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Abstract. Let A be a positive invertible matrix, and let B be a normal
matrix. Following the investigation of Ando, we show that ‖A](B∗A−1B)‖ ≥
‖B‖, where ] denotes the geometric mean, fails in general.

1. Introduction

In the paper [2], Ando considered the following problem. For three matrices
A,B,C with A ≥ 0, C ≥ 0, does [ A B

B∗ C ] ≥ 0 imply that ‖A]C‖ ≥ ‖B‖? Here
A]C is the geometric mean of A and C. The inequality ‖A]C‖ ≥ ‖B‖ was called
the norm Schwarz inequality. In the case that A is invertible, it is known that
[ A B
B∗ C ] ≥ 0 if and only if C ≥ B∗A−1B, and so the above problem is equivalent to
the following. Is ‖A](B∗A−1B)‖ ≥ ‖B‖ always true for A > 0? Ando showed in
[2] that if B satisfies this inequality for any A, then B must be normaloid (i.e.,
‖B‖ = r(B) the spectral radius of B). Then it is natural to wonder whether this
norm inequality holds whenever B is normal.

Conjecture. For any positive invertible matrix A and any normal matrix B in
Mn(C), we have ∥∥A](B∗A−1B)

∥∥ ≥ ‖B‖.
Ando [2] presented the following four theorems.

(1) If B is normaloid, then the inequality ‖A 1
2 (B∗A−1B)

1
2‖ ≥ ‖B‖ holds [2,

Theorem 2.3].
(2) If B is self-adjoint, then the conjecture is true [2, Theorem 3.4].
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(3) If B is a scalar multiple of a unitary matrix, then the conjecture is true
[2, Theorem 3.5].

(4) When n = 2, the conjecture is true [2, Theorem 4.1].

The aim of the present article is to construct a counterexample to this con-
jecture in M6(C). For this purpose, we introduce some statements which are
equivalent to the above conjecture. As a bonus, we can show that if the above
conjecture were true, then the inequality

A]B−1 +B]C−1 + C]A−1 ≥ 3I

must hold for any positive invertible matrices A, B, and C. Then we can construct
a counterexample for this inequality. The idea of constructing a counterexample
for this inequality is basically due to Lin, who attributed it to Drury [4]. In the
final section, we give another proof of Ando’s theorem for 2× 2 matrices.

After finishing this work, the author learned from Minghua Lin that he had
succeeded in constructing a counterexample to the above conjecture before us.
His example consists of 3× 3 matrices, and so it is better than ours. The idea of
construction, however, is different.

2. Some equivalent conjectures

Throughout this paper, we denote by Mn(C) the space of n× n matrices. The
geometric mean of two positive matrices A,B ∈ Mn(C) is denoted by A]B. If

they are invertible, then we can write A]B = A
1
2 (A− 1

2BA− 1
2 )

1
2A

1
2 . For a matrix

A we denote its trace and determinant by Tr(A) and det(A), respectively. We
also denote the operator norm of a matrix A by ‖A‖.

First, we introduce three conjectures.

Conjecture 1 (see Ando [2]). For any positive invertible matrix A and any
normal invertible matrix B in Mn(C), we have∥∥A](B∗A−1B)

∥∥ ≥ ‖B‖.

Conjecture 2. For any positive invertible matrix S, any unitary matrix U , and
any positive invertible matrix D in Mn(C) with UD = DU , we have∥∥D 1

2 · S](U∗S−1U) ·D
1
2

∥∥ ≥ ‖D‖.

For a unitary matrix U with the spectral decomposition U =
∑

iziPi (zi 6= zj,
{Pi}i are spectral projections), we set

EU(X) =
∑
i

PiXPi.

With respect to the Hilbert–Schmidt inner product 〈X | Y 〉 = Tr(X∗Y ) on
Mn(C), the map EU(·) is the orthogonal projection to the commutant of U , that
is, to the class {X : XU = UX}. Also, EU(·) is a unital, trace-preserving, posi-
tive (hence contractive) linear map on Mn(C) such that EU(DX) = D · EU(X),
EU(XD) = EU(X) ·D for any D ≥ 0 with DU = UD.
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Here we note that if Uk = I for some positive integer k, then the map EU can
also be defined by

EU(X) =
1

k

k−1∑
i=0

U∗iXU i.

Conjecture 3. For any positive invertible matrix S and any unitary matrix U
in Mn(C), we have

EU

(
S](U∗S−1U)

)
≥ I.

