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Abstract. In this article, the authors first give a Littlewood–Paley charac-
terization for inhomogeneous Lipschitz spaces of variable order with the help
of inhomogeneous Calderón identity and almost-orthogonality estimates. As
applications, the boundedness of inhomogeneous Calderón–Zygmund singular
integral operators of order (ε, σ) on these spaces has been presented. Finally,
we note that a class of pseudodifferential operators Ta ∈ OpS0

1,1 are continuous
on the inhomogeneous Lipschitz spaces of variable order as a corollary. We may
observe that those operators are not, in general, continuous in L2.

1. Introduction and statement of main results

The classical Lipschitz spaces Ċη play an important role in harmonic analysis
and partial differential equations. It is well known that the spaces Ċη can be char-
acterized via Littlewood–Paley decomposition (see [7] and [18]). Much research
has been carried out on Lipschitz spaces and their applications. One direction is
variable-exponent Lipschitz spaces (see [1], [2], [15]). Another direction (see [8])
is the study of multiparameter Lipschitz spaces. (For more about the Lipschitz
spaces or so called Hölder–Zygmund spaces, see also [3], [11], [12], [14], [16].)

In many applications, as we know, use of the homogeneous spaces Ċs rather
than the inhomogeneous Hölder spaces Cs = Ċs ∩ L∞ is not successful. For
instance, the continuity property of pseudodifferential operators T ∈ OpSm1,0
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(whose symbols fulfill |∂αξ ∂βxσ(x, ξ)| ≤ C(α, β)(1 + |ξ|e)m−|α|) in the the inhomo-

geneous Hölder spaces Cs is considered in [16]. Also, T ∈ OpS0
1,1 (whose symbols

satisfy |∂αξ ∂βxσ(x, ξ)| ≤ C(α, β)(1 + |ξ|e)|β|−|α|) is continuous on inhomogeneous
Hölder–Zygmund spaces Cs (see [13]). Moreover, Stein and Yung in [17] showed
that a class of pseudodifferential operators preserve the isotropic and nonisotropic
Lipschitz spaces.

On the other hand, due to its application to partial differential equations and
the calculus of variations, variable-exponent function space theory has attracted
much attention (see ([4], [6]). In many applications, a crucial step has been to show
that the classical operators of harmonic analysis, such as maximal operators, sin-
gular integrals, and fractional integrals, are bounded on variable-exponent func-
tion spaces. So we will mainly focus on the boundedness of a class of Calderón–
Zygmund singular integral operators on inhomogeneous Hölder–Zygmund spaces
of variable order.

The purpose of this work is to characterize inhomogeneous Hölder–Zygmund
spaces via the Littlewood–Paley theory and to prove that inhomogeneous
Calderón–Zygmund singular integral operators are bounded on these spaces. If
these results are established at once, we will see that pseudodifferential operators
Ta ∈ OpS0

1,1 are continuous on the inhomogeneous Hölder–Zygmund spaces. We

also observe that those operators are not, in general, continuous in L2.
Before we state our results, we first recall some notions concerning variable-

exponent and Hölder–Zygmund spaces. For a measurable subset E ⊂ Rn, we
denote p−(E) = infx∈E p(x) and p+(E) = supx∈E p(x). Especially, we denote
p− = p−(Rn) and p+ = p+(Rn). Let p(·): Rn → (0,∞) be a measurable function
with 0 < p− ≤ p+ <∞ and let P0 be the set of all these p(·).

We say that p(·) ∈ LH0 if p(·) satisfies∣∣p(x)− p(y)
∣∣ ≤ C

− log(|x− y|)
, |x− y| ≤ 1

2
.

Throughout this article we use C to denote positive constants, whose value
may vary from line to line. Constants with subscripts, such as C1, do not change
in different occurrences. We denote by f ∼ g the fact that there exists a constant
C > 0 independent of the main parameters such that C−1g < f < Cg. We also
denote that

∆uf(x) = f(x+u)−f(x), ∆2
uf(x) = ∆u(∆u) = f(x+2u)+f(x)−2f(x+u).

Now we recall the definition of inhomogeneous Hölder–Zygmund space of vari-
able order. In [1], Almeida and Hästö generalized the definition of Hölder–
Zygmund spaces to the variable-order setting for 0 < α− ≤ α+ ≤ 1 (see also
[2], [15]).

