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Abstract. We prove that for any two elements A, B in a factor M, if B
commutes with all the unitary conjugates of A, then either A or B is in CI.
Then we obtain an equivalent condition for the situation that the C-numerical
radius ωC(·) is a weakly unitarily invariant norm on finite factors, and we
also prove some inequalities on the C-numerical radius on finite factors. As an
application, we show that for an invertible operator T in a finite factor M,
f(4λ(T )) is in the weak operator closure of the set {

∑n
i=1 ziUif(T )U

∗
i | n ∈

N, (Ui)1≤i≤n ∈ U (M),
∑n

i=1 |zi| ≤ 1}, where f is a polynomial, 4λ(T ) is the
λ-Aluthge transform of T , and 0 ≤ λ ≤ 1.

1. Introduction and preliminaries

Denote byB(H ) the set of bounded linear operators on a Hilbert space H , and
denote by Mn(C) the self-adjoint algebra of the n× n matrices. A von Neumann
algebra M on H is a unital weak operator closed ∗-algebra, and it is said to be
a factor if M∩M′ = CI, where I is the identity of M. A von Neumann algebra
M is finite if it has a faithful normal tracial state. If M is a finite factor with a
faithful normal trace τ , denote by ‖ ·‖1 the norm on M to be τ(| · |). Then denote
by L1(M, τ) the completion of M with respect to the ‖ · ‖1-norm. Also to each
normal linear functional f on M corresponds a unique element X ∈ L1(M, τ)
such that f(·) = τ(X·). Denote by U (M) the set of all unitary operators in a von
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Neumann algebra M. (For more background on finite von Neumann algebras, see
[13].)

We next define the C-numerical radius on finite factors.

Definition 1.1. Let M be a finite factor with a faithful normal tracial state τ and
for A,C ∈ M, the C-numerical radius of A is defined as

ωC(A) = sup
U∈U (M)

∣∣τ(CUAU∗)
∣∣.

Note that the C-numerical radius of A is a seminorm onM. There are abundant
results on the C-numerical radius on Mn(C). We say that a norm |||·||| on Mn(C) is
weakly unitarily invariant if |||A||| = |||UAU∗||| for all A ∈ Mn(C), U ∈ U (Mn(C)).
Note that for every C ∈ Mn(C), the C-numerical radius ωC is a weakly unitarily
invariant seminorm on Mn(C). It is a norm on Mn(C) if and only if C is not
a scalar and has nonzero trace (see [3, Proposition IV.4.4]). The family ωC of
C-numerical radius, where C is not a scalar and has nonzero trace, plays a role
analogous to that of Ky Fan norms in the family of unitarily invariant norms
(see [3, Theorem IV.4.7]). A norm ||| · ||| on Mn(C) is called a unitarily invariant
norm if |||A||| = |||UAV ∗||| for all A ∈ Mn(C), U, V ∈ U (Mn(C)). The concept of
unitarily invariant norms was introduced by von Neumann [14] for the purpose
of metrizing matrix spaces. Von Neumann and his associates established that
the class of unitarily invariant norms of n × n complex matrices coincides with
the class of symmetric gauge functions of their s-numbers. These norms have
now been variously generalized and utilized in many contexts. (For historical
perspectives and surveys, we refer the reader to [3], [5], [7], [8] and the references
therein.)

Let T ∈ B(H ), and let T = U |T | be its polar decomposition. The Aluthge

transform of T is the operator4(T ) = |T | 12U |T | 12 . This was first studied in [1] and
has received much attention in recent years. One reason the Aluthge transform is
interesting is in relation to the invariant subspace problem. Jung, Ko, and Pearcy
[10, Theorem 1.15] proved that T has a nontrivial invariant subspace if and only
if 4(T ) does. They also note that when T is quasiaffinity, then T has a nontrivial,
hyperinvariant subspace if and only if 4(T ) does. A quasiaffinity is an operator
with zero kernel and dense range. The invariant and hyperinvariant subspace
problems are interesting only for quasiaffinities. As we know, for A,B ∈ B(H ),
σ(AB) = σ(BA) is not true in general since they may differ from zero, while the
spectrum of4(T ) equals that of T (see [9, Lemma 5]). Jung, Ko, and Percy further
proved in [10, Theorems 1.3, 1.5] that other spectral data are also preserved by
the Aluthge transform. Dykema and Schultz [4, Theorem 5.4] proved that Brown
measures are unchanged by the Aluthge transform.

