diam}(\sigma B) = \sigma \text{diam}(B)$. We denote by |E| the *n*-dimensional Lebesgue measure of a set $E \subseteq \mathbb{R}^n$. Let $\Lambda^l(\mathbb{R}^n) = \Lambda^l$, $l = 1, 2, \ldots, n$, be the set of all *l*-forms $u(x) = \sum_I u_I(x) dx_I = \sum u_{i_1\cdots i_l}(x) dx_{i_1} \wedge \cdots \wedge dx_{i_l}$ with summation over all ordered *l*-tuples $I = (i_1, i_2, \ldots, i_l)$, $1 \leq i_1 < \cdots < i_l \leq n$. We use $D'(\Omega, \Lambda^l)$ to denote the space of all differential *l*-forms on Ω —namely, the coefficient of the *l*-forms is differential on Ω . The direct sum $\Lambda = \Lambda(\mathbb{R}^n) = \bigoplus_{l=0}^n \Lambda^l(\mathbb{R}^n)$ is a graded algebra with respect to the exterior products. The operator $* : \Lambda^l(\mathbb{R}^n) \to$ $\Lambda^{n-l}(\mathbb{R}^n)$ is the Hodge star operator which is an isometric isomorphism on Λ , and the linear operator $d: D'(\Omega, \Lambda^l) \to D'(\Omega, \Lambda^{l+1}), 0 \leq l \leq n-1$, is called the *exterior differential*. The Hodge codifferential operator $d^* : D'(\Omega, \Lambda^{l+1}) \to$ $D'(\Omega, \Lambda^l)$, the formal adjoint of d, is defined by $d^* = (-1)^{nl+1} * d^*$ (see [\[16\]](#page-15-13) for more details). We will denote by $L^p(\Omega,\Lambda^l)$ the space of differential *l*-forms with coefficients in $L^p(\Omega, \mathbb{R}^n)$ and with norm $||u||_{p,\Omega} = (\int_{\Omega} (\sum_I |u_I(x)|^2)^{\frac{p}{2}} dx)^{\frac{1}{p}}$. Similarly, we denote by $W^{1,p}(\Omega, \Lambda^l) = L^p(\Omega, \Lambda^l) \cap L_1^p$ $_1^p(\Omega, \Lambda^l)$ the Sobolev space of l-forms with norm $||u||_{W^{1,p}(\Omega,\Lambda^l)} = (\text{diam}(\Omega))^{-1}||u||_{p,\Omega} + ||\nabla u||_{p,\Omega}$. A nonnegative function w is called a weight if $w \in L^1_{loc}(\mathbb{R}^n)$ and $w > 0$ almost everywhere. Also, the norm of $u \in L^p(\Omega, \Lambda^l, w)$ is defined by $||u||_{p, \Omega, w} = (\int_{\Omega} |u|^p w(x) dx)^{1/p}$.

The homotopy operator $T: C^{\infty}(\Omega, \Lambda^l) \to C^{\infty}(\Omega, \Lambda^{l-1})$ is a very important operator in differential-form theory, given by

$$
Tu = \int_{\Omega} \psi(y) K_y u \, dy,
$$

where $\psi \in C_0^{\infty}(\Omega)$ is normalized by $\int_{\Omega} \psi(y) dy = 1$, and K_y is a linear operator defined by

$$
(K_y u)(x;\xi_1,\ldots,\xi_{l-1}) = \int_0^1 t^{l-1} u(tx+y-ty;x-y;\xi_1,\ldots,\xi_{l-1}) dt.
$$

From [\[11\]](#page-15-1), we have the decomposition

$$
u = d(Tu) + T(du)
$$

for any differential form $u \in L^p(\Omega, \Lambda^l), 1 \leq p < \infty$. A closed form u_{Ω} is defined by $u_{\Omega} = d(Tu), l = 1, \ldots, n$, and when u is a differential 0-form, $u_{\Omega} = |\Omega|^{-1} \int_{\Omega} u(y) dy.$

From [\[20\]](#page-15-6), given a nonnegative, locally integrable function Φ , the convolutiontype potential operator T_{Φ} is defined by a convolution integral as

$$
T_{\Phi}u(x) = \sum_{I} \left(\int_{\mathbb{R}^n} \Phi(x - y) u_I(y) \, dy \right) dx_I,
$$

provided that the integral exists for almost all $x \in \mathbb{R}^n$, where $u(x)$ is a differential *l*-form defined on \mathbb{R}^n and the summation is over all ordered *l*-tuples $I = (i_1, i_2, \ldots, i_l), 1 \leq i_1 < \cdots < i_l \leq n$. Here, the function Φ is a wide class of kernels satisfying the following weak growth condition (D). There are constants $\delta, c > 0$, and $0 \leq \varepsilon < 1$ with the property that

$$
\sup_{2^k < |x| < 2^{k+1}} \Phi(x) \le \frac{c}{2^{kn}} \int_{\delta(1-\varepsilon)2^k < |y| < 2\delta(1+\varepsilon)2^k} \Phi(y) \, dy
$$

for all $k \in \mathbb{Z}$.

As for the weak growth condition, we refer the reader to [\[17\]](#page-15-7) for details. When $u(x)$ is a 0-form, the operator T_{Φ} we study in this paper naturally degenerates into the operator discussed by P \acute{e} rez in [\[17\]](#page-15-7). Namely, for any Lebesgue measurable function f,

$$
T_{\Phi}f(x) = \int_{\mathbb{R}^n} \Phi(x - y) f(y) \, dy.
$$

The Orlicz space $L^{\varphi}(\Omega)$ consists of all measurable functions f on Ω such that $\int_\Omega \varphi(\frac{|f|}{\lambda}$ $\frac{f(x)}{\lambda}$ dx $\lt \infty$ for some $\lambda = \lambda(f) > 0$, and is equipped with the nonlinear Luxemburg functional

$$
||f||_{\varphi,\Omega} = \inf \left\{ \lambda > 0 : \int_{\Omega} \varphi \left(\frac{|f|}{\lambda} \right) dx \le 1 \right\}.
$$

A convex Orlicz function φ is often called a *Young function*. If φ is a Young function, then $\|\cdot\|_{\varphi(\Omega)}$ defines a norm in $L^{\varphi}(\Omega)$, which is called the *Orlicz norm* or *Luxemburg norm.* We say that the Young function φ belongs to the $G(p, q, c)$ -class, $1 \leq p \leq q \leq \infty, c \geq 1$, if φ satisfies that: (1) $\frac{1}{c} \leq \varphi(t^{1/p})/g(t) \leq c$; and (2) $\frac{1}{c} \leq \varphi(t^{1/q})/h(t) \leq c$, for every $t > 0$, where g is a convex increasing function and h is a concave increasing function on [0, ∞]. From [\[5\]](#page-15-14), each of φ , g, and h in the above definition is doubling in the sense that its values at t and $2t$ are uniformly comparable for all $t > 0$, and the consequent fact that

$$
c_1 t^q \leq h^{-1}(\varphi(t)) \leq c_2 t^q
$$
, $c_1 t^p \leq g^{-1}(\varphi(t)) \leq c_2 t^p$,

where c_1 and c_2 are constants.

In [\[13\]](#page-15-0), the following definitions about the Orlicz–Lipschitz norm and the Orlicz-BMO norm of differential forms were given.

Definition 2.1. For $u \in L^1_{loc}(\Omega, \Lambda^l), l = 0, 1, \ldots, n, \varphi$ is a Young function. We write $u \in L^{\varphi}$ -Lip_{loc,k} (Ω, Λ^l) , $0 < k < 1$, if

$$
||u||_{\varphi\text{loc Lip}_k,\Omega} = \sup_{\sigma B \subset \Omega} |B|^{-\frac{(n+k)}{n}} ||u - u_B||_{\varphi,B} < \infty
$$

for some $\sigma > 1$.

