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Abstract. In this article we characterize the form of each 2-local Lie deriva-
tion on a von Neumann algebra without central summands of type I1. We
deduce that every 2-local Lie derivation δ on a finite von Neumann alge-
bra M without central summands of type I1 can be written in the form
δ(A) = AE−EA+h(A) for all A in M, where E is an element in M and h is a
center-valued homogenous mapping which annihilates each commutator of M.
In particular, every linear 2-local Lie derivation is a Lie derivation on a finite
von Neumann algebra without central summands of type I1. We also show that
every 2-local Lie derivation on a properly infinite von Neumann algebra is a
Lie derivation.

1. Introduction and preliminaries

Let A be a complex linear algebra, and let X be an A-bimodule. Recall that a
linear map d from A into X is called a derivation if d(AB) = d(A)B+Ad(B) for
all A, B in A. Obviously, given an element A in A, if dA(X) = [A,X] = AX−XA
for all X in A, then dA is a derivation. Such a derivation is called inner. As is
well known, every derivation on a von Neumann algebra is inner. More generally,
a linear mapping δ of an associative algebra A is said to be a Lie derivation if
δ([A,B]) = [δ(A), B] + [A, δ(B)] for all A, B in A, where [A,B] = AB − BA
is the usual Lie product. By [10], it follows that every Lie derivation δ of a von
Neumann algebra M has the form δ(A) = [A, S]+τ(A), where S is an element in
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M and τ is a center-valued linear mapping which annihilates each commutator
of M. Obviously, derivations of associative algebras are Lie derivations.

In the study of derivation theory, we cannot overstate the importance of estab-
lishing many sufficient conditions to ensure that a mapping on various algebras is a
(Lie) derivation. We mention some remarkable results in this area. In the setting of
linear mappings, Kadison in [6] first introduced the notion of a local derivation and
also proved that every continuous local derivation from a von Neumann algebra
into any of its Banach bimodules is a derivation. In [5], Johnson generalized Kadi-
son’s conclusion and showed that every local derivation from a C∗-algebra into
any of its Banach bimodules is a derivation. In [3], Essaleh, Peralta, and Ramı́rez
established the definition of a weak-local derivation—extending the notion of
a local derivation—and proved that weak-local derivations on C∗-algebras are
derivations. In the setting of nonlinear mappings, Šemrl in [14] defined the notion
of a 2-local derivation as follows. A (not necessarily linear) mapping ∆ on a
Banach algebra A is called a 2-local derivation if for every A, B in A there exists
a derivation dA,B : A → A, depending on A and B, such that ∆(A) = dA,B(A)
and ∆(B) = dA,B(B). He also showed that every 2-local derivation on B(H) of
all linear bounded operators on H is a derivation, where H is an infinite separa-
ble Hilbert space. Ayupov and Kudaybergenov showed in [1] that every 2-local
derivation on an arbitrary von Neumann algebra is a derivation. (Whether or
not a 2-local derivation is a derivation on a general C∗-algebra remains an open
question.) In order to solve the problem, and motivated by the definitions of local
derivations, weak-local derivations, and 2-local derivations, Niazi and Peralta in
[11] introduced the definition of a weak-2-local derivation and proved that every
weak-2-local ∗-derivation on Mn(C) is a ∗-derivation. Recently, Cabello and Per-
alta [2] characterized that every weak-2-local derivation on B(H), K(H) of all
compact operators on H, where H is any complex Hilbert space, atomic von
Neumann algebras, and compact C∗-algebras, is a derivation. In [16], Yang and
Fang showed that weak-2-local derivations on finite von Neumann algebras are
derivations.

