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Abstract. We give sharp conditions for boundedness of Hausdorff operators
on certain modulation and Wiener amalgam spaces.

1. Introduction and preliminaries

The study of Hausdorff operators, which originated from classical summation
methods, has a long history in real and complex analysis. We refer the reader to
[1] and [13] for a survey with some historical background and recent developments
regarding Hausdorff operators.

For a suitable function Φ, one of the corresponding Hausdorff operators HΦ

can be defined by

HΦf(x) =

∫
Rn

Φ(y)f
( x

|y|

)
dy. (1.1)

Although there is a general definition, where f(A(y)x), with matrix A, stays in
place of f(x/|y|) in (1.1), we only consider the special case in this article. However,
we do not exclude the possibility that the general case will prove to be of interest
as well.

There are many known results about the boundedness of Hausdorff operators on
various function spaces (see [11], [12], [14], [15]). Unfortunately, sharp conditions
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on the boundedness of Hausdorff operators can be characterized in only a few
cases. (We refer the reader to [20] for a sharp characterization of the boundedness
of Hausdorff operators on Lp, and to [3] and [16] for a sharp characterization of
the boundedness of Hausdorff operators on Hardy spaces H1 and h1.) We note
that characterizations of the boundedness of Hausdorff operators have also been
established in other function spaces (see [1], [6]). However, we find that these
spaces have properties similar to those of Lp-spaces. Let us briefly describe this
fact in the following.

In order to prove the necessity of boundedness of Hausdorff operators on
Lp-spaces, we must choose a suitable function f and estimate ‖HΦf‖Lp from
below by some integral involving Φ. The space Lp is suitable for this lower esti-
mate, since for a function f , the norm ‖f‖Lp depends only on the absolute value
of f , and the Lp-norm has the scaling property ‖f(s·)‖Lp = s−n/p‖f‖Lp . We
note that the function spaces for which characterizations of the boundedness of
Hausdorff operators have so far been established all have the above two prop-
erties as Lp-spaces, so that the proof of necessity follows the same line as that
on Lp. However, in the case of frequency decomposition spaces, such as modula-
tion spaces or Wiener amalgam spaces, the situation becomes quite different and
complicated.

The modulation spaces M s
p,q were first introduced by Feichtinger [5] in 1983.

As function spaces associated with uniform decomposition (see [18]), modulation
spaces are closely linked to the topic of time-frequency analysis (see [7]) and have
been regarded as appropriate function spaces for the study of partial differential
equations (see [19]). We refer the reader to [4] for some motivations and historical
remarks. Readers are also directed to our recent work [8], [9] for details on the
properties of modulation spaces and Wiener amalgam spaces.

As a frequency decomposition space, the norm of f in a modulation space
cannot be completely determined by the absolute value of the function. On the
other hand, the scaling property of modulation spaces is not as simple as that of
Lp-spaces (see [17]). Thus, we are interested in determining sharp conditions for
boundedness of Hausdorff operators on modulation spaces, since in this case the
method used in the Lp case is not adoptable.

We also consider the boundedness of Hausdorff operators on Wiener amalgam
spacesW s

p,q. In general, a Wiener amalgam space can be represented byW (B,C),
where B and C serve as the local and global component, respectively. In this
article, we consider a special case W (F−1Ls

q, Lp), which is closely related to
modulation spaces. For notational simplicity, we also use W s

p,q to denote this
function space. Before stating the main theorems, we establish the following by
way of preparation.

We need to add some suitable assumptions on Φ. First, in order to establish
sharp conditions for the boundedness of Hausdorff operators, we assume that
Φ ≥ 0. In the proof of the necessity part, we must make some (pointwise) esti-
mates from below. That is why the assumption Φ ≥ 0 is necessary in most of the
known characterizations for the boundedness of Hausdorff operators on function
spaces (see [3], [16], [20]).
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Second, we make another assumption for Φ as follows:∫
B(0,1)

|y|nΦ(y) dy <∞, and

∫
B(0,1)c

Φ(y) dy <∞. (1.2)

The following remarks are intended not only to explain the reasonableness of
the assumption (1.2), but also to give some important properties of Hausdorff
operators under the assumption (1.2).

Remark 1.1 (Assumption (1.2) is weakest). In fact, (1.2) is the weakest assump-
tion ensuring that the Schwartz function can be mapped into a tempered distri-
bution by the Hausdorff operator HΦ.

On the one hand, if HΦf ∈ S ′, it must be locally integrable, and since Φ ≥ 0,
for a nonnegative function f we have

∞ >

∫
B(0,1)

∣∣HΦf(x)
∣∣ dx =

∫
B(0,1)

∫
Rn

Φ(y)f
(
x/|y|

)
dy dx

=

∫
Rn

Φ(y)

∫
B(0,1)

f
(
x/|y|

)
dx dy =

∫
Rn

Φ(y)|y|n
∫
B(0, 1

|y| )

f(x) dx dy

=

∫
B(0,1)

Φ(y)|y|n
∫
B(0, 1

|y| )

f(x) dx dy +

∫
Bc(0,1)

Φ(y)|y|n
∫
B(0, 1

|y| )

f(x) dx dy.