Definition 2.2. For $u \in L^1_{loc}(\Omega, \Lambda^l), l = 0, 1, \ldots, n, \varphi$ is a Young function. We write $u \in L^{\varphi}$ -BMO (Ω, Λ^l) if

$$
||u||_{\varphi*,\Omega} = \sup_{\sigma B \subset \Omega} |B|^{-1} ||u - u_B||_{\varphi,B} < \infty
$$

for some $\sigma > 1$.

The following definition of $A_r^{\lambda}(\Omega)$ -weight comes from [\[4\]](#page-15-9). (For more results on $A_r^{\lambda}(\Omega)$ -weight, see, e.g., [\[14\]](#page-15-15), [\[15\]](#page-15-16).)

Definition 2.3. A pair of weights (w_1, w_2) satisfies the $A_r^{\lambda}(\Omega)$ -condition in a domain $\Omega \subset \mathbb{R}^n$, and we write $(w_1, w_2) \in A_r^{\lambda}(\Omega)$ for some $r > 0$ and $\lambda > 0$ if

$$
\sup_{B} \left(\frac{1}{|B|} \int_{B} w_1 dx \right) \left(\frac{1}{|B|} \int_{B} \left(\frac{1}{w_2} \right)^{1/(r-1)} dx \right)^{\lambda(r-1)} < \infty
$$

for any balls $B \subset \Omega$.

The following definition for the $\text{WRH}(\Lambda^l, \Omega)$ -class appears in [\[12\]](#page-15-12).

Definition 2.4. We say that $u(x) \in D'(\Omega, \Lambda^l)$ belongs to the WRH (Λ^l, Ω) -class, $l = 0, 1, \ldots, n$, if there exists a constant $C > 0$ such that $u(x)$ satisfies

$$
||u||_{s,B} \leq C|B|^{\frac{t-s}{st}}||u||_{t,\rho B}
$$

for every $0 < s, t < \infty$, where $B \subset \Omega$ with $\rho B \subset \Omega$ and $\rho > 1$ is a constant.

In order to prove our results, we need the following three lemmas which were proved by Iwaniec and Lutoborski in [\[11,](#page-15-1) pp. 39–42].

Lemma 2.5. Let $u \in L^s(\Omega, \Lambda^l)$, $l = 1, 2, ..., n$, $1 < s < \infty$, be a differential form, and let $T: L^s(\Omega, \Lambda^l) \to W^{1,s}(\Omega, \Lambda^{l-1})$ be the homotopy operator. Then we have that

$$
||Tu||_{s,\Omega} \leq C|\Omega| \operatorname{diam}(\Omega) ||u||_{s,\Omega}
$$

holds for any bounded and convex domain Ω , where C is a constant independent of u.

Lemma 2.6. Let $u \in D'(\Omega, \Lambda^l)$ be such that $du \in L^t(\Omega, \Lambda^{l+1})$. Then $u - u_{\Omega}$ is in $L^{\frac{nt}{n-t}}(\Omega,\Lambda^l)$ and

$$
\left(\int_{\Omega} |u - u_{\Omega}|^{\frac{nt}{n-t}}\right)^{\frac{n-t}{nt}} \leq C \Big(\int_{\Omega} |du|^{t}\Big)^{\frac{1}{t}},
$$

where $l = 1, 2, ..., n, 1 < t < n$.

Lemma 2.7. Let $u \in L^p(\Omega, \Lambda^l)$, $l = 1, 2, ..., n$. Then $u_{\Omega} \in L^p(\Omega, \Lambda^l)$ and

 $||u_{\Omega}||_{p,\Omega} \leq C(n,p)|\Omega|||u||_{p,\Omega},$

where C is a constant independent of u and $1 < p < \infty$.

The following strong (p, p) -inequality for potential operator T_{Φ} was given in [\[20\]](#page-15-6).

Lemma 2.8 ([\[20,](#page-15-6) Corollary 2.1]). Let $u \in L^p(\mathbb{R}^n, \Lambda^l)$, $l = 0, 1, ..., n, 1 < p < \infty$, and let T_{Φ} be the potential operator. We have that Φ satisfies the weak growth condition (D) , and there exists a positive constant K such that

 $\widetilde{\Phi}\big(l(Q)\big) \leq K$

for any cube Q. Then there exists a constant $C > 0$, independent of u, such that

 $||T_{\Phi}u||_{p,B} \leq C||u||_{p,B}$

for all balls $B \subset \mathbb{R}^n$, where $\widetilde{\Phi}(t)$ is taken as $\widetilde{\Phi}(t) = \int_{|z| \leq t} \Phi(z) dz$ for $t > 0$.

The following lemma appears in [\[5\]](#page-15-14).

Lemma 2.9 ([\[5,](#page-15-14) p. 1613]). Let ψ defined on [0, + ∞) be a strictly increasing, convex function, $\psi(0) = 0$, and let $\Omega \subset \mathbb{R}^n$ be a domain. Assume that $u(x) \in$ $D'(\Omega, \Lambda^l)$ satisfies $\psi(k(|u|+|u_{\Omega}|)) \in L^1(\Omega, \mu)$ for any real number $k > 0$, and let $\mu(x \in \Omega : |\mu - \mu_{\Omega}| > 0) > 0$, where μ is a Radon measure defined by $d\mu(x) =$ $\omega(x) dx$ with a weight $\omega(x)$. Then for any $a > 0$, we obtain

$$
\int_{\Omega} \psi(a|u|) d\mu \leq C \int_{\Omega} \psi(2a|u - u_{\Omega}|) d\mu,
$$

where C is a positive constant.

3. Boundedness estimates for the composite operator

In this section, we give the boundedness estimates for the composite operator $T \circ T_{\Phi}$ on differential forms with the Orlicz–Lipschitz and Orlicz-BMO norms. We also establish the comparison theorems between the Orlicz–Lipschitz norm and the Orlicz-BMO norm for the composite operator. In order to prove our results, we first state the Poincaré-type inequality for $T \circ T_{\Phi}$.

Lemma 3.1. Let $u \in L^s(\Omega, \Lambda^l)$, $l = 1, 2, \ldots, n$, $1 < s < \infty$, let T be the homotopy operator, and let T_{Φ} be the potential operator. Then there exists a constant C, independent of u, such that

$$
||T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_B||_{s,B} \leq C|B|^2 \operatorname{diam}(B)||u||_{s,B}
$$

for any balls $B \subset \Omega$.

Proof. Applying the decomposition theorem for differential forms to $T(T_{\Phi}(u))$, we have

$$
T(T_{\Phi}(u)) = T d(T(T_{\Phi}(u))) + dT(T(T_{\Phi}(u))). \qquad (3.1)
$$

Noting that $dT(T(T_{\Phi}(u))) = (T(T_{\Phi}(u)))_B$, and combining [\(3.1\)](#page-5-2) and Lemma [2.5,](#page-4-0) we get

$$
||T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}||_{s,B} = ||Td(T(T_{\Phi}(u)))||_{s,B}
$$

$$
\leq C_{1}|B| \operatorname{diam}(B) ||dT(T_{\Phi}(u))||_{s,B}.
$$

Noting that $dT(T_{\Phi}(u)) = (T_{\Phi}(u))_B$, by Lemmas [2.7](#page-4-1) and [2.8](#page-4-2) it follows that

$$
||T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}||_{s,B} \le C_1|B| \operatorname{diam}(B) ||(T_{\Phi}(u))_{B}||_{s,B}
$$

\n
$$
\le C_2|B|^2 \operatorname{diam}(B) ||T_{\Phi}(u)||_{s,B}
$$

\n
$$
\le C_3|B|^2 \operatorname{diam}(B) ||u||_{s,B}.
$$

Now we are ready to estimate the Orlicz–Lipschitz norm of the composite operator $T \circ T_{\Phi}$.