Similarly, the notions of local and 2-local Lie derivations can be defined. Some
contributions to local Lie derivations can be found in [7]. A (not necessarily linear)
mapping δ on a Banach algebra A is called a 2-local Lie derivation if for every A,
B in A there exists a Lie derivation δA,B on A, depending on A and B, such that
δ(A) = δA,B(A) and δ(B) = δA,B(B). We note some new contributions to 2-local
Lie derivations. Liu in [8] characterized 2-local Lie derivations on a semifinite
factor von Neumann algebra and showed that every 2-local Lie derivation on a
semifinite factor von Neumann algebra with dimension greater than 4 can be
written in the form of an inner derivation by adding a center-valued homogenous
mapping which annihilates each commutator. In their recent article [4], He, Li,
An, and Huang showed that 2-local Lie derivations are Lie derivations on factor
von Neumann algebras, uniformly hyperfinite algebras, and the Jiang–Su algebra,
and they constructed an example of a (nonlinear) 2-local Lie derivation, but not
a Lie derivation on a finite von Neumann algebra which is not a factor. It seems
natural to consider the form of a 2-local Lie derivation on a general von Neumann



244 B. YANG and X. FANG

algebra which is not a factor and whether all linear 2-local Lie derivations on finite
von Neumann algebras are Lie derivations.

In this article, we expect to obtain a complete characterization for proving
problems in several cases. By [15], we know that every element in a properly
infinite von Neumann algebra M has the form

∑n
i=1[Ai, Bi] for Ai, Bi ∈ M;

then every 2-local Lie derivation on a properly infinite von Neumann algebra is
a 2-local derivation. Therefore, every 2-local Lie derivation on a properly infinite
von Neumann algebra is a derivation by [1]. Obviously, each derivation on a
properly infinite von Neumann algebra is a Lie derivation. So we only consider
each 2-local Lie derivation on a finite von Neumann algebra. In Theorem 2.1
we obtain that every 2-local Lie derivation δ on a finite von Neumann algebra
M without central summands of type I1 can be written in the form δ(A) =
AE − EA + h(A) for all A in M, where E is an element in M and h is a
center-valued homogenous mapping which annihilates each commutator of M. In
particular, every linear 2-local Lie derivation is a Lie derivation on a finite von
Neumann algebra without central summands of type I1.

2. Main results

Let M be a von Neumann algebra. Recall that the set Z(M) = {T ∈ M :
ST = TS for all S ∈ M} is said to be the center of M. For every A ∈ M,
the central carrier of A, denoted by c(A), can be defined as the intersection of
all central projections Q ∈ M such that QA = A. For each self-adjoint element
A ∈ M, the core of A is defined to be sup{T ∈ Z(M) : T = T ∗, T ≤ A}, denoted
by A. Furthermore, if P a projection and P = 0, then P is said to be core-free.
Obviously, P = 0 if and only if c(I−P ) = I. It is well known that every finite von
Neumann algebra has a separating family of normal tracial states. (We refer the
reader to [12] for basic theories of von Neumann algebras involved in this article.)

The following is our main result.

Theorem 2.1. Let M be a finite von Neumann algebra without central summands
of type I1. Then every 2-local Lie derivation δ : M → M can be written in the
form δ(A) = AE−EA+ h(A) for all A in M, where E is an element in M and
h : M → Z(M) is a homogenous mapping which annihilates each commutator
of M.

To prove Theorem 2.1, we need some lemmas.

Lemma 2.2 ([9, Lemmas 4, 5, 14]). Let M be a von Neumann algebra.

(1) If M has no central summands of type I1, then each nonzero central pro-
jection of M is the central carrier of a core-free projection of M.

(2) For projections P,Q ∈ M with c(P ) = c(Q) 6= 0, if A ∈ M commutes
with PXQ and QXP for all X ∈ M, then A commutes with PXP and
QXQ for all X ∈ M.

(3) If P is a core-free projection in M, then PMP ∩ Z(M) = 0.

Lemma 2.3 ([12, Lemma 2.6.4]). Let M be a von Neumann algebra. If A is
a self-adjoint operator in M and Z is a self-adjoint operator in Z(M), then
c(A+ Z) = c(A) + Z. Moreover, if Z ≥ 0, then c(AZ) = c(A)Z.
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Lemma 2.4 ([13, Lemma 2.1]). Let M be a von Neumann algebra without central
summands of type I1 or type I2. Suppose that L : M → M is an additive map.
Then L satisfies L([A,B]) = [L(A), B] + [A,L(B)] whenever [A,B] = 0 if and
only if there exits an element Z0 ∈ Z(M), an additive derivation D : M → M,
and an addictive map h : M → Z(M) such that L(A) = D(A) + h(A) +Z0A for
all A ∈ M.

