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Abstract. This paper is concerned with the study of geometric structures in
spaces of polynomials. More precisely, we discuss for E and F Banach spaces,
whether the class of n-homogeneous polynomials, Pw(

nE,F ), which are weakly
continuous on bounded sets, is an HB-subspace or anM(1, C)-ideal in the space
of continuous n-homogeneous polynomials, P(nE,F ). We establish sufficient
conditions under which the problem can be positively solved. Some examples
are given. We also study when some ideal structures pass from Pw(

nE,F ) as
an ideal in P(nE,F ) to the range space F as an ideal in its bidual F ∗∗.

1. Introduction

Let X be a (real or complex) Banach space, and let J be a closed subspace
of X. According to the Hahn–Banach theorem, every continuous linear functional
g ∈ J∗ has an extension f ∈ X∗ with the same norm. A long-standing problem is
to determine when every functional on J has a unique norm-preserving extension
toX. This question is closely related to geometric properties of both spaces which,
in many cases, imply the existence of a norm 1 projection on X∗ whose kernel
is J⊥ := {x∗ ∈ X∗ : x∗(y) = 0, for all y ∈ J}, the annihilator of J . When there
exists such a projection, J is said to be an ideal in X. A canonical example of
this fact is that X is always an ideal in its bidual X∗∗.

The notion of M -ideal, introduced by Alfsen and Effros and widely studied
by Harmand, Werner, and Werner in [18], is one of these geometric properties
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ensuring unique Hahn–Banach extensions. Recall that J is an M-ideal in X if it
is an ideal in X with associated projection q such that for each f ∈ X∗ one has

‖f‖ = ‖qf‖+ ‖f − qf‖.

The fact that J is an M -ideal in X has a strong impact on both J and X, and
sometimes seems to be too restrictive. So, we will be interested in studying some
weaker properties among those implying unique norm-preserving extensions.

Recall that a closed subspace J is HB-smooth in X if every element in J∗ has
a unique norm-preserving extension to an element in X∗. A closed subspace J is
strongly HB-smooth in X if there exists a linear projection q on X∗ whose kernel
is J⊥ such that for each f ∈ X∗ with f 6= qf one has

‖qf‖ < ‖f‖.

The interplay between uniqueness of the extension and strong HB-smoothness
was clarified by Oja [22]. Namely, the uniqueness of the extensions and being an
ideal are independent notions for a subspace J , strong HB-smoothness implies
both, and if J is an HB-smooth ideal in X, then J is strongly HB-smooth in X.

A particular case of HB-smoothness is the notion of HB-subspace, introduced
by Hennefeld [19]. A closed subspace J is an HB-subspace of X if there exists a
projection q on X∗ whose kernel is J⊥ such that for each f ∈ X∗ with f 6= qf
one has

‖qf‖ < ‖f‖ and ‖f − qf‖ ≤ ‖f‖.
Finally, given C ∈ (0, 1], a closed subspace J is an M(1, C)-ideal in X if J is

an ideal of X with associated projection q on X∗ such that for each f ∈ X∗ one
has

‖qf‖+ C‖f − qf‖ ≤ ‖f‖.
The last inequality is called the M(1, C)-inequality. Note that when C = 1, the
notion of M -ideal is covered and to be M(1, C)-ideal immediately implies strong
HB-smoothness. However, the notions of M(1, C)-ideal and HB-subspace are in-
dependent. On the one hand, Cabello and Nieto [6, Example 3.7] showed that
if X is a nonreflexive separable M -ideal in its bidual, then `p(X) as a subspace
of its bidual, 1 < p < ∞, is an HB-subspace that cannot be renormed to be an
M(1, C)-ideal for any 0 < C < 1. On the other hand, Cabello, Nieto, and Oja [7,
Example 4.3] showed that for any 0 < C < 1, there is a renorming of c0, ĉ0 due
to Johnson and Wolfe such that the space of compact operators on ĉ0, K(ĉ0) is
an M(1, C)-ideal in the space of all continuous operators L(ĉ0) without being an
HB-subspace.

Several authors have been interested in this kind of property for arbitrary
subspaces of Banach spaces and also for distinguished particular cases. The space
of compact operators K(E,F ) between Banach spaces E and F as a subspace of
the space of all continuous linear operators L(E,F ) received special interest (see,
e.g., [6], [7], [19], [21]–[24], [26]). The strongest of the abovementioned properties
is the one of being an M -ideal. All other properties which are more flexible still
allow us to deal with uniqueness of Hahn–Banach extensions.
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Here, we will be concerned with P(nE,F ), the space of continuous n-homoge-
neous polynomials between Banach spaces E and F . In the polynomial context,
the space of compact mappings is usually replaced by Pw(

nE,F ), the subspace
of homogeneous polynomials which are weakly continuous on bounded sets. Recall
that a polynomial P ∈ P(nE,F ) is in Pw(

nE,F ) if it maps bounded weakly
convergent nets into convergent nets. Note that we could have considered poly-
nomials in P(nE,F ) mapping bounded sets into relatively compact sets, which
are called compact polynomials. For linear operators to be compact and to be
weakly continuous on bounded sets are equivalent notions. For n-homogeneous
polynomials with n > 1, every polynomial in Pw(

nE,F ) is compact (as can be
derived from results in [3] and [4]), but the converse might not be true. Every
scalar-valued continuous polynomial is compact but it is not necessarily weakly
continuous on bounded sets. The prototypical example of this situation is given
by P (x) =

∑
k x

2
k, for all x = (xk)k ∈ `2. Therefore, we will focus our atten-

tion on determining the presence of ideal structures for Pw(
nE,F ) as a subspace

of P(nE,F ). To be more precise, our main concern is to study the notion of
HB-subspace in the polynomial setting.

Some previous results in this direction can be found in [12], where the problem
of determining when Pw(

nE) is an M -ideal in P(nE) was considered. A vector-
valued approach of the same question was treated in [14]. Note that the searching
of ideal structures for Pw(

nE,F ) as a subspace of P(nE,F ) makes sense when
the spaces Pw(

nE,F ) and P(nE,F ) do not coincide. The equality Pw(
nE,F ) =

P(nE,F ) is a long-standing nontrivial problem considered, for instance, in [1],
[5], [16], and [17].