Definition 1.1. Let α(·) : Rn → (0,∞). The inhomogeneous Hölder space of
variable order Hα(·) is defined to be the space of all bounded uniformly continuous
f defined on Rn in what follows. When 0 < α− ≤ α+ < 1,

‖f‖
H

α(·)
0

:= ‖f‖∞ + sup
x∈Rn,u6=0

|f(x− u)− f(x)|
|u|α(x−u)

<∞.
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When m < α− ≤ α+ < m+1, we write α(x) = m+r(x), where m is an integer
and 0 < r− ≤ r− < 1. Here f ∈ Hα(·) means that f is a Cm function such that

‖f‖
H

α(·)
m

:=
∑
|β|≤m

‖∂βf‖∞ +
∑
|β|=m

sup
x∈Rn,u6=0

|∂βf(x− u)− ∂βf(x)|
|u|r(x−u)

<∞.

When 0 < α− ≤ α+ < ∞ and α(x) 6= integer, we have α(x) =
∑[α+]

i=[α−] αi(x),

where αi = αχi and χi(x) = 1 for α(x) ∈ (i, i+1); otherwise χi(x) = 0. f ∈ Hα(·)

means that f is a C[α+] function such that

‖f‖Hα(·) :=

[α+]∑
m=[α−]

‖f‖
H

α(·)
m

<∞.

The inhomogeneous Zygmund space of variable order Λα(·) is defined analo-
gously but with the norm given as follows. When 0 < α− ≤ α+ ≤ 1,

‖f‖
Λ
α(·)
0

:= ‖f‖∞ + sup
x∈Rn,u 6=0

|f(x+ u) + f(x− u)− 2f(x)|
|u|α(x−u)

;

When m < α− ≤ α+ ≤ m+1, we write α(x) = m+ r(x), where m is integer and
0 < r− ≤ r+ ≤ 1:

‖f‖
Λ
α(·)
m

:=
∑
|β|≤m

‖∂βf‖∞ +
∑
|β|=m

sup
x∈Rn,u6=0

|∂βf(x+ u) + ∂βf(x− u)− 2∂βf(x)|
|u|r(x−u)

.

When 0 < α− ≤ α+ < ∞, we have α(x) =
∑[α+]

i=[α−] αi(x), where αi = αχi and

χi(x) = 1 for α(x) ∈ (i, i+ 1]; otherwise χi(x) = 0:

‖f‖Λα(·) :=

[α+]∑
m=[α−]

‖f‖
Λ
α(·)
m
.

Next we give the Littlewood–Paley characterization for Hα(·) and Λα(·). Let ψ̂
be the Fourier transform of ψ ∈ S. For this purpose, let ψ,Ψ ∈ S(Rn) with

supp ψ̂(ξ) ⊂
{
ξ : 1/2 < |ξ| ≤ 2

}
,

and Ψ with ∣∣Ψ̂(ξ)
∣∣ ≥ c > 0, supp Ψ̂ ⊂

{
|ξ| ≤ 2

}
satisfying ∣∣Ψ̂(ξ)

∣∣2 + ∞∑
j=1

∣∣ψ̂(2−jξ)∣∣2 = 1 for all ξ ∈ Rn.

We set ψj(x) = 2jnψ(2jx) and Ψ(x) =: ψ0(x).
For f ∈ L2, we have the inhomogeneous continuous Calderón identity

f =
∞∑
j=0

ψj ∗ ψj ∗ f
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via taking the Fourier transform, where the series converges in its L2(Rn) norm.
Before we state the result, we note that in [1], Almeida and Hästö have proved

that B
α(·)
∞,∞ = Hα(·)(α < 1) and B

α(·)
∞,∞ = Λα(·)(α+ ≤ 1) with the help of the

so-called Peetre maximal function.

Theorem 1.2. Suppose that α(·) ∈ LH0 ∩P0. Note that f ∈ Hα(·) if and only if
f ∈ S ′ and ∣∣ψj ∗ f(x)∣∣ ≤ C2−jα(x)

for any x such that α(x) 6= integer; f ∈ Λα(·) if and only if f ∈ S ′ and∣∣ψj ∗ f(x)∣∣ ≤ C2−jα(x)

for any x ∈ Rn. Furthermore,

‖f‖Hα(·) ∼ sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣, ‖f‖Λα(·) ∼ sup

j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣.

We will state that inhomogeneous Calderón–Zygmund singular integral oper-
ators of order (ε, σ) are bounded operators on the new inhomogeneous Hölder–
Zygmund spaces.