Lemma 2.5. Let M be a finite von Neumann algebra. If δ : M → M is a 2-local
Lie derivation, then δ(λA) = λδ(A) and δ(A + B) − δ(A) − δ(B) ∈ Z(M) for
each A,B ∈ M and λ ∈ C.

Proof. For each A ∈ M and λ ∈ C, by definition we easily have δ(λA) =
δA,λA(λA) = λδA,λA(A) = λδ(A).

Let P be a projection in M, and denote P⊥ = I − P . Let Γ be the set of a
separating family of normal tracial states on M. Given A,X ∈ M and τ ∈ Γ,
there exist an element TA,PXP⊥ , depending onA and PXP⊥, and a linear mapping
hA,PXP⊥ from M into Z(M) annihilating each commutator such that

δ(A) = [A, TA,PXP⊥ ] + hA,PXP⊥(A)

and

δ(PXP⊥) = [PXP⊥, TA,PXP⊥ ].

Noting that (
δ(A)− hA,PXP⊥(A)

)
PXP⊥ + Aδ(PXP⊥)

= [A, TA,PXP⊥ ]PXP⊥ + A[PXP⊥, TA,PXP⊥ ]

= [APXP⊥, TA,PXP⊥ ],

we obtain

τ
((
δ(A)− hA,PXP⊥(A)

)
PXP⊥)+ τ

(
Aδ(PXP⊥)

)
= 0;

that is,

τ
(
δ(A)PXP⊥) = −τ

(
Aδ(PXP⊥)

)
.

For arbitrary A,B ∈ M, we then have

τ
(
δ(A+B)PXP⊥) = −τ

(
(A+B)δ(PXP⊥)

)
= −τ

(
Aδ(PXP⊥)

)
− τ

(
Bδ(PXP⊥)

)
= τ

(
δ(A)PXP⊥)+ τ

(
δ(B)PXP⊥)

= τ
((
δ(A) + δ(B)

)
PXP⊥).

Hence

τ
((
δ(A+B)− δ(A)− δ(B)

)
PXP⊥) = 0.

Denote Y = δ(A+B)− δ(A)− δ(B). Then

τ(Y PXP⊥) = 0. (2.1)

Let X = Y ∗ in (2.1). Then

τ
(
P⊥Y P (P⊥Y P )∗

)
= τ(Y PY ∗P⊥) = 0.
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Since the trace τ is arbitrary in Γ, it implies that P⊥Y P = 0. Therefore, by the
arbitrariness of P , PY = Y P for all P ∈ M. Since each self-adjoint operator is the
norm limit of finite linear combinations of projections in von Neumann algebras,
we obtain that AY = Y A for all A ∈ M. Therefore, δ(A + B) − δ(A) − δ(B) ∈
Z(M) for all A,B ∈ M. �

Proof of Theorem 2.1. By Lemma 2.2, we can find out a nontrivial core-free pro-
jection P1 with c(P1) = I. Denote P2 = I − P1. Moreover, by the definition
of central core and central carrier, we can obtain that P2 is also core-free and
c(P2) = I. Let Mij = PiMPj, i, j = 1, 2. Then M = M11 +M12 +M21 +M22

and each element A ∈ M can be represented as A = A11 + A12 + A21 + A22,
where Aij = PiAPj, i, j = 1, 2. We will finish the proof of our main theorem by
considering a number of steps.

Claim 1. There exists an element T0 ∈ M such that δ(P1) − [P1, T0] ∈ Z(M),
and δ(Aij) = Piδ(Aij)Pj + [Aij, T0] for all Aij ∈ Mij (1 ≤ i 6= j ≤ 2).