On the other hand, for any nonnegative Schwartz function f satisfying f = 1 on
B(0, 1), we have∫

B(0,1)

∣∣HΦf(x)
∣∣ dx ≥

∫
B(0,1)

Φ(y)|y|n
∫
B(0,1)

f(x) dx dy

+

∫
Bc(0,1)

Φ(y)|y|n
∫
B(0, 1

|y| )

dx dy

∼
∫
B(0,1)

Φ(y)|y|n dy +
∫
Bc(0,1)

Φ(y) dy.

This implies that ∫
B(0,1)

Φ(y)|y|n dy +
∫
Bc(0,1)

Φ(y) dy <∞.

Remark 1.2 (HΦf is well defined as a tempered distribution). If Φ satisfies (1.2),
then HΦf makes sense for all f ∈ S (Rn) for the reason that for x 6= 0,∣∣HΦf(x)

∣∣ ≤ (∫
B(0,1)

+

∫
Bc(0,1)

)
Φ(y)f

(
x/|y|

)
dy

≤ |x|−n

∫
B(0,1)

|y|nΦ(y)
(∣∣x/|y|∣∣nf(x/|y|))+ ‖f‖L∞

∫
Bc(0,1)

Φ(y) dy

. Cf (1 + |x|−n)
(∫

B(0,1)

|y|nΦ(y) dy +
∫
Bc(0,1)

Φ(y) dy
)
<∞
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and ∫
B(0,1)

∣∣HΦf(x)
∣∣ dx ≤

∫
B(0,1)

∫
Rn

Φ(y)
∣∣f(x/|y|)∣∣ dy dx

=

∫
B(0,1)

∫
B(0,1)

Φ(y)
∣∣f(x/|y|)∣∣ dy dx

+

∫
B(0,1)

∫
Bc(0,1)

Φ(y)
∣∣f(x/|y|)∣∣ dy dx

≤
∫
B(0,1)

Φ(y)

∫
Rn

∣∣f(x/|y|)∣∣ dx dy
+
∣∣B(0, 1)

∣∣ · ‖f‖L∞ ·
∫
Bc(0,1)

Φ(y) dy

≤
∫
B(0,1)

|y|nΦ(y) dy‖f‖L1

+
∣∣B(0, 1)

∣∣ · ‖f‖L∞ ·
∫
Bc(0,1)

Φ(y) dy

<∞.

Thus, for f ∈ S (Rn),HΦf is a locally integrable function with polynomial growth
at infinity. This implies thatHΦf is a tempered distribution for f ∈ S (Rn). Write

〈HΦf, g〉 =
∫
Rn

HΦf(x)g(x) dx,

where 〈u, f〉 is the action of a tempered distribution u on a Schwartz function f .

Remark 1.3 (HΦ : S → S ′ is continuous). For f, g ∈ S (Rn), we have that∫
Rn

∣∣f(x/|y|)g(x)∣∣ dx ≤ ‖f‖L∞‖g‖L1

and ∫
Rn

∣∣f(x/|y|)g(x)∣∣ dx ≤ ‖g‖L∞
∥∥f(·/|y|)∥∥

L1 ≤ |y|n‖g‖L∞‖f‖L1 .

It follows that∫
Rn

∣∣Φ(y)∣∣ ∫
Rn

∣∣f(x/|y|)g(x)∣∣ dx dy
.

(
‖f‖L1 + ‖f‖L∞

)(
‖g‖L1 + ‖g‖L∞

) ∫
Rn

∣∣Φ(y)∣∣min
{
1, |y|n

}
dy.

Thus, ∣∣〈HΦf, g〉
∣∣ = ∣∣∣∫

Rn

HΦf(x)g(x) dx
∣∣∣

≤
∫
Rn

∫
Rn

Φ(y)
∣∣f(x/|y|)∣∣ dyg(x) dx

≤
∫
Rn

Φ(y)

∫
Rn

∣∣f(x/|y|)∣∣ · ∣∣g(x)∣∣ dx dy
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.
(
‖f‖L1 + ‖f‖L∞

)(
‖g‖L1 + ‖g‖L∞

)
×

∫
Rn

∣∣Φ(y)∣∣min
{
1, |y|n

}
dy.

Using the definition of Schwartz function space, we have |〈HΦf, gl〉| → 0 for
f, gl ∈ S (Rn) satisfying that gl → 0 as l → ∞ in the topology of S .

Remark 1.4 (Fourier transform of HΦf). Define

H̃Φf(x) =

∫
Rn

Φ(y)|y|nf
(
|y|x

)
dy.

By a method similar to the one used before, we can verify that H̃Φf is a tempered

distribution and that the map H̃Φ : S → S ′ is continuous. Moreover, we have

ĤΦf = H̃Φf̂

in the distribution sense. Indeed, for f, g ∈ S (Rn), we have

〈ĤΦf, g〉 = 〈HΦf, ĝ〉 =
∫
Rn

∫
Rn

Φ(y)f
(
x/|y|

)
dyĝ(x) dx

=

∫
Rn

Φ(y)

∫
Rn

f
(
x/|y|

)
ĝ(x) dx dy

=

∫
Rn

Φ(y)

∫
Rn

̂f
(
·/|y|

)
(x)g(x) dx dy

=

∫
Rn

Φ(y)

∫
Rn

|y|nf̂
(
|y|x

)
g(x) dx dy

=

∫
Rn

∫
Rn

|y|nΦ(y)f̂
(
|y|x

)
dy g(x) dx

= 〈H̃Φf̂ , g〉.

