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Abstract. We prove that for a given Banach space X, the subset of norm-
attaining Lipschitz functionals in Lip0(X) is weakly dense but not strongly
dense. Then we introduce a weaker concept of directional norm attainment
and demonstrate that for a uniformly convex X the set of directionally norm-
attaining Lipschitz functionals is strongly dense in Lip0(X) and, moreover,
that an analogue of the Bishop–Phelps–Bollobás theorem is valid.

1. Introduction and motivation

In this text, the letterX stands for a real Banach space. We denote, as usual, by
SX andBX the unit sphere and the closed unit ball ofX, respectively. A functional
x∗ ∈ X∗ attains its norm if there is x ∈ SX with x∗(x) = ‖x∗‖. If X is reflexive,
then all x∗ ∈ X∗ attain their norms and, according to the famous James theorem
(see [8, Chapter 1, Theorem 3]), in every nonreflexive space there are functionals
that do not attain their norm. Nevertheless, in every Banach space there are
“many” norm-attaining functionals. Namely, the classical Bishop–Phelps theorem
(see [5], [8, Chapter 1]) states that the set of norm-attaining functionals on a
Banach space is norm-dense in the dual space. Moreover, for every closed bounded
convex set C ⊂ X, the collection of functionals that attain their maximum on C
is norm-dense in X∗.

The fact that every functional can be approximated by those that are norm-
attaining is quite useful, but sometimes one needs more. Namely, sometimes (in
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particular, when one works with the numerical radius of operators) one needs
to approximate a pair (x, x∗) ∈ SX × SX∗ such that x∗(x) ∼ 1 by a pair
(y, y∗) ∈ SX×SX∗ such that y∗(y) = 1. Such a modification of the Bishop–Phelps
theorem was given by Bollobás in [6]. Below we cite it in a slightly modified form
with sharp estimates from [7].

Theorem 1.1 ([7, Corollary 2.4]). Let X be a Banach space. Suppose that x ∈ BX

and x∗ ∈ BX∗ satisfy x∗(x) ≥ 1 − δ for δ ∈ (0, 2). Then there exists (y, y∗) ∈
X ×X∗ with ‖y‖ = ‖y∗‖ = y∗(y) = 1 such that

max
{
‖x− y‖, ‖x∗ − y∗‖

}
≤

√
2δ. (1.1)

In this project we are searching for possible extensions of the Bishop–Phelps
theorem and the Bishop–Phelps–Bollobás theorem for nonlinear Lipschitz func-
tionals f : X −→ R.

Throughout this paper, we use the letter E to denote a metric space, equipped
with a distinguished point 0 and such that E \ {0} 6= ∅, and such that ρ denotes
the given distance of E. Recall that to such a pointed metric space, one associates
the Banach space Lip0(E) that consists of functions f : E −→ R with f(0) = 0
which satisfy (globally) the Lipschitz condition. This space is equipped with the
norm

‖f‖ = sup
{ |f(x)− f(y)|

ρ(x, y)
: x, y ∈ E, x 6= y

}
. (1.2)

In other words, ‖f‖ is the smallest Lipschitz constant of f . (We refer the reader
to the book [15] for background on Lipschitz spaces.)

The most interesting results of the present paper are related to Definition 1.3
below, which does not make sense for functions on general pointed metric spaces,
but only in the Banach space setting. That is why we mainly concentrate here on
the case of Lip0(X), where X is a Banach space. Note that in this case, evidently,
X∗ is a closed subspace of Lip0(X) with equality of norms.

Since we deal here with possible extensions of the Bishop–Phelps and Bishop–
Phelps–Bollobás theorems, we first need to state what we understand by the term
norm-attaining Lipschitz functional. We have a couple of possible definitions for
this, the first being the following.

Definition 1.2. A functional f ∈ Lip0(E) attains its norm in the strong sense if

there are x, y ∈ E, x 6= y, such that ‖f‖ = |f(x)−f(y)|
ρ(x,y)

. The subset of all functionals

f ∈ Lip0(E) that attain their norm in the strong sense is denoted SA(E).

Unfortunately, in the sense of the Bishop–Phelps theorem, this definition is
too restrictive. Even in the 1-dimensional case (X = R), the subset SA(X) is not
dense in Lip0(X) (see Example 2.1 and Theorem 2.3). For every Banach space X,
nevertheless, SA(X) is weakly sequentially dense in Lip0(X) (see Theorem 2.6).
This is the content of our Section 2, where the results are actually proved for
metrically convex metric spaces.

It is then clear that a less restrictive way for a Lipschitz functional to attain
its norm is needed to get norm density. We will use the following definition.
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Definition 1.3. A functional g ∈ Lip0(X) attains its norm at the direction u ∈ SX

if there is a sequence of pairs {(xn, yn)} in X ×X, with xn 6= yn, such that

lim
n→∞

xn − yn
‖xn − yn‖

= u and lim
n→∞

g(xn)− g(yn)

‖xn − yn‖
= ‖g‖.

In this case, we say that g attains its norm directionally. The set of all those
f ∈ Lip0(X) that attain their norm directionally is denoted by DA(X).

We start our consideration with two reasons why the directional approach is
natural in our framework.