For each A12 ∈ M12, note that A12 = [P1, A12]. We have

δ(A12) = δP1,A12

(
[P1, A12]

)
=

[
δP1,A12(P1), A12

]
+
[
P1, δP1,A12(A12)

]
=

[
δ(P1), A12

]
+
[
P1, δ(A12)

]
= δ(P1)A12 − A12δ(P1) + P1δ(A12)− δ(A12)P1. (2.2)

Furthermore, by multiplying (2.2) on left-hand side by Pi and on the right-hand
side by Pj (1 ≤ i 6= j ≤ 2), we deduce that

P1δ(P1)P1A12 = A12P2δ(P1)P2 (2.3)

and

P2δ(A12)P1 = 0. (2.4)

Similarly, for each A21 ∈ M21, we also have

δ(A21) = δ(A21)P1 − P1δ(A21) + A21δ(P1)− δ(P1)A21. (2.5)

By multiplying (2.5) on the left-hand side by Pj and on the right-hand side by
Pi (1 ≤ i 6= j ≤ 2), we also deduce that

A21P1δ(P1)P1 = P2δ(P1)P2A21 (2.6)

and

P1δ(A21)P2 = 0.

Hence, by (2.3) and (2.6), we obtain that[
P1δ(P1)P1 + P2δ(P1)P2, A12

]
=

[
P1δ(P1)P1 + P2δ(P1)P2, A21

]
= 0.

From Lemma 2.2(2), it follows that

P1δ(P1)P1 + P2δ(P1)P2 ∈ Z(M).

Now we denote T0 = P1δ(P1)P2 − P2δ(P1)P1. Then

δ(P1)− [P1, T0] = P1δ(P1)P1 + P2δ(P1)P2 ∈ Z(M).
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Since [A12, T0] = −A12P2δ(P1)P1 + P2δ(P1)P1A12, (2.3) implies that

[A12, T0] = −A12P2δ(P1)P1 + P2δ(P1)P1A12 + P1δ(P1)P1A12 − A12P2δ(P1)P2

= δ(P1)A12 − A12δ(P1).

Thus, by (2.2) and (2.4), we have proved that δ(A12) = P1δ(A12)P2+[A12, T0]. By
the same argument as that used above, we can get δ(A21) = P2δ(A21)P1+[A21, T0].

Remark 1. Let δT0(A) = [A, T0] for all A ∈ M. Then δT0 is an inner derivation
on M. Denote φ = δ − δT0 . Then it is easy to verify that φ is a 2-local Lie
derivation.

Claim 2. We have φ(P1) ∈ Z(M) and φ(Aij) ∈ Mij (1 ≤ i 6= j ≤ 2).

From Claim 1, we can get φ(P1) ∈ Z(M) and φ(Aij) ∈ Mij (1 ≤ i 6= j ≤ 2).

Claim 3. We have φ(P2) ∈ Z(M).

Note that A12 = [A12, P2]. Then we have

φ(A12) = φA12,P2(A12)

= φA12,P2

(
[A12, P2]

)
=

[
φA12,P2(A12), P2

]
+
[
A12, φA12,P2(P2)

]
=

[
φ(A12), P2

]
+
[
A12, φ(P2)

]
.

Hence, by Claim 2, we deduce that [A12, φ(P2)] = 0. By the same argument as
that used above, we can get [φ(P2), A21] = 0. Thus, we can get φ(P2) ∈ Z(M)
by Lemma 2.2(2).

Claim 4. For each A ∈ M, if PiAPj = 0 (1 ≤ i 6= j ≤ 2), then Piφ(A)Pj = 0
(1 ≤ i 6= j ≤ 2).

For each A ∈ M, by assumption we have [Pi, A] = PiA − APi = PiAPj −
PjAPi = 0. Furthermore, Claims 2 and 3 imply that

0 = φPi,A

(
[Pi, A]

)
=

[
φPi,A(Pi), A

]
+
[
Pi, φPi,A(A)

]
=

[
Pi, φ(A)

]
,

which implies that Piφ(A)− φ(A)Pi = 0. Hence, by multiplying the last equality
on the right-hand side by Pj, we can get the desired equality.

Claim 5. We have φ(Aii) ∈ Mii + Z(M), i = 1, 2.