The plan of the paper is as follows. First, we review the notation and the basic
facts that will be used in Sections 3 and 4. Then, in Section 3, we investigate
sufficient conditions under which the subspace Pw(

nE,F ) enjoys an additional
geometric structure inside P(nE,F ), and we present some particular examples.
In the last section, we study some ideal structures for the range space F as a
subspace of F ∗∗ when they are fulfilled by Pw(

nE,F ) as a subspace of P(nE,F ).

2. Notation and basic facts

Before proceeding, we fix some notation. Every time we write E or F we will
be considering Banach spaces over the real or complex field K. The closed unit
ball of E will be denoted by BE and the unit sphere by SE. As usual, E∗ and
E∗∗ stand for the dual and bidual of E, respectively. The space of linear bounded
operators from E to F will be denoted by L(E,F ) (and L(E) when E = F );
its subspace of compact mappings will be denoted by K(E,F ) (K(E) in the case
E = F ).

A function P : E → F is an n-homogeneous polynomial if there exists a
(unique) symmetric n-linear form A : E × · · · × E︸ ︷︷ ︸

n

→ F such that

P (x) = A(x, . . . , x),
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for all x ∈ E. The space of all continuous n-homogeneous polynomials from E to
F , P(nE,F ), endowed with the supremum norm

‖P‖ = sup
{∥∥P (x)

∥∥ : x ∈ BE

}
,

is a Banach space.
Every polynomial P in P(nE;F ) can be associated with a linear operator in

L(⊗̂n,s

πs
E;F ), where πs is the symmetric projective tensor norm. We will identify

P with its linearization without further mention. Even though this identification
preserves the norm, there is no Hahn–Banach theorem for homogeneous polyno-
mials of degree 2 or greater. However, Aron and Berner [2] and Davie and Gamelin
[9] showed that for every P ∈ P(nE,F ) there is a norm-preserving extension of
P to P ∈ P(nE∗∗, F ∗∗) such that P (x) = P (x) for all x ∈ E. The construction of
this canonical extension is based on the Arens extension of the symmetric map-
ping A associated to the polynomial P . To obtain the Arens extension, we simply
extend by weak-star continuity, one variable at a time, the n variables of A. This
process depends on the order that the variables are extended and the final result
might not be a symmetric mapping. However, the n! possible extensions coincide
on the diagonal and P is well defined. For the particular case in which P belongs
to Pw(

nE,F ), the range of P is also in F (as can be derived from [3] and [8,
Proposition 2.5]). This fact will be used repeatedly in Section 4.

In this paper, we will present several results in which at least one of the spaces
involved enjoys the metric compact approximation property. Recall that a Ba-
nach space E has the metric compact approximation property if there is a net of
compact operators (Kα) on E such that Kα → IdE pointwise and supα ‖Kα‖ ≤ 1.
Usually, the net (Kα) is called a metric compact approximation of the identity.
If in addition K∗

α → IdE∗ pointwise, the net (Kα) is called a shrinking met-
ric compact approximation of the identity. As usual, Kα denotes the operator
IdE −Kα. For dual spaces, we have the following intermediate property. We say
that E∗ has a metric compact approximation of the identity with adjoint operators
if there exists a net (Kα) ⊂ K(E) such that K∗

α converges to IdE∗ pointwise and
supα ‖Kα‖ ≤ 1. These notions are closely related with ideal structures on Banach
spaces. For instance, [21, Theorem 1.1] asserts that the following conditions are
equivalent:

(i) F has the metric compact approximation property,
(ii) K(E,F ) is an ideal in L(E,F ) for every Banach space E.

So, it is natural to expect that the metric compact approximation property
shows up when describing Pw(

nE,F ) as an ideal in P(nE,F ).
One further ingredient will appear in our discussion. In [10], Delpech obtained

an appropriate connection between the moduli of asymptotic uniform smoothness
and convexity and weak sequential continuity of polynomials. In [13], Dimant,
Gonzalo, and Jaramillo followed his approach to obtain results on compactness
or weak-sequential continuity of multilinear mappings. Here, we will impose re-
strictions on the growth of the moduli of the underlying spaces E or F to ensure
that Pw(

nE,F ) enjoys an appropriate property in P(nE,F ) (see Theorem 3.4
and Proposition 3.13). Some definitions are in order.
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For an infinite-dimensional Banach space E, the modulus of asymptotic point-
wise smoothness is defined for ‖x‖ = 1 and t > 0 by

ρE(t;x) = inf
dim(E/H)<∞

sup
h∈H,‖h‖≤t

‖x+ h‖ − 1,

and the modulus of asymptotic uniform smoothness is defined for t > 0 by

ρE(t) = sup
‖x‖=1

ρE(t;x).

The space E is asymptotically uniformly smooth if limt→0
ρE(t)

t
= 0.

For an infinite-dimensional Banach space, the modulus of asymptotic pointwise
convexity is defined for ‖x‖ = 1 and t > 0 by

δE(t;x) = sup
dim(E/H)<∞

inf
h∈H,‖h‖≥t

‖x+ h‖ − 1,

and the modulus of asymptotic uniform convexity is defined for t > 0 by

δE(t) = inf
‖x‖=1

δE(t;x).

The space E is asymptotically uniformly convex if δE(t) > 0, for every 0 < t ≤ 1.
Finally, E has modulus of asymptotic uniform convexity of power p if there exists
C > 0 such that δE(t) ≥ Ctp, for all 0 < t ≤ 1.

We refer to [15] for the necessary background on polynomials on Banach spaces.

3. Sufficient conditions

When working with polynomials, the lack of linearity provides, in many cases,
difficulties that can be overcome not without certain detours. The value of n for
which Pw(

nE,F ) has the chance to be a nontrivial M -ideal in P(nE,F ) cannot
be chosen arbitrarily. In fact, in the scalar-valued case (see [12]) it was proved
that, whenever P(mE) \ Pw(

mE) 6= ∅ for some m, there exists a unique value n,
called the critical degree, for which Pw(

nE) can be a nontrivial M -ideal in P(nE).
The critical degree of E is defined as

cd(E) := min
{
k ∈ N : Pw(

kE) 6= P(kE)
}
.

In the vector-valued case, the critical degree is defined by analogy (see [14]) as

cd(E,F ) := min
{
k ∈ N : Pw(

kE,F ) 6= P(kE,F )
}
,

and the problem of whether Pw(
nE,F ) is an M -ideal in P(nE,F ) is worth being

studied only for polynomials of degree n with cd(E,F ) ≤ n ≤ cd(E). Although
we are interested in studying ideal structures which are more flexible than to be
an M -ideal, in order to show positive results we could not get rid of some restric-
tions on the degree of homogeneity. We start with a lemma which, under certain
conditions on n, gives a version of Johnson’s projection (see [20, Lemma 1.1]) for
the polynomial case.