The main result in this section is the following.

Theorem 2.1. All three conjectures above are mutually equivalent.

Proof. (Conjecture 1 ⇒ Conjecture 2) We set B = UD = DU and A = D
1
2SD

1
2 .

Then we see that

A](B∗A−1B) = (D
1
2SD

1
2 )](D

1
2U∗S−1UD

1
2 )

= D
1
2 · S](U∗S−1U) ·D

1
2 .

Since B is normal, applying Conjecture 1, we have∥∥D 1
2 · S](U∗S−1U) ·D

1
2

∥∥ =
∥∥A](B∗A−1B)

∥∥ ≥ ‖B‖ = ‖D‖.

(Conjecture 2 ⇒ Conjecture 1) Take a polar decomposition B = UD = DU

with unitary U and positive D, and set S = D− 1
2AD− 1

2 . Then, as shown above,
we have A](B∗A−1B) = D

1
2 · S](U∗S−1U) ·D 1

2 , and hence Conjecture 2 implies
Conjecture 1.

(Conjecture 2 ⇒ Conjecture 3) It is enough to show that e · S](U∗S−1U) ·
e ≥ e for any rank 1 projection e with Ue = eU . Indeed, if U has the spectral
decomposition U =

∑
iziPi (zi 6= zj), then we can write EU(X) =

∑
iPiXPi. In

order to show Conjecture 3, we have to show that Pi · S](U∗S−1U) · Pi ≥ Pi for
each i. To do so, it is enough to show that e · S](U∗S−1U) · e ≥ e for any rank 1
projection e ≤ Pi. Here we remark that a rank 1 projection e satisfies Ue = eU
if and only if e ≤ Pi for some i.

We set D = e+ 1
2
(I − e). Then, by Conjecture 2, we have∥∥D n

2 · S](U∗S−1U) ·D
n
2

∥∥ ≥ ‖Dn‖

for any positive integer n. By tending n → ∞, we have∥∥e · S](U∗S−1U) · e
∥∥ ≥ ‖e‖ = 1.

Then, since e is a rank 1 projection, we conclude that

e · S](U∗S−1U) · e =
∥∥e · S](U∗S−1U) · e

∥∥e ≥ e.

(Conjecture 3 ⇒ Conjecture 2) We may assume that ‖D‖ = 1. Take a spectral
projection P of D with DP = P . Notice that P commutes with U . Then, by
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Conjecture 3, we compute∥∥D 1
2 · S](U∗S−1U) ·D

1
2

∥∥ ≥
∥∥EU

(
D

1
2 · S](U∗S−1U) ·D

1
2

)∥∥
≥

∥∥P · EU

(
D

1
2 · S](U∗S−1U) ·D

1
2

)
· P

∥∥
=

∥∥PD
1
2 · EU

(
S](U∗S−1U)

)
·D

1
2P

∥∥
=

∥∥P · EU(S]U
∗S−1U) · P

∥∥
≥ ‖P‖ = 1 = ‖D‖. �

Corollary 2.2. If Conjecture 1 is true in M3n(C), then, for any positive invertible
matrices A,B,C ∈ Mn(C), we have

A]B−1 +B]C−1 + C]A−1 ≥ 3I.

Proof. Denote by M3(Mn(C)) the space of 3 × 3 matrices with entries Mn(C).
It is canonically identified with M3n(C). We set U = [

0 0 In
In 0 0
0 In 0

] and S = [
A 0 0
0 B 0
0 0 C

].

By Theorem 2.1, Conjecture 3 is also true. We will apply Conjecture 3 to these
matrices.

It is easy to see that

S](U∗S−1U) =

A 0 0
0 B 0
0 0 C

 ]

B−1 0 0
0 C−1 0
0 0 A−1


=

A]B−1 0 0
0 B]C−1 0
0 0 C]A−1

 .

Since U3 = I, we have

EU(S]U
∗S−1U)

=
1

3

{
S](U∗S−1U) + U∗ · S](U∗S−1U) · U + U∗2 · S](U∗S−1U) · U2

}
=

1

3
diag(A]B−1 +B]C−1 + C]A−1, B]C−1 + C]A−1 + A]B−1,

C]A−1 + A]B−1 +B]C−1).

Then, using the assumption that Conjecture 3 is true, we get

A]B−1 +B]C−1 + C]A−1

3
≥ I. �

Therefore, if we can find positive invertible matrices A,B,C ∈ Mn(C) which
do not satisfy

A]B−1 +B]C−1 + C]A−1 ≥ 3I, (†)
then we can conclude that Conjecture 1 is not true in M3n(C), and we can con-
struct an explicit counterexample.