Theorem 3.2. Let φ be a Young function in the $G(p,q,c)$ -class, $1 \leq p < q <$ $\infty, c \geq 1$, and let u be a differential form such that $u \in \text{WRH}(\Lambda^l, \Omega)$ -class, $l = 1, 2, \ldots, n$, and $\varphi(|u|) \in L^1_{loc}(\Omega)$. Assume that T is the homotopy operator and that T_{Φ} is the potential operator. Then there exists a constant C, independent of u, such that

$$
||T(T_{\Phi}(u))||_{\varphi \text{loc Lip}_k, \Omega} \leq C||u||_{\varphi, \Omega},
$$

where $0 < k < 1$ is a constant and Ω is a bounded domain.

Proof. By the definition of $G(p, q, c)$ -class and Jensen's inequality, we have

$$
\int_{B} \varphi\left(\left|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}\right|\right) dx
$$
\n
$$
= h\left(h^{-1}\left(\int_{B} \varphi\left(\left|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}\right|\right) dx\right)\right)
$$
\n
$$
\leq h\left(\int_{B} h^{-1}\left(\varphi\left(\left|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}\right|\right)\right) dx\right)
$$
\n
$$
\leq h\left(C_{1} \int_{B} \left|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}\right|^{q} dx\right)
$$
\n
$$
\leq C_{2} \varphi\left(\left(C_{1} \int_{B} \left|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}\right|^{q} dx\right)^{1/q}\right)
$$
\n
$$
\leq C_{3} \varphi\left(\left(\int_{B} \left|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}\right|^{q} dx\right)^{1/q}\right).
$$
\n(3.2)

Replacing s by q in Lemma [3.1,](#page-5-3) we get

$$
\left(\int_{B} |T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}|^{q} dx\right)^{1/q} \leq C_{4}(n, q)|B|^{2} \operatorname{diam}(B) \left(\int_{B} |u|^{q} dx\right)^{1/q}.
$$
\n(3.3)

Since $u \in \text{WRH}(\Lambda^l, \Omega)$ -class, we have by Definition [2.4](#page-4-3) the inequality

$$
\left(\int_{B} |u|^{q} dx\right)^{1/q} \leq C_{5}|B|^{(p-q)/pq} \left(\int_{\sigma B} |u|^{p} dx\right)^{1/p},\tag{3.4}
$$

where $\sigma > 1$ is a constant. Combining [\(3.3\)](#page-6-0) and [\(3.4\)](#page-6-1) yields that

$$
\left(\int_B \left|T\big(T_{\Phi}(u)\big) - \big(T\big(T_{\Phi}(u)\big)\big)_B\right|^q dx\right)^{1/q}
$$

\$\leq C_6 |B|^2 \text{diam}(B)|B|^{(p-q)/pq} \left(\int_{\sigma B} |u|^p dx\right)^{1/p}\$.

Taking into account the fact that $1 < p, q < \infty$, and so $1 + (p - q)/pq > 0$, we then obtain

$$
\left(\int_{B} \left|T\big(T_{\Phi}(u)\big) - \big(T\big(T_{\Phi}(u)\big)\big)_{B}\right|^{q} dx\right)^{1/q} \leq C_{7}|B|^{1+1/n} \left(\int_{\sigma B} |u|^{p} dx\right)^{1/p}.\tag{3.5}
$$

Noting that φ is an increasing function, and using Jensen's inequality, [\(3.5\)](#page-6-2), and the definition of $G(p, q, c)$ -class, we have

$$
\varphi \Big(\Big(\int_B \left| T \big(T_{\Phi}(u) \big) - \big(T \big(T_{\Phi}(u) \big) \big)_B \right|^q dx \Big)^{1/q} \Big) \n\leq \varphi \Big(C_8 |B|^{1+1/n} \Big(\int_{\sigma B} |u|^p dx \Big)^{1/p} \Big) \n= \varphi \Big(\Big(C_8^p |B|^{p(1+1/n)} \int_{\sigma B} |u|^p dx \Big)^{1/p} \Big)
$$

298 J. NIU, X. LI, and Y. XING

$$
\leq C_9 g \Big(C_8^p |B|^{p(1+1/n)} \int_{\sigma B} |u|^p dx \Big)
$$

\n
$$
= C_9 g \Big(\int_{\sigma B} C_8^p |B|^{p(1+1/n)} |u|^p dx \Big)
$$

\n
$$
\leq C_9 \int_{\sigma B} g \Big(C_8^p |B|^{p(1+1/n)} |u|^p \Big) dx
$$

\n
$$
\leq C_{10} \int_{\sigma B} \varphi \Big(C_8 |B|^{1+1/n} |u| \Big) dx
$$

\n
$$
\leq C_{11} \int_{\sigma B} \varphi \Big(|B|^{1+1/n} |u| \Big) dx.
$$
\n(3.6)

Combining (3.2) and (3.6) yields that

$$
\int_{B} \varphi(|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}|) dx \leq C_{12} \int_{\sigma B} \varphi(|B|^{1+1/n}|u|) dx.
$$

We see that φ is doubling, so we obtain

$$
\int_{B} \varphi\left(\frac{|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_B|}{\lambda}\right) dx \leq C_{12} \int_{\sigma B} \varphi\left(\frac{|B|^{1+1/n}|u|}{\lambda}\right) dx
$$

for any $\lambda > 0$. Then by the definition of the Orlicz norm, we have

$$
||T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}||_{\varphi, B} \leq C_{12} ||(|B|^{1+1/n}u)||_{\varphi, \sigma B}
$$

$$
\leq C_{12}|B|^{1+1/n} ||u||_{\varphi, \sigma B}.
$$
 (3.7)

We see from the definition of the L^{φ} -Lipschitz norm and [\(3.7\)](#page-7-1) that

$$
\|T(T_{\Phi}(u))\|_{\varphi\text{loc Lip}_k,\Omega}
$$
\n
$$
= \sup_{\sigma' B \subset \Omega} |B|^{\frac{-(n+k)}{n}} \|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_B\|_{\varphi,B}
$$
\n
$$
\leq \sup_{\sigma' B \subset \Omega} |B|^{\frac{-(n+k)}{n}} C_{12}|B|^{1+1/n} \|u\|_{\varphi,\sigma B}
$$
\n
$$
\leq \sup_{\sigma' B \subset \Omega} C_{12}|B|^{1+\frac{1}{n}+\frac{-(n+k)}{n}} \|u\|_{\varphi,\sigma B}
$$

for all balls $\sigma' B \subset \Omega$ with $\sigma' > \sigma$.

Noting that $1 + \frac{1}{n} + \frac{-(n+k)}{n} > 0$ since $0 < k < 1$ and $1 < n < \infty$, we can obtain $|B|^{1+\frac{1}{n}+\frac{-(n+k)}{n}} \leq |\Omega|^{1+\frac{1}{n}+\frac{-(n+k)}{n}}$ for any ball $B \subset \Omega$. Then it follows that

$$
||T(T_{\Phi}(u))||_{\varphi\text{loc Lip}_k,\Omega} \leq \sup_{\sigma' B \subset \Omega} C_{12}|\Omega|^{1+\frac{1}{n}+\frac{-(n+k)}{n}}||u||_{\varphi,\sigma B}
$$

$$
\leq C_{13} \sup_{\sigma' B \subset \Omega} ||u||_{\varphi,\sigma B}
$$

$$
\leq C_{13} \sup_{\sigma' B \subset \Omega} ||u||_{\varphi,\sigma' B}
$$

$$
\leq C_{14} ||u||_{\varphi,\Omega}.
$$

We have thus completed the proof of Theorem [3.2.](#page-5-0) \Box

Next, we give the estimate of the Orlicz-BMO norm of the composite operator $T \circ T_{\Phi}$.