For every A11 ∈ M11, denote φ(A11) =
∑2

i,j=1Bij, where Bij = Piφ(A11)Pj

(1 ≤ i, j ≤ 2). Then, by Claim 4, B12 = B21 = 0. For each S22 ∈ M22, we obtain

0 = φA11,S22

(
[A11, S22]

)
=

[
φA11,S22(A11), S22

]
+
[
A11, φA11,S22(S22)

]
= B22S22 − S22B22 + A11φ(S22)− φ(S22)A11. (2.7)
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Furthermore, multiplying (2.7) from both sides by P2, we deduce that

B22S22 = S22B22;

that is,

B22 = P2Z1

for some Z1 ∈ Z(M). Thus φ(A11) = B11 − P1Z1 + Z1 ∈ M11 + Z(M). By the
same argument as that used above, we can get φ(A22) ∈ M22 + Z(M).

Remark 2. In fact, both B11 and Z1 in the Claim 6 are unique. Indeed, if φ(A11) =

B11 + P2Z1 and φ(A11) = B̃11 + P2Z̃1, then by multiplying the above equalities

from both sides by P1, we get B11 = B̃11, which implies that P2(Z1− Z̃1) = 0. By

Lemma 2.3, we can get c(P2)(Z1 − Z̃1)(Z1 − Z̃1)
∗ = 0. Thus Z1 − Z̃1 = 0 since

c(P2) = I. Then we can define a mapping fi : Mii → Z(M) by fi(Aii) = Zi for
all Aii ∈ Mii (i = 1, 2). Obviously, fi is homogeneous. Indeed, it suffices to see
that the case i = 1 for all α ∈ C. We easily have f1(αA11)P2 = φ(αA11)P2 =
αφ(A11)P2 = αf1(A11)P2. Therefore, by Lemma 2.3 and c(P2) = I, we can get
f1(αA11) = αf1(A11), as desired.

Now we define a homogeneous mapping ω on M such that

ω(A) = φ(P1AP1) + φ(P1AP2) + φ(P2AP1) + φ(P2AP2)

− f1(P1AP1)− f2(P2AP2)

for all A ∈ M. Then, by Claims 2, 3, and 5, we get

(1) ω(Pi) = 0, i = 1, 2,
(2) ω(Aij) ∈ Mij, i, j = 1, 2,
(3) ω(Aii) = φ(Aii)− fi(Aii) for each Aii ∈ Mii, i = 1, 2,
(4) ω(Aij) = φ(Aij), 1 ≤ i 6= j ≤ 2.

Claim 6. We have ω(Aii+Bii) = ω(Aii)+ω(Bii) for all Aii, Bii ∈ Mii (i = 1, 2).

For all Aii, Bii ∈ Mii, by Lemma 2.5, we have

ω(Aii +Bii)− ω(Aii)− ω(Bii) = φ(Aii +Bii)− φ(Aii)− φ(Bii)

− fi(Aii +Bii) + fi(Aii) + fi(Bii)

∈ Z(M).

Since ω(Aii+Bii)−ω(Aii)−ω(Bii) ∈ Mii, it follows that ω(Aii+Bii)−ω(Aii)−
ω(Bii) ∈ Mii∩Z(M). Thus, by Lemma 2.2(3), we can get ω(Aii+Bii)−ω(Aii)−
ω(Bii) = 0.

Claim 7. We have ω(Aij + Bij) = ω(Aij) + ω(Bij) for all Aij, Bij ∈ Mij (1 ≤
i 6= j ≤ 2).

For all A12, B12 ∈ M12, by Lemma 2.5 and Claims 2 and 3, we have

ω(A12 +B12) = φ(A12 +B12)

= φA12+B12,P2

(
[A12 +B12, P2]

)
=

[
φA12+B12,P2(A12 +B12), P2

]
+
[
A12 +B12, φA12+B12,P2(P2)

]
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=
[
φA12+B12,P2(A12) + φA12+B12,P2(B12), P2

]
+
[
A12 +B12, φA12+B12,P2(P2)

]
=

[
φ(A12) + φ(B12), P2

]
+
[
A12 +B12, φ(P2)

]
=

[
φ(A12) + φ(B12), P2

]
= φ(A12) + φ(B12)

= ω(A12) + ω(B12).