First, we recall some definitions. For η ∈ (0, 1], let Ċη be the set of all continuous
functions f on Rn having compact support such that

‖f‖Ċη = sup
x 6=y

|f(x)− f(y)|
|x− y|η

<∞.

Endow Ċη with the natural topology and let (Ċη)′ be its dual space.
The following definition is the classical inhomogeneous Calderón–Zygmund sin-

gular integral kernel which was first introduced by Meyer and Coifman in [13].
For the framework of this kernel on spaces of homogeneous type, the reader is
referred to [9].

Definition 1.3. A continuous complex-valued function K on Ω = {(x, y) ∈ Rn ×
Rn : x 6= y} is called an inhomogeneous Calderón–Zygmund kernel of type (ε, σ)
if there exist constants ε ∈ (0, 1], σ > 0 and C1 > 0 such that

(i) |K(x, y)| ≤ C1
1

|x−y|n ,

(ii) |K(x, y)| ≤ C1
1

|x−y|n+δ for |x− y| ≥ 1,

(iii) |K(x, y)−K(x′, y)| ≤ C1
|x−x′|ε
|x−y|n+ε for |x− x′| ≤ 1

2
|x− y|.

We now recall inhomogeneous Calderón–Zygmund singular integral operators.

Definition 1.4. A continuous linear operator T : Ċη → (Ċη)
′
is an inhomogeneous

Calderón–Zygmund singular integral operator if there exists an inhomogeneous
kernel K such that

〈Tf, g〉 =
∫ ∫

K(x, y)f(y)g(x) dx dy

for all f, g ∈ Ċη with disjoint supports.

The following definition is the classical weak boundedness property.
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Definition 1.5 ([5, p.5]). A Calderón–Zygmund singular integral operator T is
said to have the weak boundedness property, if there exist constants C2 > 0 and
η ∈ (0, 1] such that for all x0 ∈ Rn and r > 0,∣∣〈Tf, g〉∣∣ ≤ C2r

n+2η‖g‖Ċη‖f‖Ċη ,

where f, g ∈ Ċη with supp f, g ⊂ {x : |x − x0| ≤ r}, ‖f‖∞ ≤ 1, ‖g‖∞ ≤ 1,
‖f‖Ċη ≤ r−η, and ‖g‖Ċη ≤ r−η, and we denote this by T ∈ WBP .

Theorem 1.6. Suppose that T is the inhomogeneous Calderón–Zygmund singular
integral operator and the kernel satisfying Definition 1.3. Also assume that T (1) =
0, T ∈ WBP , α(·) ∈ LH0, and 0 < α− ≤ α+ < ε ≤ 1. Then T can be extended to
a bounded linear operator on Hα(·) and Λα(·).

2. Proof of Theorem 1.2

Proof. We only give the proof for Λα(·); the proof for Hα(·) is similar. First, it is

easy to see that f ∈ S ′, when f ∈ Λ
α(·)
0 with 0 < α− ≤ α+ ≤ 1. Next we will

estimate the term |ψj ∗ f(x)|. Now we consider the following two cases.
When j = 0, we have∣∣ψ0 ∗ f(x)

∣∣ = ∫ ∣∣ψ0(u)
∣∣∣∣f(x− u)

∣∣ du ≤ C‖f‖∞ ≤ C‖f‖Λα
0 (·).

Applying LH0 condition of α(·) yields |u|α(x−u) ≤ C|u|α(x) for |u| < 1 (see [1]).
When j ≥ 1, we may assume that ψj is a radial function, and then applying

the cancellation conditions on ψj, we have∣∣ψj ∗ f(x)∣∣ = ∣∣∣∫ ψj(u)
[
f(x− u)− f(x)

]
du

∣∣∣
=

1

2

∣∣∣∫ ψj(u)
[
f(x+ u) + f(x− u)− 2f(x)

]
du

∣∣∣
≤ C

∫
|u|<1

∣∣∆2
uf(x− u)

∣∣∣∣ψj(u)∣∣ du+ C

∫
|u|≥1

∣∣∆2
uf(x− u)

∣∣∣∣ψj(u)∣∣ du
≤ C‖f‖Λα

0 (·)

{∫
|u|<1

|u|α(x−u)
∣∣ψj(u)∣∣ du+ ∫

|u|≥1

|u|α(x−u)
∣∣ψj(u)∣∣ du}

≤ C2−jα(x)‖f‖Λα
0 (·)

{∫ [
|u|α−

+ |u|α+]∣∣ψ(u)∣∣ du}
≤ C2−jα(x)‖f‖Λα

0 (·).

