

Ann. Funct. Anal. 10 (2019), no. 2, 242–251 https://doi.org/10.1215/20088752-2018-0024 ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

## THE STRUCTURE OF 2-LOCAL LIE DERIVATIONS ON VON NEUMANN ALGEBRAS

BING YANG and XIAOCHUN FANG<sup>\*</sup>

Communicated by Q.-W. Wang

ABSTRACT. In this article we characterize the form of each 2-local Lie derivation on a von Neumann algebra without central summands of type  $I_1$ . We deduce that every 2-local Lie derivation  $\delta$  on a finite von Neumann algebra  $\mathcal{M}$  without central summands of type  $I_1$  can be written in the form  $\delta(A) = AE - EA + h(A)$  for all A in  $\mathcal{M}$ , where E is an element in  $\mathcal{M}$  and h is a center-valued homogenous mapping which annihilates each commutator of  $\mathcal{M}$ . In particular, every linear 2-local Lie derivation is a Lie derivation on a finite von Neumann algebra without central summands of type  $I_1$ . We also show that every 2-local Lie derivation on a properly infinite von Neumann algebra is a Lie derivation.

## 1. Introduction and preliminaries

Let  $\mathcal{A}$  be a complex linear algebra, and let  $\mathcal{X}$  be an  $\mathcal{A}$ -bimodule. Recall that a linear map d from  $\mathcal{A}$  into  $\mathcal{X}$  is called a *derivation* if d(AB) = d(A)B + Ad(B) for all A, B in  $\mathcal{A}$ . Obviously, given an element A in  $\mathcal{A}$ , if  $d_A(X) = [A, X] = AX - XA$ for all X in  $\mathcal{A}$ , then  $d_A$  is a derivation. Such a derivation is called *inner*. As is well known, every derivation on a von Neumann algebra is inner. More generally, a linear mapping  $\delta$  of an associative algebra  $\mathcal{A}$  is said to be a *Lie derivation* if  $\delta([A, B]) = [\delta(A), B] + [A, \delta(B)]$  for all A, B in  $\mathcal{A}$ , where [A, B] = AB - BAis the usual Lie product. By [10], it follows that every Lie derivation  $\delta$  of a von Neumann algebra  $\mathcal{M}$  has the form  $\delta(A) = [A, S] + \tau(A)$ , where S is an element in

Copyright 2019 by the Tusi Mathematical Research Group.

Received May 15, 2018; Accepted Aug. 29, 2018.

First published online Mar. 19, 2019.

<sup>&</sup>lt;sup>\*</sup>Corresponding author.

<sup>2010</sup> Mathematics Subject Classification. Primary 47B47; Secondary 47C15.

Keywords. 2-local Lie derivations, Lie derivations, von Neumann algebras.

 $\mathcal{M}$  and  $\tau$  is a center-valued linear mapping which annihilates each commutator of  $\mathcal{M}$ . Obviously, derivations of associative algebras are Lie derivations.

In the study of derivation theory, we cannot overstate the importance of establishing many sufficient conditions to ensure that a mapping on various algebras is a (Lie) derivation. We mention some remarkable results in this area. In the setting of linear mappings, Kadison in [6] first introduced the notion of a local derivation and also proved that every continuous local derivation from a von Neumann algebra into any of its Banach bimodules is a derivation. In [5], Johnson generalized Kadison's conclusion and showed that every local derivation from a  $C^*$ -algebra into any of its Banach bimodules is a derivation. In [3], Essaleh, Peralta, and Ramírez established the definition of a weak-local derivation—extending the notion of a local derivation—and proved that weak-local derivations on  $C^*$ -algebras are derivations. In the setting of nonlinear mappings, Semrl in [14] defined the notion of a 2-local derivation as follows. A (not necessarily linear) mapping  $\Delta$  on a Banach algebra  $\mathcal{A}$  is called a 2-local derivation if for every A, B in  $\mathcal{A}$  there exists a derivation  $d_{A,B} : \mathcal{A} \to \mathcal{A}$ , depending on A and B, such that  $\Delta(A) = d_{A,B}(A)$ and  $\Delta(B) = d_{A,B}(B)$ . He also showed that every 2-local derivation on B(H) of all linear bounded operators on H is a derivation, where H is an infinite separable Hilbert space. Ayupov and Kudaybergenov showed in [1] that every 2-local derivation on an arbitrary von Neumann algebra is a derivation. (Whether or not a 2-local derivation is a derivation on a general  $C^*$ -algebra remains an open question.) In order to solve the problem, and motivated by the definitions of local derivations, weak-local derivations, and 2-local derivations, Niazi and Peralta in [11] introduced the definition of a weak-2-local derivation and proved that every weak-2-local \*-derivation on  $M_n(\mathbb{C})$  is a \*-derivation. Recently, Cabello and Peralta [2] characterized that every weak-2-local derivation on B(H), K(H) of all compact operators on H, where H is any complex Hilbert space, atomic von Neumann algebras, and compact  $C^*$ -algebras, is a derivation. In [16], Yang and Fang showed that weak-2-local derivations on finite von Neumann algebras are derivations.