Lemma 3.1. Let E,F be Banach spaces, and let n < cd(E). Suppose that F
has the metric compact approximation property. Then Pw(

nE,F ) is an ideal in
P(nE,F ).
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Proof. Let (Lβ) ⊂ K(F ) be a metric compact approximation of the identity. As
(Lβ) is bounded, there exists a subnet, still denoted by (Lβ), that converges w

∗

to some L0 ∈ K(F )∗∗. Define Λ: P(nE,F )∗ → P(nE,F )∗ by

Λ(f)(P ) = lim
β

f(Lβ ◦ P ). (3.1)

Note that Λ is well defined. In fact, if P ∈ P(nE,F ) and τP : K(F ) → P(nE,F )
is the composition operator, τP (K) = K ◦ P , then its transpose τ ∗P satisfies that
τ ∗P (f) ∈ K(F )∗ for any f ∈ P(nE,F )∗. So

lim
β

f(Lβ ◦ P ) = lim
β

τ ∗P (f)(Lβ) = L0

(
τ ∗P (f)

)
.

It is clear that Λ is linear and ‖Λ‖ ≤ 1. It is also a projection: since any P ∈
Pw(

nE,F ) is compact and (Lβ) converges to the identity on compact sets, we see
that limβ Lβ ◦ P = P . Thus,

Λ(f)(P ) = lim
β

f(Lβ ◦ P ) = f(P )

for P ∈ Pw(
nE,F ). Now, by [14, Lemma 1.8], as n < cd(E), the net of polyno-

mials (Lβ ◦Q) belongs to Pw(
nE,F ) for every Q ∈ P(nE,F ). Hence,

Λ
(
Λ(f)

)
(Q) = lim

β
Λ(f)(Lβ ◦Q) = lim

β
f(Lβ ◦Q) = Λ(f)(Q),

and Λ2 = Λ. Finally, it is easy to check that ker Λ = Pw(
nE,F )⊥. Then, Λ is a

norm 1 projection on P(nE,F )∗ with kerΛ = Pw(
nE,F )⊥. �

Remark 3.2. Every time Pw(
nE,F ) is an ideal in P(nE,F ) with associated pro-

jection Λ, we have the decomposition

P(nE,F )∗ = Pw(
nE,F )∗ ⊕ Pw(

nE,F )⊥,

and any f ∈ P(nE,F )∗ has a unique representation such that

f = g + h, with g = Λ(f) ∈ Pw(
nE,F )∗, h = f − g ∈ Pw(

nE,F )⊥. (3.2)

Now, if F has a metric compact approximation of the identity (Lβ) ⊂ K(F ),
we may (and will) suppose that (Lβ) is w∗-convergent in K(F )∗∗ and that the
projection Λ is defined as in (3.1), Λ(f)(P ) = limβ f(Lβ ◦ P ). Then, with Lβ =
IdF − Lβ, we have the following facts that were already used:

• limβ Λ(f)(L
β ◦ P ) = 0 for all f ∈ P(nE,F )∗ and all P ∈ P(nE,F );

• limβ Lβ ◦Q = Q for all Q ∈ Pw(
nE,F ).

Indeed, the first assertion follows by [14, Lemma 1.8]. For the second one, note
that Lβ converges uniformly to the identity on compact sets.

Finally, note that since ‖Λ‖ ≤ 1, we automatically have ‖g‖ ≤ ‖f‖. If in
addition ‖Lβ‖ ≤ 1, we also obtain ‖h‖ ≤ ‖f‖ since h(P ) = (f − Λf)(P ) =
limβ f(L

β ◦ P ) for all P ∈ P(nE,F ).
As mentioned before, Delpech used the moduli of asymptotic uniform convex-

ity and smoothness of a Banach space to obtain properties of weak sequential
continuity of polynomials. Dimant, Gonzalo, and Jaramillo [13] showed the con-
nection between these moduli and compactness or weak sequential continuity of
multilinear mappings. The moduli play their role when dealing with Pw(

nE,F )
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as an HB-subspace of P(nE,F ). We present a refinement of [10, Lemme 10.3]
that will be used later in this article.

Lemma 3.3. Let E be an infinite-dimensional Banach space, and let (wα) ⊂ E
be a weakly null bounded net.

(a) If x ∈ BE, then limα‖x+ wα‖ ≤ 1 + ρE(limα‖wα‖).
(b) If (xα) ⊂ BE is a net contained in a compact set, then

limα‖xα + wα‖ ≤ 1 + ρE
(
limα‖wα‖

)
.

Proof. To prove (a) first note that [10, Lemme 10.3] remains valid if we consider
weakly null nets instead of weakly null sequences. That is, limα‖x + wα‖ ≤ 1 +
ρE(limα‖wα‖), for any x ∈ SE. Now, fix a nonzero x ∈ BE, and consider each
x + wα as a convex combination of x

‖x‖ + wα and −x
‖x‖ + wα. Applying the above

inequality to ±x
‖x‖ , we get

limα

∥∥∥±x

‖x‖
+ wα

∥∥∥ ≤ 1 + ρE
(
limα‖wα‖

)
,

and the statement follows.
Now, suppose that (b) does not hold. Then, we may find subnets (xβ), (wβ),

and x0 ∈ BE so that limβ xβ = x0 and limβ‖xβ + wβ‖ > 1 + ρE(limα‖wα‖). As
ρE is increasing, limβ‖xβ + wβ‖ > 1 + ρE(limβ‖wβ‖). Note that for any subnet
(βi) such that limi ‖xβi

+ wβi
‖ exists, so too does the limit limi ‖x0 + wβi

‖, and
both coincide. This implies that limβ‖x0 + wβ‖ = limβ‖xβ + wβ‖. It follows that
limβ‖x0 + wβ‖ > 1 + ρE(limβ‖wβ‖), which contradicts (a). �

We are ready to describe Pw(
nE,F ) as an HB-subspace of P(nE,F ), under

certain conditions on F and n.

Theorem 3.4. Let E be a Banach space, and let n < cd(E). Let F be an infinite-
dimensional Banach space with a shrinking metric compact approximation of the
identity (Lβ) ⊂ K(F ) such that supβ ‖Lβ‖ ≤ 1, and suppose that F is asymptoti-
cally uniformly smooth. Then, Pw(

nE,F ) is an HB-subspace of P(nE,F ).