Thus, we have obtained

sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣ ≤ C‖f‖Λα

0 (·).

Next we will consider the case where m < α− ≤ α+ ≤ m + 1,m ∈ Z+. First,
we consider the case j = 0,∣∣ψ0 ∗ f(x)

∣∣ = ∫ ∣∣ψ0(u)
∣∣∣∣f(x− u)

∣∣ du ≤ C‖f‖∞ ≤ C
∑
|β|≤m

‖∂βf‖∞ ≤ C‖f‖Λα
m(·).
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For the case j > 0, we now write |β| = m, ̂̃ψj(ξ) = (2πiξ)βψ̂j(ξ)

(4π2|ξ|2)m . Then ψj ∗ f =

∂βψ̃j∗f = (−1)mψ̃j∗∂βf . Notice that every 2jmψ̃j satisfies the similar smoothness,
size and cancellation conditions as ψj. Therefore, the similar argument yields that
for any j > 0, |β| = m, and x ∈ Rn:∣∣ψj ∗ f(x)∣∣ = ∣∣2−jm(2jmψ̃j ∗ ∂βf(x))∣∣

≤ C2−jm2−jr(x)‖∂βf‖
Λ
r(·)
0
.

That is,

sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣ ≤ C‖f‖

Λ
α(·)
m
.

Note that α(·) ∈ LH0 implies that α(·) is uniformly continuous. Let Ωi be the
domain of αi(x) 6= 0. Then we can get

⋃
j Ii,j = Ωi and αi(·) is continuous on

every Ii,j.
When 0 < α− ≤ α+ ≤ ∞, since α(·) ∈ LH0 implies that all αi(·) ∈ LH0(Ii,j)

for [α−] ≤ i ≤ [α+],

‖f‖Λα(·) :=

[α+]∑
m=[α−]

‖f‖
Λ
α(·)
m

=

[α+]∑
m=[α−]

∑
|β|=m

‖∂βf‖
Λ
r(·)
0

is a finite sum, so we are done.
To prove the converse statement, we first show that every distribution f ∈ S ′

that fulfills

sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣ ≤ C

coincides with a bounded continuous function in Rn. As mentioned, f(x) =∑
j≥0 ψj ∗ ψj ∗ f(x) in S ′. Observe that∣∣ψj ∗ ψj ∗ f(x)∣∣ ≤ ‖ψj ∗ f‖∞‖ψj‖L1 ≤ C

(
sup

j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣)2−jα−

.

Thus, the series
∑

j≥0 ψj ∗ ψj ∗ f converges uniformly in x. Since ψj ∗ ψj ∗ f is
continuous in Rn, the sum function f is also continuous in Rn. Moreover, we can
get that

‖f‖∞ ≤ C
(

sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣).

Now we estimate ‖f‖
Λ
α(·)
0

, as follows. When 0 < α− ≤ α+ ≤ 1, to prove this,

we only need to estimate that, for any u 6= 0,∣∣∆2
uf(x− u)

∣∣ = ∣∣f(x+ u) + f(x− u)− 2f(x)
∣∣

≤ C
(

sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣)|u|α(x−u).
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Observe that

f(x− u) + f(x+ u)− 2f(x)

=
∑
j≥0

∫ [
ψj(x− u− w) + ψj(x+ u− w)− 2ψj(x− w)

]
(ψj ∗ f)(w) dw.

When |u| ≥ 1, we only need to apply the size condition of ψj. Hence we can
obtain ∣∣∆2

uf(x)
∣∣ ≤ C

(
sup

j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣)∑

j≥0

2−jα
−

≤ C
(

sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣)|u|α(x).

When |u| ≤ 1, we need to apply the smoothness condition and size conditon on
ψj. Let l be the unique nonnegative integer such that 2−l−1 ≤ |u| < 2−l. Hence
we can obtain∣∣∆2

uf(x)
∣∣

≤
(

sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣)

×
∑
j≥0

∫
2−jα(x)

[
ψj(x− u− w) + ψj(x+ u− w)− 2ψj(x− w)

]
dw

≤ C
(

sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣)( l∑

j=0

2−jα(x)|2ju|2 +
∞∑
j=l

2−jα(x)
)

∼
(

sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣)|u|α(x).

When m < α− ≤ α+ ≤ m + 1, we have ∂βf(x) =
∑

j≥0 ∂
βψj ∗ ψj ∗ f(x) in S ′.