Similarly, the notions of local and 2-local Lie derivations can be defined. Some contributions to local Lie derivations can be found in [7]. A (not necessarily linear) mapping  $\delta$  on a Banach algebra  $\mathcal{A}$  is called a 2-local Lie derivation if for every A, B in  $\mathcal{A}$  there exists a Lie derivation  $\delta_{A,B}$  on  $\mathcal{A}$ , depending on A and B, such that  $\delta(A) = \delta_{A,B}(A)$  and  $\delta(B) = \delta_{A,B}(B)$ . We note some new contributions to 2-local Lie derivations. Liu in [8] characterized 2-local Lie derivations on a semifinite factor von Neumann algebra and showed that every 2-local Lie derivation on a semifinite factor von Neumann algebra with dimension greater than 4 can be written in the form of an inner derivation by adding a center-valued homogenous mapping which annihilates each commutator. In their recent article [4], He, Li, An, and Huang showed that 2-local Lie derivations are Lie derivations on factor von Neumann algebras, uniformly hyperfinite algebras, and the Jiang–Su algebra, and they constructed an example of a (nonlinear) 2-local Lie derivation, but not a Lie derivation on a finite von Neumann algebra which is not a factor. It seems natural to consider the form of a 2-local Lie derivation on a general von Neumann

algebra which is not a factor and whether all linear 2-local Lie derivations on finite von Neumann algebras are Lie derivations.

In this article, we expect to obtain a complete characterization for proving problems in several cases. By [15], we know that every element in a properly infinite von Neumann algebra  $\mathcal{M}$  has the form  $\sum_{i=1}^{n} [A_i, B_i]$  for  $A_i, B_i \in \mathcal{M}$ ; then every 2-local Lie derivation on a properly infinite von Neumann algebra is a 2-local derivation. Therefore, every 2-local Lie derivation on a properly infinite von Neumann algebra is a derivation by [1]. Obviously, each derivation on a properly infinite von Neumann algebra is a Lie derivation. So we only consider each 2-local Lie derivation on a finite von Neumann algebra. In Theorem 2.1 we obtain that every 2-local Lie derivation  $\delta$  on a finite von Neumann algebra  $\mathcal{M}$  without central summands of type  $I_1$  can be written in the form  $\delta(A) =$ AE - EA + h(A) for all A in  $\mathcal{M}$ , where E is an element in  $\mathcal{M}$  and h is a center-valued homogenous mapping which annihilates each commutator of  $\mathcal{M}$ . In particular, every linear 2-local Lie derivation is a Lie derivation on a finite von Neumann algebra without central summands of type  $I_1$ .

## 2. Main results

Let  $\mathcal{M}$  be a von Neumann algebra. Recall that the set  $Z(\mathcal{M}) = \{T \in \mathcal{M} : ST = TS \text{ for all } S \in \mathcal{M}\}$  is said to be the *center* of  $\mathcal{M}$ . For every  $A \in \mathcal{M}$ , the central carrier of A, denoted by c(A), can be defined as the intersection of all central projections  $Q \in \mathcal{M}$  such that QA = A. For each self-adjoint element  $A \in \mathcal{M}$ , the core of A is defined to be  $\sup\{T \in Z(\mathcal{M}) : T = T^*, T \leq A\}$ , denoted by  $\underline{A}$ . Furthermore, if P a projection and  $\underline{P} = 0$ , then P is said to be *core-free*. Obviously,  $\underline{P} = 0$  if and only if c(I - P) = I. It is well known that every finite von Neumann algebra has a separating family of normal tracial states. (We refer the reader to [12] for basic theories of von Neumann algebras involved in this article.)

The following is our main result.

**Theorem 2.1.** Let  $\mathcal{M}$  be a finite von Neumann algebra without central summands of type  $I_1$ . Then every 2-local Lie derivation  $\delta : \mathcal{M} \to \mathcal{M}$  can be written in the form  $\delta(A) = AE - EA + h(A)$  for all A in  $\mathcal{M}$ , where E is an element in  $\mathcal{M}$  and  $h : \mathcal{M} \to \mathcal{Z}(\mathcal{M})$  is a homogenous mapping which annihilates each commutator of  $\mathcal{M}$ .

To prove Theorem 2.1, we need some lemmas.