Remark 1.5 (Adjoint operator of HΦf). We define the complex inner product

〈f |g〉 =
∫
Rn

f(x)g(x) dx.

The adjoint operator of HΦf is defined by

〈HΦf |g〉 = 〈f |H∗
Φg〉

for f, g ∈ S (Rn). By a direct calculation, we have

〈HΦf |g〉 =
∫
Rn

HΦf(x)g(x) dx

=

∫
Rn

∫
Rn

Φ(y)f
(
x/|y|

)
dyg(x) dx

=

∫
Rn

Φ(y)

∫
Rn

f
(
x/|y|

)
g(x) dx dy

=

∫
Rn

|y|nΦ(y)
∫
Rn

f(x)g
(
|y|x

)
dx dy
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=

∫
Rn

f(x)

∫
Rn

Φ(y)|y|ng
(
|y|x

)
dy dx

= 〈f |H̃Φg〉.

It follows that H∗
Φg = H̃Φg in the distribution sense.

We turn now to give definitions of modulation and Wiener amalgam spaces.
Let S := S (Rn) be the Schwartz space, and let S ′ := S ′(Rn) be the space
of tempered distributions. We define the Fourier transform Ff and the inverse
Fourier transform F−1f of f ∈ S (Rn) by

Ff(ξ) = f̂(ξ) =

∫
Rn

f(x)e−2πix·ξ dx,

F−1f(x) = f∨(x) =

∫
Rn

f(ξ)e2πix·ξ dξ.

The translation operator is defined as Tx0f(x) = f(x− x0), and the modulation
operator is defined as Mξf(x) = e2πiξ·xf(x), for x, x0, ξ ∈ Rn. Fix a nonzero
function φ ∈ S . The short-time Fourier transform of f ∈ S ′ with respect to the
window φ is given by

Vφf(x, ξ) = 〈f,MξTxφ〉,
and that can be written as

Vφf(x, ξ) =

∫
Rn

f(y)φ(y − x)e−2πiy·ξ dy

if f ∈ S . We give the (continuous) definition of modulation spaceMs
p,q as follows.

Definition 1.6. Let s ∈ R, 0 < p, q ≤ ∞. The (weighted) modulation space Ms
p,q

consists of all f ∈ S ′(Rn) such that the (weighted) modulation space norm

‖f‖Ms
p,q

=
∥∥∥∥Vφf(x, ξ)∥∥Lx,p

∥∥
Ls
ξ,q

=
(∫

Rn

(∫
Rn

∣∣Vφf(x, ξ)∣∣p dx)q/p

〈ξ〉sq dx
)1/q

is finite, with the usual modifications when p = ∞ or q = ∞. This definition is
independent of the choice of the window φ ∈ S .

Applying frequency-uniform localization techniques, one can give an alternative
definition of modulation spaces (see [18] for details). We denote by Qk the unit
cube with center at k. Then the family {Qk}k∈Zn constitutes a decomposition of
Rn. Let η ∈ S (Rn), η : Rn → [0, 1] be a smooth function satisfying η(ξ) = 1 for
|ξ|∞ ≤ 1/2 and η(ξ) = 0 for |ξ| ≥ 3/4. Let

ηk(ξ) = η(ξ − k), k ∈ Zn,

be a translation of η. Since ηk(ξ) = 1 in Qk, we have that
∑

k∈Zn ηk(ξ) ≥ 1 for all
ξ ∈ Rn. Denote

σk(ξ) = ηk(ξ)
(∑
l∈Zn

ηl(ξ)
)−1

, k ∈ Zn.



404 G. ZHAO, D. FAN, and W. GUO

It is easy to see that {σk}k∈Zn constitutes a smooth partition of the unity, and
σk(ξ) = σ(ξ−k). The frequency-uniform decomposition operators can be defined
by

�k := F−1σkF

for k ∈ Zn. Now, we give the (discrete) definition of modulation space M s
p,q.

Definition 1.7. Let s ∈ R, 0 < p, q ≤ ∞. The modulation space M s
p,q consists of

all f ∈ S ′ such that the (quasi)norm

‖f‖Ms
p,q

:=
(∑
k∈Zn

〈k〉sq‖�kf‖qp
)1/q

is finite. We write Mp,q := M0
p,q for short. We also recall that this definition is

independent of the choice of {σk}k∈Zn , and the definitions of Ms
p,q and M s

p,q are
equivalent (see [19]).

Definition 1.8. Let 0 < p, q ≤ ∞, s ∈ R. Given a window function φ ∈ S \ {0},
the Wiener amalgam space W s

p,q consists of all f ∈ S ′(Rn) such that the norm

‖f‖W s
p,q

=
∥∥∥∥Vφf(x, ξ)∥∥Ls

ξ,q

∥∥
Lx,p

=
(∫

Rn

(∫
Rn

|Vφf(x, ξ)|q〈ξ〉sq dξ
)p/q

dx
)1/p

is finite, with the usual modifications when p = ∞ or q = ∞. We write Wp,q :=
W 0

p,q for short.