(a) If X is finite-dimensional, then DA(X) = Lip0(X) by a compactness argu-
ment, so at least in this easiest case the directional Bishop–Phelps theorem
does not fail.

(b) A linear functional attains its norm at direction u if and only if f(u) = ‖f‖
(i.e., if it attains its norm in the usual sense).

We devote Section 3 to norm-attaining seminorms. Continuous seminorms on a
Banach space X form a closed cone in Lip0(X), and the Lipschitz norm coincides
with the uniform norm (i.e., the supremum on the unit sphere of the space). More-
over, the respective sets of continuous seminorms that attain the norm strongly,
that attain the norm directionally, and that attain the norm uniformly coin-
cide (see Lemma 3.2). We provide a general Bishop–Phelps–Bollobás theorem for
seminorms, but getting uniform density instead of density in the Lipschitz norm
(see Proposition 3.4). Besides, we prove the Lipschitz-norm density of norm-
attaining seminorms for Banach spaces with the Radon–Nikodým property (see
Proposition 3.6) by using Stegall’s version of the classical Bourgain–Steagall non-
linear optimization principle. Finally, we show that in every infinite-dimensional
Banach space, there is a continuous seminorm which does not attain its norm
(Example 3.3), so item (a) above actually characterizes finite dimension.

The main result of this article is a Bishop–Phelps–Bollobás-type theorem for
Lipschitz functionals on uniformly convex spaces. Let us introduce the following
definition.

Definition 1.4. A Banach space X has the directional Bishop–Phelps–Bollobás
property for Lipschitz functionals (X ∈ LipBPB for short) if for every ε > 0
there is such a δ > 0 that, for every f ∈ Lip0(X) with ‖f‖ = 1 and for every

x, y ∈ X with x 6= y satisfying f(x)−f(y)
‖x−y‖ > 1−δ, there is g ∈ Lip0(X) with ‖g‖ = 1

and there is u ∈ SX such that g attains its norm at the direction u, ‖g− f‖ < ε,
and ‖ x−y

‖x−y‖ − u‖ < ε.

With this notation, the main result of the paper is to prove that uniformly
convex spaces have the LipBPB (Theorem 5.3), and even a stronger property
called local directional Bishop–Phelps–Bollobás property for Lipschitz functionals
introduced in Definition 4.3. This is the content of Section 5. In proving such
a result, we need to provide a weak version of the property (see Lemma 4.1),
valid for all Banach spaces, which is proved using the Lipschitz-free space (see
the definition in Section 4). We also prove (see Lemma 4.4) that the requirements
for a general Banach space to have the (local) Bishop–Phelps–Bollobás property
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for Lipschitz functionals can be relaxed in the sense that only “approximate”
directional norm attainment of g is required. These two preliminary results are
the content of Section 4.

We should make it clear that we are not able to answer some natural easy-
looking questions related to our results. For example, we are not able to con-
struct a Banach space which has no (local) directional Bishop–Phelps–Bollobás
property for Lipschitz functionals. On the other hand, we refer to [9] for some
negative results on norm-attaining Lipschitz maps between Banach spaces which
do not overlap with the results of this manuscript.

We finish our preliminaries by recalling an important tool for constructing
Lipschitz functionals: the classical McShane’s extension theorem. It states that, if
M is a subspace of a metric space E and if f : M −→ R is a Lipschitz functional,
then there is an extension to a Lipschitz functional F : E −→ R with the same
Lipschitz constant (see [15, Theorem 1.5.6] or [4, p. 12, 13]).

2. Strongly attaining Lipschitz functionals

As we stated above, there is no Bishop–Phelps-type theorem for Lipschitz func-
tionals in the strong sense of the attainment, even in the 1-dimensional case.

Example 2.1. SA([0, 1]) is not dense in Lip0([0, 1]).

In order to demonstrate this, we need the following easy lemma.

Lemma 2.2. If f ∈ Lip0(E) attains its norm on a pair (x, y) ∈ E × E, x 6= y,
and if z ∈ E \ {x, y} is such an element that ρ(x, y) = ρ(x, z) + ρ(z, y), then f
strongly attains its norm on the pairs (x, z) and (y, z), and

f(z) =
ρ(z, y)f(x) + ρ(x, z)f(y)

ρ(x, y)
. (2.1)

In particular, if E is a convex subset of a Banach space, then f is affine on the
closed segment conv{x, y}; that is, f(θx + (1 − θ)y) = θf(x) + (1 − θ)f(y) for
every θ ∈ [0, 1].

Proof. We may (and do) assume without loss of generality that f(x)− f(y) ≥ 0
(otherwise we multiply f by −1). Since f attains its norm on the pair (x, y), we
have

‖f‖ρ(x, y) = f(x)− f(y) = f(x)− f(z) + f(z)− f(y)

≤ ‖f‖ρ(x, z) + ‖f‖ρ(z, y) = ‖f‖ρ(x, y).