Since ψ ∈ S, then∣∣∂βψj ∗ψj ∗ f(x)∣∣ ≤ ‖ψj ∗ f‖∞‖∂βψj‖L1 ≤ C
(

sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣)2−j(α−−|β|).

Thus, ∑
|β|≤m

‖∂βf‖∞ ≤ C
∑
|β|≤m

∑
j≥0

2−j(α
−−|β|)( sup

j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ f(x)∣∣) ≤ C.

On the other hand, observe that |β| = m,α(x) = m+ r(x) and that

∂βf(x− u) + ∂βf(x+ u)− 2∂βf(x)

=
∑
j≥0

∫ [
∂βψj(x− u− w) + ∂βψj(x+ u− w)− 2∂βψj(x− w)

]
× (ψj ∗ f)(w) dw.

Here we note that the properties of ∂βψj are similar to 2jmψj. Hence the esti-
mate for this case is the same as the proof for the case above. When 0 < α− ≤
α+ ≤ ∞, by Definition 1.1 we split α =

∑[α+]

[α−] αi, where the decomposition is
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finite sum. So this case can be handled similarly. With this, we have proved
Theorem 1.2. �

3. Proof of Theorem 1.6

In order to prove Theorem 1.6, we need an inhomogeneous Calderón-type iden-
tity on Hα(·) and Λα(·). To do this, let φ ∈ S with supp φ ⊆ B(0, 1) and Φ ∈ S
with ∣∣Φ̂(ξ)∣∣ ≥ C > 0, suppΦ ⊂

{
|ξ| ≤ 2

}
satisfying ∣∣Φ̂(ξ)∣∣2 +∑

j≥1

∣∣φ̂(2−jξ)∣∣2 = 1 for all ξ ∈ Rn,

and ∫
Rn

φ(x)xα dx = 0 for all |α| ≤ 10M,

where M is a fixed large positive integer depending on α. We denote Φ =: φ0 and
φj(x) = 2jnφ(2jx).

The inhomogeneous Calderón-type identity is given by the following.

Proposition 3.1. Suppose that α(·) ∈ LH0 ∩ P0. Let φ ∈ S satisfy conditions
above. Then for any f ∈ Hα(·) or f ∈ Λα(·), we have

f =
∑
j≥0

φj ∗ φj ∗ f (3.1)

in the distribution sense. Moreover, if we denote

‖f‖φ
Hα(·) = sup

j≥0
2jα(x)

∣∣φj ∗ f(x)∣∣(α+ < 1);

‖f‖φ
Λα(·) = sup

j≥0
2jα(x)

∣∣φj ∗ f(x)∣∣(α+ ≤ 1),

then

‖f‖φ
Hα(·) ∼ ‖f‖ψ

Hα(·) ; ‖f‖φ
Λα(·) ∼ ‖f‖ψ

Λα(·) .

Proof. By taking the Fourier transform, we have, for any f ∈ L2,

f(x) =
∑
j≥0

φj ∗ φj ∗ f(x).

Now we prove that the series in (3.1) converges in S. To do this, it suffices to
show that, for any fixed L > 0 and any given integer M ≥ 0, |α| ≥ 0,∣∣Dα(φj ∗ φj ∗ f)(x)

∣∣ ≤ C2−jL
(
1 + |x|

)−M
. (3.2)

Here and below, we will apply the almost-orthogonal estimate which can be
found in many monographs (see [7] for more details). To be more precise, for any
given positive integers L,M and ψ, ϕ ∈ S satisfying cancellation conditions, then∣∣ψj ∗ ϕk(x)∣∣ ≤ C

2−|j−k|L2(j∧k)n

(1 + 2(j∧k)|x|)(n+M)
.
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Using the almost-orthogonal estimate in [7, p.595] with the case one function has
cancellation, we get that∣∣ψj ∗ g(x)∣∣ ≤ C2−jL

1

(1 + |x|)n+M

for any L,M ≥ 0, where j ∈ Z+.
To prove (3.2), we need to apply the classical almost-orthogonality argument.

On one hand, from the size conditions of the functions φ, we have, for any given
large M , ∣∣Dαφj(u)

∣∣ ≤ C2j(n+|α|) 1

(1 + |2ju|)M
.

On the other hand, for any L > 0, we have∣∣φj ∗ f(u)∣∣ ≤ C2−jL
1

(1 + |u|)M
.