Although we will construct a counterexample to the conjecture in the next
section, let us show that there is evidence which supports the validity of the
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conjecture. The following facts state that, if we consider the trace in both sides
of the inequalities, then Conjecture 3 and the inequality (†) are true.

Proposition 2.3.

(1) For any positive invertible matrix S and any unitary matrix U in Mn(C),
we have

1

n
Tr

(
EU

(
S](U∗S−1U)

))
≥ 1.

(2) For any positive invertible matrices A,B,C ∈ Mn(C), we have

1

n
Tr(A]B−1 +B]C−1 + C]A−1) ≥ 3.

Proof. For a positive invertible matrix X ∈ Mn(C) with eigenvalues {λ1, . . . , λn},
we observe by concavity of the function log t

1

n
log det(X) =

1

n
(log λ1 + · · ·+ log λn) ≤ log

1

n
(λ1 + · · ·+ λn) = log

1

n
Tr(X),

and hence (
det(X)

) 1
n ≤ 1

n
Tr(X).

(1)

1

n
Tr

(
EU

(
S](U∗S−1U)

))
=

1

n
Tr

(
S](U∗S−1U)

)
≥

(
det

(
S](U∗S−1U)

)) 1
n = 1.

(2)

1

n
Tr(A]B−1 +B]C−1 + C]A−1)

=
1

n
Tr(A]B−1) +

1

n
Tr(B]C−1) +

1

n
Tr(C]A−1)

≥
(
det(A]B−1)

) 1
n +

(
det(B]C−1)

) 1
n +

(
det(C]A−1)

) 1
n

= det(A)
1
2n det(B)−

1
2n + det(B)

1
2n det(C)−

1
2n + det(C)

1
2n det(A)−

1
2n

≥ 3
{
det(A)

1
2n det(B)−

1
2n × det(B)

1
2n det(C)−

1
2n × det(C)

1
2n det(A)−

1
2n

} 1
3

= 3.

Here we used the usual arithmetic-geometric inequality a+b+c
3

≥ (abc)
1
3 . �

By the joint concavity of the geometric mean (see [1, Theorem 2]), we see that(A+B + C

3

)
]
(B−1 + C−1 + A−1

3

)
≥ 1

3
(A]B−1 +B]C−1 + C]A−1).

Thus, if the inequality (†) were true, we must have(A+B + C

3

)
]
(B−1 + C−1 + A−1

3

)
≥ I. (‡)
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Proposition 2.4. For any positive invertible matrices A,B,C ∈ Mn(C), the
inequality (‡) is true.

Proof. This is also a direct consequence from the joint concavity of the geometric
mean. Indeed, (A+B + C

3

)
]
(B−1 + C−1 + A−1

3

)
=

(A+B + C

3

)
]
(A−1 +B−1 + C−1

3

)
≥ 1

3
(A]A−1 +B]B−1 + C]C−1) = 3I. �

Finally, we would like to point out the following fact. For any positive invertible
matrices A,B ∈ Mn(C), we can easily see that

A]B−1 +B]A−1 = (A]B−1) + (A]B−1)−1 ≥ 2.

3. A counterexample to the conjecture

In this section we will construct a counterexample to Conjecture 1. This exam-
ple is due to Minghua Lin and Stephen Drury [4].

In the inequality

A]B−1 +B]C−1 + C]A−1 ≥ 3I,

if we set A = X2, B = Y −2, and C = I, then we obtain

X2]Y 2 +X−1 + Y −1 ≥ 3I.

We show that there are two positive-definite matrices X and Y such that they
do not satisfy this inequality. This means that there are 6× 6 matrices which do
not satisfy Conjecture 1.

The following fact is well known for the specialists. We include its proof for
completeness.

Lemma 3.1 ([3], Proposition 4.1.12). For 2× 2 matrices X > 0 and Y > 0, we
have

X]Y =
(det(X) det(Y ))

1
4

det( 1√
det(X)

X + 1√
det(Y )

Y )
1
2

( 1√
det(X)

X +
1√

det(Y )
Y
)
.

In particular, if det(X) = det(Y ), we have

X]Y =

√
det(X)

det(X + Y )
(X + Y ).