Another reason is related to the iterated Aluthge transform. Let 40(T ) = T
and 4n(T ) = 4(4n−1(T )) for every n ∈ N. It was conjectured in [10] that the
sequence {4n(T )}n∈N converges in the norm topology. (For more surveys, we
refer the reader to [1], [2], [11], and [12]) The λ-Aluthge transform of T is defined
in [11] by 4λ(T ) = |T |λU |T |1−λ, 0 ≤ λ ≤ 1. In particular, for λ = 1

2
, 4 1

2
(T ) is

just the Aluthge transform 4(T ). Okubo [11, Proposition 4] proved that for an
invertible operator T ∈ B(H ), ‖f(4λ(T ))‖ ≤ ‖f(T )‖ for any polynomial f and
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‖·‖ a weakly unitarily invariant norm. (For more results on λ-Aluthge transforms,
we refer the reader to [11] and [12].)

This article is organized as follows. The key motivation for studying the C-
numerical radius ωC on finite factors stems from the fact that for the finite-
dimensional case—that is, Mn(C)—it has a relation with weakly unitarily invari-
ant norms on Mn(C). So in Section 2, we use some knowledge on dual norms to
show that relation. In Section 3, we first prove that if M is a factor, then for any
nontrivial projection P in M, all the unitary conjugates of P generate the whole
von Neumann algebra M (see Lemma 3.1). We then use this lemma to prove a
technical result in this article.

Theorem 1.2 (see Theorem 3.2). Let M be a factor, and let A,B ∈ M. If
UAU∗B = BUAU∗ holds for every U ∈ U (M), then either A or B is in CI.

In Section 4, as one application of Theorem 1.2, we prove the following corollary.

Corollary 1.3 (see Corollary 4.1). Let M be a finite factor with a faithful normal
trace τ . The C-numerical radius ωC is a norm on M if and only if

(1) C is not a scalar multiple of I, and
(2) τ(C) 6= 0.

We also prove some inequalities for the C-numerical radius ωC on finite factors
(see Theorem 4.2). Then, in Section 5, we discuss some properties of the λ-Aluthge
transform of an invertible operator in a finite factor. Using the three lines theorem
and some results in Section 4, we obtain the following result.

Proposition 1.4 (see Proposition 5.3). Let M be a finite factor with a faithful
normal trace τ . Assume that T ∈ M is an invertible operator with polar decom-
position T = U |T |, and assume that f is a polynomial. Then for 0 ≤ λ ≤ 1,
f(|T |λU |T |1−λ) is in the weak operator closure of the set {

∑n
i=1 ziUif(T )U

∗
i | n ∈

N, (Ui)1≤i≤n ∈ U (M),
∑n

i=1 |zi| ≤ 1}.

Throughout this article, we assume that all the factors have separable preduals.

2. Relation between weakly unitarily invariant norms and
the C-numerical radius ωC on Mn(C)

In this section, a finite von Neumann algebra (M, τ) means a finite von Neu-
mann algebra M with a faithful normal tracial state τ . Recall the definition and
some properties of dual norms in [6]. Let ||| · ||| be a norm on a finite von Neumann
algebra (M, τ). For T ∈ M, define

|||T |||]M = sup
{∣∣τ(TX)

∣∣ : X ∈ M, |||X||| ≤ 1
}
.

When there is no chance for confusion, we write ||| · |||] instead of ||| · |||]M.

Lemma 2.1 ([6, Lemma 6.1]). We have that ||| · |||] is a norm on (M, τ).

Definition 2.2 ([6, Definition 6.2]). A norm ||| · |||] is called the dual norm of ||| · |||
on M with respect to τ .
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Definition 2.3. A norm ||| · ||| on (M, τ) is weakly unitarily invariant if |||UTU∗||| =
|||T ||| for all T ∈ M and U ∈ U (M).

Using the same trick as in [6, Lemma 6.18], we can obtain the following lemma
and state it without proof.