This means that the inequalities

f(x)− f(z) ≤ ‖f‖ρ(x, z) and f(z)− f(y) ≤ ‖f‖ρ(z, y)

which we used above are, in fact, equalities. So, f(x) = f(z) + ‖f‖ρ(x, z) and
f(y) = f(z)−‖f‖ρ(z, y), and so f attains its norm on the pairs (x, z) and (y, z).
Substituting the last two formulas into the right-hand side of (2.1), we get the
desired result. �
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Proof of Example 2.1. It is well known (see, e.g., [15, Example 1.6.5] or [12,
Propositions 6 and 2]) that Lip0([0, 1]) is isometric to L∞([0, 1]), and the cor-
responding bijective isometry U : Lip0([0, 1]) −→ L∞([0, 1]) is just the differ-
entiation operator (the derivative of a Lipschitz function f : [0, 1] −→ R exists
almost everywhere). Under this isometry, every f ∈ SA([0, 1]) maps to a function,
which is equal either to ‖f‖ or to −‖f‖ on some nonvoid interval (here we use
Lemma 2.2). Denote A a nowhere dense closed subset of [0, 1] of positive Lebesgue
measure, and let g ∈ Lip0([0, 1]) be the function, whose derivative equals 1A (the
characteristic function of A) almost everywhere. Then g cannot be approximated
by functions from SA([0, 1]). Actually, we claim that

‖g − f‖ = ‖1A − f ′‖∞ ≥ 1

2
(2.2)

for every f ∈ SA(R). In fact, ‖g‖ = ‖1A‖∞ = 1; so if ‖f ′‖∞ ≤ 1
2
, then (2.2) follows

from the triangle inequality. If ‖f ′‖∞ > 1
2
, then, as we remarked before, |f ′(t)| > 1

2
on some open interval (a, b). But, since A is nowhere dense, there is a smaller
interval (c, d) ⊂ (a, b) such that 1A(t) = 0 for t ∈ (c, d). So |[1A − U(f)](t)| > 1

2
on (c, d), which implies (2.2). Hence, SA([0, 1]) is not dense in Lip0([0, 1]). �

Recall, that a metric space E is said to be metrically convex if for every pair
of distinct points x, y ∈ E there is a curve ` ⊂ E which connects x and y and
is isometric to the segment [0, ρ(x, y)] ⊂ R. The next theorem demonstrates that
Example 2.1 extends to all nontrivial metrically convex pointed metric spaces,
and, in particular, to all Banach spaces.

Theorem 2.3. Let E be a metrically convex pointed metric space. Then SA(E)
is not dense in Lip0(E).

Proof. Fix x0 ∈ E \ {0}; without loss of generality, assume that ρ(0, x0) = 1.
Denote ` ⊂ E the isometric copy of [0, 1] which connects 0 and x0. Again without
loss of generality,we may assume that ` = [0, 1] ⊂ E. Let u : E −→ [0, 1], ‖u‖ = 1,
be a Lipschitz function whose restriction to [0, 1] is the identity map (here we
apply McShane’s extension theorem), and let g ∈ Lip0([0, 1]) be the function from

Example 2.1. We are going to demonstrate that h := g ◦ u ∈ Lip0(E) \ SA(E).
Consider an arbitrary f ∈ SA(E). As in Example 2.1, we will show that ‖h−

f‖ ≥ 1
2
. Assume that

‖h− f‖ <
1

2
. (2.3)

Then ‖f‖ > 1/2. Denote (x, y) ∈ E × E, x 6= y a pair at which f attains its
norm. Due to metric convexity of E, there is an isometric copy γ of [0, ρ(x, y)]
which connects x and y. According to Lemma 2.2,∣∣f(z1)− f(z2)

∣∣ = ‖f‖ρ(z1, z2)

for every z1, z2 ∈ γ, z1 6= z2. Consequently,∣∣h(z1)− h(z2)
∣∣ ≥ ∣∣f(z1)− f(z2)

∣∣− ‖h− f‖ρ(z1, z2) > 0
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for all such z1, z2. This, in turn, implies that g(v1) 6= g(v2) for every pair of
distinct points v1, v2 in the nonvoid interval u(γ) ⊂ [0, 1]. But, according to the
definition of g, this is impossible. �

Even though in the sense of Definition 1.2 the Bishop–Phelps theorem does
not transfer to Lipschitz functionals, SA(X) cannot be too small. Namely, we
are going to demonstrate that SA(X) is weakly sequentially dense in Lip0(X) for
every Banach space X. Even more, we will prove an analogous fact for a wider
class of “local” metric spaces.

According to [11, Definition 2.2], a pointed metric space E is said to be local if
for every ε > 0 and for every function f ∈ Lip0(E) there are two distinct points
t1, t2 ∈ E such that ρ(t1, t2) < ε and

f(t2)− f(t1)

ρ(t1, t2)
> ‖f‖ − ε. (2.4)

Every local space evidently is infinite, and it is also easy to see that locality implies
the absence of isolated points (the function f = 1{τ} where τ is an isolated point
does not fit to the definition). Every metrically convex E is local (see [11, Propo-
sition 2.3]) and a partial converse statement is known (see [11, Proposition 2.9]):
let E be a metric subspace of a smooth locally uniformly rotund Banach space.
If E is compact and local, then E is convex. We begin with a helpful lemma.