Proof. Consider the projection Λ, given in (3.1), under which Pw(
nE,F ) is an

ideal in P(nE,F ). For any f ∈ P(nE,F )∗, write f = g + h as in (3.2). Then, as
we commented in Remark 3.2, ‖g‖ ≤ ‖f‖ and ‖h‖ ≤ ‖f‖. In order to finish, we
have to prove that ‖g‖ < ‖f‖ for h 6= 0.

Fix ε > 0, and take P ∈ P(nE,F ) and Q ∈ Pw(
nE,F ) such that

‖P‖ = ‖Q‖ = 1, h(P ) > ‖h‖ − ε, and g(Q) > ‖g‖ − ε.

Since limβ Lβ ◦ Q = Q, we can choose β0 satisfying |g(Lβ0 ◦ Q)| > ‖g‖ − 2ε.
Change, if necessary, Q to λQ (with |λ| = 1) to obtain g(Lβ0 ◦ Q) > ‖g‖ − 2ε.
For t > 0, consider Lβ0 ◦Q+ tLβ ◦ P , and take a net (xβ) ⊂ BE with

limβ‖Lβ0 ◦Q+ tLβ ◦ P‖P(nE,F ) = limβ

∥∥(Lβ0 ◦Q)(xβ) + t(Lβ ◦ P )(xβ)
∥∥
F
.
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Now, note that ((Lβ ◦P )(xβ)) is weakly null. Indeed, (P (xβ)) is bounded and for
any y∗ ∈ F ∗, limβ(L

β)∗y∗ = 0. Then,

lim
β

〈
(Lβ ◦ P )(xβ), y

∗〉 = lim
β

〈
P (xβ), (L

β)∗y∗
〉
= 0

for any y∗ ∈ F ∗. On the other hand, the compact set Lβ0(BF ) ⊂ BF contains the
net ((Lβ0 ◦Q)(xβ)). Therefore, Lemma 3.3 can be applied to get

limβ‖Lβ0 ◦Q+ tLβ ◦ P‖P(nE,F ) ≤ 1 + ρF
(
limβ

∥∥t(Lβ ◦ P )(xβ)
∥∥
F

)
≤ 1 + ρF (t).

As observed in Remark 3.2, limβ g(L
β ◦P ) = 0. Then, |g(Lβ ◦P )| < ε for β ≥ β1.

Also, h(Lβ◦P ) > ‖h‖−ε, since Lβ◦P belongs to Pw(
nE,F ) and h(P ) = h(Lβ◦P ).

Combining the previous estimates, we conclude for t > 0 and β ≥ β1 that(
‖g‖ − 2ε

)
− tε+ t

(
‖h‖ − ε

)
< g(Lβ0 ◦Q)− t

∣∣g(Lβ ◦ P )
∣∣+ th(Lβ ◦ P )

≤
∣∣f(Lβ0 ◦Q+ tLβ ◦ P )

∣∣.
Then, for t > 0 and ε > 0,

‖g‖+ t‖h‖ − 2ε(1 + t) ≤ limβ

∣∣f(Lβ0 ◦Q+ tLβ ◦ P )
∣∣

≤ ‖f‖limβ‖Lβ0 ◦Q+ tLβ ◦ P‖
≤ ‖f‖

(
1 + ρF (t)

)
.

Thus, ‖g‖ + t‖h‖ ≤ ‖f‖(1 + ρF (t)). Now, suppose that ‖g‖ = ‖f‖; then t‖h‖ ≤
‖f‖ρF (t) for t > 0. Since F is asymptotically smooth, limt→0

ρF (t)
t

= 0 and h = 0,
which completes the proof. �

Our next result gives another set of sufficient conditions, also related with the
notion of smoothness, under which Pw(

nE,F ) is an HB-subspace in P(nE,F ). It
is reminiscent of [23, Theorem 1]. The proof is similar to that of the preceding
theorem and we omit it.

Theorem 3.5. Let E,F be Banach spaces, and let n < cd(E). Suppose that
there exists a metric compact approximation of the identity (Lβ) ⊂ K(F ) such
that supβ ‖Lβ‖ ≤ 1 and for any ε > 0 there exist µ > 0 and β0 so that

sup
‖y‖,‖z‖≤1

‖Lβy + µLβz‖ ≤ 1 + εµ for all β ≥ β0. (3.3)

Then, Pw(
nE,F ) is an HB-subspace of P(nE,F ).

Following [19, Definition 3.6] we say that a Schauder basis of a Banach space is
uniformly smooth if for every ε > 0 there exists δ > 0 such that ‖x+y‖+‖x−y‖ <
2 + ε‖y‖, whenever x and y have disjoint supports with respect to the basis,
‖x‖ = 1 and ‖y‖ < δ. Note that by using convex combinations, the definition can
be restated for x with ‖x‖ ≤ 1. The next result should be compared with [19,
Theorem 3.7].

Corollary 3.6. Let E,F be Banach spaces, and let n < cd(E). Suppose that F
has a uniformly smooth 1-unconditional basis. Then Pw(

nE,F ) is an HB-subspace
of P(nE,F ).
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Proof. Let ΠN be the natural projection on F onto the subspace generated by
the first N elements of the 1-unconditional basis. Then, (ΠN) is a metric com-
pact approximation of the identity and satisfies supN ‖ΠN‖ ≤ 1. Also, (3.3) in
Theorem 3.5 holds. Indeed, take ε > 0, and consider µ = δ as in the definition
of uniform smoothness of the basis. For any y, z ∈ BF and N ∈ N, being the
basis 1-unconditional, we have ‖ΠNy + µΠNz‖ ≤ 1 + µε/2. Thus, an immediate
application of Theorem 3.5 gives the result. �

The above corollary can be applied to show some examples of HB-subspaces
of polynomials where the spaces `p and the Lorentz sequence spaces d(w, p) ap-
pear. Recall that, for 1 < p < ∞, both `p and d(w, p) have uniformly smooth
1-unconditional bases. Also, the critical degree of `p is the integer number satisfy-
ing p ≤ cd(`p) < p+1, and cd(`p, `q) is the integer satisfying

p
q
≤ cd(`p, `q) <

p
q
+1.