Proof. Applying the Cayley–Hamilton theorem to the matrix (X− 1
2Y X− 1

2 )
1
2 , we

have

X− 1
2Y X− 1

2 − Tr
(
(X− 1

2Y X− 1
2 )

1
2

)
(X− 1

2Y X− 1
2 )

1
2 +

(det(Y )

det(X)

) 1
2
= 0.
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By multiplying X
1
2 from both sides, we see that

Y − Tr
(
(X− 1

2Y X− 1
2 )

1
2

)
X]Y +

(det(Y )

det(X)

) 1
2
X = 0.

Hence we can write

X]Y = c
( 1√

det(X)
X +

1√
det(Y )

Y
)
.

By taking the determinants, we have(
det(X) det(Y )

) 1
2 = c2 det

( 1√
det(X)

X +
1√

det(Y )
Y
)
,

and so we are done. �

Set

X =
1

52

[
50 5
5 1

]
, Y =

1

52

[
50 −5
−5 1

]
, P =

[
1 0
0 0

]
.

Here we remark that det(X) = det(Y ) = 1
52

and

X2 =
1

54

[
2525 255
255 26

]
, Y 2 =

1

54

[
2525 −255
−255 26

]
.

By Lemma 3.1, we know that

X2]Y 2 =

√
det(X2)

det(X2 + Y 2)
(X2 + Y 2).

Since X2 + Y 2 = 1
54
[ 5050 0

0 52 ], we compute

P (X2]Y 2)P =
1
52

1
54
(5050× 52)

1
2

× 5050

54
P =

√
101

650
P.

Since

X−1 =

[
1 −5
−5 50

]
, Y −1 =

[
1 5
5 50

]
,

we see that

P (X2]Y 2 +X−1 + Y −1)P =

√
101

650
P + 2P < 3P.

Therefore, we conclude that the matrices X and Y do not satisfy the inequality

X2]Y 2 +X−1 + Y −1 ≥ 3I.
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4. the conjecture for 2× 2 matrices

In [2, Theorem 4.1], Ando showed that Conjecture 1 is true for 2× 2-matrices.
In this section, we give another proof for this result. In Section 2, we saw that
Conjecture 1 is equivalent to Conjecture 3. Thus it is enough to show the following.

Theorem 4.1. For any positive invertible 2× 2 matrix S and any unitary 2× 2
matrix U , we have

EU

(
S](U∗S−1U)

)
≥ I.

Proof. Without loss of generality we may assume that U is a diagonal matrix
of the form U = [ 1 0

0 z ] with |z| = 1 because (wU)∗S−1(wU) = U∗S−1U for any
complex number w with |w| = 1. In the case that z = 1, U becomes the identity,
and so the statement is obvious. Therefore, we have only to consider the case
where z 6= 1 and U 6= I. Here we remark that in this case, the map EU is defined
by

EU

([
x y
z w

])
=

[
x 0
0 w

]
.

We can also assume that S = [ a b
b c

] with det(S) = ac− |b|2 = 1 since

(αS)]
{
U∗(αS)−1U

}
= S](U∗S−1U)

for any positive number α. Then we see that

S−1 =

[
c −b
−b a

]
, U∗S−1U =

[
c −bz

−bz a

]
,

S + U∗S−1U =

[
a+ c b(1− z)

b(1− z) a+ c

]
.

Then we compute

det(S + U∗S−1U) = (a+ c)2 −
∣∣b(1− z)

∣∣2
= 2

(
ac− |b|2

)
+ a2 + c2 + 2|b|2Re z

= a2 + c2 + 2
(
1 + |b|2Re z

)
.

Then, since det(S) = det(U∗S−1U) = 1, by Lemma 3.1, we have

S]U∗S−1U =

√
det(S)

det(S + U∗S−1U)
(S + U∗S−1U)

=
1√

a2 + c2 + 2(1 + |b|2Re z)

[
a+ c b(1− z)

b(1− z) a+ c

]
,

and hence

EU(S]U
∗S−1U) =

1√
a2 + c2 + 2(1 + |b|2Re z)

[
a+ c 0
0 a+ c

]
.
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On the other hand, we see that

(a+ c)2 −
{
a2 + c2 + 2

(
1 + |b|2Re z

)}
= 2

{
(ac− 1)− |b|2Re z

}
= 2

(
|b|2 − |b|2Re z

)
= 2|b|2(1− Re z) ≥ 0.

Here we used the fact that ac− 1 = |b|2. Therefore, we conclude

EU(S]U
∗S−1U) ≥ I. �
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