Set L > n+|α|, and we get the desired result. By the duality argument, we obtain
the series in (3.1) converges in S ′. Next we will show that

‖f‖φ
Hα(·) ∼ ‖f‖ψ

Hα(·) ;

the proof for Λα(·) is similar.
To conclude the proof, applying the Calderón identity, the classical almost-

orthogonality argument, and Theorem 1.2, we get that for any j ≥ 0,

2jα(x)
∣∣φj ∗ f(x)∣∣ = sup

j≥0,x∈Rn

2jα(x)
∣∣∣∑
j′≥0

φj ∗ ψj′ ∗ ψj′ ∗ f(x)
∣∣∣

≤ sup
j′≥0,x∈Rn

2j
′α(x)

∣∣ψj′,k′ ∗ f(x)∣∣ ≤ C‖f‖ψ
Hα(·) .

It follows that

‖f‖φ
Hα(·) ≤ C‖f‖ψ

Hα(·) .

Similarly, by (3.1), the classical almost-orthogonality argument, and Theorem 1.2,
we get

‖f‖ψ
Hα(·) ≤ C‖f‖φ

Hα(·) .

Therefore, the proof of Proposition 3.1 is concluded. �

The following proposition plays a key role in the proof of Theorem 1.6.

Proposition 3.2. Let α(·) ∈ LH0 ∩ P0. If f ∈ Hα(·) or Λα(·), then there exists
a sequence {fn} ∈ Bα+

2,2 ∩Hα(·) or Bα+

2,2 ∩ Λα(·) such that fn converges to f in the

distribution sense, where Bα+

2,2 is the classical Besov space. Furthermore,

‖fn‖Hα(·) ≤ ‖f‖Hα(·) , ‖fn‖Λα(·) ≤ ‖f‖Λα(·) .



INHOMOGENEOUS LIPSCHITZ SPACES 81

Proof. Suppose that f ∈ Hα(·); then we have the inhomogeneous Calderón’s iden-
tity

f(x) =
∑
j≥0

ψj ∗ ψj ∗ f(x) in S ′. (3.3)

The partial sum of the above series will be denoted by fn and is given by

fn(x) =
∑

0≤j≤n

ψj ∗ ψj ∗ f(x).

Then we get that

‖fn‖Bα+
2,2

<∞.

In fact, applying the fact that |ψj ∗f(x)| ≤ C2−jα(x) proved in Theorem 1.2 yields
‖ψj ∗ ψj ∗ f‖Bα+

2,2
≤ C.

For any g ∈ S, choosing m ≥ n > 0, we obtain∣∣〈f − fn, g〉
∣∣ ≤ lim inf

m→∞

∣∣〈fm − fn, g〉
∣∣

≤ lim inf
m→∞

∣∣∣〈 ∑
n<j≤m

ψj ∗ ψj ∗ f, g
〉∣∣∣ → 0, as n→ 0,

where the last inequality follows from the fact that the series in (3.3) converges
in S ′. Thus, fn ∈ Bα+

2,2 and converges to f in the distribution sense.
To conclude the proof, note that

ψj ∗ fn(x) =
∑

0≤j′≤n

ψj ∗ ψj′ ∗ ψj′ ∗ f(x),

and by Theorem 1.2, it follows that

‖fn‖Hα(·) ≤ C sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ fn(x)∣∣.

Again applying the almost-orthogonal estimate and Theorem 1.2, for any j ≥ 0
we have

2jα(x)
∣∣ψj ∗ fn(x)∣∣ ≤ C sup

j′≥0
2j

′α(x)
∣∣ψj′ ∗ f(x)∣∣ ≤ C‖f‖Hα(·) .

By similar argument, we can prove ‖fn‖Λα(·) ≤ ‖f‖Λα(·) . Therefore, the proof of
Proposition 3.2 is completed. �

Now we prove Theorem 1.6.

Proof of Theorem 1.6. We will prove that T is a bounded operator on Hα(·) with
α+ < ε for any f ∈ Bα+

2,2 ∩Hα(·). In fact, by Theorem 1.2 and Proposition 3.1, it
follows that

‖Tf‖Hα(·) ≤ C sup
j≥0,x∈Rn

2jα(x)
∣∣φj ∗ Tf(x)∣∣. (3.4)
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First we claim that∣∣φjTφj′(x, y)∣∣ := ∫ ∫
φj(x− u)K(u, v)φj′(v − y) du dv

≤ C(2(j
′−j)ε ∧ 1)

1 + (j − j ∧ j′)
[2−(j∧j′) + |x− y|]n+σ

, (3.5)

where σ = δ when j = 0 or j′ = 0, otherwise σ = ε. By the fact that T is bounded
on Bα+