Theorem 3.3. Let φ be a Young function in the $G(p, q, c)$ -class, $1 < p < q < \infty$, $c \geq 1, q(n-p) < np$, and let $u \in L^p(\Omega, \Lambda^l), l = 1, 2, \ldots, n$, be a differential form such that $\varphi(|u|) \in L^1_{loc}(\Omega)$. Assume that T is the homotopy operator and that T_{Φ} is the potential operator. Then there exists a constant C, independent of u, such that

$$
||T(T_{\Phi}(u))||_{\varphi*,\Omega} \leq C||u||_{\varphi,\Omega},
$$

where Ω is a bounded domain.

Proof. We first consider the case that $1 < p < n$, $q(n-p) < np$ means $q < \frac{np}{n-p}$. Then by the monotonic property of the L^p -space and Lemmas [2.6,](#page-4-4) [2.7,](#page-4-1) and [2.8,](#page-4-2) we have

$$
\left(\int_{B} \left|T(T_{\Phi}(u)) - \left(T(T_{\Phi}(u))\right)_{B}\right|^{q} dx\right)^{1/q} \leq |B|^{\frac{1}{q} - \frac{1}{p} + \frac{1}{n}} \left(\int_{B} \left|T(T_{\Phi}(u)) - \left(T(T_{\Phi}(u))\right)_{B}\right|^{\frac{np}{n-p}} dx\right)^{\frac{n-p}{np}} \leq C_{1}|B|^{\frac{1}{q} - \frac{1}{p} + \frac{1}{n}} \left(\int_{B} \left|dT(T_{\Phi}(u))\right|^{p} dx\right)^{\frac{1}{p}} \leq C_{1}|B|^{\frac{1}{q} - \frac{1}{p} + \frac{1}{n}} \left(\int_{B} \left|(T_{\Phi}(u))_{B}\right|^{p} dx\right)^{\frac{1}{p}} \leq C_{2}|B|^{\frac{1}{q} - \frac{1}{p} + \frac{1}{n} + 1} \left(\int_{B} \left|T_{\Phi}(u)\right|^{p} dx\right)^{\frac{1}{p}} \leq C_{3}|B|^{\frac{1}{q} - \frac{1}{p} + \frac{1}{n} + 1} \left(\int_{B} \left|u\right|^{p} dx\right)^{\frac{1}{p}}.
$$
\n(3.8)

Next, we consider the case that $n \leq p < q < \infty$. Taking into account that $\frac{ns}{n-s} \to \infty$, as $s \to n$, we can select s with $1 < s < n$ such that $q < \frac{ns}{n-s}$. Now, by Lemmas [2.6](#page-4-4) and [2.7](#page-4-1) and the monotonic property of the L^p space with $s < p$, we have

$$
\left(\int_{B} |T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}|^{\frac{ns}{n-s}} dx\right)^{\frac{n-s}{ns}}\n\leq C_{4} \left(\int_{B} |dT(T_{\Phi}(u))|^{s} dx\right)^{\frac{1}{s}}\n= C_{4} \left(\int_{B} |(T_{\Phi}(u))_{B}|^{s} dx\right)^{\frac{1}{s}}\n\leq C_{5} |B| \left(\int_{B} |T_{\Phi}(u)|^{s} dx\right)^{\frac{1}{s}}\n\leq C_{5} |B|^{1 + \frac{1}{s} - \frac{1}{p}} \left(\int_{B} |u|^{p} dx\right)^{\frac{1}{p}}.
$$
\n(3.9)

Applying the monotonic property of the L^p space with $q < \frac{ns}{n-s}$ and [\(3.9\)](#page-8-1) yields

300 J. NIU, X. LI, and Y. XING

$$
\left(\int_{B} \left| T\left(T_{\Phi}(u)\right) - \left(T\left(T_{\Phi}(u)\right)\right)_{B}\right|^{q} dx\right)^{1/q} \leq |B|^{\frac{1}{q} - \frac{1}{s} + \frac{1}{n}} \left(\int_{B} \left| T\left(T_{\Phi}(u)\right) - \left(T\left(T_{\Phi}(u)\right)\right)_{B}\right|^{\frac{ns}{n-s}} dx\right)^{\frac{n-s}{ns}} \leq C_{6} |B|^{\frac{1}{q} - \frac{1}{s} + \frac{1}{n}} |B|^{1 + \frac{1}{s} - \frac{1}{p}} \left(\int_{B} |u|^{p} dx\right)^{\frac{1}{p}} \leq C_{6} |B|^{1 + \frac{1}{q} - \frac{1}{p} + \frac{1}{n}} \left(\int_{B} |u|^{p} dx\right)^{\frac{1}{p}}.
$$
\n(3.10)

Noting that $\frac{1}{q} - \frac{1}{p} + \frac{1}{n} > 0$, we see from [\(3.8\)](#page-8-2) and [\(3.10\)](#page-9-1) that

$$
\left(\int_{B} \left|T\big(T_{\Phi}(u)\big) - \big(T\big(T_{\Phi}(u)\big)\big)_{B}\right|^{q} dx\right)^{1/q} \leq C_{7}|B|\left(\int_{B} |u|^{p} dx\right)^{\frac{1}{p}} \tag{3.11}
$$

holds for all $1 < p < q < \infty$ with $q(n - p) < np$. Starting with (3.11) and repeating the similar proof from (3.5) to (3.7) , we get

$$
\|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}\|_{\varphi,B} \leq C_{8} \| |B| u \|_{\varphi,B}
$$

$$
\leq C_{8} |B| \|u\|_{\varphi,B}.
$$
 (3.12)

By the definition of the L^{φ} -BMO norm and (3.12) , we obtain

$$
||T(T_{\Phi}(u))||_{\varphi*,\Omega} = \sup_{\sigma B \subset \Omega} |B|^{-1} ||T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_B||_{\varphi,B}
$$

\n
$$
\leq \sup_{\sigma B \subset \Omega} |B|^{-1} C_8|B||u||_{\varphi,B}
$$

\n
$$
= \sup_{\sigma B \subset \Omega} C_8 ||u||_{\varphi,B}
$$

\n
$$
\leq C_9 ||u||_{\varphi,\Omega}. \qquad \Box
$$

When assuming that the Lebesgue measure $|\{x \in B : |u - u_B| > 0\}| > 0$, we can derive the following comparison theorems for the composite operator by Lemma [2.9](#page-4-5) with $\psi(t) = \varphi(t)$, $\omega(x) = 1$ over the ball B.

Corollary 3.4. Let φ be a Young function in the $G(p,q,c)$ -class, $1 \leq p < q <$ $\infty, c \geq 1$, and let u be a differential form such that $u \in \text{WRH}(\Lambda^l, \Omega)$ -class, $l = 1, 2, ..., n, |{x \in B : |u - u_B| > 0}| > 0$ (for any balls B ⊂ Ω) and $\varphi(|u|) \in L^1_{loc}(\Omega)$. Assume that T is the homotopy operator and that T_{Φ} is the potential operator. Then there exists a constant C , independent of u, such that

$$
||T(T_{\Phi}(u))||_{\varphi\text{loc Lip}_k,\Omega} \leq C||u||_{\varphi*,\Omega},
$$

where $0 < k < 1$ is a constant and Ω is a bounded domain.

4. The two-weight norm inequalities

In this section, we establish the comparison theorems with two-weight for the composite operator $T \circ T_{\Phi}$, which is based on the following Poincaré-type inequality with $A_r^{\lambda}(\Omega)$ -weight for $T \circ T_{\Phi}$.