**Lemma 2.2** ([9, Lemmas 4, 5, 14]). Let  $\mathcal{M}$  be a von Neumann algebra.

- (1) If  $\mathcal{M}$  has no central summands of type  $I_1$ , then each nonzero central projection of  $\mathcal{M}$  is the central carrier of a core-free projection of  $\mathcal{M}$ .
- (2) For projections  $P, Q \in \mathcal{M}$  with  $c(P) = c(Q) \neq 0$ , if  $A \in \mathcal{M}$  commutes with PXQ and QXP for all  $X \in \mathcal{M}$ , then A commutes with PXP and QXQ for all  $X \in \mathcal{M}$ .
- (3) If P is a core-free projection in  $\mathcal{M}$ , then  $P\mathcal{M}P \cap \mathcal{Z}(\mathcal{M}) = 0$ .

**Lemma 2.3** ([12, Lemma 2.6.4]). Let  $\mathcal{M}$  be a von Neumann algebra. If A is a self-adjoint operator in  $\mathcal{M}$  and Z is a self-adjoint operator in  $\mathcal{Z}(\mathcal{M})$ , then c(A+Z) = c(A) + Z. Moreover, if  $Z \ge 0$ , then c(AZ) = c(A)Z.

**Lemma 2.4** ([13, Lemma 2.1]). Let  $\mathcal{M}$  be a von Neumann algebra without central summands of type  $I_1$  or type  $I_2$ . Suppose that  $L : \mathcal{M} \to \mathcal{M}$  is an additive map. Then L satisfies L([A, B]) = [L(A), B] + [A, L(B)] whenever [A, B] = 0 if and only if there exits an element  $Z_0 \in \mathcal{Z}(\mathcal{M})$ , an additive derivation  $D : \mathcal{M} \to \mathcal{M}$ , and an addictive map  $h : \mathcal{M} \to \mathcal{Z}(\mathcal{M})$  such that  $L(A) = D(A) + h(A) + Z_0A$  for all  $A \in \mathcal{M}$ .

**Lemma 2.5.** Let  $\mathcal{M}$  be a finite von Neumann algebra. If  $\delta : \mathcal{M} \to \mathcal{M}$  is a 2-local Lie derivation, then  $\delta(\lambda A) = \lambda \delta(A)$  and  $\delta(A + B) - \delta(A) - \delta(B) \in \mathcal{Z}(\mathcal{M})$  for each  $A, B \in \mathcal{M}$  and  $\lambda \in \mathbb{C}$ .

*Proof.* For each  $A \in \mathcal{M}$  and  $\lambda \in \mathbb{C}$ , by definition we easily have  $\delta(\lambda A) = \delta_{A,\lambda A}(\lambda A) = \lambda \delta_{A,\lambda A}(A) = \lambda \delta(A)$ .

Let P be a projection in  $\mathcal{M}$ , and denote  $P^{\perp} = I - P$ . Let  $\Gamma$  be the set of a separating family of normal tracial states on  $\mathcal{M}$ . Given  $A, X \in \mathcal{M}$  and  $\tau \in \Gamma$ , there exist an element  $T_{A,PXP^{\perp}}$ , depending on A and  $PXP^{\perp}$ , and a linear mapping  $h_{A,PXP^{\perp}}$  from  $\mathcal{M}$  into  $\mathcal{Z}(\mathcal{M})$  annihilating each commutator such that

$$\delta(A) = [A, T_{A, PXP^{\perp}}] + h_{A, PXP^{\perp}}(A)$$

and

$$\delta(PXP^{\perp}) = [PXP^{\perp}, T_{A, PXP^{\perp}}]$$

Noting that

$$\begin{aligned} \left( \delta(A) - h_{A,PXP^{\perp}}(A) \right) PXP^{\perp} + A\delta(PXP^{\perp}) \\ &= [A, T_{A,PXP^{\perp}}] PXP^{\perp} + A[PXP^{\perp}, T_{A,PXP^{\perp}}] \\ &= [APXP^{\perp}, T_{A,PXP^{\perp}}], \end{aligned}$$

we obtain

$$\tau((\delta(A) - h_{A,PXP^{\perp}}(A))PXP^{\perp}) + \tau(A\delta(PXP^{\perp})) = 0;$$

that is,

$$\tau(\delta(A)PXP^{\perp}) = -\tau(A\delta(PXP^{\perp})).$$

For arbitrary  $A, B \in \mathcal{M}$ , we then have

$$\tau(\delta(A+B)PXP^{\perp}) = -\tau((A+B)\delta(PXP^{\perp}))$$
  
=  $-\tau(A\delta(PXP^{\perp})) - \tau(B\delta(PXP^{\perp}))$   
=  $\tau(\delta(A)PXP^{\perp}) + \tau(\delta(B)PXP^{\perp})$   
=  $\tau((\delta(A) + \delta(B))PXP^{\perp}).$ 