2,2 for 0 < α+ < ε given in [13], we then get that

φj ∗ Tf(x) =
∑
j′≥0

(φjTφj′) ∗ φj′ ∗ f(x). (3.6)

To prove the claim, we will consider the cases where j, j′ > 0, j = 0, j′ > 0 and
j′ = 0, j > 0. (The idea here comes from [10].) When j, j′ > 0 we consider the
following four cases:

Case 1: j > j′ and |x− y| ≤ 5 2−j
′
. Since T (1) = 0, we have

φjTφj′(x, y) =

∫ ∫
φj(x− u)K(u, v)φj′(v − y) du dv

=

∫ ∫
φj(x− u)K(u, v)

(
φj′(v − y)− φj′(x− y)

)
du dv.

Choose a smooth function η0 such that supp η0 ⊂ {x : |x| ≤ 6}, and let η0 = 1
when |x| ≤ 2. Set η1 = 1− η0. Then we get∣∣φjTφj′(x, y)∣∣

=
∣∣∣∫ ∫

φj(x− u)K(u, v)
(
φj′(v − y)− φj′(x− y)

)
η0
(
2j(v − x)

)
du dv

∣∣∣
+
∣∣∣∫ ∫

φj(x− u)K(u, v)
(
φj′(v − y)− φj′(x− y)

)
η1
(
2j(v − x)

)
du dv

∣∣∣
= I + II .

For I, we denote ϕ(v) = (ψj′(v−y)−ψj′(x−y))η0(2j(v−x)) and ω(u) = φj(x−u).
Since T ∈ WBP , we have

I =
∣∣〈Tϕ, ω〉∣∣ ≤ C2−j(n+2η)‖ϕ‖Ċη‖ω‖Ċη

≤ C2−j(n+2η){2−(j−j′)2j
′n2jη}{2jn2jη}

≤ C2−(j−j′)2j
′n.

We now deal with the term II . By the cancellation condition of φ, we get

II =
∣∣∣∫ ∫

φj(x− u)
[
K(u, v)−K(x, v)

]
×

(
φj′(v − y)− φj′(x− y)

)
η1
(
2j(v − x)

)
du dv

∣∣∣
≤ C

(
1 + (j − j′)

)
2(j

′−j)ε2j
′n.
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Case 2: j > j′ and |x− y| ≥ 5 2−j
′
. In this case, it is easy to see that |x− y| ∼

|u− v|. Using the smoothness condition on the kernel K(u, v), we have

φjTφj′(x, y) =

∫ ∫
φj(x− u)K(u, v)φj′(v − y) du dv

=

∫ ∫
φj(x− u)

[
K(u, v)−K(x, v)

](
φj′(v − y)

)
du dv

≤C 2−jε

|x− y|n+ε
.

Case 3: j ≤ j′ and |x− y| ≤ 5 2−j. In this case, we have∣∣φjTφj′(x, y)∣∣
=

∣∣∣∫ ∫
φj(x− u)K(u, v)φj′(v − y)η0

(
2j

′
(u− y)

)
du dv

∣∣∣
+
∣∣∣∫ ∫

φj(x− u)K(u, v)φj′(v − y)η1
(
2j

′
(u− y)

)
du dv

∣∣∣
= I + II .

For I, we denote ϕ̃(u) = φj(x − u)η0(2
j′(u − y)) and φ̃(u) = φj′(v − y). Since

T ∈ WBP , we have

I =
∣∣〈T ϕ̃, φ̃〉∣∣ ≤ C2−j

′(n+2η)‖ϕ̃‖Ċη‖φ̃‖Ċη
≤ C2−j

′(n+2η){2jn2j′η}{2j′n2j′η}
≤ C2jn.

For II , observing that |u − v| ≥ C2−j and the size condition of kernel K, we
obtain

II =
∣∣∣∫ ∫

φj(x− u)K(u, v)φj′(v − y)η1
(
2j

′
(u− y)

)
du dv

∣∣∣
≤

∣∣∣∫ ∫
φj(x− u)

1

|u− v|n
ψj′(v − y)η1

(
2j

′
(u− y)

)
du dv

∣∣∣
≤ C2jn.