Theorem 4.1. Let $u \in L^s(\Omega, \Lambda^l) \cap \text{WRH}(\Lambda^l, \Omega)$ -class, $l = 1, 2, ..., n$. Assume that T is the homotopy operator, that T_{Φ} is the potential operator, and that $(w_1(x), w_2(x)) \in A_r^{\lambda}(\Omega)$ for some $r > 1$, $\lambda > 0$. Then there exists a constant C, independent of u, such that

$$
\left(\int_B \left|T\big(T_{\Phi}(u)\big) - \big(T\big(T_{\Phi}(u)\big)\big)_B\right|^s w_1^{\alpha} dx\right)^{\frac{1}{s}} \le C|B|^{1+\frac{1}{n}} \left(\int_{\sigma B} |u|^s w_2^{\alpha \lambda} dx\right)^{\frac{1}{s}}
$$

for all balls B with $\sigma B \subset \Omega$, where $0 < \alpha < 1$, $\sigma > 1$, $s > \alpha \lambda (r - 1) + 1$.

Proof. Choosing $t = \frac{s}{1-s}$ $\frac{s}{1-\alpha}$ so that $1 < s < t$, and using Hölder's inequality with $\frac{1}{s} = \frac{1}{t} + \frac{t-s}{ts}$, we obtain

$$
\left(\int_{B} |T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}|^{s} w_{1}^{\alpha} dx\right)^{\frac{1}{s}} \n= \left(\int_{B} (|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}| w_{1}^{\frac{\alpha}{s}})^{s} dx\right)^{\frac{1}{s}} \n\leq \left(\int_{B} |T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}|^{t} dx\right)^{\frac{1}{t}} \left(\int_{B} w_{1}^{\frac{\alpha t}{t-s}} dx\right)^{\frac{t-s}{st}} \n= ||T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}||_{t,B} \left(\int_{B} w_{1} dx\right)^{\frac{\alpha}{s}}.
$$
\n(4.1)

Applying Lemma [3.1](#page-5-3) and Definition [2.4,](#page-4-3) we have

$$
||T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}||_{t,B} \le C_{1}|B|^{2} \operatorname{diam}(B)||u||_{t,B}
$$

\n
$$
\le C_{2}|B|^{2} \operatorname{diam}(B)|B|^{\frac{m-t}{mt}}||u||_{m,\sigma B}
$$

\n
$$
= C_{2}|B|^{2+\frac{1}{n}}|B|^{\frac{m-t}{mt}}||u||_{m,\sigma B}
$$
\n(4.2)

for all balls B with $\sigma B \subset \Omega$, $\sigma > 1$. Next, selecting $m = \frac{s}{\alpha \lambda (r-1)+1}$ so that $m > 1$ and applying Hölder's inequality with $\frac{1}{m} = \frac{1}{s} + \frac{s-m}{sm}$ $\frac{m}{sm}$ gives

$$
||u||_{m,\sigma B} = \left(\int_{\sigma B} (|u| w_2^{\frac{\alpha \lambda}{s}} w_2^{-\frac{\alpha \lambda}{s}})^m dx\right)^{\frac{1}{m}}
$$

\n
$$
\leq \left(\int_{\sigma B} |u|^s w_2^{\alpha \lambda} dx\right)^{\frac{1}{s}} \left(\int_{\sigma B} \left(\frac{1}{w_2}\right)^{\frac{m \alpha \lambda}{s-m}} dx\right)^{\frac{s-m}{sm}}
$$

\n
$$
= \left(\int_{\sigma B} |u|^s w_2^{\alpha \lambda} dx\right)^{\frac{1}{s}} \left(\int_{\sigma B} \left(\frac{1}{w_2}\right)^{\frac{1}{r-1}} dx\right)^{\frac{(r-1)\alpha \lambda}{s}}.
$$
 (4.3)

Combining (4.2) and (4.3) yields that

$$
\|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}\|_{t,B}
$$

\n
$$
\leq C_{3}|B|^{2+\frac{1}{n}}|B|^{\frac{m-t}{mt}} \left(\int_{\sigma B} |u|^{s} w_{2}^{\alpha \lambda} dx\right)^{\frac{1}{s}}
$$

\n
$$
\times \left(\int_{\sigma B} \left(\frac{1}{w_{2}}\right)^{\frac{1}{r-1}} dx\right)^{\frac{(r-1)\alpha \lambda}{s}}.
$$
\n(4.4)

Substituting (4.4) into (4.1) , we have

302 J. NIU, X. LI, and Y. XING

$$
\left(\int_{B} \left| T(T_{\Phi}(u)) - \left(T(T_{\Phi}(u)) \right)_{B} \right|^{s} w_{1}^{\alpha} dx \right)^{\frac{1}{s}} \leq C_{3} |B|^{2 + \frac{1}{n}} |B|^{\frac{m-t}{mt}} \left(\int_{B} w_{1} dx \right)^{\frac{\alpha}{s}} \times \left(\int_{\sigma B} \left(\frac{1}{w_{2}} \right)^{\frac{1}{r-1}} dx \right)^{\frac{(r-1)\alpha\lambda}{s}} \left(\int_{\sigma B} |u|^{s} w_{2}^{\alpha\lambda} dx \right)^{\frac{1}{s}}.
$$
\n(4.5)

Since $(w_1(x), w_2(x)) \in A_r^{\lambda}(\Omega)$, it follows that

$$
\left(\int_{B} w_{1} dx\right)^{\frac{\alpha}{s}} \left(\int_{\sigma B} \left(\frac{1}{w_{2}}\right)^{\frac{1}{r-1}} dx\right)^{\frac{(r-1)\alpha\lambda}{s}} \n\leq \left(\int_{\sigma B} w_{1} dx\right)^{\frac{\alpha}{s}} \left(\int_{\sigma B} \left(\frac{1}{w_{2}}\right)^{\frac{1}{r-1}} dx\right)^{\frac{(r-1)\alpha\lambda}{s}} \n= \left[\left(\int_{\sigma B} w_{1} dx\right) \left(\int_{\sigma B} \left(\frac{1}{w_{2}}\right)^{\frac{1}{r-1}} dx\right)^{\lambda(r-1)}\right]^{\frac{\alpha}{s}} \n= \left[\left|\sigma B\right|^{\lambda(r-1)+1} \left(\frac{1}{\left|\sigma B\right|} \int_{\sigma B} w_{1} dx\right) \left(\frac{1}{\left|\sigma B\right|} \int_{\sigma B} \left(\frac{1}{w_{2}}\right)^{\frac{1}{r-1}} dx\right)^{\lambda(r-1)}\right]^{\frac{\alpha}{s}} \n\leq C_{4} \left|\sigma B\right|^{\frac{\alpha\lambda(r-1)}{s} + \frac{\alpha}{s}} \n\leq C_{5} \left|B\right|^{\frac{\alpha\lambda(r-1)}{s} + \frac{\alpha}{s}}.
$$
\n(4.6)

Combining [\(4.5\)](#page-11-0) and [\(4.6\)](#page-11-1), and noting that $\frac{m-t}{mt} = -(\frac{\alpha\lambda(r-1)}{s} + \frac{\alpha}{s})$ $\frac{\alpha}{s}$), we get

$$
\left(\int_B \left|T\big(T_{\Phi}(u)\big)-\big(T\big(T_{\Phi}(u)\big)\big)_B\right|^s w_1^{\alpha} dx\right)^{\frac{1}{s}} \leq C_6|B|^{2+\frac{1}{n}} \left(\int_{\sigma B} |u|^s w_2^{\alpha \lambda} dx\right)^{\frac{1}{s}}.
$$

This completes the proof of Theorem [4.1.](#page-10-0) \square

By selecting
$$
\lambda = 1
$$
 in Theorem 4.1, we can immediately obtain the following
symmetric two-weight Poincaré-type inequality for $T \circ T_{\Phi}$, which will be used to
establish the comparison theorems with two-weight in the next theorem.