Now, we state our main results as follows.

Theorem 1.9. Let 1 ≤ p, q ≤ ∞, (1/p−1/2)(1/q−1/p) ≥ 0, Φ be a nonnegative
function satisfying the basic assumption (1.2). Then HΦ is bounded onMp,q if and
only if ∫

Rn

(
|y|n/p + |y|n/q′

)
Φ(y) dy <∞.

Theorem 1.10. Let 1 ≤ p, q ≤ ∞, (1/q−1/2)(1/q−1/p) ≤ 0, Φ be a nonnegative
function satisfying the basic assumption (1.2). Then HΦ is bounded on Wp,q if and
only if ∫

Rn

(
|y|n/p + |y|n/q′

)
Φ(y) dy <∞.

Our article is organized as follows. In Section 2, we collect some basic properties
of modulation and Wiener amalgam spaces, and we give proofs of Theorems 1.9
and 1.10. We also adopt the following notation throughout this article. We use
X . Y to denote the statement that X ≤ CY , with a positive constant C
that may depend on n, p, but that might be different from line to line. The
notation X ∼ Y means the statement X . Y . X. We use X .λ Y to denote
X ≤ CλY , meaning that the implied constant Cλ depends on the parameter λ.
For a multi-index k = (k1, k2, . . . , kn) ∈ Zn, we denote |k|∞ := maxi=1,2,...,n |ki|
and 〈k〉 := (1 + |k|2)1/2.
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2. Proofs of main theorems

First, we list some basic properties about modulation spaces as follows.

Lemma 2.1 (Time-frequency symmetry). We have ‖F−1f‖Mp,q ∼ ‖f‖Wq,p ∼
‖Ff‖Mp,q .

Proof. In view of the fact that∣∣Vφf(x, ξ)∣∣ = ∣∣Vφ̂f̂(ξ,−x)∣∣,
the conclusion follows by the definition of modulation and Wiener amalgam
spaces. �

Lemma 2.2 (Dilation property of modulation space [17, Theorem 1.1]). Let
1 ≤ p, q ≤ ∞, (1/p− 1/2)(1/q − 1/p) ≥ 0. Set fλ(x) = f(λx). Then

‖fλ‖Mp,q . max{λ−n/p, λ−n/q′}‖f‖Mp,q .

Lemma 2.3 (Embedding relations between modulation and Lebesgue spaces [10,
Theorems 1.3–1.4]). The following embedding relations are right:

(1) Mp,q ↪→ Lp for 1/q ≥ 1/p ≥ 1/2;
(2) Lp ↪→Mp,q for 1/q ≤ 1/p ≤ 1/2.

Lemma 2.4 (Embedding relations betweenWiener amalgam and Lebesgue spaces
[2, Theorems 1.1–1.2]). The following embedding relations are right:

(1) Wp,q ↪→ Lp for 1/p ≥ 1/q ≥ 1/2;
(2) Lp ↪→ Wp,q for 1/p ≤ 1/q ≤ 1/2.

Lemma 2.5. Let 1 ≤ p, q ≤ ∞. We have

(1) ∣∣∣∫
Rn

f(x)ḡ(x) dx
∣∣∣ ≤ ‖f‖Mp′,q′

‖g‖Mp,q ,

(2) ∣∣∣∫
Rn

f(x)ḡ(x) dx
∣∣∣ ≤ ‖f‖Wq′,p′

‖g‖Wq,p .

Proof. By Lemma 2.1, we only give the proof of the first inequality. Denote η∗k =∑
l∈Zn:ηkηl 6=0 ηk and �∗

k = F−1η∗kF . By the definition of modulation spaces and
Plancherel’s equality, we get∣∣∣∫

Rn

f(x)ḡ(x) dx
∣∣∣ = ∣∣∣∫

Rn

f̂ ĝ dξ
∣∣∣ = ∣∣∣∫

Rn

∑
k∈Zn

σkf̂ ·
∑
l∈Zn

σlĝ dx
∣∣∣

=
∣∣∣∫

Rn

∑
k∈Zn

σkf̂ · σ∗
kĝ dx

∣∣∣ = ∣∣∣∫
Rn

∑
k∈Zn

�kf ·�∗
kg dx

∣∣∣
≤

∑
k∈Zn

∫
Rn

|�kf ·�∗
kg| dx ≤

∑
k∈Zn

‖�kf‖Lp′‖�∗
kg‖Lp

≤
(∑
k∈Zn

‖�kf‖q
′

Lp′

)1/q′(∑
k∈Zn

‖�∗
kg‖

q
Lp

)1/q

≤ ‖f‖Mp′,q′
‖g‖Mp,q ,
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where we use Hölder’s inequality in the last two lines and the fact that the
definition of modulation space is independent of the decomposition function. �

In order to make the proof clearer, we give the following technical proposi-
tion.