Claim 8. We have that [ω(A), B] + [A,ω(B)] = 0 whenever [A,B] = 0.

By Lemma 2.5, we have

0 = φA,B

(
[A,B]

)
=

[
φA,B(A), B

]
+
[
A, φA,B(B)

]
=

[
φ(A), B

]
+
[
A, φ(B)

]
=

[
φ(A11) + φ(A12) + φ(A21) + φ(A22), B

]
+
[
A, φ(B11) + φ(B12) + φ(B21) + φ(B22)

]
=

[
ω(A) + f1(A11) + f2(A22), B

]
+
[
A,ω(B) + f1(B11) + f2(B22)

]
=

[
ω(A), B

]
+
[
A,ω(B)

]
.

By Claims 6 and 7, we easily obtain that ω is linear. From Lemma 2.4 and
Claim 8, it follows that there exists an element Z0 ∈ Z(M), a derivation d, and a
linear mapping h1 : M → Z(M) such that ω(A) = d(A) + h1(A) +Z0A. And we
claim that Z0 = 0. Indeed, by the properties of ω, 0 = ω(P1) = d(P1) + h1(P1) +
Z0P1. Multiplying this identity on both sides by Pi (i = 1, 2), we then obtain
h1(P1)P1 = −Z0P1 and h1(P1)P2 = 0, which yields Z0 = 0 by c(P1) = c(P2) = I
and Lemma 2.3. Thus we get

ω(A) = d(A) + h1(A)

for all A ∈ M.
We denote δE = d+ δT0 and h(A) = h1(A) + f1(P1AP1) + f2(P2AP2) + φ(A)−

φ(P1AP1)− φ(P1AP2)− φ(P2AP1)− φ(P2AP2). Obviously, by Lemma 2.5, h is a
center-valued homogenous mapping. Then the definition of ω implies that

δ(A) = φ(A) + δT0(A)

= ω(A) + f1(P1AP1) + f2(P2AP2) + φ(A)− φ(P1AP1)

− φ(P1AP2)− φ(P2AP1)− φ(P2AP2) + δT0(A)

= d(A) + h1(A) + f1(P1AP1) + f2(P2AP2) + φ(A)− φ(P1AP1)

− φ(P1AP2)− φ(P2AP1)− φ(P2AP2) + δT0(A)

= δE(A) + h(A)

for all A ∈ M.
Since every finite von Neumann algebra has a unique center-valued trace, it

follows that each nonzero element in the center of Z(M) cannot be the form



250 B. YANG and X. FANG∑n
i=1[Ai, Bi] for Ai, Bi ∈ M. Then for every A ∈ M and commutator X ∈ M,

we have

h(A+X)− h(A) = δ(A+X)− δE(A+X)− δ(A) + δE(A)

= [A+X,SA+X,A] + τA+X,A(A+X)− [A+X,E]

− [A, SA+X,A]− τA+X,A(A) + [A,E]

= [A+X,SA+X,A − E]− [A, SA+X,A − E]

= [X,SA+X,A − E].

Thus h is a homogenous mapping of M into its center which annihilates each
commutator of M. �

Corollary 2.6. Every linear 2-local Lie derivation on a finite von Neumann
algebra without central summands of type I1 is a Lie derivation.
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derivations on B(H), Banach J. Math. Anal. 11 (2017), no. 2, 382–397. Zbl 1372.46051.
MR3620128. DOI 10.1215/17358787-0000009X. 243

3. A. B. A. Essaleh, A. M. Peralta, and M. I. Ramı́rez, Weak-local derivations and
homomorphisms on C∗-algebras, Linear Multilinear Algebra 64 (2016), no. 2, 169–186.
Zbl 1336.47039. MR3434512. DOI 10.1080/03081087.2015.1028320. 243

4. J. He, J. Li, G. An, and W. Huang, Characterization of 2-local derivations and local Lie
derivations of certain algebras (in Russian), Sibirsk. Mat. Zh. 59 (2018), no. 4, 912–926;
English translation in Sib. Math. J. 59 (2018), no. 4, 721–730. Zbl 06976649. MR3879659.
243