Corollary 4.2. Let $u \in L^s(\Omega, \Lambda^l) \cap \text{WRH}(\Lambda^l, \Omega)$ -class, $l = 1, 2, ..., n$. Assume that T is the homotopy operator, that T_{Φ} is the potential operator, and that $(w_1(x), w_2(x)) \in A_r^1(\Omega)$ for some $r > 1$. Then there exists a constant C, independent of u, such that

$$
||T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}||_{s, B, w_1^{\alpha}} \leq C|B|^2 \operatorname{diam}(B) ||u||_{s, \sigma B, w_2^{\alpha}}
$$

for all balls B with $\sigma B \subset \Omega$, where $0 < \alpha < 1$, $\sigma > 1$, $s > \alpha(r - 1) + 1$.

Lemma 4.3. Let φ be a Young function such that $\varphi(x) \leq x^t$ for any $x > 0$, and let $u \in L^s(\Omega, \Lambda^l), l = 1, 2, \ldots, n$, be a differential form in Ω . Then for any weight ω , we have

$$
||u||_{\varphi,B,\omega} \leq C||u||_{t,\omega,B},
$$

where $1 < t < s < \infty$ and C is a constant independent of u.

Proof. The Young function $\varphi \geq 0$ gives

$$
\int_{B} \varphi \Big(\frac{|u(x)|}{\|u(x)\|_{t,B,\omega}} \Big) \omega(x) dx \le \int_{B} \Big(\frac{|u(x)|}{\|u(x)\|_{t,B,\omega}} \Big)^{t} \omega(x) dx
$$

$$
= \frac{\int_{B} |u(x)|^{t} \omega(x) dx}{\|u(x)\|_{t,B,\omega}^{t}}
$$

$$
= 1.
$$

That, according to the definition of L^{φ} -norm, then implies that

$$
\inf\left\{\lambda>0:\int_B\varphi\Big(\frac{|u(x)|}{\lambda}\Big)\omega(x)\,dx\leq 1\right\}\leq \|u(x)\|_{t,B,\omega}.
$$

That is,

 \mathbf{u}

 $||u||_{\varphi,B,\omega} \leq ||u||_{t,B,\omega}$.

Now we are ready to state the two-weight comparison theorem using the Poincaré-type inequality derived in Corollary [4.2.](#page-11-2)

Theorem 4.4. Let φ be a Young function such that $\varphi(x) \leq x^t$, $u \in L^s(\Omega, \Lambda^l)$ and in $\text{WRH}(\Lambda^l,\Omega)$ -class, $t < s < \infty$. Assume that T is the homotopy operator, that T_{Φ} is the potential operator, that $(w_1(x), w_2(x)) \in A_r^1(\Omega)$ for some $r > 1$ with $w_1(x) \geq \varepsilon > 0$ for any $x \in \Omega$, and that the Radon measures μ and ν are defined by $d\mu = w_1^{\alpha} dx$, $d\nu = w_2^{\alpha} dx$. Then there exist constants C_1 and C_2 , independent of u, such that

$$
||T(T_{\Phi}(u))||_{\varphi*,\Omega,w_1^{\alpha}} \leq C_1 ||T(T_{\Phi}(u))||_{\varphi \text{loc Lip}_k,\Omega,w_1^{\alpha}} \leq C_2 ||u||_{s,\Omega,w_2^{\alpha}}, \tag{4.7}
$$

where $0 < k < 1$ and $0 < \alpha < 1$ are constants, $s > \alpha(r-1) + 1$.

Proof. The first inequality in (4.7) follows directly from the definitions of the weighted L^{φ} -Lipschitz and L^{φ} -BMO norms; that is,

$$
\|T(T_{\Phi}(u))\|_{\varphi_{*,\Omega,w_1^{\alpha}}}
$$
\n
$$
= \sup_{\sigma B \subset \Omega} (\mu(B))^{-1} \|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_B\|_{\varphi,B,w_1^{\alpha}}
$$
\n
$$
= \sup_{\sigma B \subset \Omega} (\mu(B))^{k/n} (\mu(B))^{-(n+k)/n} \|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_B\|_{\varphi,B,w_1^{\alpha}}
$$
\n
$$
\leq C_1 \sup_{\sigma B \subset \Omega} (\mu(B))^{-(n+k)/n} \|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_B\|_{\varphi,B,w_1^{\alpha}}
$$
\n
$$
\leq C_2 \|T(T_{\Phi}(u))\|_{\varphi\text{loc Lip}_k,\Omega,w_1^{\alpha}}.
$$

We now prove the second inequality in [\(4.7\)](#page-12-1). Applying Lemma [4.3](#page-11-3) and the monotonic property of the L^p space with $t < s < \infty$ and Corollary [4.2,](#page-11-2) we have

$$
\|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}\|_{\varphi, B, w_1^{\alpha}}\n\le \|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}\|_{t, B, w_1^{\alpha}}\n\le |B|^{\frac{1}{t} - \frac{1}{s}} \|T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_{B}\|_{s, B, w_1^{\alpha}}\n\le C_3 |B|^{\frac{1}{t} - \frac{1}{s} + 2 + \frac{1}{n}} \|u\|_{s, \sigma B, w_2^{\alpha}}.
$$
\n(4.8)

By the definition of the weighted L^{φ} -Lipschitz-norm and [\(4.8\)](#page-12-2), we obtain

$$
||T(T_{\Phi}(u))||_{\varphi\text{loc Lip}_k,\Omega,w_1^{\alpha}} = \sup_{\sigma B \subset \Omega} (\mu(B))^{-\frac{n+k}{n}} ||T(T_{\Phi}(u)) - (T(T_{\Phi}(u)))_B||_{\varphi,B,w_1^{\alpha}}
$$

$$
\leq C_3 \sup_{\sigma B \subset \Omega} (\mu(B))^{-1-\frac{k}{n}} |B|^{\frac{1}{t}-\frac{1}{s}+2+\frac{1}{n}} ||u||_{s,\sigma B,w_2^{\alpha}}.
$$

Since $\mu(B) = \int_B w_1^{\alpha} dx \ge \int_B \varepsilon^{\alpha} dx = C_4|B|$, then for all balls $B \subset \Omega$, we have

$$
\frac{1}{\mu(B)} \le \frac{C_5}{|B|}.\tag{4.9}
$$

According to [\(4.9\)](#page-13-1), we have $(\mu(B))^{-1-\frac{k}{n}} \leq C_2|B|^{-1-\frac{k}{n}}$, and it follows that

$$
||T(T_{\Phi}(u))||_{\varphi\text{loc Lip}_k, \Omega, w_1^{\alpha}} \leq C_6 \sup_{\sigma B \subset \Omega} |B|^{-1-\frac{k}{n}} |B|^{\frac{1}{t}-\frac{1}{s}+2+\frac{1}{n}} ||u||_{s, \sigma B, w_2^{\alpha}}
$$

= $C_6 \sup_{\sigma B \subset \Omega} |B|^{1+\frac{1}{t}-\frac{1}{s}+\frac{1}{n}-\frac{k}{n}} ||u||_{s, \sigma B, w_2^{\alpha}}.$

Noting that $1 + \frac{1}{t} - \frac{1}{s} + \frac{1}{n} - \frac{k}{n} > 0$ and $|B|^{1 + \frac{1}{t} - \frac{1}{s} + \frac{1}{n} - \frac{k}{n}} \leq |\Omega|^{1 + \frac{1}{t} - \frac{1}{s} + \frac{1}{n} - \frac{k}{n}}$, we have

$$
||T(T_{\Phi}(u))||_{\varphi\text{loc Lip}_k, \Omega, w_1^{\alpha}} \leq C_6 \sup_{\sigma B \subset \Omega} |\Omega|^{1 + \frac{1}{t} - \frac{1}{s} + \frac{1}{n} - \frac{k}{n}} ||u||_{s, \sigma B, w_2^{\alpha}}
$$

$$
\leq C_7 \sup_{\sigma B \subset \Omega} ||u||_{s, \sigma B, w_2^{\alpha}}
$$

$$
\leq C_8 ||u||_{s, \Omega, w_2^{\alpha}},
$$

which completes the proof of Theorem [4.4.](#page-12-0) \Box

5. Applications

In this section, we present the estimates for some other composite operators with the Orlicz–Lipschitz norm and the Orlicz-BMO norm as applications. First, we consider the composition of homotopy operator T and Green's operator G . We will need the following lemma from [\[19\]](#page-15-10).