Proposition 2.6 (For technique). Let 1/2 ≤ 1/p ≤ 1/q ≤ 1, and let Φ be a
nonnegative function satisfying the basic assumption (1.2). Then

(1) if HΦ :Mp,q → Lp is bounded, then we have∫
Rn

|y|n/pΦ(y) dy <∞;

(2) if H∗
Φ : Wq,p → Lq is bounded, then we have∫

Rn

|y|n/q′Φ(y) dy <∞;

(3) if H∗
Φ :Mp,q → Lp is bounded, then we have∫

Rn

|y|n/p′Φ(y) dy <∞;

(4) if HΦ : Wq,p → Lq is bounded, then we have∫
Rn

|y|n/qΦ(y) dy <∞.

Proof. We only prove statements (1) and (2) since the other cases can be handled
similarly. Suppose that HΦ : Mp,q → Lp is bounded. Let ψ : Rn → [0, 1] be a
smooth bump function supported in the ball {ξ : |ξ| < 3

2
}, and let it be equal

to 1 on the ball {ξ : |ξ| ≤ 4
3
}. Let ρ(ξ) = ψ(ξ) − ψ(2ξ). Then ρ is a positive

smooth function supported in the annulus {ξ : 2
3
< |ξ| < 3

2
}, satisfying ρ(ξ) = 1

on a smaller annulus {ξ : 3
4
≤ |ξ| ≤ 4

3
}. Denote ρj(ξ) := ρ(ξ/2j). We have

supp ρj ⊂ {ξ : 2
3
· 2j ≤ |ξ| ≤ 3

2
· 2j} and ρj(ξ) = 1 on {ξ : 3

4
· 2j ≤ |ξ| ≤ 4

3
· 2j}.

Thus, we have supp
∑N

j=1 ρj(ξ) ⊂ {ξ : 4
3
≤ |ξ| ≤ 3

2
· 2N} and

∑N
j=1 ρj(ξ) = 1 on

{ξ : 3
2
≤ |ξ| ≤ 4

3
· 2N}.

Take ϕ to be a nonnegative smooth function satisfying that supp ϕ̂ ⊂ B(0, 1/2),

ϕ(0) = 1. Choose fN(x) = (
∑N+1

j=0 ρj(x) · |x|−n/p) ∗ ϕ. So we have

supp f̂N ⊂ B(0, 1/2) and fN(x) &
N∑
j=1

ρj(x) · |x|−n/p. (2.1)

In the above, the previous inclusion relation follows from the support condition
of ϕ̂. We interpret the latter inequality. We only need to prove it when the right-
hand side is nonzero, that is, x ∈ {4

3
≤ |x| ≤ 3

2
·2N}. For the nonnegative function

ϕ satisfying ϕ(0) = 1, there exists a positive constant δ < min{4/3, 1/12} such
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that ϕ(x) > 1/2 when |x| < δ. By the triangle inequality and the properties of
ϕ, we have that

fN(x) =
(N+1∑

j=0

ρj(x) · |x|−n/p
)
∗ ϕ

=

∫
Rn

(N+1∑
j=0

ρj(x− y) · |x− y|−n/p
)
ϕ(y) dy

&
∫

4
3
≤|x−y|≤ 3

2
·2N

|y|<δ

N+1∑
j=0

ρj(x− y) · |x|−n/p dy &
N∑
j=1

ρj(x) · |x|−n/p,

so we prove (2.1). We have that

‖HΦfN‖Lp =
∥∥∥∫

Rn

Φ(y)fN
(
x/|y|

)
dy

∥∥∥
Lp

&
∥∥∥∫

Rn

Φ(y)|y|n/p ·
N∑
j=1

ρj
(
x/|y|

)
· |x|−n/p dy

∥∥∥
Lp

≥
∥∥∥∫

B(0, 2
3
·2M )\B(0, 3

4
·2−M )

Φ(y)|y|n/p ·
N∑
j=1

ρj
(
x/|y|

)
· |x|−n/p dy

∥∥∥
Lp

≥
∥∥∥∫

B(0, 2
3
·2M )\B(0, 3

4
·2−M )

Φ(y)|y|n/p · χ{2M<|x|<2N−M}(x) · |x|−n/p dy
∥∥∥
Lp

=

∫
B(0, 2

3
·2M )\B(0, 3

4
·2−M )

Φ(y)|y|n/p dy ·
∥∥|x|−n/pχ{2M<|x|<2N−M}(x)

∥∥
Lp

&
∫
B(0, 2

3
·2M )\B(0, 3

4
·2−M )

Φ(y)|y|n/p dy · (lg 2N−2M)1/p,

where we use the fact that
∑N

j=1 ρj(x/|y|) = 1 for y ∈ B(0, 2
3
· 2M) \B(0, 3

4
· 2−M)

and x ∈ B(0, 2M) \ B(0, 2N−M). On the other hand, observing that supp f̂N ⊂
B(0, 1/2), we have

‖fN‖Mp,q =
( ∑
σk f̂N 6=0
k∈Zn

∥∥F−1(σkf̂N)
∥∥q

Lp

)1/q

.
( ∑
σk f̂N 6=0
k∈Zn

‖fN‖qLp

)1/q

. ‖fN‖Lp .
∥∥∥N+1∑

j=0

ρj(x) · |x|−n/p
∥∥∥
Lp

∼ (ln 2N)1/p.