Lemma 2.4. If ||| · ||| is a norm on (Mn(C), tr) and ||| · |||] is the dual norm with
respect to tr, then ||| · ||| = ||| · |||]].

Lemma 2.5. If |||·||| is a weakly unitarily invariant norm on a finite von Neumann
algebra (M, τ), then ||| · |||] is also a weakly unitarily invariant norm on (M, τ).

Proof. Let U ∈ U (M). Then |||UTU∗|||] = sup{|τ(UTU∗X)| : X ∈ M, |||X||| ≤
1} = sup{|τ(TU∗XU)| : X ∈ M, |||U∗XU ||| ≤ 1} = |||T |||]. �

We now proceed to the relation between weakly unitarily invariant norms and
the C-numerical radius on (Mn(C), tr).

Proposition 2.6. If ||| · ||| is a weakly unitarily invariant norm on (Mn(C), tr),
then |||T ||| = sup|||X|||]≤1 ωX(T ).

Proof. For T ∈ (Mn(C), tr), by Lemmas 2.4 and 2.5 and the definition of the dual
norm, we have

|||T ||| = |||T |||]] = sup
U∈U (M)

|||UTU∗|||]]

= sup
U∈U (M)

sup
|||X|||]≤1

{∣∣τ(TUXU∗)
∣∣, X ∈ Mn(C)

}
= sup

|||X|||]≤1

sup
U∈U (M)

{∣∣τ(TUXU∗)
∣∣, X ∈ Mn(C)

}
= sup

|||X|||]≤1

ωX(T ).
�

Note that when proving Proposition 2.6, we use Lemma 2.4, so we may ask
whether this result can be generalized to finite factors.

3. A result on factors

In this section, we show a technical result (Theorem 3.2), which is the most
difficult part of this article. To prove that result, we first need the following
lemma.

Lemma 3.1. Let M be a factor, and let P be a nontrivial projection in M. Then
the von Neumann algebra generated by {UPU∗ : U ∈ U (M)} is M.

Proof. We divide the proof into four cases according to the type of M.
(i) The case M = B(H ), where dim(H ) ≤ ∞: Take two projections P0 ≤ P

and P1 ≤ 1 − P with dim(Pi(H)) = 1 for i = 0, 1, and write Q = P −
P0+P1. Then P0 = P (1−Q), and we can find some unitary operator V ∈ U (M)
such that V PV ∗ = Q, since P and Q are equivalent. Then we have {UP0U

∗ :
U ∈ U (M)}′′ ⊆ {UPU∗ : U ∈ U (M)}′′. Note that the von Neumann algebra
generated by {UP0U

∗ : U ∈ U (M)} is M. Hence we have proved our result.
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(ii) The case where M is a II 1 factor with a faithful normal tracial state τ :
Write τ(P ) = λ ∈ (0, 1), and we may assume that λ ≤ 1

2
. Then for any 0 < t ≤ λ,

we can find two projections Pt ≤ P and Ft ≤ 1−P with τ(Pt) = τ(Ft) = t. Write
Qt = P −Pt+Ft. Then Pt = P (1−Qt). Again, we can find some unitary operator
V ∈ U (M) such that V PV ∗ = Qt. Hence {UPtU

∗ : τ(Pt) = t ∈ (0, λ], Pt ≤
P,U ∈ U (M)}′′ ⊆ {UPU∗ : U ∈ U (M)}′′. Note that the von Neumann algebra
generated by {UPtU

∗ : τ(Pt) = t ∈ (0, λ], Pt ≤ P,U ∈ U (M)} is the whole M.
Then we have our result.

(iii) The case where M is a II∞ factor with a faithful normal tracial weight Tr:
Write Tr(P ) = λ ∈ (0,∞], and we may assume that Tr(1 − P ) ≥ Tr(P ). Then
using the same trick as in case (ii), we prove our result.

(iv) The case where M is a type III factor: This case is trivial, since all the
nontrivial projections in a type III factor are equivalent. �

Our main theorem is the following.

Theorem 3.2. Let M be a factor, and let A,B ∈ M. If UAU∗B = BUAU∗

holds for any U ∈ U (M), then either A or B is in CI.