Hence

$$\tau((\delta(A+B) - \delta(A) - \delta(B))PXP^{\perp}) = 0$$

Denote  $Y = \delta(A + B) - \delta(A) - \delta(B)$ . Then

$$\tau(YPXP^{\perp}) = 0. \tag{2.1}$$

Let  $X = Y^*$  in (2.1). Then

$$\tau \left( P^{\perp} Y P (P^{\perp} Y P)^* \right) = \tau (Y P Y^* P^{\perp}) = 0.$$

Since the trace  $\tau$  is arbitrary in  $\Gamma$ , it implies that  $P^{\perp}YP = 0$ . Therefore, by the arbitrariness of P, PY = YP for all  $P \in \mathcal{M}$ . Since each self-adjoint operator is the norm limit of finite linear combinations of projections in von Neumann algebras, we obtain that AY = YA for all  $A \in \mathcal{M}$ . Therefore,  $\delta(A + B) - \delta(A) - \delta(B) \in \mathcal{Z}(\mathcal{M})$  for all  $A, B \in \mathcal{M}$ .

Proof of Theorem 2.1. By Lemma 2.2, we can find out a nontrivial core-free projection  $P_1$  with  $c(P_1) = I$ . Denote  $P_2 = I - P_1$ . Moreover, by the definition of central core and central carrier, we can obtain that  $P_2$  is also core-free and  $c(P_2) = I$ . Let  $\mathcal{M}_{ij} = P_i \mathcal{M} P_j$ , i, j = 1, 2. Then  $\mathcal{M} = \mathcal{M}_{11} + \mathcal{M}_{12} + \mathcal{M}_{21} + \mathcal{M}_{22}$ and each element  $A \in \mathcal{M}$  can be represented as  $A = A_{11} + A_{12} + A_{21} + A_{22}$ , where  $A_{ij} = P_i A P_j$ , i, j = 1, 2. We will finish the proof of our main theorem by considering a number of steps.

Claim 1. There exists an element  $T_0 \in \mathcal{M}$  such that  $\delta(P_1) - [P_1, T_0] \in \mathcal{Z}(\mathcal{M})$ , and  $\delta(A_{ij}) = P_i \delta(A_{ij}) P_j + [A_{ij}, T_0]$  for all  $A_{ij} \in \mathcal{M}_{ij}$   $(1 \le i \ne j \le 2)$ .

For each  $A_{12} \in \mathcal{M}_{12}$ , note that  $A_{12} = [P_1, A_{12}]$ . We have

$$\delta(A_{12}) = \delta_{P_1, A_{12}} ([P_1, A_{12}])$$
  
=  $[\delta_{P_1, A_{12}} (P_1), A_{12}] + [P_1, \delta_{P_1, A_{12}} (A_{12})]$   
=  $[\delta(P_1), A_{12}] + [P_1, \delta(A_{12})]$   
=  $\delta(P_1)A_{12} - A_{12}\delta(P_1) + P_1\delta(A_{12}) - \delta(A_{12})P_1.$  (2.2)

Furthermore, by multiplying (2.2) on left-hand side by  $P_i$  and on the right-hand side by  $P_j$   $(1 \le i \ne j \le 2)$ , we deduce that

$$P_1\delta(P_1)P_1A_{12} = A_{12}P_2\delta(P_1)P_2 \tag{2.3}$$

and

$$P_2\delta(A_{12})P_1 = 0. (2.4)$$

Similarly, for each  $A_{21} \in \mathcal{M}_{21}$ , we also have

$$\delta(A_{21}) = \delta(A_{21})P_1 - P_1\delta(A_{21}) + A_{21}\delta(P_1) - \delta(P_1)A_{21}.$$
(2.5)

By multiplying (2.5) on the left-hand side by  $P_j$  and on the right-hand side by  $P_i$   $(1 \le i \ne j \le 2)$ , we also deduce that

$$A_{21}P_1\delta(P_1)P_1 = P_2\delta(P_1)P_2A_{21} \tag{2.6}$$

and

$$P_1\delta(A_{21})P_2 = 0.$$

Hence, by (2.3) and (2.6), we obtain that

$$\left[P_1\delta(P_1)P_1 + P_2\delta(P_1)P_2, A_{12}\right] = \left[P_1\delta(P_1)P_1 + P_2\delta(P_1)P_2, A_{21}\right] = 0.$$

From Lemma 2.2(2), it follows that

$$P_1\delta(P_1)P_1 + P_2\delta(P_1)P_2 \in \mathcal{Z}(\mathcal{M}).$$

Now we denote  $T_0 = P_1 \delta(P_1) P_2 - P_2 \delta(P_1) P_1$ . Then

 $\delta(P_1) - [P_1, T_0] = P_1 \delta(P_1) P_1 + P_2 \delta(P_1) P_2 \in \mathcal{Z}(\mathcal{M}).$ 