Lemma 2.4. Let E be a local metric space, let {fn} be a sequence in SLip0(E),
and for each n ∈ N let Un := {x ∈ E : fn(x) 6= 0} be the corresponding supports.
Suppose that the sets Un are pairwise separated; that is,

dn,m = inf
{
ρ(x, y) : x ∈ Un, y ∈ Um

}
> 0

for every n 6= m. Then, the sequence {fn} is isometrically equivalent to the canon-
ical basis of c0; that is, for any finite collection {aj}nj=1 of reals, we have∥∥∥ n∑

j=1

ajfj

∥∥∥ = max
k

|ak|. (2.5)

Proof. Denote f =
∑n

j=1 ajfj, dn = min{dk,j : k, j ∈ {1, 2, . . . , n}}. Fix an ε > 0
satisfying ε < dn. According to the definition of locality, there are points t1, t2 ∈ E
such that 0 < ρ(t1, t2) < ε which fulfill (2.4). If one of ti belongs to some Um,
then the other one either belongs to the same Um, or lies outside of f ’s support.
Consequently, for this m,

‖f‖ <
f(t2)− f(t1)

ρ(t1, t2)
+ ε = am

fm(t2)− fm(t1)

ρ(t1, t2)
+ ε ≤ |am|+ ε.

By the arbitrariness of ε, this implies that ‖f‖ ≤ maxk |ak|.
In order to get the reverse inequality, we fix such an m that maxk |ak| = |am|

and we apply the locality condition to fm. We get points t1, t2 ∈ E such that
0 < ρ(t1, t2) < ε and

fm(t2)− fm(t1)

ρ(t1, t2)
> 1− ε.
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If ε is small enough, this condition again means that one of ti belongs to Um and
the other one either belongs to Um, or lies outside of f ’s support. Consequently,

max
k

|ak| = |am| ≤
1

1− ε
|am|

|fm(t2)− fm(t1)|
ρ(t1, t2)

=
1

1− ε

|f(t2)− f(t1)|
ρ(t1, t2)

≤ 1

1− ε
‖f‖. �

As an obvious consequence, we obtain the following.

Corollary 2.5. If E is a local metric space, then every bounded separately sup-
ported sequence in Lip0(E) converges weakly to zero.

We are now ready to prove the weak sequential density of strongly attaining
Lipschitz functionals.

Theorem 2.6. If E is a local metric space, then SA(E) is weakly sequentially
dense in Lip0(E); that is, for every g ∈ Lip0(E) there is a sequence {gn} in SA(E)
which converges weakly to g.

Proof. Without loss of generality, we may assume that ‖g‖ = 1. Let us choose a
sequence of pairwise disjoint balls {Un} with corresponding radii rn > 0, centers
xn and such that 0 /∈ Un. For every n ∈ N, select εn ∈ (0, 1

2
) and yn ∈ Un with

0 < ρ(xn, yn) = εnrn (here we use the absence of isolated points). For a fixed
n, consider En = (E \ Un) ∪ {xn, yn} ⊂ E. Define hn : En −→ R as follows:
hn(t) = g(t) for t ∈ En \ {xn} and hn(xn) = g(yn) − sn(1 + 2εn)ρ(xn, yn), where
sn = sign(g(yn)− g(xn)). We claim that the Lipschitz constant of hn is attained
at the pair (xn, yn) and equals 1 + 2εn. First,

|hn(xn)− hn(yn)|
ρ(xn, yn)

= 1 + 2εn.

Second, if x, y ∈ En \ {xn}, then
|hn(x)− hn(y)|

ρ(xn, yn)
=

|g(x)− g(y)|
ρ(x, y)

≤ 1.

So, it remains to check that for every y ∈ E \ Un, we have

|hn(xn)− hn(y)|
ρ(xn, y)

≤ 1 + 2εn.

In fact,

|hn(xn)− hn(y)|
ρ(xn, y)

=
|g(yn)− sn(1 + 2εn)ρ(xn, yn)− g(y)|

ρ(xn, y)

=
|g(yn)− sn(1 + 2εn)εnrn − g(y)|

ρ(xn, y)

≤ |g(xn)− g(y)|
ρ(xn, y)

+
|g(yn)− g(xn)− sn(1 + 2εn)εnrn|

ρ(xn, y)

≤ 1 +
(1 + 2εn)εnrn

rn
≤ 1 + 2εn.



628 V. KADETS, M. MARTÍN, and M. SOLOVIOVA

The claim is proved. Now, applying McShane’s extension theorem, we extend hn

to a functional gn on the whole of E preserving its Lipschitz constant. Then,
gn ∈ Lip0(X), ‖gn‖ = 1 + 2εn, and

|gn(xn)− gn(yn)|
ρ(xn, yn)

=
|hn(xn)− hn(yn)|

ρ(xn, yn)
= 1 + 2εn,

so gn ∈ SA(E). On the other hand, supp(gn − g) ⊂ Un, so the functionals gn − g
are disjointly supported. According to Corollary 2.5, this implies that {gn − g}
converges weakly to zero. �

Remark 2.7. Choosing in the above proof sequences {εn} and {rn} converging to
zero, one gets additional properties of the approximating sequence gn. Namely,
one can get that {‖gn‖} −→ ‖g‖ and that {gn} converges uniformly on the whole
of E to g.

As Banach spaces are local metric spaces, we may particularize Theorem 2.6
and Remark 2.7 to this case.