Using the boundedness of HΦ and the above estimates for HΦfN and fN , we have
that

‖HΦ‖Mp,q→Lp ≥ ‖HΦfN‖Lp

‖fN‖Mp,q

&
∫
B(0, 2

3
·2M )\B(0, 3

4
·2−M )

Φ(y)|y|n/p dy
( lg 2N−2M

lg 2N

)1/p

.
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Letting N → ∞, we have∫
B(0, 2

3
·2M )\B(0, 3

4
·2−M )

Φ(y)|y|n/p dy . ‖HΦ‖Mp,q→Lp .

By the arbitrariness of M , we let M → ∞ and obtain that
∫
Rn Φ(y)|y|n/p dy .

‖HΦ‖Mp,q→Lp .
Now we turn to give the proof for the second conclusion. Suppose that H∗

Φ :
W q,p → Lq is bounded. As in the proof of conclusion (1), we take gN(x) =∑N

j=1 ρj(x) · |x|−n/q. A direction calculation yields that

‖H∗
ΦgN‖Lq =

∥∥∥∫
Rn

Φ(y)|y|ngN
(
|y|x

)
dy

∥∥∥
Lq

=
∥∥∥∫

Rn

Φ(y)|y|n/q′ ·
N∑
j=1

ρj
(
|y|x

)
· |x|−n/q dy

∥∥∥
Lp

≥
∥∥∥∫

B(0,4/3·2M )\B(0,3/2·2−M )

Φ(y)|y|n/q′ ·
N∑
j=1

ρj
(
|y|x

)
· |x|−n/q dy

∥∥∥
Lq

≥
∫
B(0,4/3·2M )\B(0,3/2·2−M )

Φ(y)|y|n/q′ dy ·
∥∥|x|−n/qχ{2M<|x|<·2N−M}(x)

∥∥
Lq

&
∫
B(0,4/3·2M )\B(0,3/2·2−M )

Φ(y)|y|n/q′ dy · (lg 2N−2M)1/q.

On the other hand,∥∥F−1(σkgN)
∥∥
Lp =

∥∥∥F−1
(
σk

N∑
j=1

ρj(x) · |x|−n/q
)∥∥∥

Lp

. 〈k〉−n/q
∥∥∥F−1

(
σk

N∑
j=1

ρj(x)
)∥∥∥

Lp

≤ 〈k〉−n/q‖F−1σk‖Lp ·
∑

1≤j≤N :σkρj 6=0

∥∥F−1
(
ρj(x)

)∥∥
L1

. 〈k〉−n/q.

Using Lemma 2.1, we obtain that

‖gN‖Wq,p = ‖F−1gN‖Mp,q =
(∑
k∈Zn

∥∥F−1(σkgN)
∥∥q

Lp

)1/q

.
( ∑
|k|<2N+1

k∈Zn

〈k〉−n
)1/q

∼ (lg 2N)1/q.

We deduce that

‖H∗
Φ‖Wq,p→Lq ≥ ‖H∗

ΦfN‖Lq

‖fN‖Wq,p

&
∫
B(0, 4

3
·2M )\B(0, 3

2
·2−M )

Φ(y)|y|n/q′ dy
( lg 2N−2M

lg 2N

)1/q

.
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Letting N → ∞, we have∫
B(0, 4

3
·2M )\B(0, 3

2
·2−M )

Φ(y)|y|n/q′ dy . ‖H∗
Φ‖Wq,p→Lq .

By the arbitrariness of M , we let M → ∞ and obtain that
∫
Rn Φ(y)|y|n/q

′
dy .

‖H∗
Φ‖Wq,p→Lq . �

Next, we establish the following two propositions for reduction.

Proposition 2.7 (For reduction of modulation space). Let 1/2 ≤ 1/p ≤ 1/q ≤ 1,
and let Φ be a nonnegative function satisfying (1.2). If the Hausdorff operator HΦ

is bounded on Mp,q, we have that

(1) HΦ :Mp,q → Lp is bounded,
(2) H∗

Φ : Wq,p → Lq is bounded.

Proof. The first conclusion can be deduced by the embedding relation Mp,q ↪→
Lp (see Lemma 2.3) directly. We turn to prove the second conclusion. For any
Schwartz function f , by the property of HΦ and Lemma 2.1, we have ‖f‖Mp,q =

‖f̂‖Wq,p and

‖HΦf‖Mp,q = ‖ĤΦf‖Wq,p = ‖H̃Φf̂‖Wq,p = ‖H∗
Φf̂‖Wq,p .

Thus, if HΦ is bounded on Mp,q, we have

‖H∗
Φf̂‖Wq,p . ‖f̂‖Wq,p .

The embedding relation Wq,p ↪→ Lq then yields that

‖H∗
Φf‖Lq . ‖f‖Wq,p

for all f ∈ S (Rn). �

Proposition 2.8 (For reduction of Wiener amalgam space). Let 1/2 ≤ 1/q ≤
1/p ≤ 1, and let Φ be a nonnegative function satisfying (1.2). If the Hausdorff
operator HΦ is bounded on Wp,q, we have that

(1) HΦ : Wp,q → Lp is bounded,
(2) H∗

Φ :Mq,p → Lq is bounded.