Since 
$$[A_{12}, T_0] = -A_{12}P_2\delta(P_1)P_1 + P_2\delta(P_1)P_1A_{12}$$
, (2.3) implies that  
 $[A_{12}, T_0] = -A_{12}P_2\delta(P_1)P_1 + P_2\delta(P_1)P_1A_{12} + P_1\delta(P_1)P_1A_{12} - A_{12}P_2\delta(P_1)P_2$   
 $= \delta(P_1)A_{12} - A_{12}\delta(P_1).$ 

Thus, by (2.2) and (2.4), we have proved that  $\delta(A_{12}) = P_1 \delta(A_{12}) P_2 + [A_{12}, T_0]$ . By the same argument as that used above, we can get  $\delta(A_{21}) = P_2 \delta(A_{21}) P_1 + [A_{21}, T_0]$ .

Remark 1. Let  $\delta_{T_0}(A) = [A, T_0]$  for all  $A \in \mathcal{M}$ . Then  $\delta_{T_0}$  is an inner derivation on  $\mathcal{M}$ . Denote  $\phi = \delta - \delta_{T_0}$ . Then it is easy to verify that  $\phi$  is a 2-local Lie derivation.

Claim 2. We have  $\phi(P_1) \in \mathcal{Z}(\mathcal{M})$  and  $\phi(A_{ij}) \in \mathcal{M}_{ij}$   $(1 \leq i \neq j \leq 2)$ .

From Claim 1, we can get  $\phi(P_1) \in \mathcal{Z}(\mathcal{M})$  and  $\phi(A_{ij}) \in \mathcal{M}_{ij}$   $(1 \le i \ne j \le 2)$ .

Claim 3. We have  $\phi(P_2) \in \mathcal{Z}(\mathcal{M})$ .

Note that  $A_{12} = [A_{12}, P_2]$ . Then we have

$$\phi(A_{12}) = \phi_{A_{12},P_2}(A_{12})$$
  
=  $\phi_{A_{12},P_2}([A_{12},P_2])$   
=  $[\phi_{A_{12},P_2}(A_{12}),P_2] + [A_{12},\phi_{A_{12},P_2}(P_2)]$   
=  $[\phi(A_{12}),P_2] + [A_{12},\phi(P_2)].$ 

Hence, by Claim 2, we deduce that  $[A_{12}, \phi(P_2)] = 0$ . By the same argument as that used above, we can get  $[\phi(P_2), A_{21}] = 0$ . Thus, we can get  $\phi(P_2) \in \mathcal{Z}(\mathcal{M})$  by Lemma 2.2(2).

Claim 4. For each  $A \in \mathcal{M}$ , if  $P_iAP_j = 0$   $(1 \le i \ne j \le 2)$ , then  $P_i\phi(A)P_j = 0$  $(1 \le i \ne j \le 2)$ .

For each  $A \in \mathcal{M}$ , by assumption we have  $[P_i, A] = P_i A - AP_i = P_i AP_j - P_j AP_i = 0$ . Furthermore, Claims 2 and 3 imply that

$$0 = \phi_{P_i,A}([P_i, A])$$
  
=  $[\phi_{P_i,A}(P_i), A] + [P_i, \phi_{P_i,A}(A)]$   
=  $[P_i, \phi(A)],$ 

which implies that  $P_i\phi(A) - \phi(A)P_i = 0$ . Hence, by multiplying the last equality on the right-hand side by  $P_i$ , we can get the desired equality.

Claim 5. We have  $\phi(A_{ii}) \in \mathcal{M}_{ii} + \mathcal{Z}(\mathcal{M}), i = 1, 2.$ 

For every  $A_{11} \in \mathcal{M}_{11}$ , denote  $\phi(A_{11}) = \sum_{i,j=1}^{2} B_{ij}$ , where  $B_{ij} = P_i \phi(A_{11}) P_j$  $(1 \le i, j \le 2)$ . Then, by Claim 4,  $B_{12} = B_{21} = 0$ . For each  $S_{22} \in \mathcal{M}_{22}$ , we obtain

$$0 = \phi_{A_{11},S_{22}} ([A_{11}, S_{22}])$$
  
=  $[\phi_{A_{11},S_{22}}(A_{11}), S_{22}] + [A_{11}, \phi_{A_{11},S_{22}}(S_{22})]$   
=  $B_{22}S_{22} - S_{22}B_{22} + A_{11}\phi(S_{22}) - \phi(S_{22})A_{11}.$  (2.7)

Furthermore, multiplying (2.7) from both sides by  $P_2$ , we deduce that

$$B_{22}S_{22} = S_{22}B_{22}$$

that is,

$$B_{22} = P_2 Z_1$$

for some  $Z_1 \in \mathcal{Z}(\mathcal{M})$ . Thus  $\phi(A_{11}) = B_{11} - P_1 Z_1 + Z_1 \in \mathcal{M}_{11} + \mathcal{Z}(\mathcal{M})$ . By the same argument as that used above, we can get  $\phi(A_{22}) \in \mathcal{M}_{22} + \mathcal{Z}(\mathcal{M})$ .