Corollary 2.8. Let X be a Banach space. Then, for every g ∈ Lip0(X) there is
a sequence {gn} in SA(X) which converges weakly to g. Moreover, the sequence
{gn} can be chosen in such a way that one also has that {‖gn‖} −→ ‖g‖ and that
{gn} converges uniformly on the whole of X to g.

3. Bishop–Phelps theorems for seminorms

Let X be a Banach space. We write Sem(X) for the set of all continuous
seminorms on X. As usual, we consider the set Sem(X) as a closed cone of
`∞(SX ,R), where for a set Γ, `∞(Γ,R) denotes the Banach space of all bounded
functions from Γ into R endowed with the uniform norm ‖ · ‖∞. We need a
couple of easy remarks on continuous seminorms: they can be viewed as Lipschitz
functionals with equality of norms, and they can be expressed in terms of the
norm of a bounded linear operator. We use the notation L(X,Y ) for the Banach
space of all bounded linear operators between the Banach spaces X and Y . Only
in this section, we will write ‖ · ‖Lip to denote the Lipschitz norm when there is
a possible confusion.

Remark 3.1. Let X be a Banach space. Then we have the following.

(a) Sem(X) ⊆ Lip0(X) and ‖p‖Lip = ‖p‖∞ for every p ∈ Sem(X).
(b) For every p ∈ Sem(X) there exist a Banach space Y and T ∈ L(X,Y )

such that p(x) = ‖Tx‖ for all x ∈ X, which obviously satisfies ‖T‖ =
‖p‖∞. Actually, one can consider Y = `∞(Γ,R), where Γ is a set whose
cardinality equals the density character of X.

Proof. (a). This is a consequence of the triangle inequality. Indeed, for p ∈
Sem(X) and x, y ∈ X with x 6= y, we have

|p(x)− p(y)|
‖x− y‖

≤ p(x− y)

‖x− y‖
= p

( x− y

‖x− y‖

)
≤ ‖p‖∞,
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so ‖p‖Lip ≤ ‖p‖∞. Conversely, for every z ∈ SX we have

p(z) =
p(z)− p(0)

‖z − 0‖
≤ ‖p‖Lip.

(b). Let Y be the completion of the quotient (X, p)/ ker p, and let T ∈ L(X,Y )
be the composition of the natural quotient map from X onto (X, p)/ ker p and
the inclusion into Y . It is then obvious that p(x) = ‖Tx‖ for every x ∈ X. For
the moreover part, just observe that the density character of Y is smaller or equal
than that of X, so Y embeds isometrically into `∞(Γ,R) and one can view T as
an element of L(X, `∞(Γ,R)). �

Our goal in this section is to study norm-attaining seminorms. As we have two
norms defined on Sem(X) and also two ways for a Lipschitz functional to attain
the norm, we have three possibilities. As a matter of fact, all of them are the
same for continuous seminorms.

Lemma 3.2. Let X be a Banach space and let p ∈ Sem(X). Then, the following
conditions are equivalent:

(i) p attains its norm as an element of `∞(SX ,R) (i.e. there exists z ∈ SX

such that p(z) = ‖p‖),
(ii) p ∈ SA(X) (i.e., there exists a pair (x, y) ∈ X ×X with x 6= y such that

|p(x)−p(y)|
‖x−y‖ = ‖p‖),

(iii) p ∈ DA(X) (i.e., there exists a sequence of pairs {(xn, yn)} in X×X with

xn 6= yn for all n such that { xn−yn
‖xn−yn‖} is convergent and {p(xn)−p(yn)

‖xn−yn‖ } −→
‖p‖),

(iv) for every Banach space Y and every such operator T ∈ L(X,Y ) such that
p(x) = ‖Tx‖ (x ∈ X), T attains its norm (i.e., there is z ∈ SX such that
‖Tz‖ = ‖T‖ = ‖p‖),

(v) there exist a Banach space Y and a norm-attaining operator T ∈ L(X,Y )
such that p(x) = ‖Tx‖ (x ∈ X).

In the case that p satisfies any (all) of the above conditions, we will say that p is
a norm-attaining seminorm.

Proof. For (i)⇒(ii), consider the pair (z, 0) (otherwise, (ii)⇒(iii), (iv)⇒(v), and
(v)⇒(i) are evident).

(iii)⇒(iv). Write u = lim xn−yn
‖xn−yn‖ , so T (u) = lim T (xn)−T (yn)

‖xn−yn‖ . Then

∥∥T (u)∥∥ = lim
‖T (xn)− T (yn)‖

‖xn − yn‖
≥ lim

|‖T (xn)‖ − ‖T (yn)‖|
‖xn − yn‖

= lim
|p(xn)− p(yn)|

‖xn − yn‖
= ‖p‖. �

As a consequence of this result, we may provide an interesting example which
shows that there is a Lipschitz version of the James theorem, but in this case it
characterizes finite-dimensionality instead of reflexivity.
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Example 3.3. For every infinite-dimensional Banach space X, there is a contin-
uous seminorm p ∈ Sem(X) which does not attain its norm. As a consequence,
if DA(X) = Lip0(X) for a Banach space X, then X is finite-dimensional.

The example is based on [13, Lemma 2.2], but we include the details for the
sake of completeness.