Proof. Let P be a projection in M. Then we can write A and B in the matrix
form A =

(
A11 A12
A21 A22

)
, B =

(
B11 B12
B21 B22

)
, where A11, B11 ∈ PMP , A12, B12 ∈ PMP⊥,

A21, B21 ∈ P⊥MP , A22, B22 ∈ P⊥MP⊥. Let θ ∈ [0, 2π] and U =
(
eiθPn 0

0 P⊥
n

)
. It

is then clear, for this case, that U is a unitary operator. Then we have

UAU∗ =

(
A11 eiθA12

e−iθA21 A22

)
,

UAU∗B =

(
A11 eiθA12

e−iθA21 A22

)(
B11 B12

B21 B22

)
=

(
A11B11 + eiθA12B21 ∗

∗ ∗

)
,

and

BUAU∗ =

(
B11 B12

B21 B22

)(
A11 eiθA12

e−iθA21 A22

)
=

(
B11A11 + e−iθB12A21 ∗

∗ ∗

)
.

It follows that

A11B11 −B11A11 + eiθA12B21 − e−iθB12A21 = 0 (3.1)

since UAU∗B = BUAU∗. Note that (3.1) holds for any θ ∈ [0, 2π]; an easy
calculation implies that

A11B11 = B11A11, A12B21 = B12A21 = 0. (3.2)

Note that for any U, V ∈ U (M), UV AV ∗U∗B = BUV AV ∗U∗ still holds; in
particular, we can choose V =

(
V1 0
0 P⊥

)
, where V1 ∈ U (PMP ). Then

V1A11V
∗
1 B11 = B11V1A11V

∗
1 . (3.3)

(i) The case M = B(H ), where dim(H ) = ∞: For n ∈ N, let Pn be a
projection of dimension n, and let Pn ≤ Pn+1. By a result of the finite-dimensional
case — that is, if A,B ∈ Mn(C) and UAU∗B = BUAU∗ holds for any U ∈
U (Mn(C)) — then either A or B is in CIn, where In is the identity of Mn(C)
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(see the proof of [3, Proposition IV.4.4]). Then by (3.3), we have that either A11

or B11 is in CIn; that is, PnAPn or PnBPn is in CIn, for any n ∈ N. Assume that
PnAPn is in CIn, while PnBPn is not. For m > n, if PmAPm is not in CIm, while
PmBPm is in CIm, then this would contradict the assumption that PnBPn is not
in CIn. Hence we have that for all n ∈ N, PnAPn is in CIn, which implies that A
is in CI.

(ii) The case where M is a II 1 factor with trace τ or a type III factor: If M
is a II 1 factor, then assume that τ(P ) = 1

2
. Otherwise, if M is a type III factor,

then assume that P 6= 0 and P 6= 1. Then we have M ∼= M2(C) ⊗ PMP , and
we can write A, B in the matrix form

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, Aij, Bij ∈ PMP for 1 ≤ i, j ≤ 2.

Let V1, V2 ∈ U (PMP ), and put V =
(
V1 0
0 V2

)
. Then we have

V AV ∗ =

(
V1A11V

∗
1 V1A12V

∗
2

V2A21V
∗
1 V2A22V

∗
2

)
.

It follows that V1A12V
∗
2 B21 = 0, since UV AV ∗U∗B = BUV AV ∗U∗ for any U, V ∈

U (M) and (3.2). If A12 6= 0, then A12V
∗
2 B21 = B∗

21V2A
∗
12 = 0 for all unitary

operators V2 ∈ U (PMP ), which implies that B21 = 0. Moreover, put V ′ =(
0 V1
V2 0

)
. Then

V ′AV ′∗ =

(
V1A22V

∗
1 V1A21V

∗
2

V2A12V
∗
1 V2A11V

∗
2

)
.

Using the same trick as above, we obtain that if A12 6= 0, then B12 = 0. Thus
we have that if A12 6= 0, then B21 = B12 = 0. Similarly, we have that if A21 6= 0,
then B21 = B12 = 0. Note that if we replace A with UAU∗ for every U ∈ U (M)
and if we replace B with V BV ∗ for every V ∈ U (M), then the above fact still
holds, and we can argue as follows.