For the case of cd(`p, d(w, q)), a restatement of (I) and (II) in [14, p. 705] reads
as

cd
(
`p, d(w, q)

)
= max

{
k ∈ N : k <

p

q
+ 1 and w /∈ `( p

(k−1)q
)∗

}
.

Example 3.7. Let 1 < p, q < +∞.

(a) Let E be a Banach space, and let n < cd(E). Then,
• Pw(

nE, `q) is an HB-subspace of P(nE, `q),
• Pw(

nE, d(w, q)) is an HB-subspace of P(nE, d(w, q)).
(b) Let cd(`p, `q) < n < cd(`p). Then, Pw(

n`p, `q) is an HB-subspace but not
an M -ideal in P(n`p, `q).

(c) Let cd(`p, d(w, q)) < n < cd(`p). Then,Pw(
n`p, d(w, q)) is an HB-subspace

but not an M -ideal in P(n`p, d(w, q)). The same result holds for n =
cd(`p, d(w, q)) for the case cd(`p, d(w, q)) <

p
q
.

The statements about not being M -ideals in the previous examples are proved
in [14, Theorems 3.2 and 3.9].

Now we consider conditions satisfied by the domain space E so that we also
have geometric structures in P(nE;F ). Similarly to what happens in Lemma 3.1,
we will describe Pw(

nE,F ) as an ideal of P(nE,F ) whenever E∗ has a metric
compact approximation of the identity with adjoint operators. Here, no restric-
tions on the degree of the polynomials are imposed.

Lemma 3.8. Let E,F be Banach spaces such that E∗ has a metric compact
approximation of the identity with adjoint operators. Then Pw(

nE,F ) is an ideal
of P(nE,F ) for all n ∈ N.

Proof. Let (Kα) ⊂ K(E) be a net satisfying limαK
∗
αx

∗ = x∗ for all x∗ ∈ E∗

and supα ‖Kα‖ ≤ 1. Without loss of generality, we may assume that (Kα) is
weak∗-convergent in K(E)∗∗. Therefore, as in Lemma 3.1, the mapping

Λ: P(nE,F )∗ → P(nE,F )∗

given by

Λ(f)(P ) = lim
α

f(P ◦Kα) (3.4)
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is well defined. It is clear that Λ is linear and ‖Λ‖ ≤ 1. By [14, Lemma 2.1],
limα ‖P − P ◦Kα‖ = 0 for every P ∈ Pw(

nE,F ). Then, Λ(f)(P ) = f(P ) for all
P ∈ Pw(

nE,F ). Furthermore, Λ is a projection: for all Q ∈ P(nE,F ), (Q ◦Kα)
belongs to Pw(

nE,F ). Thus, for all Q ∈ P(nE,F ),

Λ
(
Λ(f)

)
(Q) = lim

α
Λ(f)(Q ◦Kα) = lim

α
f(Q ◦Kα) = Λ(f)(Q),

and Λ2 = Λ. It is easy to check that ker Λ = Pw(
nE,F )⊥, and the result follows.

�

The next result gives a sufficient condition to obtain the dual space Pw(
nE,F )∗

as a quotient. We denote by π the projective tensor norm. Recall that P denotes
the canonical extension of P in P(nE,F ) to P(nE∗∗, F ∗∗).

Proposition 3.9. Let E,F be Banach spaces such that Pw(
nE,F ) does not con-

tain `1. Then, the application j : ⊗̂n,s

πs
E∗∗⊗̂πF

∗ → Pw(
nE,F )∗, given on any ele-

mentary tensor u⊗ y∗ by j(u⊗ y∗)(P ) = y∗(P (u)), is a quotient mapping.

Proof. Take v ∈ ⊗̂n,s

πs
E∗∗⊗̂πF

∗. For each representation of v of the form
∑

i ui⊗y∗i ,

with ui ∈ ⊗̂n,s

πs
E∗∗ and y∗i ∈ F ∗ for all i, we have∣∣∣j(∑
i

ui ⊗ y∗i

)
(P )

∣∣∣ = ∣∣∣∑
i

y∗i
(
P (ui)

)∣∣∣ ≤ ‖P‖
∑
i

‖ui‖‖y∗i ‖.

So, j is continuous and ‖j‖ = 1. Using Haydon’s characterization of spaces not
containing `1, we may write the unit ball of Pw(

nE,F )∗ as the closed convex
hull of its extreme points. Now, by [14, Proposition 1.2], with ez(P ) = P (z) for
z ∈ E∗∗, we obtain

BPw(nE,F )∗ = Γ(ExtPw(nE,F )∗) ⊂ Γ(ez ⊗ y∗ : z ∈ SE∗∗ , y∗ ∈ SF ∗)

⊂ j(B⊗̂n,s
πs

E∗∗⊗̂πF ∗) ⊂ BPw(nE,F )∗ .

Then, all the inclusions are (actually) equalities and j is a quotient mapping. �

In the next result, we show that the natural hypotheses on E and F guaran-
tee that Pw(

nE,F ) does not contain `1, and the preceding proposition can be
applied. We will appeal to the result by Stegall which asserts that if a Banach
space E has a separable subspace whose dual is nonseparable, then E∗ lacks the
Radon–Nikodym property (see, e.g., [11, Theorem VII.2.6]).

Proposition 3.10. Let E,F be Banach spaces such that E∗∗ and F ∗ have the
Radon–Nikodym property. Then Pw(

nE,F )∗ has the Radon–Nikodym property,
and hence Pw(

nE,F ) does not contain `1 for all n ∈ N.

Proof. For any P ∈ Pw(
nE,F ) we consider its associated symmetric multilinear

map A and define TP ∈ L(E,Pw(
n−1E,F )) as the operator given by TP (x)(x̃) =

A(x, x̃, . . . , x̃). By [3, Theorem 2.9], TP is a well-defined compact operator and
‖P‖ ≤ ‖TP‖ ≤ e‖P‖. Then, the mapping Φ: Pw(

nE,F ) → K(E,Pw(
n−1E,F ))

given by Φ(P ) = TP is an isomorphism with its image. As the Radon–Nikodym
property is preserved by isomorphisms, induction on n and [25, Theorem 1.9]
yield the result. �
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Lemma 3.11. Let E,F be Banach spaces such that Pw(
nE,F ) does not contain `1

and such that n < cd(E). Suppose that E∗ has a metric compact approximation of
the identity with adjoint operators given by (Kα) ⊂ K(E). Then, limα P ◦Kα = 0
in the topology σ(P(nE,F ),Pw(

nE,F )∗) for any P ∈ P(nE,F ).