Proof. The first conclusion can be deduced by the embedding relation Wp,q ↪→
Lp (see Lemma 2.4) directly. We turn to prove the second conclusion. For any
Schwartz function f , by the property of HΦ and Lemma 2.1, we have ‖f‖Wp,q =

‖f̂‖Mq,p and

‖HΦf‖Wp,q = ‖ĤΦf‖Mq,p = ‖H̃Φf̂‖Mq,p = ‖H∗
Φf̂‖Mq,p .

Thus, if HΦ is bounded on Wp,q, we have

‖H∗
Φf̂‖Mq,p . ‖f̂‖Mq,p .

The embedding relation Mq,p ↪→ Lq then yields that

‖H∗
Φf‖Lq . ‖f‖Mq,p

for all f ∈ S (Rn). �
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We are now ready to prove Theorem 1.9.

Proof of Theorem 1.9. We divide this proof into two parts.
“IF” PART : Using the Minkowski inequality, we deduce that

‖HΦf‖Mp,q .
∥∥∥∫

Rn

Φ(y)f
(
x/|y|

)
dy

∥∥∥
Mp,q

.
∫
Rn

Φ(y)
∥∥f(x/|y|)∥∥

Mp,q
dy.

Recalling the dilation properties of modulation space (see Lemma 2.2), we obtain
that

‖HΦf‖Mp,q .
∫
Rn

Φ(y)max
{
|y|n/p, |y|n/q′

}
dy‖f‖Mp,q

.
∫
Rn

(
|y|n/p + |y|n/q′

)
Φ(y) dy‖f‖Mp,q .

This implies the boundedness of HΦ on Mp,q.
“ONLY IF” PART : Suppose that HΦ is bounded on Mp,q. If 1/2 ≤ 1/p ≤

1/q ≤ 1, then the conclusion can be verified directly by Propositions 2.6 and 2.7.
We only need to deal with the case in which 1/q ≤ 1/p ≤ 1/2. We use a dual

argument to deal with this case. Recalling that

〈H∗
Φf |g〉 = 〈f |HΦg〉

for all f, g ∈ S (Rn), by Lemmas 2.5 and 2.3 we deduce that∣∣〈H∗
Φf |g〉

∣∣ = ∣∣〈f |HΦg〉
∣∣

≤ ‖f‖Mp′,q′
‖HΦg‖Mp,q

. ‖f‖Mp′,q′
‖g‖Mp,q

. ‖f‖Mp′,q′
‖g‖Lp ,

which implies that

‖H∗
Φf‖Lp′ . ‖f‖Mp′,q′

(2.2)

for all f ∈ S (Rn). In addition, by the boundedness of HΦ on Mp,q, we use
Lemma 2.1 to deduce that H∗

Φ is also bounded on Wq,p. Thus, by Lemmas 2.5
and 2.4 we have ∣∣〈HΦf |g〉

∣∣ = ∣∣〈f |H∗
Φg〉

∣∣
≤ ‖f‖Wq′,p′

‖H∗
Φg‖Wq,p

. ‖f‖Wq′,p′
‖g‖Wq,p

. ‖f‖Wq′,p′
‖g‖Lq ,

which implies that

‖HΦf‖Lq′ . ‖f‖Wq′,p′
(2.3)

for all f ∈ S (Rn).
Combining (2.2) and (2.3), and observing that 1/2 ≤ 1/p′ ≤ 1/q′, we use

Proposition 2.6 to get the conclusion. �
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Proof of Theorem 1.10. We divide this proof into two parts.
“IF” PART : Using Lemma 2.1 and the Minkowski inequality, we deduce that

‖HΦf‖Wp,q ∼ ‖ĤΦf‖Mq,p ∼ ‖H∗
Φf̂‖Mq,p ∼

∥∥∥∫
Rn

Φ(y)|y|nf̂
(
|y|x

)
dy

∥∥∥
Mq,p

.
∫
Rn

Φ(y)|y|n
∥∥f̂(|y|x)∥∥

Mq,p
dy.

Recalling the dilation properties of modulation space (see Lemma 2.2), we obtain
that

‖HΦf‖Wp,q .
∫
Rn

Φ(y)|y|nmax
{
|y|−n/q, |y|−n/p′

}
dy‖f̂‖Mq,p

.
∫
Rn

(
|y|n/p + |y|n/q′

)
Φ(y) dy‖f‖Wp,q .