Assume that A /∈ CI. We try to show that B ∈ CI.
Case 1: If there exists U ∈ U (M) such that (UAU∗)12 or (UAU∗)21 is nonzero,

then from the above we know that (V BV ∗)12 = (V BV ∗)21 = 0 for every V ∈
U (M). Hence V BV ∗P = PV BV ∗ for every V ∈ U (M). Then apply Lemma 3.1
to get B ∈ CI.

Case 2: If for every U ∈ U (M), (UAU∗)12 = (UAU∗)21 = 0, then UAU∗P =
PUAU∗ for every U ∈ U (M). Again using Lemma 3.1, we have A ∈ CI, which
is a contradiction. Hence this case actually does not appear under the assumption
that A /∈ CI.

(iii) The case where M is a II∞ factor: Note that M = B(H )⊗N , where N
is a II 1 factor. For any n ∈ N, let P ′

n be a projection of dimension n in B(H ),
let I ′ be the identity of N , and let Pn = P ′

n ⊗ I ′. Then PnMPn is a type II 1
factor. Hence using the same trick in case (i) and the result in case (ii), our result
follows. �
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4. The C-numerical radius ωC on finite factors

In this section, we show some applications of Theorem 3.2 and discuss some
properties of the C-numerical radius ωC on finite factors. We use Theorem 3.2
and the same technique as in [3, Proposition IV.4.4] to prove our next corollary.
We include the proof below for the reader’s convenience.

Corollary 4.1. Let M be a finite factor with trace τ . The C-numerical radius
ωC is a weakly unitarily invariant norm on M if and only if

(1) C is not a scalar multiple of I, and
(2) τ(C) 6= 0.

Proof. If C = λI for some λ ∈ C, then ωC(A) = |λ||τ(A)|, and this is zero if
τ(A) = 0, which means that ωC cannot be a norm on M. If τ(C) = 0, then
ωC(I) = 0. Again, ωC is not a norm.

Conversely, suppose that ωC is not a norm on M and that ωC(A) = 0 for
some A 6= 0. If A = λI for some λ ∈ C, this would mean that τ(C) = 0. So, if
τ(C) 6= 0, then A /∈ CI. We claim that C ∈ CI. Since eitK is in U (M) for all
t ∈ R and K = K∗ ∈ M, the condition ωC(A) = 0 implies in particular that
τ(CeitKAe−itK) = 0 if t ∈ R and K = K∗ ∈ M. Differentiating this relation
at t = 0, one gets τ((AC − CA)K) = 0 for all K = K∗ ∈ M. Hence we
obtain that τ((AC − CA)T ) = 0 for all T ∈ M. Hence AC = CA. Note that
ωC(A) = ωC(UAU∗) for all U ∈ U (M), so that UAU∗C = CUAU∗ for all
U ∈ U (M). Hence the result that C is in CI follows from Theorem 3.2. �

Note that for A,C ∈ M, by the definition of the C-numerical radius ωC , we
have that ωC(A) = ωA(C) and that ωC(·) is continuous in the strong operator
topology on the unit ball of M.

Theorem 4.2. Let M be a finite factor with a faithful normal trace τ . For
A,B ∈ M, the following conditions are equivalent:

(1) ωC(A) ≤ ωC(B) for all operators C ∈ M that are not scalars and have
nonzero trace;

(2) ωC(A) ≤ ωC(B) for all operators C ∈ M;
(3) let K = {

∑n
i=1 ziUiBU∗

i | n ∈ N, (Ui)1≤i≤n ∈ U (M),
∑n

i=1 |zi| ≤ 1}, and
let Γ be the weak operator closure of K; then A ∈ Γ.

Proof. (1) ⇒ (2). Assume that C ∈ M and τ(C) = 0. Put Cn = C + 1
n
. Then

τ(Cn) =
1
n
and ‖Cn − C‖ → 0. Moreover, we have∣∣ωA(Cn)− ωA(C)

∣∣ ≤ sup
U∈U (M)

∣∣τ(AU(Cn − C)U∗)∣∣
= sup

U∈U (M)

1

n

∣∣τ(A)∣∣
→ 0.