Proof. Since X is infinite-dimensional, there is a sequence {x∗
n} in SX∗ which is

weak-star convergent to zero (this is the Josefson–Nissenzweig theorem). Now,
consider the seminorm p : X −→ R given by

p(x) = max
{n|x∗

n(x)|
n+ 1

: n ∈ N
}

(x ∈ X)

and observe that ‖p‖ = 1 but p(x) < 1 for every x ∈ SX . �

We are ready to prove the uniform density of the set of norm-attaining semi-
norms. Actually, we may prove more.

Proposition 3.4 (Bishop–Phelps–Bollobás theorem for seminorms in the uni-
form norm). Let X be a Banach space. Then for every ε > 0 there is such a δ > 0
that, for every p0 ∈ Sem(X) with ‖p0‖ = 1 and every x0 ∈ SX with p0(x0) > 1−δ,
there exist p ∈ Sem(X) with ‖p‖ = 1 and x ∈ SX such that

p(x) = 1 = ‖p‖, ‖x− x0‖ < ε and

‖p− p0‖∞ = sup
x∈SX

∣∣p(x)− p0(x)
∣∣ < ε.

Proof. Let Γ be a set whose cardinality equals the density character of X. It is
shown in [1, Theorem 2.2] that for every ε > 0 there is δ > 0 such that, whenever
T0 ∈ L(X, `∞(Γ,R)) with ‖T0‖ = 1 and x0 ∈ SX satisfy that ‖T0(x0)‖ > 1 − δ,
there exist T ∈ L(X, `∞(Γ,R)) with ‖T‖ = 1 and x ∈ SX such that

‖Tx‖ = 1 = ‖T‖, ‖x− x0‖ < ε, ‖T − T0‖ < ε. (3.1)

Now, for a given ε > 0, consider such a δ > 0. By Remark 3.1, there is T0 ∈
L(X, `∞(Γ,R)) such that p0(x) = ‖T0(x)‖ for all x ∈ X. As p0(x0) > 1 − δ, we
have ‖T0(x0)‖ > 1 − δ and we may find T ∈ L(X, `∞(Γ,R)) with ‖T‖ = 1 and
x ∈ SX satisfying (3.1). Consider p ∈ Sem(X) be given by p(z) = ‖T (z)‖ for
every z ∈ X. Then, ‖p‖ = 1 = p(x), ‖x− x0‖ < ε, and∣∣p(z)− p0(z)

∣∣ = ∣∣∥∥T (z)∥∥−
∥∥T0(z)

∥∥∣∣ ≤ ∥∥T (z)− T0(z)
∥∥ ≤ ‖T − T0‖ < ε

for every z ∈ SX , so ‖p− p0‖∞ < ε, finishing the proof. �

One may wonder whether the above result is also true replacing ‖p− p0‖∞ by
‖p−p0‖Lip. In general, ‖p−q‖∞ ≤ ‖p−q‖Lip for all p, q ∈ Sem(X), so the uniform
convergence of seminorms is weaker than the Lipschitz convergence, and the next
example shows that it is indeed strictly weaker.

Remark 3.5. The uniform convergence of seminorms does not force the Lip-
schitz convergence, even in the finite-dimensional case. Indeed, let X be the
2-dimensional space R2 endowed with the maximum norm, let p0 ∈ Sem(X)
be defined by p0(x1, x2) = |x1| for every (x1, x2) ∈ X, and for every n ∈ N let
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pn ∈ Sem(X) be defined by pn(x1, x2) = max{|x1|, 1
n
|x2|} for every (x1, x2) ∈ X.

On the one hand, ‖pn − p0‖∞ ≤ 1/n, so {pn} is uniformly convergent to p0. On
the other hand,

‖pn − p0‖Lip ≥ |(pn(0, n)− p0(0, n))− (pn(1, n)− p0(1, n))|
‖(0, n)− (1, n)‖

= 1.

Our last result in this section shows that the Radon–Nikodým property is
sufficient to assure that norm-attaining seminorms are dense in the Lipschitz
sense.

Proposition 3.6 (Bishop–Phelps theorem for seminorms in the Lipschitz norm
for RNP spaces). Let X be a Banach space with the Radon–Nikodým property.
Then, the set of norm-attaining seminorms is dense in (Sem(X), ‖ · ‖Lip).
Proof. This is an easy consequence of the following (not quite easy) Stegall’s
result from [14, Theorem, p. 174], from which we are citing only the part which
we need: let D be an RNP set and let f : D −→ R be upper semicontinuous
and bounded above. Then, for every ε > 0, there exists x∗ ∈ X∗ with ‖x∗‖ < ε
such that f + |x∗| attains its supremum on D. Now, let us apply this theorem to
D = BX and f = p ∈ Sem(X). Then, the corresponding q := p + |x∗| is again a
continuous seminorm, and q is norm-attaining. Finally,

‖p− q‖Lip =
∥∥|x∗|

∥∥
Lip

=
∥∥|x∗|

∥∥
∞ = ‖x∗‖ < ε. �

4. Two preliminary results

In this section, we demonstrate two preliminary results on the way to Theo-
rem 5.3. The first one is a weak version of the Bishop–Phelps–Bollobás theorem
for Lipschitz functionals, valid for all Banach spaces, which can be of independent
interest.