5. B. E. Johnson, Local derivations on C∗-algebras are derivations, Trans. Amer. Math.
Soc. 353 (2001), no. 1, 313–325. Zbl 0971.46043. MR1783788. DOI 10.1090/
S0002-9947-00-02688-X. 243

6. R. V. Kadison, Local derivations, J. Algebra 130 (1990), no. 2, 494–509. Zbl 0751.46041.
MR1051316. DOI 10.1016/0021-8693(90)90095-6. 243

7. D. Liu and J. Zhang, Local Lie derivations on certain operator algebras, Ann. Funct. Anal.
8 (2017), no. 2, 270–280. Zbl 1373.47035. MR3619322. DOI 10.1215/20088752-0000012X.
243

8. L. Liu, 2-local Lie derivations on semi-finite factor von Neumann algebras, Linear Multi-
linear Algebra 64 (2016), no. 9, 1679–1686. Zbl 1362.47021. MR3509492. DOI 10.1080/
03081087.2015.1112346. 243

9. C. R. Miers, Lie homomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717–735.
Zbl 0204.14803. MR0308804. 244

10. C. R. Miers, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973), 403–409.
Zbl 0264.46064. MR0315466. 242

11. M. Niazi and A. M. Peralta, Weak-2-local derivations on Mn, Filomat 31 (2017), no. 6,
1687–1708. MR3635207. DOI 10.2298/FIL1706687N. 243

12. G. K. Pedersen, C∗-algebras and Their Automorphism Groups, London Math. Soc. Monogr.
14, Academic Press, London, 1979. Zbl 0416.46043. MR0548006. 244

http://www.emis.de/cgi-bin/MATH-item?1344.46046
http://www.ams.org/mathscinet-getitem?mr=3386119
https://doi.org/10.1007/s11117-014-0307-3
https://doi.org/10.1007/s11117-014-0307-3
http://www.emis.de/cgi-bin/MATH-item?1372.46051
http://www.ams.org/mathscinet-getitem?mr=3620128
https://doi.org/10.1215/17358787-0000009X
http://www.emis.de/cgi-bin/MATH-item?1336.47039
http://www.ams.org/mathscinet-getitem?mr=3434512
https://doi.org/10.1080/03081087.2015.1028320
http://www.emis.de/cgi-bin/MATH-item?06976649
http://www.ams.org/mathscinet-getitem?mr=3879659
http://www.emis.de/cgi-bin/MATH-item?0971.46043
http://www.ams.org/mathscinet-getitem?mr=1783788
https://doi.org/10.1090/S0002-9947-00-02688-X
https://doi.org/10.1090/S0002-9947-00-02688-X
http://www.emis.de/cgi-bin/MATH-item?0751.46041
http://www.ams.org/mathscinet-getitem?mr=1051316
https://doi.org/10.1016/0021-8693(90)90095-6
http://www.emis.de/cgi-bin/MATH-item?1373.47035
http://www.ams.org/mathscinet-getitem?mr=3619322
https://doi.org/10.1215/20088752-0000012X
http://www.emis.de/cgi-bin/MATH-item?1362.47021
http://www.ams.org/mathscinet-getitem?mr=3509492
https://doi.org/10.1080/03081087.2015.1112346
https://doi.org/10.1080/03081087.2015.1112346
http://www.emis.de/cgi-bin/MATH-item?0204.14803
http://www.ams.org/mathscinet-getitem?mr=0308804
http://www.emis.de/cgi-bin/MATH-item?0264.46064
http://www.ams.org/mathscinet-getitem?mr=0315466
http://www.ams.org/mathscinet-getitem?mr=3635207
https://doi.org/10.2298/FIL1706687N
http://www.emis.de/cgi-bin/MATH-item?0416.46043
http://www.ams.org/mathscinet-getitem?mr=0548006


2-LOCAL LIE DERIVATIONS 251

13. X. Qi, J. Ji, and J. Hou, Characterization of additive maps ξ-Lie derivable at zero on von
Neumann algebras, Publ. Math. Debrecen 86 (2015), nos. 1–2, 99–117. Zbl 1349.47054.
MR3300580. DOI 10.5486/PMD.2015.6084. 245
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