Similarly, we would have ωB(Cn) → ωB(C). Note that ωA(Cn) ≤ ωB(Cn). Then
we have ωA(C) ≤ ωB(C).
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Let P ∈ M be a projection with trace not equal to 0 or 1. Let Cn = P + (1−
1
n
)(1−P ). Then Cn is not a scalar, τ(Cn) 6= 0, and ‖Cn− 1‖ → 0. Hence we have

ωA(Cn) ≤ ωB(Cn) and for any operator T ∈ M,∣∣ωT (Cn)− ωT (I)
∣∣ ≤ ∣∣ωT (Cn − I)

∣∣
= sup

U∈U (M)

∣∣τ(TU(Cn − I)U∗)∣∣
≤ ‖Cn − 1‖‖T‖1
→ 0.

It follows that ωA(I) ≤ ωB(I).
(2) ⇒ (3). Assume that A /∈ Γ. Then there exists a linear normal functional

f on M and a > b such that Re f(A) ≥ a > b ≥ Re f(D), ∀D ∈ Γ. Since
f is a normal linear functional on M, there exists a C ∈ L1(M, τ) such that
f(T ) = τ(CT ) for all T ∈ M.

Note that ωC(A) = supU∈U (M) |τ(CUAU∗)| ≥ |τ(CA)| = |f(A)| and

Re f(A) > sup
D∈Γ

Re f(D) ≥ sup
θ,U

Re f(eiθUBU∗) = sup
U∈U (M)

∣∣f(UBU∗)
∣∣ = ωC(B).

Let C = V |C| be the polar decomposition of C in L1(M, τ), and let Hn =
χ[0,n](|C|)|C|. Then ‖Hn − |C|‖1 → 0. Put Cn = V Hn. Then we have∣∣ωCn(A)− ωC(A)

∣∣ = ∣∣ωA(Cn)− ωA(C)
∣∣

≤ sup
U∈U (M)

∣∣τ((Cn − C)UAU∗)∣∣
≤ ‖Cn − C‖1‖A‖
→ 0.

Similarly, |ωCn(B)− ωC(B)| → 0. Hence there exists m ∈ N such that ωCm(A) >
ωCm(B), which contradicts condition (2) since Cm ∈ M.

(3) ⇒ (1). For all operators C ∈ M that are not scalars and have nonzero
trace, by Corollary 4.1, we obtain that ωC is a norm, and hence ωC(T ) ≤ ωC(B)
for all T ∈ K. Hence our result follows since ωC is normal. �

Remark 4.3. If ||| · ||| is a weakly unitarily invariant norm on (Mn(C), tr), then by
Theorem 4.2 and Proposition 2.6, we have [3, Theorem IV.4.7].

5. λ-Aluthge transform of an invertible operator in a finite factor

Let T ∈ B(H ), and let T = U |T | be its polar decomposition. The Aluthge

transform of T is the operator 4(T ) = |T | 12U |T | 12 . The λ-Aluthge transform of
T is defined by 4λ(T ) = |T |λU |T |1−λ, 0 ≤ λ ≤ 1. In this section, we show some
results on the λ-Aluthge transform of an invertible operator in a finite factor.

For the infinite factor B(H ), Okubo [11, Proposition 4] proved that if T ∈
B(H ) is an invertible operator, then for any polynomial f , 0 ≤ λ ≤ 1 and ‖ · ‖
a weakly unitarily invariant norm, we have ‖f(4λ(T ))‖ ≤ ‖f(T )‖. Note that the
C-numerical radius is a weakly unitarily invariant seminorm on a finite factor M
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and that we have already given an equivalent condition for the situation when
this seminorm is a norm in Section 4.

The idea of proving the following theorem comes from [11, Theorem 3].

Theorem 5.1. Let M be a finite factor with a faithful normal trace τ , let T ∈ M
be an invertible operator with polar decomposition T = U |T |, and let B ∈ M
commute with T. Let ωC(·) be the C-numerical radius on M. Then

ωC

(
|T |λBU |T |1−λ

)
≤ ωC(BT ) for 0 ≤ λ ≤ 1. (5.1)

Proof. On the strip {z : −1
2
≤ Re(z) ≤ 1

2
}, consider the operator-valued function

φ(z) defined by φ(z) = |T | 12−zBU |T | 12+z. It is clear that φ(z) is analytic in the
interior of the strip.