Proof. By Proposition 3.9, the application j : ⊗̂n,s

πs
E∗∗⊗̂πF

∗ → Pw(
nE,F )∗, de-

fined by j(u ⊗ y∗)(P ) = y∗(P (u)), is a quotient mapping. We will show for

ũ =
∑M

i=1wi ⊗ wi ⊗ · · · ⊗ wi ⊗ y∗i that limα〈ũ, P ◦ Kα〉 = 0. So, as for any

h ∈ Pw(
nE,F )∗ there exists u ∈ ⊗̂n,s

πs
E∗∗⊗̂πF

∗ so that j(u) = h and u can be
approximated by such ũ’s, the result follows. Take ũ as above. Then 〈ũ, P ◦Kα〉 =∑M

i=1 P ◦Kα(wi)(y
∗
i ) =

∑M
i=1 P ((Kα)∗∗(wi))(y

∗
i ). As n < cd(E), P is w∗−w∗ con-

tinuous, and limα(K
α)∗∗(wi) = 0 in the w∗-topology, we obtain limα〈ũ, P ◦Kα〉 =

0, which completes the proof. �

Proposition 1.4 in [13] provides an appropriate equivalence of asymptotic uni-
form convexity of power p. With a slight modification of its proof we drop the
hypothesis of separability and obtain a refinement, analogous to condition (c) in
Lemma 3.3, as follows.

Lemma 3.12. Let E be an infinite-dimensional Banach space, and let 1 < p < ∞.
The following statements are equivalent.

(a) E has modulus of asymptotic uniform convexity of power p.
(b) There exists a constant C > 0 such that for every x ∈ SE and every

bounded weakly null net (wα) in E, we have

limα‖x+ wα‖p ≥ 1 + Climα‖wα‖p.

(c) There exists a constant C > 0 such that for every net (xα) in a compact
set of BE and every bounded weakly null net (wα) in E, we have

limα‖xα + wα‖p ≥ limα‖xα‖p + C‖wα‖p.

Proposition 3.13. Let E,F be Banach spaces such that E∗∗ and F ∗ enjoy the
Radon–Nikodym property. Suppose that E has modulus of asymptotic uniform
convexity of power n = cd(E,F ), with n < cd(E), and suppose that E has a
shrinking metric compact approximation of the identity (Kα) ⊂ K(E) satisfying
supα ‖Kα‖ ≤ 1 and limα‖IdE − 2Kα‖ ≤ 1.

Then there exists C > 0 such that Pw(
nE,F ) is an M(1, C)-ideal of P(nE,F ).

Furthermore, Pw(
nE,F ) is an HB-subspace of P(nE,F ).

Proof. We proceed as in Theorem 3.4. Consider Λ as in (3.4), under which
Pw(

nE,F ) is an ideal in P(nE,F ), and write f ∈ P(nE,F )∗, f = g + h as
in (3.2), where ‖g‖ = ‖Λ(f)‖ ≤ ‖f‖.

Consider ε > 0, and take P ∈ P(nE,F ), Q ∈ Pw(
nE,F ) with

‖P‖ = ‖Q‖ = 1, h(P ) ≥ ‖h‖ − ε, and g(Q) ≥ ‖g‖ − ε.

For any α, the polynomial P −P ◦Kα is weakly continuous on bounded sets at 0
(see, e.g., the proof of [12, Proposition 2.2]). Since n = cd(E,F ), the net (P −P ◦
Kα)α is in Pw(

nE,F ). Then, with h ∈ Pw(
nE,F )⊥, h(P ) = h(P ◦Kα) ≥ ‖h‖− ε
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for all α. Also, as limα Q◦Kα = Q, there exists α0 so that |g(Q◦Kα)| > ‖g‖−2ε
and ‖IdE − 2Kα0‖ < 1 + ε for all α ≥ α0. Changing Q ◦Kα0 to λQ ◦Kα0 with
|λ| = 1, if necessary, we may assume that g(Q ◦ Kα0) > ‖g‖ − 2ε. Now, with
C > 0 (to be fixed later) we have

‖f‖‖Q ◦Kα0 + CP ◦Kα‖ ≥
∣∣f(Q ◦Kα0 + CP ◦Kα)

∣∣
≥ g(Q ◦Kα0) + Ch(P ◦Kα)− C

∣∣g(P ◦Kα)
∣∣

≥ ‖g‖+ C‖h‖ − (2 + C)ε− C
∣∣g(P ◦Kα)

∣∣.
By Lemma 3.11, we may find α1 ≥ α0 so that |g(P ◦Kα)| < ε for α ≥ α1. Thus,
we obtain

‖f‖‖Q ◦Kα0 + CP ◦Kα‖ ≥ ‖g‖+ C‖h‖ − 2ε(1 + C) for all α ≥ α1.

Now, take (xα) ⊂ BE such that limα‖Q ◦Kα0 + CP ◦Kα‖ = limα‖Q(Kα0xα) +
CP (Kαxα)‖, and note that (Kα0xα) is contained in a compact subset of BE and
that (Kαxα) is weakly null. Since E has modulus of asymptotic convexity of
power n, we apply Lemma 3.12, with C > 0 as in item (c), and get

limα‖Q ◦Kα0 + CP ◦Kα‖ ≤ limα‖Q‖‖Kα0xα‖n + C‖P‖‖Kαxα‖n

= limα‖Kα0xα‖n + C‖Kαxα‖n

≤ limα‖Kα0xα +Kαxα‖n

≤ limα‖Kα0 +Kα‖n

≤ ‖IdE − 2Kα0‖n,

where the last inequality, being standard, can be found, for instance, in [18,
p. 300]. Then, we may find α2 > α1 so that

‖QKα0 + CPKα2‖ < 1 + ε,

and therefore,

‖g‖+ C‖h‖ − 2ε(1 + C) ≤ ‖f‖(1 + ε).