Lemma 5.1 ([\[19,](#page-15-10) p. 2088]). Let u be a smooth differential form defined in Ω and $1 < s < \infty$, and let G be the Green's operator. Then there exists a positive constant $C = C(s)$, independent of u, such that

$$
||dd^*G(u)||_{s,B} + ||d^*dG(u)||_{s,B} + ||dG(u)||_{s,B} + ||d^*G(u)||_{s,B} + ||G(u)||_{s,B}
$$

$$
\leq C(s)||u||_{s,B}
$$

for all balls $B \subset \Omega$.

Based on Lemma [5.1](#page-13-2) and the similar method in Lemma [3.1,](#page-5-3) we can derive the following Poincaré-type inequality for the composite operator $T \circ G$.

Lemma 5.2. Let $u \in L^s(\Omega, \Lambda^l)$, $l = 1, 2, \ldots, n$, $1 < s < \infty$, let T be the homotopy operator, and let G be the Green's operator. Then there exists a constant C , independent of u, such that

$$
||T(G) - (T(G))_{B}||_{s,B} \le C|B|^2 \operatorname{diam}(B)||u||_{s,B}
$$

for any balls $B \subset \Omega$.

Now, using Lemma [5.2](#page-13-3) and the analogous technique developed in Theorems [3.2,](#page-5-0) [3.3,](#page-8-0) and [4.4,](#page-12-0) we can obtain the following results for the composite operator $T \circ G$.

Theorem 5.3. Let φ be a Young function in the $G(p,q,c)$ -class, $1 \leq p < q <$ $\infty, c \geq 1$, and let u be a differential form such that $u \in \text{WRH}(\Lambda^l, \Omega)$ -class, $l = 1, 2, \ldots, n$, and $\varphi(|u|) \in L^1_{loc}(\Omega)$. Assume that T is the homotopy operator and that G is the Green's operator. Then there exists a constant C , independent of u, such that

$$
||T(G(u))||_{\varphi \text{loc Lip}_k, \Omega} \leq C||u||_{\varphi, \Omega},
$$

where $0 < k < 1$ is a constant and Ω is a bounded domain.

Theorem 5.4. Let φ be a Young function in the $G(p, q, c)$ -class, $1 < p < q < \infty$, $c \geq 1, q(n-p) < np$, and let $u \in L^p(\Omega, \Lambda^l), l = 1, 2, \ldots, n$, be a differential form such that $\varphi(|u|) \in L^1_{loc}(\Omega)$. Assume that T is the homotopy operator and that G is the Green's operator. Then there exists a constant C, independent of u, such that

$$
||T(G(u))||_{\varphi*,\Omega} \leq C||u||_{\varphi,\Omega},
$$

where Ω is a bounded domain.

Theorem 5.5. Let φ be a Young function such that $\varphi(x) \leq x^t$, and let $u \in$ $L^s(\Omega,\Lambda^l) \cap \text{WRH}(\Lambda^l,\Omega)$ -class, $t < s < \infty$. Assume that T is the homotopy operator, that G is the Green's operator, that $(w_1(x), w_2(x)) \in A_r^1(\Omega)$ for some $r > 1$ with $w_1(x) \geq \varepsilon > 0$ for any $x \in \Omega$, and that the Radon measures μ and ν are defined by $d\mu = w_1^{\alpha} dx$, $d\nu = w_2^{\alpha} dx$. Then there exist constants C_1 and C_2 , independent of u and du, such that

$$
||T(G)||_{\varphi*,\Omega,w_1^{\alpha}} \leq C_1 ||T(G)||_{\varphi \text{loc Lip}_k,\Omega,w_1^{\alpha}} \leq C_2 ||u||_{s,\Omega,w_2^{\alpha}},
$$

where $0 < k < 1, 0 < \alpha < 1,$ and $s > \alpha(r - 1) + 1$.

Remark 5.6. Note that the main results in Theorems [3.2,](#page-5-0) [3.3,](#page-8-0) and [4.4](#page-12-0) still hold when T_{Φ} is replaced by the Riesz potential operator I_{α} , Bessel potential $J_{\beta,\lambda}$, and Calderón–Zygmund singular integral operator on differential forms for the reason that the kernels Φ of these operators also satisfy the conditions in Lemma [2.8.](#page-4-2) It should be pointed out that the method developed in the present article could also be used to study the Orlicz–Lipschitz and Orlicz-BMO norm estimates for the composition of homotopy operator T and projection operator H (see [\[19\]](#page-15-10)). We leave these proofs to the reader.

Acknowledgment. The authors would like to thank the anonymous referees for valuable comments and thoughtful suggestions.

References

1. R. P. Agarwal, S. Ding, and C. A. Nolder, Inequalities for Differential Forms, Springer, New York, 2009. [Zbl 1184.53001.](http://www.emis.de/cgi-bin/MATH-item?1184.53001) [MR2552910.](http://www.ams.org/mathscinet-getitem?mr=2552910) [DOI 10.1007/978-0-387-68417-8.](https://doi.org/10.1007/978-0-387-68417-8) [291](#page-0-1)

