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Abstract. In this article we introduce a method of constructing functions
with claimed properties by using the Tychonoff theorem. As an application of
this method we show that the Carathéodory distance cD of convex domains D
in a complex, locally convex, Hausdorff, and infinite-dimensional topological
vector space is approximated by the Carathéodory distances cD∩Y in finite-
dimensional linear subspaces Y . Originally this result is due to Dineen, Timo-
ney, and Vigué who apply ultrafilters in their proof.

Introduction

In this article we introduce a method which allows us to avoid using ultrafil-
ters and ultranets in some proofs. We demonstrate this method in the proof of
the Dineen–Timoney–Vigué result, which states that the Carathéodory distance
cD of convex domains D in a complex, locally convex, Hausdorff, and infinite-
dimensional topological vector space is approximated by the Carathéodory dis-
tances cD∩Y in finite-dimensional linear subspaces Y . This general result and the
Lempert theorem are the basic tools in the proof of the fact that the Carathéodory
pseudodistance, the Kobayashi pseudodistance, and the Lempert function are
equal on each convex domain in every complex, locally convex, and Hausdorff
topological vector space. It seems that ultrafilters (or ultranets) are too sophisti-
cated a notion to be used in the proof of the above-mentioned result. In our proof
of Theorem 2.1 we simply apply the Tychonoff theorem and nets, which is a more
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accessible approach since there exist proofs of the Tychonoff theorem which do
not use ultrafilters and ultranets. It is worth noting here that our method can be
applied to Banach space theory, for example, to a new proof of the Hahn–Banach
theorem, to a new definition of ultraproducts of Banach spaces, to constructions
of new norms with claimed properties, and so on. We describe these applications
in a forthcoming work.

1. Basic notions and facts

In this article we use the standard definitions of net and subnet and their prop-
erties connected with compactness, which can be found in [8]. As we mentioned
in the Introduction, one of the basic tools used in this article is the Tychonoff
theorem. The statement of this theorem can be found in [14], where Tychonoff
mentions that the proof is the same as the one he gave for a product of bounded
and closed intervals in [13].

Theorem 1.1 ([14, p. 772]). Let {(Xj, Tj)}j∈J be a family of compact topological
spaces. Then the product

∏
j∈J Xj with the product topology is compact.

We use the standard definition of a locally bounded set of functions. Now we
recall the following facts (see [2], [3]) which will be used in this article. If (X, TX)
is a complex, locally convex, and Hausdorff topological vector space, and if D1

and D2 are domains in (X, TX) and C, respectively, then we denote the set of all
Gâteaux differentiable functions fromD1 toD2 byHG(D1, D2). Next f : D1 → D2

is said to be holomorphic if f ∈ HG(D1, D2) and f is continuous. We denote the
set of all holomorphic functions from D1 to D2 by H(D1, D2).

The following elementary fact is very useful. If (X, TX) is a complex, locally
convex, and Hausdorff topological vector space, and if D1 and D2 are domains in
(X, TX) and C, respectively, then f ∈ HG(D1, D2) is holomorphic if and only if
it is locally bounded. This result combined with the Montel theorem shows that
we may use the finite-dimensional criteria to prove that a function f : D → ∆
is holomorphic, where ∆ is the unit open disk in C. Therefore, we recall the
definition of the compact open topology on H(D,C) and the Montel theorem.
Assume that (X, TX) is a complex, locally convex, and Hausdorff topological
vector space, and that D is a domain in (X, TX). The compact open topology on
H(D,C) (or the topology of uniform convergence on the compact subsets of D) is
the locally convex topology generated by the seminorms pK(f) := maxx∈K |f(x)|,
whereK ranges over all compact subsets ofD. We denote this topology by τ0. The
Montel theorem states that if D is a domain in Cn and a family F ⊂ H(D,C)
is locally bounded, then the compact open topology τ0 and the topology τp of
pointwise convergence coincide on F and F is a relatively compact subset of
H(D,C). We will also apply the well-known maximum principle for a holomorphic
function f : D → C, where D ⊂ Cn is a domain.

The definition of the Poincaré metric ρ in ∆ and the definitions of the Carathéo-
dory pseudodistance cD, the Kobayashi pseudodistance kD, and the Lempert func-
tion δD on a domain D in a complex, locally convex, and Hausdorff topological
vector space (X, TX) can be found in [1], [5], [9], and [12]. In particular, we have
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ρ(0, z) = tanh−1 |z| for z ∈ ∆. Directly from these definitions we get that if
(X1, TX1) and (X2, TX2) are complex, locally convex, and Hausdorff topological
vector spaces, and if D1 and D2 are domains in (X1, TX1) and (X2, TX2), respec-
tively, then each holomorphic f : D1 → D2 is nonexpansive with respect to the
Carathéodory and Kobayashi pseudodistances and the Lempert function. Addi-
tionally, for a domain D in a complex, locally convex, and Hausdorff topological
vector space (X, TX) we also have

cD ≤ kD ≤ δD.