Lemma 4.1 (Preliminary LipBPB Theorem). Let X be a Banach space, let f ∈
Lip0(X), let ‖f‖ = 1, δ ∈ (0, 2), and let x, y ∈ X, x 6= y be such elements that

f(x)− f(y)

‖x− y‖
> 1− δ. (4.1)

Then for every h ∈ Lip0(X) with ‖h‖ = 1, such that h(x)−h(y)
‖x−y‖ = 1 there exists

g ∈ Lip0(X) with ‖g‖ = 1, ‖f − g‖ <
√
2δ, and there exists a sequence of pairs

{(vn, wn)} in X ×X with vn 6= wn for every n such that

h(vn)− h(wn)

‖vn − wn‖
> 1−

√
2δ for all n ∈ N and lim

n→∞

g(vn)− g(wn)

‖vn − wn‖
= 1.

The proof of this result is based on the Lipschitz-free space technique, so let us
first recall the relevant definitions and basic facts. For every x ∈ X, we denote x̂
the corresponding evaluation functional on Lip0(X), that is, x̂(f) = f(x). Then
x̂ is an element of Lip0(X)∗. The subspace Lin{x̂ : x ∈ X} of Lip0(X)∗ is denoted
by F(X). The most common name for F(X) is the Lipschitz-free space of X. This
object was studied under various names by several authors (see [3], [12], [10]),
and is known to be useful for Lipschitz maps study.
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The elements of Lip0(X) are continuous linear functionals on F(X); moreover,
F(X)∗ = Lip0(X) as Banach spaces. The map x 7−→ x̂ is a nonlinear isometric
embedding of X into F(X) since ‖x̂− ŷ‖F(X) = ‖x− y‖X for all x, y ∈ X.

The action of f ∈ Lip0(X) on w ∈ F(X) is denoted by 〈f, w〉. With this
notation, 〈f, x̂〉 = f(x) and the formula (1.2) can be re-written as follows:

‖f‖ = sup
{∣∣∣〈f, x̂− ŷ

‖x− y‖

〉∣∣∣ : x, y ∈ X, x 6= y
}
. (4.2)

Denote W = { x̂−ŷ
‖x−y‖ : x, y ∈ X, x 6= y} and observe that W is a symmetric subset

of SF(X). The Hahn–Banach theorem, together with formula (4.2), gives us

BF(X) = convW. (4.3)

We are now ready to prove our result.

Proof of Lemma 4.1. Consider w = x̂−ŷ
‖x−y‖ ∈ SF(X). The condition (4.1) gives

us 〈f, w〉 > 1 − δ. Since f ∈ Lip0(X) = F(X)∗, the Bishop–Phelps–Bollobás
theorem (Theorem 1.1) is applicable. So, there are g ∈ Lip0(X) with ‖g‖ = 1 and

z ∈ F(X) with ‖z‖ = 1 such that ‖w−z‖ <
√
2δ, ‖f −g‖ <

√
2δ, and 〈g, z〉 = 1.

Let ν > 0 be such a number that ‖w − z‖ < ν <
√
2δ. Fix a sequence {δn} of

positive numbers converging to zero. The formula (4.3) implies that we can select
a sequence {zn} in convW converging to z in such a way that

‖w − zn‖ < ν and 〈g, zn〉 > 1− δn. (4.4)

The condition on h means 〈h,w〉 = 1, and consequently

〈h, zn〉 ≥ 〈h,w〉 − ‖w − zn‖ > 1− ν. (4.5)

Choose a sequence {αn} in (0, 1) satisfying the conditions

lim
n→∞

αn = 0 and lim
n→∞

δn
αn

= 0. (4.6)

Fix n ∈ N. Combining inequalities (4.4) and (4.5), we obtain

αn〈h, zn〉+(1−αn)〈g, zn〉 > αn(1− ν)+ (1−αn)(1− δn) = 1−αnν− (1−αn)δn.

Since zn ∈ convW , the last inequality implies that there exists un ∈ W such that

αn〈h, un〉+ (1− αn)〈g, un〉 > 1− αnν − (1− αn)δn.

Combining this fact with the evident estimates 〈h, un〉 ≤ 1 and 〈g, un〉 ≤ 1, we
deduce that

〈g, un〉 > 1− δn −
αn

1− αn

√
2δ

and

〈h, un〉 > 1− ν − δn
1− αn

αn

.

These inequalities, together with (4.6), imply that

〈g, un〉 −→ 1
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and that

〈h, un〉 > 1−
√
2δ

for n ∈ N large enough. In order to complete the proof, it remains to recall that
every un ∈ W is of the form v̂n−ŵn

‖vn−wn‖ for some vn, wn ∈ X with vn 6= wn. �

Before stating the second result, we need a couple of definitions.

Definition 4.2. A functional g ∈ Lip0(X) attains its norm at a point v ∈ X in
the direction u ∈ SX if there is a sequence of pairs {(xn, yn)} in X × X, with
xn 6= yn, such that

lim
n→∞

xn = lim
n→∞

yn = v,

lim
n→∞

xn − yn
‖xn − yn‖

= u and lim
n→∞

g(xn)− g(yn)

‖xn − yn‖
= ‖g‖.