Remark 2. In fact, both  $B_{11}$  and  $Z_1$  in the Claim 6 are unique. Indeed, if  $\phi(A_{11}) = B_{11} + P_2Z_1$  and  $\phi(A_{11}) = \widetilde{B}_{11} + P_2\widetilde{Z}_1$ , then by multiplying the above equalities from both sides by  $P_1$ , we get  $B_{11} = \widetilde{B}_{11}$ , which implies that  $P_2(Z_1 - \widetilde{Z}_1) = 0$ . By Lemma 2.3, we can get  $c(P_2)(Z_1 - \widetilde{Z}_1)(Z_1 - \widetilde{Z}_1)^* = 0$ . Thus  $Z_1 - \widetilde{Z}_1 = 0$  since  $c(P_2) = I$ . Then we can define a mapping  $f_i : \mathcal{M}_{ii} \to \mathcal{Z}(\mathcal{M})$  by  $f_i(A_{ii}) = Z_i$  for all  $A_{ii} \in \mathcal{M}_{ii}$  (i = 1, 2). Obviously,  $f_i$  is homogeneous. Indeed, it suffices to see that the case i = 1 for all  $\alpha \in \mathbb{C}$ . We easily have  $f_1(\alpha A_{11})P_2 = \phi(\alpha A_{11})P_2 =$  $\alpha\phi(A_{11})P_2 = \alpha f_1(A_{11})P_2$ . Therefore, by Lemma 2.3 and  $c(P_2) = I$ , we can get  $f_1(\alpha A_{11}) = \alpha f_1(A_{11})$ , as desired.

Now we define a homogeneous mapping  $\omega$  on  $\mathcal{M}$  such that

$$\omega(A) = \phi(P_1AP_1) + \phi(P_1AP_2) + \phi(P_2AP_1) + \phi(P_2AP_2) - f_1(P_1AP_1) - f_2(P_2AP_2)$$

for all  $A \in \mathcal{M}$ . Then, by Claims 2, 3, and 5, we get

(1)  $\omega(P_i) = 0, i = 1, 2,$ (2)  $\omega(A_{ij}) \in \mathcal{M}_{ij}, i, j = 1, 2,$ (3)  $\omega(A_{ii}) = \phi(A_{ii}) - f_i(A_{ii})$  for each  $A_{ii} \in \mathcal{M}_{ii}, i = 1, 2,$ (4)  $\omega(A_{ij}) = \phi(A_{ij}), 1 \le i \ne j \le 2.$ 

Claim 6. We have  $\omega(A_{ii}+B_{ii}) = \omega(A_{ii}) + \omega(B_{ii})$  for all  $A_{ii}, B_{ii} \in \mathcal{M}_{ii}$  (i = 1, 2).

For all  $A_{ii}, B_{ii} \in \mathcal{M}_{ii}$ , by Lemma 2.5, we have

$$\omega(A_{ii} + B_{ii}) - \omega(A_{ii}) - \omega(B_{ii}) = \phi(A_{ii} + B_{ii}) - \phi(A_{ii}) - \phi(B_{ii})$$
$$- f_i(A_{ii} + B_{ii}) + f_i(A_{ii}) + f_i(B_{ii})$$
$$\in \mathcal{Z}(\mathcal{M}).$$

Since  $\omega(A_{ii} + B_{ii}) - \omega(A_{ii}) - \omega(B_{ii}) \in \mathcal{M}_{ii}$ , it follows that  $\omega(A_{ii} + B_{ii}) - \omega(A_{ii}) - \omega(B_{ii}) \in \mathcal{M}_{ii} \cap \mathcal{Z}(\mathcal{M})$ . Thus, by Lemma 2.2(3), we can get  $\omega(A_{ii} + B_{ii}) - \omega(A_{ii}) - \omega(B_{ii}) = 0$ .

Claim 7. We have  $\omega(A_{ij} + B_{ij}) = \omega(A_{ij}) + \omega(B_{ij})$  for all  $A_{ij}, B_{ij} \in \mathcal{M}_{ij}$   $(1 \le i \ne j \le 2)$ .