Remark 1.2. In [6], Harris introduced the so-called Schwarz–Pick systems of pseu-
dometrics in domains in Banach spaces which include the Carathéodory and
Kobayashi pseudodistances as the smallest and the largest pseudometrics, respec-
tively.

Remark 1.3. Observe that directly from the definitions of the Carathéodory pseu-
dodistance, the Montel theorem, and the maximum principle we get that for a
convex domain D ⊂ Cn, w̃, z̃ ∈ D, and w̃ 6= z̃, there exists a holomorphic
f : D → ∆ such that f(w̃) = 0, f(z̃) = σ > 0, and

cD(w̃, z̃) = ρ(0, σ) = tanh−1 σ.

In the case of Cn, Lempert proved the following fundamental theorem.

Theorem 1.4 ([10, p. 259]). Let D ⊂ Cn be a convex domain. Then

cD = kD = δD.

2. Modifications of the Dineen–Timoney–Vigué proof

In [4], Dineen, Timoney, and Vigué generalized Theorem 1.4. They showed that
the Carathéodory pseudodistance, the Kobayashi pseudodistance, and the Lem-
pert function coincide on each convex domain in every complex, locally convex,
and Hausdorff topological vector space. The crucial role in their proof is played by
Theorem 2.1 given below. In the original proof of Theorem 2.1, Dineen, Timoney,
and Vigué used the ultrafilter technique to build a suitable holomorphic function.
In our proof we present a different construction of such a function.

Theorem 2.1 ([4, Théorème 2.1]). Let (X, T ) be a complex, locally convex, and
Hausdorff topological vector space, and let D be a convex domain in (X, T ). We
denote by Y the family of all finite-dimensional linear subspaces Y of X, and for
x, y ∈ D we denote by Yx,y the family of all Y ∈ Y containing both x and y. Then
for w̃, z̃ ∈ D there exists a holomorphic function f : D → ∆ such that

ρ
(
f(w̃), f(z̃)

)
= inf

Y ∈Yw̃,z̃

cD∩Y (w̃, z̃) = cD(w̃, z̃).

Proof. Choose w̃, z̃ ∈ D, and assume that w̃ 6= z̃. Setting Y1 ≤ Y2, if Y1, Y2 ∈ Yw̃,z̃

and Y1 ⊂ Y2, then we get a directed set (Yw̃,z̃,≤). Clearly, the set Yw̃,z̃ can be
treated as a net {ψ(Y )}Y ∈Yw̃,z̃

, where ψ(Y ) = Y for Y ∈ Yw̃,z̃.
Now we can construct a holomorphic function f : D → ∆ such that f(w̃) = 0,

f(z̃) = σ > 0, and

cD(w̃, z̃) = ρ
(
f(w̃), f(z̃)

)
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in the following way. Let Y ∈ Yw̃,z̃. First, observe that for each x ∈ D ∩ Y we
have

D ∩ Yw̃,x ⊂ D ∩ Y ⊂ D,

where Yw̃,x = span{w̃, x} ⊂ Y . This implies that

cD(w̃, x) ≤ cD∩Y (w̃, x) ≤ cD∩Yw̃,x
(w̃, x) <∞.

Next, by Remark 1.3 there exists a holomorphic function fD∩Y : D∩Y → ∆ such
that fD∩Y (w̃) = 0, fD∩Y (z̃) = σY > 0, and

cD∩Y (w̃, z̃) = ρ
(
fD∩Y (w̃), fD∩Y (z̃)

)
= ρ

(
0, fD∩Y (z̃)

)
.

Hence the function fY : D → ∆ given by

fY (x) =

{
fD∩Y (x) if x ∈ D ∩ Y ,
0 otherwise

is an element of ∏
x∈D

B
(
0, tanh

(
cD∩Yw̃,x

(w̃, x)
))

with the product topology, where

B
(
0, tanh

(
cD∩Yw̃,x

(w̃, x)
))

=
{
z ∈ ∆ : |z| ≤ tanh

(
cD∩Yw̃,x

(w̃, x)
)}

and

tanh
(
cD∩Yw̃,x

(w̃, x)
)
< 1

for each x ∈ D. By the Tychonoff theorem
∏

x∈D B(0, tanh(cD∩Yw̃,x
(w̃, x))) with

the product topology is compact. In this way we obtain a net {fY }Y ∈Yw̃,z̃
in the

compact space; therefore, there exists a subnet {fYs}s∈S of {fY }Y ∈Yw̃,z̃
such that

{fYs}s∈S converges to some f in∏
x∈D

B
(
0, tanh

(
cD∩Yw̃,x

(w̃, x)
))
.