Since ε > 0 is arbitrary, ‖g‖ + C‖h‖ ≤ ‖f‖ and Pw(
nE,F ) is an M(1, C)-ideal

in P(nE,F ).
To prove that Pw(

nE,F ) is also an HB-subspace of P(nE,F ), note that for
h 6= 0, ‖g‖ < ‖g‖+ C‖h‖ ≤ ‖f‖. On the other hand, for α > α1,

‖f‖ ≥
∣∣f(P ◦Kα)

∣∣ ≥ h(P ◦Kα)−
∣∣g(P ◦Kα)

∣∣ ≥ ‖h‖ − 2ε,

implying that ‖f‖ ≥ ‖h‖, which completes the proof. �

4. Ideal structures inherited by the range space

Our purpose in this section is to give sufficient conditions on the spaces E and
F under which those geometric properties enjoyed by Pw(

nE,F ) as a subspace
of P(nE,F ) are inherited by the range space F as a subspace of F ∗∗. We start
with HB-smoothness presenting an extension to the polynomial setting of [24,
Theorem 7]. Our proof also follows their ideas.
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Proposition 4.1. Let E,F be Banach spaces such that there exists a surjection
ρ : E → F . If Pw(

nE,F ) is HB-smooth in P(nE,F ) for some n ∈ N, then F is
HB-smooth in F ∗∗.

Proof. Denote by NA(E∗∗) the subset of norm-attaining elements in E∗∗, and
consider

A :=
{
ρ∗∗(x∗∗) : x∗∗ 6= 0, x∗∗ ∈ NA(E∗∗)

}
.

As ρ is surjective, ρ∗∗ is also surjective and, by the Bishop–Phelps theorem, A =
F ∗∗. By [24, Theorem 1(c)] it is enough to show that, for every ρ∗∗(x∗∗) ∈ A and
any sequence (yk) ⊂ F with ‖y1‖ < 1, ‖yk+1 − yk‖ < 1, there are y ∈ F and
k0 ∈ N so that ‖ρ∗∗x∗∗ − y ± yk0‖ < k0.

Fix x∗∗
0 6= 0 in NA(E∗∗), take x∗

0 ∈ SE∗ such that x∗∗
0 (x∗

0) = ‖x∗∗
0 ‖, and define,

for k ∈ N, the n-homogeneous polynomial Pk(x) = x∗
0(x)

nyk ∈ Pw(
nE,F ). It is

clear that

‖P1‖ < 1 and ‖Pk+1 − Pk‖ ≤ ‖yk+1 − yk‖ < 1 for all k ∈ N.
Now, define Q(x) = ρ(x)x∗

0(x)
n−1‖x∗∗

0 ‖ and consider its Aron–Berner extension
Q given by Q(x∗∗) = ρ∗∗(x∗∗)x∗∗(x∗

0)
n−1‖x∗∗

0 ‖.
By [24, Theorem 1(a)], there exist R ∈ Pw(

nE,F ) and k0 ∈ N with ‖Q −
R ± Pk0‖ < k0. As the Aron–Berner extension preserves the norm, we obtain
‖Q(x∗∗

0 ) − R(x∗∗
0 ) ± P k0(x

∗∗
0 )‖ < k0‖x∗∗

0 ‖n. The result follows by taking y =
R(x∗∗

0 )

‖x∗∗
0 ‖n . �

As an immediate consequence, we have the following result.

Corollary 4.2. Let E be a Banach space. If Pw(
nE,E) is HB-smooth in P(nE,E)

for some n ∈ N, then E is HB-smooth in E∗∗.

Note that the above corollary says that Pw(
n`1, `1) is not HB-smooth in

P(n`1, `1) for any n ∈ N.
Now we address the notion of HB-subspace, when the range space F is a quo-

tient of the space E. The following technical result, inspired by [26, Proposi-
tion 2.3], will be useful.

Lemma 4.3. Let J be an ideal in the Banach space E under the projection q.
Suppose that J is HB-smooth and that λ ∈ (0, 2]. The following statements are
equivalent.

(i) ‖IdE∗ − λq‖ ≤ 1.
(ii) For each x ∈ BE there exists a net (yα) ⊂ J such that limα yα = x in the

σ(E, J∗)-topology and limα‖x− λyα‖ ≤ 1.
(iii) For each x ∈ BE and ε > 0 there exists a net (yα) ⊂ J such that

limα yα = x in the σ(E, J∗)-topology and limα‖x− λyα‖ ≤ 1 + ε.

Proof. To prove that (i) implies (ii), consider the set of indices A := {α =
(N,M, ε) : N ∈ FIN(E∗∗),M ∈ FIN(E∗), ε > 0}, where FIN denotes the set
of all finite-dimensional subspaces, with the usual order. By the principle of local
reflexivity, for any α ∈ A there exists Tα : N → E so that

• 〈Tαx
∗∗, x∗〉 = 〈x∗∗, x∗〉 for x∗∗ ∈ N, x∗ ∈ M ,
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• ‖Tα‖ ≤ 1 + ε,
• Tα|N∩E = IdE.

Fix x ∈ BE, and consider yα = Tα(q∗x) ∈ E, defined for α large enough. Fix
y∗ ∈ J∗ and ε > 0; then if α ≥ ({q∗x}, {y∗}, ε), as J∗ is the range of q , we have

〈y∗, yα〉 =
〈
y∗, Tα(q

∗x)
〉
= 〈y∗, q∗x〉 = 〈qy∗, x〉 = 〈y∗, x〉,

and limα yα = x in the σ(E, J∗)-topology. On the other hand, also for α large
enough,

‖x− λyα‖ =
∥∥Tα(x− λq∗x)

∥∥ ≤ (1 + ε)‖x− λq∗x‖
≤ (1 + ε)‖IdE∗∗ − λq∗‖ = (1 + ε)‖IdE∗ − λq‖ ≤ 1 + ε.

Then, limα‖x− λyα‖ ≤ 1 and (ii) follows.
Clearly, (ii) implies (iii). To prove that (iii) implies (i), fix ε > 0, x ∈ BE,

and choose (yα) ⊂ J satisfying (iii). For each x∗ ∈ BE∗ , as limα x
∗(yα) =

limα qx∗(yα) = qx∗(x), we have∣∣x∗(x)− λqx∗(x)
∣∣ = lim

α

∣∣x∗(x)− λx∗(yα)
∣∣ ≤ ‖x∗‖limα‖x− λyα‖ ≤ 1 + ε.

Since ε is arbitrary, the implication follows. �

Proposition 4.4. Let E,F be Banach spaces such that there exists a quotient
mapping ρ : E → F . If Pw(

nE,F ) is an HB-subspace of P(nE,F ) for some n ∈ N,
then F is an HB-subspace of F ∗∗.