For all  $A_{12}, B_{12} \in \mathcal{M}_{12}$ , by Lemma 2.5 and Claims 2 and 3, we have

$$\omega(A_{12} + B_{12}) = \phi(A_{12} + B_{12}) 
= \phi_{A_{12} + B_{12}, P_2} ([A_{12} + B_{12}, P_2]) 
= [\phi_{A_{12} + B_{12}, P_2} (A_{12} + B_{12}), P_2] + [A_{12} + B_{12}, \phi_{A_{12} + B_{12}, P_2} (P_2)]$$

248

$$= \left[ \phi_{A_{12}+B_{12},P_2}(A_{12}) + \phi_{A_{12}+B_{12},P_2}(B_{12}), P_2 \right] + \left[ A_{12} + B_{12}, \phi_{A_{12}+B_{12},P_2}(P_2) \right] = \left[ \phi(A_{12}) + \phi(B_{12}), P_2 \right] + \left[ A_{12} + B_{12}, \phi(P_2) \right] = \left[ \phi(A_{12}) + \phi(B_{12}), P_2 \right] = \phi(A_{12}) + \phi(B_{12}) = \omega(A_{12}) + \omega(B_{12}).$$

Claim 8. We have that  $[\omega(A), B] + [A, \omega(B)] = 0$  whenever [A, B] = 0.

By Lemma 2.5, we have

$$0 = \phi_{A,B}([A, B])$$
  
=  $[\phi_{A,B}(A), B] + [A, \phi_{A,B}(B)]$   
=  $[\phi(A), B] + [A, \phi(B)]$   
=  $[\phi(A_{11}) + \phi(A_{12}) + \phi(A_{21}) + \phi(A_{22}), B]$   
+  $[A, \phi(B_{11}) + \phi(B_{12}) + \phi(B_{21}) + \phi(B_{22})]$   
=  $[\omega(A) + f_1(A_{11}) + f_2(A_{22}), B] + [A, \omega(B) + f_1(B_{11}) + f_2(B_{22})]$   
=  $[\omega(A), B] + [A, \omega(B)].$ 

By Claims 6 and 7, we easily obtain that  $\omega$  is linear. From Lemma 2.4 and Claim 8, it follows that there exists an element  $Z_0 \in \mathcal{Z}(\mathcal{M})$ , a derivation d, and a linear mapping  $h_1 : \mathcal{M} \to \mathcal{Z}(\mathcal{M})$  such that  $\omega(A) = d(A) + h_1(A) + Z_0A$ . And we claim that  $Z_0 = 0$ . Indeed, by the properties of  $\omega$ ,  $0 = \omega(P_1) = d(P_1) + h_1(P_1) + Z_0P_1$ . Multiplying this identity on both sides by  $P_i$  (i = 1, 2), we then obtain  $h_1(P_1)P_1 = -Z_0P_1$  and  $h_1(P_1)P_2 = 0$ , which yields  $Z_0 = 0$  by  $c(P_1) = c(P_2) = I$ and Lemma 2.3. Thus we get

$$\omega(A) = d(A) + h_1(A)$$

for all  $A \in \mathcal{M}$ .

We denote  $\delta_E = d + \delta_{T_0}$  and  $h(A) = h_1(A) + f_1(P_1AP_1) + f_2(P_2AP_2) + \phi(A) - \phi(P_1AP_1) - \phi(P_1AP_2) - \phi(P_2AP_1) - \phi(P_2AP_2)$ . Obviously, by Lemma 2.5, h is a center-valued homogenous mapping. Then the definition of  $\omega$  implies that

$$\begin{split} \delta(A) &= \phi(A) + \delta_{T_0}(A) \\ &= \omega(A) + f_1(P_1AP_1) + f_2(P_2AP_2) + \phi(A) - \phi(P_1AP_1) \\ &- \phi(P_1AP_2) - \phi(P_2AP_1) - \phi(P_2AP_2) + \delta_{T_0}(A) \\ &= d(A) + h_1(A) + f_1(P_1AP_1) + f_2(P_2AP_2) + \phi(A) - \phi(P_1AP_1) \\ &- \phi(P_1AP_2) - \phi(P_2AP_1) - \phi(P_2AP_2) + \delta_{T_0}(A) \\ &= \delta_E(A) + h(A) \end{split}$$

for all  $A \in \mathcal{M}$ .

Since every finite von Neumann algebra has a unique center-valued trace, it follows that each nonzero element in the center of  $\mathcal{Z}(\mathcal{M})$  cannot be the form

 $\sum_{i=1}^{n} [A_i, B_i]$  for  $A_i, B_i \in \mathcal{M}$ . Then for every  $A \in \mathcal{M}$  and commutator  $X \in \mathcal{M}$ , we have

$$h(A + X) - h(A) = \delta(A + X) - \delta_E(A + X) - \delta(A) + \delta_E(A)$$
  
=  $[A + X, S_{A+X,A}] + \tau_{A+X,A}(A + X) - [A + X, E]$   
-  $[A, S_{A+X,A}] - \tau_{A+X,A}(A) + [A, E]$   
=  $[A + X, S_{A+X,A} - E] - [A, S_{A+X,A} - E]$   
=  $[X, S_{A+X,A} - E].$ 

Thus h is a homogenous mapping of  $\mathcal{M}$  into its center which annihilates each commutator of  $\mathcal{M}$ .