It is obvious that f(D) ⊂ ∆, f(w̃) = 0, and f(z̃) ≥ 0. Now observe that for
each finite-dimensional subspace Y ∈ Y the functions fYs |D∩Y : D ∩ Y → ∆ are
holomorphic for all sufficiently large s and therefore, after applying consecutively
the Montel theorem and the boundedness of the limit function f , we obtain that
f is holomorphic. Finally, we get

cD(w̃, z̃) ≥ ρ
(
f(w̃), f(z̃)

)
= lim

s∈S
ρ
(
fYs(w̃), fYs(z̃)

)
= lim

s∈S
ρ
(
0, fYs(z̃)

)
= lim

s∈S
cD∩Ys(w̃, z̃) = inf

Y ∈Yw̃,z̃

cD∩Y (w̃, z̃) ≥ cD(w̃, z̃). �

Remark 2.2. Let D = B be the unit open ball in an infinite-dimensional Banach
space. For some spaces the equality

cB(w̃, z̃) = inf
Y ∈Yw̃,z̃

cB∩Y (w̃, z̃)

can be obtained in a simpler way. As an example, consider a Hilbert space H and
a Hilbert ball BH . Then it suffices to apply Möbius transformations (see [5]).
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The second example is the following. Let (X, ‖ · ‖) be a Banach space having
a Schauder basis {ei}∞i=1 with the basis constant 1; that is, sup1≤k<∞ ‖Pk‖ = 1,

where Pkx =
∑k

i=1 x
iei for x =

∑∞
i=1 x

iei ∈ X and k = 1, 2, . . . (see [11]).
Consider the unit open ball B ⊂ X. Then for each natural 1 ≤ k < ∞ and
each w, z ∈ Xk = Pk(X), we have cB(w, z) = cB∩Xk

(w, z). Now take arbitrary
w̃, z̃ ∈ X. Then there exists 0 < r < 1 such that ‖w̃‖ ≤ r and ‖z̃‖ ≤ r. For
sequences {wk}∞k=1 = {Pkw̃}∞k=1, {zk}∞k=1 = {Pkz̃}∞k=1, we have limk wk = w̃,
limk zk = z̃ in the norm ‖ · ‖ and wk ∈ Xk, ‖wk‖ ≤ r, zk ∈ Xk, ‖zk‖ ≤ r for
k = 1, 2, . . . . Let Xk,w̃,z̃ = span(Xk ∪ {w̃, z̃}) for k = 1, 2, . . . . Let us take k0 such
that ‖w̃−wk‖ < 1−r and ‖z̃−zk‖ < 1−r for each k ≥ k0. Then for each k ≥ k0,
we have (see [5])

cB∩Xk,w̃,z̃
(w̃, wk) ≤ tanh−1

(‖w̃ − wk‖
1− r

)
−→
k

0,

cB(wk, w̃) ≤ tanh−1
(‖wk − w̃‖

1− r

)
−→
k

0,

cB∩Xk,w̃,z̃
(zk, z̃) ≤ tanh−1

(‖zk − z̃‖
1− r

)
−→
k

0,

cB(z̃, zk) ≤ tanh−1
(‖z̃ − zk‖

1− r

)
−→
k

0

and therefore

cB(w̃, z̃) ≤ cB∩Xk,w̃,z̃
(w̃, z̃)

≤ cB∩Xk,w̃,z̃
(w̃, wk) + cB∩Xk,w̃,z̃

(wk, zk) + cB∩Xk,w̃k,z̃
(zk, z̃)

≤ tanh−1
(‖w̃ − wk‖

1− r

)
+ cB∩Xk

(wk, zk) + tanh−1
(‖zk − z̃‖

1− r

)
= tanh−1

(‖w̃ − wk‖
1− r

)
+ cB(wk, zk) + tanh−1

(‖zk − z̃‖
1− r

)
≤ 2 tanh−1

(‖w̃ − wk‖
1− r

)
+ cB(w̃, z̃) + 2 tanh−1

(‖zk − z̃‖
1− r

)
−→
k

cB(w̃, z̃).

So we get the claimed result.

Finally, for the purpose of completeness of this article, we give the Dineen–
Timoney–Vigué theorem with their proof.

Theorem 2.3 ([4, Théorème 2.5]). Let (X, TX) be a complex, locally convex, and
Hausdorff topological vector space, and let D be a convex domain in (X, TX). Then
we have

cD = kD = δD.