This implies the boundedness of HΦ on Wp,q.
“ONLY IF” PART : Suppose that HΦ is bounded on Wp,q. If 1/2 ≤ 1/q ≤

1/p ≤ 1, then the conclusion can be verified directly by Proposition 2.6 and 2.8.
For the case 1/p ≤ 1/q ≤ 1/2, the desired conclusion follows by a dual argument

as in the proof of Theorem 1.9. �

Remark 2.9. For various technical reasons, our main theorems only characterize
the boundedness of Hausdorff operators on Mp,q and Wp,q in some special cases.
Our theorems remain an open problem for the characterization of Hausdorff oper-
ators on the full range 1 ≤ p, q ≤ ∞.
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15. E. Liflyand and F. Móricz, The Hausdorff operator is bounded on the real Hardy space
H1(R), Proc. Amer. Math. Soc. 128 (2000), no. 5, 1391–1396. Zbl 0951.47038. MR1641140.
DOI 10.1090/S0002-9939-99-05159-X. 398

16. J. Ruan and D. Fan, Hausdorff operators on the power weighted Hardy spaces, J. Math.
Anal. Appl. 433 (2016), no. 1, 31–48. Zbl 1331.42018. MR3388780. DOI 10.1016/
j.jmaa.2015.07.062. 399

17. M. Sugimoto and N. Tomita, The dilation property of modulation spaces and their inclusion
relation with Besov spaces, J. Funct. Anal. 248 (2007), no. 1, 79–106. Zbl 1124.42018.
MR2329683. DOI 10.1016/j.jfa.2007.03.015. 399, 405

18. H. Triebel, Modulation spaces on the Euclidean n-space, Z. Anal. Anwend. 2 (1983), no. 5,
443–457. Zbl 0521.46026. MR0725159. DOI 10.4171/ZAA/79. 399, 403

19. B. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small
rough data, J. Differential Equations 232 (2007), no. 1, 36–73. Zbl 1121.35132. MR2281189.
DOI 10.1016/j.jde.2006.09.004. 399, 404

20. X. Wu and J. Chen, Best constants for Hausdorff operators on n-dimensional product spaces,
Sci. China Math. 57 (2014), no. 3, 569–578. Zbl 1304.42053. MR3166239. DOI 10.1007/
s11425-013-4725-7. 399

1School of Applied Mathematics, Xiamen University of Technology, Xiamen,
361024, People’s Republic of China.

E-mail address: guopingzhaomath@gmail.com

2Department of Mathematics, University of Wisconsin–Milwaukee, Milwaukee,
WI 53201, USA.

E-mail address: fan@uwm.edu

3School of Mathematics and Information Sciences, Guangzhou University,
Guangzhou, 510006, People’s Republic of China.

E-mail address: weichaoguomath@gmail.com

http://www.emis.de/cgi-bin/MATH-item?0966.42020
http://www.ams.org/mathscinet-getitem?mr=1843717
https://doi.org/10.1007/978-1-4612-0003-1
http://www.emis.de/cgi-bin/MATH-item?06715583
http://www.ams.org/mathscinet-getitem?mr=3646304
https://doi.org/10.1016/j.jfa.2017.04.004
http://www.emis.de/cgi-bin/MATH-item?06769135
http://www.ams.org/mathscinet-getitem?mr=3691997
https://doi.org/10.1090/proc/13614
http://www.emis.de/cgi-bin/MATH-item?1232.46033
http://www.ams.org/mathscinet-getitem?mr=2776566
https://doi.org/10.1016/j.jfa.2011.02.015
https://doi.org/10.1016/j.jfa.2011.02.015
http://www.emis.de/cgi-bin/MATH-item?1143.47023
http://www.ams.org/mathscinet-getitem?mr=2378435
https://doi.org/10.1017/S1446788700036399
https://doi.org/10.1017/S1446788700036399
http://www.emis.de/cgi-bin/MATH-item?1199.47155
http://www.ams.org/mathscinet-getitem?mr=2487949
http://www.emis.de/cgi-bin/MATH-item?1328.47039
http://www.ams.org/mathscinet-getitem?mr=3382905
http://www.emis.de/cgi-bin/MATH-item?1184.42002
http://www.ams.org/mathscinet-getitem?mr=2539556
https://doi.org/10.4064/sm194-3-4
https://doi.org/10.4064/sm194-3-4
http://www.emis.de/cgi-bin/MATH-item?0951.47038
http://www.ams.org/mathscinet-getitem?mr=1641140
https://doi.org/10.1090/S0002-9939-99-05159-X
http://www.emis.de/cgi-bin/MATH-item?1331.42018
http://www.ams.org/mathscinet-getitem?mr=3388780
https://doi.org/10.1016/j.jmaa.2015.07.062
https://doi.org/10.1016/j.jmaa.2015.07.062
http://www.emis.de/cgi-bin/MATH-item?1124.42018
http://www.ams.org/mathscinet-getitem?mr=2329683
https://doi.org/10.1016/j.jfa.2007.03.015
http://www.emis.de/cgi-bin/MATH-item?0521.46026
http://www.ams.org/mathscinet-getitem?mr=0725159
https://doi.org/10.4171/ZAA/79
http://www.emis.de/cgi-bin/MATH-item?1121.35132
http://www.ams.org/mathscinet-getitem?mr=2281189
https://doi.org/10.1016/j.jde.2006.09.004
http://www.emis.de/cgi-bin/MATH-item?1304.42053
http://www.ams.org/mathscinet-getitem?mr=3166239
https://doi.org/10.1007/s11425-013-4725-7
https://doi.org/10.1007/s11425-013-4725-7
mailto:guopingzhaomath@gmail.com
mailto:fan@uwm.edu
mailto:weichaoguomath@gmail.com

	1 Introduction and preliminaries
	2 Proofs of main theorems
	Acknowledgments
	References
	Author's addresses