For any U ∈ U (M), define fU(z) = τ(CUφ(z)U∗). Then fU(z) is uniformly
bounded on the strip and analytic since τ is linear and φ(z) is analytic. Applying
the three lines theorem (see [7, pp. 136–137]) to fU(z), we obtain that the function
x 7→ Log supy∈R |fU(x+ iy)| is a convex function on [−1

2
, 1
2
].

Put FU(x) = Log supy∈R |fU(x+ iy)|. Then for −1
2
≤ x ≤ 1

2
,

FU(x) ≤ FU

(1
2

)(
x+

1

2

)
+ FU

(
−1

2

)(1
2
− x

)
,

so that

sup
U∈U (M)

FU(x) ≤ sup
U∈U (M)

FU

(1
2

)(
x+

1

2

)
+ sup

U∈U (M)

FU

(
−1

2

)(1
2
− x

)
. (5.2)

For −∞ < y < ∞, since |T |±iy is a unitary operator and φ(1
2
+ iy) = |T |−iyBU ×

|T ||T |iy and ωC(·) is a weakly unitarily invariant seminorm on M , we have
ωC(φ(

1
2
+ iy)) = ωC(BU |T |). Note that

φ
(
−1

2
+ iy

)
= |T |−iy|T |BU |T |iy = |T |−iyU∗U |T |BU |T |iy.

By using the commutativity of T and B, we have ωC(φ(−1
2
+ iy)) = ωC(BU |T |).

Note that

sup
U∈U (M)

FU

(
−1

2

)
= sup

U∈U (M)

Log sup
y∈R

∣∣∣fU(−1

2
+ iy

)∣∣∣
= Log sup

y∈R
sup

U∈U (M)

∣∣∣fU(−1

2
+ iy

)∣∣∣
= Log sup

y∈R
sup

U∈U (M)

∣∣∣τ(CUφ
(
−1

2
+ iy

)
U∗

)∣∣∣
= Log sup

y∈R
ωC

(
φ
(
−1

2
+ iy

))
= LogωC

(
BU |T |

)
.

Similarly,

sup
U∈U (M)

FU

(1
2

)
= sup

U∈U (M)

Log sup
y∈R

∣∣∣fU(1
2
+ iy

)∣∣∣
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= Log sup
y∈R

sup
U∈U (M)

∣∣∣fU(1
2
+ iy

)∣∣∣
= Log sup

y∈R
sup

U∈U (M)

∣∣∣τ(CUφ
(1
2
+ iy

)
U∗

)∣∣∣
= Log sup

y∈R
ωC

(
φ
(1
2
+ iy

))
= LogωC

(
BU |T |

)
.

Then inequality (5.2) implies that for −1
2
≤ x ≤ 1

2
,

sup
U∈U (M)

FU(x) = sup
U∈U (M)

Log sup
y∈R

∣∣fU(x+ iy)
∣∣

= Log sup
y∈R

ωC

(
φ(x+ iy)

)
≤ LogωC(BT ),

which means that

ωC

(
φ(x+ iy)

)
≤ ωC(BT ), −1

2
≤ x ≤ 1

2
,−∞ < y < ∞,

and hence that

ωC

(
|T |λBU |T |1−λ

)
≤ ωC(BT ) for 0 ≤ λ ≤ 1. �

The proof of the following proposition is exactly the same as [11, Proposition 4],
so we state it as follows without a proof.

Proposition 5.2. Let M be a finite factor with a faithful normal trace τ , and let
T ∈ M be an invertible operator with polar decomposition T = U |T |. Let ωC(·)
be the C-numerical radius on M, and let f(x) be a polynomial. Then

ωC

(
f
(
|T |λU |T |1−λ

))
≤ ωC

(
f(T )

)
for 0 ≤ λ ≤ 1.

Applying Theorem 4.2 and Proposition 5.2, we obtain the following.

Proposition 5.3. Let M be a finite factor with a faithful normal trace τ . Assume
that T ∈ M is an invertible operator with polar decomposition T = U |T |,
and assume that f is a polynomial. Then for 0 ≤ λ ≤ 1, f(|T |λU |T |1−λ) is
in the weak operator closure of the set {

∑n
i=1 ziUif(T )U

∗
i | n ∈ N, (Ui)1≤i≤n ∈

U (M),
∑n

i=1 |zi| ≤ 1}.
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