**Corollary 2.6.** Every linear 2-local Lie derivation on a finite von Neumann algebra without central summands of type  $I_1$  is a Lie derivation.

Acknowledgments. This work was partially supported by National Natural Science Foundation of China grant 1141101088.

## References

- S. A. Ayupov and K. Kudaybergenov, 2-local derivations on von Neumann algebras, Positivity 19 (2015), no. 3, 445–455. Zbl 1344.46046. MR3386119. DOI 10.1007/ s11117-014-0307-3. 243, 244
- J. C. Cabello and A. M. Peralta, On a generalized Šemrl's theorem for weak 2-local derivations on B(H), Banach J. Math. Anal. 11 (2017), no. 2, 382–397. Zbl 1372.46051. MR3620128. DOI 10.1215/17358787-0000009X. 243
- A. B. A. Essaleh, A. M. Peralta, and M. I. Ramírez, Weak-local derivations and homomorphisms on C<sup>\*</sup>-algebras, Linear Multilinear Algebra 64 (2016), no. 2, 169–186. Zbl 1336.47039. MR3434512. DOI 10.1080/03081087.2015.1028320. 243
- J. He, J. Li, G. An, and W. Huang, Characterization of 2-local derivations and local Lie derivations of certain algebras (in Russian), Sibirsk. Mat. Zh. **59** (2018), no. 4, 912–926; English translation in Sib. Math. J. **59** (2018), no. 4, 721–730. Zbl 06976649. MR3879659. 243
- B. E. Johnson, Local derivations on C\*-algebras are derivations, Trans. Amer. Math. Soc. 353 (2001), no. 1, 313–325. Zbl 0971.46043. MR1783788. DOI 10.1090/ S0002-9947-00-02688-X. 243
- R. V. Kadison, Local derivations, J. Algebra 130 (1990), no. 2, 494–509. Zbl 0751.46041. MR1051316. DOI 10.1016/0021-8693(90)90095-6. 243
- D. Liu and J. Zhang, Local Lie derivations on certain operator algebras, Ann. Funct. Anal. 8 (2017), no. 2, 270–280. Zbl 1373.47035. MR3619322. DOI 10.1215/20088752-0000012X. 243
- L. Liu, 2-local Lie derivations on semi-finite factor von Neumann algebras, Linear Multilinear Algebra 64 (2016), no. 9, 1679–1686. Zbl 1362.47021. MR3509492. DOI 10.1080/ 03081087.2015.1112346. 243
- C. R. Miers, *Lie homomorphisms of operator algebras*, Pacific J. Math. **38** (1971), 717–735.
   Zbl 0204.14803. MR0308804. 244
- C. R. Miers, *Lie derivations of von Neumann algebras*, Duke Math. J. **40** (1973), 403–409.
   Zbl 0264.46064. MR0315466. 242
- M. Niazi and A. M. Peralta, Weak-2-local derivations on M<sub>n</sub>, Filomat **31** (2017), no. 6, 1687–1708. MR3635207. DOI 10.2298/FIL1706687N. 243
- G. K. Pedersen, C<sup>\*</sup>-algebras and Their Automorphism Groups, London Math. Soc. Monogr. 14, Academic Press, London, 1979. Zbl 0416.46043. MR0548006. 244

- X. Qi, J. Ji, and J. Hou, Characterization of additive maps ξ-Lie derivable at zero on von Neumann algebras, Publ. Math. Debrecen 86 (2015), nos. 1–2, 99–117. Zbl 1349.47054. MR3300580. DOI 10.5486/PMD.2015.6084. 245
- P. Šemrl, Local automorphisms and derivations on B(H), Proc. Amer. Math. Soc. 125 (1997), no. 9, 2677–2680. Zbl 0887.47030. MR1415338. DOI 10.1090/ S0002-9939-97-04073-2. 243
- H. Sunouchi, Infinite Lie rings, Tohoku Math. J. (2) 8 (1956), no. 3, 291–307. Zbl 0074.09904. MR0101262. DOI 10.2748/tmj/1178244954. 244
- B. Yang and X. Fang, Weak 2-local derivations on finite von Neumann algebras, Linear Multilinear Algebra 66 (2018), no. 8, 1520–1529. Zbl 06891539. MR3806236. DOI 10.1080/ 03081087.2017.1363151. 243

School of Mathematical Sciences, Tongji University, Shanghai 200092, People's Republic of China.

*E-mail address*: yangbingmath1@sina.cn; xfang@tongji.edu.cn