Case 4: j ≤ j′ and |x− y| ≥ 5 2−j. Noting that |x− y| ∼ |u− v| and using the
fact that φj1 = 0 and the smoothness condition on the kernel K(u, v), we have∣∣φjTφj′(x, y)∣∣ = ∣∣∣∫ ∫

φj(x− u)K(u, v)φj′(v − y) du dv
∣∣∣

=
∣∣∣∫ ∫

φj(x− u)
[
K(u, v)−K(x, v)

](
φj′(v − y)

)
du dv

∣∣∣
≤ C

2−jε

|x− y|n+ε
.

The other cases are similar but simple. Thus, we prove the claim.
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Observe that 0 < α+ < ε. Combining (3.4), (3.5) and (3.6), we obtain

‖Tf‖Hα(·)

≤ C sup
j≥0,x∈Rn

2jα(x)
∑
j′≥0

(2(j
′−j)ε ∧ 1)

(
1 + (j − j ∧ j′)

)∣∣φj ∗ f(x)∣∣
≤ C sup

j≥0,x∈Rn

∑
j′≥0

2j
′α(x)2(j−j

′)α(x)2(2(j
′−j)ε ∧ 1)

(
1 + (j − j ∧ j′)

)∣∣φj ∗ f(x)∣∣
≤ C sup

j′≥0,x∈Rn

2j
′α(x)

∣∣φj′ ∗ f(x)∣∣ ≤ C‖f‖Hα(·) . (3.7)

Next we can extend T to Hα(·) as follows. By Proposition 3.2, if f ∈ Hα(·), then
there exists a sequence {fn} ∈ Bα+

2,2 ∩ Hα(·) such that fn converges to f in the
distribution sense. Furthermore,

‖fn‖Hα(·) ≤ ‖f‖Hα(·) .

Using (3.7) shows that∥∥T (fn − fm)
∥∥
Hα(·) ≤ ‖fn − fm‖Hα(·) .

On the other hand, by duality, for any g ∈ S we get that〈
T (fn − fm), g

〉
= 〈fn − fm, T

∗g〉 → 0, as n,m→ ∞,

where T ∗ is the adjoint operator of T . Hence, Tfn converges in the distribution
sense and we can define

Tf = lim
n→∞

Tfn in S ′.

Applying Theorem 1.2 again and Fatou’s lemma, we get

‖Tf‖Hα(·) ≤ C sup
j≥0,x∈Rn

2jα(x)
∣∣ lim
n→∞

ψj ∗ Tfn(x)
∣∣

≤ C lim inf
n→∞

sup
j≥0,x∈Rn

2jα(x)
∣∣ψj ∗ Tfn(x)∣∣

≤ C lim inf
n→∞

‖fn‖Hα(·) ≤ C‖f‖Hα(·) .

Therefore, we conclude the proof of Theorem 1.6. �

4. Remark

In this last section, we remark that a class of the pseudodifferential operators
is continuous on the inhomogeneous Hölder–Zygmund spaces of variable order,
although these operators are not, in general, continuous on L2 (see [13]).

Repeating the analogous argument in the proof of Theorem 1.6, we can obtain
the following Proposition.

Proposition 4.1. Let α(·) ∈ LH0 ∩ P0. Suppose that the kernel K(x, y) of T
satisfying the following estimates for |x− y| ≥ 1,

(i) |∂βxK(x, y)| ≤ C2
1

|x−y|N for any |β| ≤ γ and N > 1;

(ii) |∂βxK(x, y)− ∂βxK(x′, y)| ≤ C2
|x−y|ε
|x−y|N
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where m ∈ N and r are defined by γ = m + ε with 0 < ε ≤ 1 and where |β| = m
and |x−x′| ≤ 1/2|x− y|. Also, T (xβ) = 0 when |β| ≤ m and T ∈ WBP. Then T
can be extended to a bounded linear operator on Hα(·) and Λα(·) for any α+ ≤ γ.

Remark 4.2. An immediate result of the proposition is that the pseudodifferen-
tial operators T ∈ OpS0

1,1 (whose symbols fulfill that |∂αξ ∂βxσ(x, ξ)| ≤ C(α, β)(1+

|ξ|)|β|−|α|) are continuous on the inhomogeneous Hölder–Zygmund spaces of vari-
able order, since the corresponding kernel K(x, y) of the symbol σ(x, ξ) satisfies∣∣∂αx∂βyK(x, y)

∣∣ ≤ C3
1

|x− y|(n+|α|+|β|) ,

when |x− y| ≤ 1, and ∣∣∂αx∂βyK(x, y)
∣∣ ≤ C3

1

|x− y|N

for all N ≥ 1, where |x− y| ≥ 1 (α, β ∈ Nn).
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