Proof ([4]). For each w, z ∈ D and each Y ∈ Yw,z, we have

δD(w, z) ≤ δD∩Y (w, z)

and therefore

δD(w, z) ≤ inf
Y ∈Yw,z

δD∩Y (w, z).
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Now direct applications of Theorem 2.1 and the inequalities

cD ≤ kD ≤ δD

give

cD(w, z) ≤ kD(w, z) ≤ δD(w, z) ≤ inf
F∈Yw,z

δD∩F (w, z)

= inf
F∈Yw,z

cD∩F (w, z) = cD(w, z)

and the proof is complete. �

Remark 2.4. Observe that all pseudometrics assigned to a convex domain D in a
Banach space by the Schwarz–Pick systems coincide (see Remark 1.2). If, in addi-
tion, D is assumed to be bounded, then this unique distance is sometimes called
the hyperbolic metric. (For more information on this metric and its applications,
see, e.g., the books [5] and [12].) We also note that, in the case of bounded sym-
metric domains in Banach spaces, another proof of the coincidence of all metrics
in the Schwarz–Pick systems can be found in [12, Corollary 3.2, Remark 3.3].
This proof is based on the following deep results: the Riemann mapping theorem
due to Kaup (Theorem 4.9 in [7]) and homogeneity of symmetric domains due to
Vigué (Théorème 3.2.6 in [15]).
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4. S. Dineen, R. M. Timoney, and J.-P. Vigué, Pseudodistances invariantes sur les domaines
d’un espace localement convexe, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 12 (1985), no. 4,
515–529. Zbl 0603.46052. MR0848840. 286, 288

5. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Map-
pings, Pure Appl. Math. 83, Marcel Dekker, New York, 1984. Zbl 0537.46001. MR0744194.
285, 287, 288, 289

6. L. A. Harris, “Schwarz–Pick systems of pseudometrics for domains in normed linear spaces”
in Advances in Holomorphy (Rio de Janeiro, 1977), North-Holland Math. Stud. 34, North-
Holland, Amsterdam, 1979, 345–406. Zbl 0409.46053. MR0520667. 286

7. W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach
spaces, Math. Z. 183 (1983), no. 4, 503–529. Zbl 0519.32024. MR0710768. DOI 10.1007/
BF01173928. 289

8. J. L. Kelley, General Topology, Grad. Texts in Math. 27, Springer, New York, 1975.
Zbl 0306.54002. MR0370454. 285

9. S. Kobayashi, Invariant distances on complex manifolds and holomorphic mappings,
J. Math. Soc. Japan 19 (1967), 460–480. Zbl 0158.33201. MR0232411. DOI 10.2969/jmsj/
01940460. 285

https://www.zbmath.org/52.0345.02
http://www.ams.org/mathscinet-getitem?mr=1512355
https://doi.org/10.1007/BF01447861
http://www.emis.de/cgi-bin/MATH-item?0484.46044
http://www.ams.org/mathscinet-getitem?mr=0640093
http://www.emis.de/cgi-bin/MATH-item?1034.46504
http://www.ams.org/mathscinet-getitem?mr=1705327
https://doi.org/10.1007/978-1-4471-0869-6
http://www.emis.de/cgi-bin/MATH-item?0603.46052
http://www.ams.org/mathscinet-getitem?mr=0848840
http://www.emis.de/cgi-bin/MATH-item?0537.46001
http://www.ams.org/mathscinet-getitem?mr=0744194
http://www.emis.de/cgi-bin/MATH-item?0409.46053
http://www.ams.org/mathscinet-getitem?mr=0520667
http://www.emis.de/cgi-bin/MATH-item?0519.32024
http://www.ams.org/mathscinet-getitem?mr=0710768
https://doi.org/10.1007/BF01173928
https://doi.org/10.1007/BF01173928
http://www.emis.de/cgi-bin/MATH-item?0306.54002
http://www.ams.org/mathscinet-getitem?mr=0370454
http://www.emis.de/cgi-bin/MATH-item?0158.33201
http://www.ams.org/mathscinet-getitem?mr=0232411
https://doi.org/10.2969/jmsj/01940460
https://doi.org/10.2969/jmsj/01940460


290 T. KUCZUMOW and S. PRUS

10. L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8
(1982), no. 4, 257–261. Zbl 0509.32015. MR0690838. DOI 10.1007/BF02201775. 286

11. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I, II, reprint of the 1977/1979
ed., Springer, Berlin, 1996. Zbl 0852.46015. MR0415253. 288

12. S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of Domains
in Banach Spaces, Imperial College Press, London, 2005. Zbl 1089.46002. MR2022955. DOI
10.1142/9781860947148. 285, 289
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de Banach complexe: Application aux domaines bornés symétriques, Ann. Sci. Éc. Norm.
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