- 2. H. Bi and S. Ding, Orlicz norm inequalities for the composite operator and applications, J. Inequal. Appl. 2011, no. 69. [Zbl 1275.26023.](http://www.emis.de/cgi-bin/MATH-item?1275.26023) [MR2837923.](http://www.ams.org/mathscinet-getitem?mr=2837923) [DOI 10.1186/](https://doi.org/10.1186/1029-242X-2011-69) [1029-242X-2011-69.](https://doi.org/10.1186/1029-242X-2011-69) [291](#page-0-1)
- 3. H. Bi and S. Ding, Some strong (p, q) -type inequalities for the homotopy operator, Comput. Math. Appl. 62 (2011), no. 4, 1780–1789. [Zbl 1231.26014.](http://www.emis.de/cgi-bin/MATH-item?1231.26014) [MR2834164.](http://www.ams.org/mathscinet-getitem?mr=2834164) [DOI 10.1016/](https://doi.org/10.1016/j.camwa.2011.06.020) [j.camwa.2011.06.020.](https://doi.org/10.1016/j.camwa.2011.06.020) [291](#page-0-1)
- 4. S. Ding, Estimates of weighted integrals for differential forms, J. Math. Anal. Appl. 256 (2001), no. 1, 312–323. [Zbl 0980.35039.](http://www.emis.de/cgi-bin/MATH-item?0980.35039) [MR1820083.](http://www.ams.org/mathscinet-getitem?mr=1820083) [DOI 10.1006/jmaa.2000.7329.](https://doi.org/10.1006/jmaa.2000.7329) [292,](#page-1-1) [294](#page-3-0)
- 5. S. Ding, $L^{\varphi}(\mu)$ -averaging domains and the quasi-hyperbolic metric, Comput. Math. Appl. 47 (2004), no. 10–11, 1611–1618. [Zbl 1063.30022.](http://www.emis.de/cgi-bin/MATH-item?1063.30022) [MR2079867.](http://www.ams.org/mathscinet-getitem?mr=2079867) [DOI 10.1016/](https://doi.org/10.1016/j.camwa.2004.06.016) [j.camwa.2004.06.016.](https://doi.org/10.1016/j.camwa.2004.06.016) [294,](#page-3-0) [295](#page-4-6)
- 6. S. Ding, Lipschitz and BMO norm inequalities for operators, Nonlinear Anal. 71 (2009), no. 12, e2350–e2357. [Zbl 1239.42021.](http://www.emis.de/cgi-bin/MATH-item?1239.42021) [MR2672008.](http://www.ams.org/mathscinet-getitem?mr=2672008) [DOI 10.1016/j.na.2009.05.032.](https://doi.org/10.1016/j.na.2009.05.032) [291](#page-0-1)
- 7. S. Ding, $L(\varphi,\mu)$ -averaging domains and Poincaré inequalities with Orlicz norms, Nonlinear Anal. 73 (2010), no. 1, 256–265. [Zbl 1202.46033.](http://www.emis.de/cgi-bin/MATH-item?1202.46033) [MR2645849.](http://www.ams.org/mathscinet-getitem?mr=2645849) [DOI 10.1016/](https://doi.org/10.1016/j.na.2010.03.018) [j.na.2010.03.018.](https://doi.org/10.1016/j.na.2010.03.018) [291](#page-0-1)
- 8. S. Ding and B. Liu, A singular integral of the composite operator, Appl. Math. Lett. 22 (2009), no. 8, 1271–1275. [Zbl 1173.58300.](http://www.emis.de/cgi-bin/MATH-item?1173.58300) [MR2532553.](http://www.ams.org/mathscinet-getitem?mr=2532553) [DOI 10.1016/j.aml.2009.01.041.](https://doi.org/10.1016/j.aml.2009.01.041) [291](#page-0-1)
- 9. S. Ding and B. Liu, Norm inequalities for composition of the Dirac and Green's operators, J. Inequal. Appl. 2013, no. 436. [Zbl 1404.47002.](http://www.emis.de/cgi-bin/MATH-item?1404.47002) [MR3117293.](http://www.ams.org/mathscinet-getitem?mr=3117293) [DOI 10.1186/](https://doi.org/10.1186/1029-242X-2013-436) [1029-242X-2013-436.](https://doi.org/10.1186/1029-242X-2013-436) [292](#page-1-1)
- 10. S. Ding and J. Zhu, Poincaré-type inequalities for the homotopy operator with $L^{\varphi}(\Omega)$ -norms, Nonlinear Anal. 74 (2011), no. 11, 3728–3735. [Zbl 1234.35009.](http://www.emis.de/cgi-bin/MATH-item?1234.35009) [MR2803098.](http://www.ams.org/mathscinet-getitem?mr=2803098) [DOI 10.1016/](https://doi.org/10.1016/j.na.2011.03.018) [j.na.2011.03.018.](https://doi.org/10.1016/j.na.2011.03.018) [291](#page-0-1)
- 11. T. Iwaniec and A. Lutoborski, Integral estimates for null Lagrangians, Arch. Ration. Mech. Anal. 125 (1993), no. 1, 25–79. [Zbl 0793.58002.](http://www.emis.de/cgi-bin/MATH-item?0793.58002) [MR1241286.](http://www.ams.org/mathscinet-getitem?mr=1241286) [DOI 10.1007/BF00411477.](https://doi.org/10.1007/BF00411477) [291,](#page-0-1) [293,](#page-2-0) [295](#page-4-6)
- 12. C. Johnson and S. Ding, Integral estimates for the potential operator on differential forms, Int. J. Anal. 2013, no. 108623. [Zbl 1285.47056.](http://www.emis.de/cgi-bin/MATH-item?1285.47056) [MR3079893.](http://www.ams.org/mathscinet-getitem?mr=3079893) [DOI 10.1155/2013/108623.](https://doi.org/10.1155/2013/108623) [292,](#page-1-1) [294](#page-3-0)
- 13. X. Li, J. Niu, and Y. Xing, *Estimates for L^o-Lipschitz and L^o-BMO norms of differential* forms, preprint, [arXiv:1809.02542v1](http://arxiv.org/abs/arXiv:1809.02542v1) [math.FA]. [291,](#page-0-1) [292,](#page-1-1) [294](#page-3-0)
- 14. B. Liu, $A_r(\lambda)$ -weighted Caccioppoli-type and Poincaré-type inequalities for A-harmonic tensors, Int. J. Math. Math. Sci. 31 (2002), no. 2, 115–122. [Zbl 1014.30014.](http://www.emis.de/cgi-bin/MATH-item?1014.30014) [MR1916460.](http://www.ams.org/mathscinet-getitem?mr=1916460) [DOI](https://doi.org/10.1155/S0161171202107046) [10.1155/S0161171202107046.](https://doi.org/10.1155/S0161171202107046) [294](#page-3-0)
- 15. B. Liu, $A_r^{\lambda}(\Omega)$ -weighted imbedding inequalities for A-harmonic tensors, J. Math. Anal. Appl. 273 (2002), no. 2, 667–676. [Zbl 1035.46024.](http://www.emis.de/cgi-bin/MATH-item?1035.46024) [MR1932514.](http://www.ams.org/mathscinet-getitem?mr=1932514) [DOI 10.1016/](https://doi.org/10.1016/S0022-247X(02)00331-1) [S0022-247X\(02\)00331-1.](https://doi.org/10.1016/S0022-247X(02)00331-1) [294](#page-3-0)
- 16. C. A. Nolder, Hardy–Littlewood theorems for A-harmonic tensors, Illinois J. Math. 43 (1999), no. 4, 613–632. [Zbl 0957.35046.](http://www.emis.de/cgi-bin/MATH-item?0957.35046) [MR1712513.](http://www.ams.org/mathscinet-getitem?mr=1712513) [293](#page-2-0)
- 17. C. Pérez, Two weighted inequalities for potential and fractional type maximal operators, Indiana Univ. Math. J. 43 (1994), no. 2, 663–683. [Zbl 0809.42007.](http://www.emis.de/cgi-bin/MATH-item?0809.42007) [MR1291534.](http://www.ams.org/mathscinet-getitem?mr=1291534) [DOI](https://doi.org/10.1512/iumj.1994.43.43028) [10.1512/iumj.1994.43.43028.](https://doi.org/10.1512/iumj.1994.43.43028) [292,](#page-1-1) [293,](#page-2-0) [294](#page-3-0)
- 18. S. G. Samko, Potential operators in generalized Hölder spaces on sets in quasi-metric measure spaces without the cancellation property, Potential Anal. 78 (2013), 130–140. [Zbl 1269.46017.](http://www.emis.de/cgi-bin/MATH-item?1269.46017) [MR2992991.](http://www.ams.org/mathscinet-getitem?mr=2992991) [DOI 10.1016/j.na.2012.09.020.](https://doi.org/10.1016/j.na.2012.09.020) [292](#page-1-1)
- 19. C. Scott, L^p -theory of differential forms on manifolds, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2075–2096. [Zbl 0849.58002.](http://www.emis.de/cgi-bin/MATH-item?0849.58002) [MR1297538.](http://www.ams.org/mathscinet-getitem?mr=1297538) [DOI 10.2307/2154923.](https://doi.org/10.2307/2154923) [292,](#page-1-1) [304,](#page-13-4) [305](#page-14-1)
- 20. Y. Wang and Y. Xing, Inequalities for two type potential operators on differential forms, J. Math. Anal. Appl. 417 (2014), no. 2, 774–786. [Zbl 1311.47063.](http://www.emis.de/cgi-bin/MATH-item?1311.47063) [MR3194513.](http://www.ams.org/mathscinet-getitem?mr=3194513) [DOI](https://doi.org/10.1016/j.jmaa.2014.03.048) [10.1016/j.jmaa.2014.03.048.](https://doi.org/10.1016/j.jmaa.2014.03.048) [291,](#page-0-1) [293,](#page-2-0) [295](#page-4-6)

¹Department of Mathematics, Harbin Institute of Technology, 150001, Harbin, People's Republic of China.

E-mail address: niujinling@hit.edu.cn; xyuming@hit.edu.cn

²Department of Mathematics, Northeast Forestry University, 150040, Harbin, People's Republic of China.

E-mail address: li406469482@163.com