Proof. First, note that F is an ideal in its bidual, and call q the associated pro-
jection. By Proposition 4.1, F is HB-smooth in F ∗∗. Then, by [22, Theorem], F
is strongly HB-smooth in F ∗∗ and we only have to show that ‖f − qf‖ ≤ ‖f‖ for
all f ∈ F ∗∗∗. In order to do so, we will see that condition (iii) in Lemma 4.3 is
satisfied for λ = 1.

Take y∗∗ ∈ BF ∗∗ and ε > 0. Choose w∗ ∈ SF ∗ so that y∗∗(w∗) > 0 and

( ‖y∗∗‖
y∗∗(w∗)

)n < 1 + ε. Now, with µ = y∗∗(w∗) define P ∈ P(nE,F ) by P (x) =

µρ(x)(ρ∗w∗)n−1(x), for each x ∈ E. By Lemma 4.3, there exists a net (Pα) ⊂
Pw(

nE,F ) converging to P in the σ(P(nE,F ),Pw(
nE,F )∗)-topology and such

that limα‖P − Pα‖ ≤ 1. As ρ is a quotient mapping, ρ∗ is an isometry and we
may find x∗∗ ∈ E∗∗ with ρ∗∗(x∗∗) = y∗∗ and ‖x∗∗‖ = ‖y∗∗‖. Since the Aron–Berner
extension of each Pα has range in F , we define yα = Pα(x

∗∗/µ) ∈ F for all α.
Note that each x∗∗ ⊗ y∗ ∈ E∗∗ ⊗ F ∗ acts in a natural way as an element

of P(nE,F )∗ and, therefore, as an element of Pw(
nE,F )∗. Then, as P (z) =

µρ∗∗(z)zn−1(ρ∗w∗) for z ∈ E∗∗, we have P (x∗∗/µ) = y∗∗ and

y∗∗(y∗) =
(
P (x∗∗/µ)

)
(y∗) = lim

α
y∗
(
Pα(x

∗∗/µ)
)
= lim

α
y∗(yα).

Thus, yα → y∗∗ in the w∗-topology. Also,

limα‖y∗∗ − yα‖ = limα

∥∥P (x∗∗/µ)− Pα(x
∗∗/µ)

∥∥
≤ limα‖P − Pα‖‖x∗∗/µ‖n

≤
(
‖y∗∗‖/µ

)n
< 1 + ε.



700 V. DIMANT, S. LASSALLE, and Á. PRIETO

Another application of Lemma 4.3 gives that ‖IdF ∗∗∗ − q‖ ≤ 1 and, therefore, F
is an HB-subspace of F ∗∗. �

Finally, we focus on M(1, C)-ideal structures. Recall that if J is an ideal in a
Banach space E satisfying the M(1, C)-inequality, then the following condition
holds. For any m ∈ N, y1, y2, . . . , ym ∈ BJ , x ∈ BE, and ε > 0, there is z ∈ J
such that ‖yi + Cx − z‖ ≤ 1 + ε for 1 ≤ i ≤ m (see [7, Lemma 2.2]). In fact,
when dealing with E = J∗∗, it is true that being an M(1, C)-ideal is equivalent
to an appropriate 2-ball property of type (1, C). Namely, we have the following
equivalence, which can be proved with the arguments appearing in the proof of
[7, Lemma 2.3].

Lemma 4.5. Let E be a Banach space, and let C ∈ (0, 1]. The following state-
ments are equivalent.

(i) E is an M(1, C)-ideal of E∗∗.
(ii) For all x ∈ SE, x∗∗ ∈ SE∗∗, and ε > 0, there exists x0 ∈ E with

‖±x+ Cx∗∗ − x0‖ < 1 + ε.

We use the above characterization to give an analogous statement to Proposi-
tion 4.4 in the case of M(1, C)-ideals.

Proposition 4.6. Let E,F be Banach spaces such that there exists a quotient
mapping ρ : E → F . If Pw(

nE,F ) is an M(1, C)-ideal of P(nE,F ) for some
n ∈ N and C > 0, then F is an M(1, C)-ideal of F ∗∗.

Proof. Let us prove that condition (ii) in Lemma 4.5 is satisfied. Fix y ∈ SF ,
y∗∗ ∈ SF ∗∗ , and ε > 0. Choose δ > 0 such that δ + 1+δ

(1−δ)n−1 < 1 + ε and y∗ ∈ SF ∗

with y∗∗(y∗) ≥ 1− δ. Define, for x ∈ E, P ∈ P(nE,F ) and Q ∈ Pw(
nE,F ) by

P (x) = (ρ∗y∗)n−1(x)ρ(x) and Q(x) = (ρ∗y∗)n(x)y,

with ‖P‖, ‖Q‖ ≤ ‖ρ‖n = 1. Due to [7, Lemma 2.2], there exists R ∈ Pw(
nE,F )

so that ‖±Q+ CP − R‖ ≤ 1 + δ. As ρ∗ is an isometry, there is x∗∗ ∈ SX∗∗ with
ρ∗∗(x∗∗) = y∗∗. Extending by Aron–Berner for z ∈ E∗∗,

P (z) = z(ρ∗y∗)n−1ρ∗∗(z) and Q(z) = z(ρ∗y∗)ny.

Then, with µ = y∗∗(y∗), P (x∗∗) = µn−1y∗∗ and Q(x∗∗) = µny,∥∥±µny + Cµn−1y∗∗ −R(x∗∗)
∥∥ =

∥∥±Q(x∗∗) + CP (x∗∗)−R(x∗∗)
∥∥ ≤ 1 + δ.

AsR ∈ Pw(
nE,F ), the range ofR is also in F , and we may take y0 = R(x∗∗)/µn−1.

Thus,

‖±µy + Cy∗∗ − y0‖ ≤ 1 + δ

(1− δ)n−1
.

Finally, ‖±y + Cy∗∗ − y0‖ ≤ ‖y − µy‖ + ‖±µy + Cy∗∗ − y0‖ < 1 + ε, and the
result follows. �

In the above proposition, the case C = 1 corresponds to the structure of an
M -ideal. The corollary follows directly and seems to be new in this context.



IDEAL STRUCTURES IN VECTOR-VALUED POLYNOMIAL SPACES 701

Corollary 4.7. Let E,F be Banach spaces such that there exists a quotient map-
ping ρ : E → F . If Pw(

nE,F ) is an M-ideal of P(nE,F ) for some n ∈ N, then
F is an M-ideal of F ∗∗.

As we have already noted in Corollary 4.2, it is now immediate to derive versions
of Proposition 4.4, Proposition 4.6, and Corollary 4.7 for the case E = F .
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