In this case, we say that g attains its norm locally/directionally. The set of all
those f ∈ Lip0(X) that attain their norm locally/directionally is denoted by
LDA(X).

Definition 4.3. ABanach spaceX has the local directional Bishop–Phelps–Bollobás
property for Lipschitz functionals (“X ∈ LLipBPB” for short), if for every ε > 0
there is such a δ > 0 that, for every f ∈ Lip0(X) with ‖f‖ = 1 and for every

x, y ∈ X with x 6= y satisfying f(x)−f(y)
‖x−y‖ > 1−δ, there is g ∈ Lip0(X) with ‖g‖ = 1

and there are v ∈ X, u ∈ SX such that g attains its norm in the point v at the
direction u, ‖g − f‖ < ε, ‖ x−y

‖x−y‖ − u‖ < ε, and dist(v, conv{x, y}) < ε.

The second preliminary result of this section, which also can be of indepen-
dent interest, is a relaxation of the requirements for a Banach space to have the
LLipBPB.

Lemma 4.4. Let X be a Banach space. Suppose that for every ε > 0 there is
such a δ > 0 that, for every f ∈ Lip0(X) with ‖f‖ = 1 and for every pair

(x, y) ∈ X ×X, x 6= y, with f(x)−f(y)
‖x−y‖ > 1− δ, there is g ∈ Lip0(X) with ‖g‖ = 1

and a sequence of pairs {(vn, wn)} in X ×X with vn 6= wn for every n such that

lim
n→∞

g(vn)− g(wn)

‖vn − wn‖
= 1, (4.7)

‖g− f‖ < ε, ‖ x−y
‖x−y‖ −

vn−wn

‖vn−wn‖‖ < ε, ‖vn −wn‖ < ε, and dist(vn, conv{x, y}) < ε.

Then X ∈ LLipBPB.

Observe that the difference between the requirements of the lemma above and
the local directional Bishop–Phelps–Bollobás property is that here the conver-
gence of the sequences {vn}, {wn}, and { vn−wn

‖vn−wn‖} is not required since these

sequences depend upon ε (but they are still well controlled).

Proof. For a fixed ε > 0, let us select a decreasing sequence {εn} of positive
number such that

∑∞
n=1 εn < ε/4. For every n ∈ N, let δn = δ(εn) be from

the assumptions of the lemma for εn. We will demonstrate that δ = δ1 satisfies
conditions of Definition 4.3 for ε.
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To this end, let us fix f ∈ Lip0(X) with ‖f‖ = 1 and a pair (x, y) ∈ X × X,

x 6= y, such that f(x)−f(y)
‖x−y‖ > 1− δ. Applying the hypotheses to ε1 = ε, δ1 = δ(ε1),

the norm 1 Lipschitz functional f1 = f , and the pair (x1, y1) = (x, y) in X ×X

which satisfy f1(x1)−f1(y1)
‖x1−y1‖ > 1− δ1, we get the corresponding g1 and the sequence

of pairs {(vn, wn)}. Thanks to (4.7), we can find such an n1 ∈ N that

g1(vn1)− g1(wn1)

‖vn1 − wn1‖
> 1− δ2.

Let us denote f2 = g1, x2 = vn1 , and y2 = wn1 . Then, ‖f1 − f2‖ < ε1, ‖ x1−y1
‖x1−y1‖ −

x2−y2
‖x2−y2‖‖ < ε1, dist(x2, conv{x1, y1}) < ε1, ‖x2 − y2‖ < ε1, and

f2(x2)− f2(y2)

‖x2 − y2‖
> 1− δ2.

The last condition enables us to apply again the hypotheses of the lemma to ε2,
δ2, f2, and (x2, y2) in order to get the corresponding f3 and (x3, y3). Repeating
this process, we obtain sequences {fn} in Lip0(X) with ‖fn‖ = 1 and {(xn, yn)}
in X ×X with xn 6= yn having the following properties:

(a) ‖fn − fn+1‖ < εn,
(b) ‖ xn−yn

‖xn−yn‖ −
xn+1−yn+1

‖xn+1−yn+1‖‖ < εn,

(c) fn(xn)−fn(yn)
‖xn−yn‖ > 1− δn,

(d) dist(xn+1, conv{xn, yn}) < εn,
(e) ‖xn − yn‖ < εn−1.

Conditions (d) and (e) imply that ‖xn+1 − xn‖ < 2εn−1, n = 2, 3, . . . . Conse-
quently, the sequence {xn} has some limit v ∈ X, and by (e) the sequence {yn}
has the same limit v. For this v we have

dist
(
v, conv{x, y}

)
≤ dist

(
x2, conv{x1, y1}

)
+ ‖x2 − v‖

< ε1 +
∞∑
n=2

‖xn − xn+1‖ < ε.

The condition (a) implies that the sequence {fn} has some limit g ∈ Lip0(X)
with ‖g‖ = 1, and the condition (b) implies that the sequence { xn−yn

‖xn−yn‖} has

some limit u ∈ SX . Moreover,

‖f − g‖ <
∞∑
n=1

εn < ε and
∥∥∥ x1 − y1
‖x1 − y1‖

− u
∥∥∥ <

∞∑
n=1

εn < ε.

Also,

g(xn)− g(yn)

‖xn − yn‖
≥ 1− δn − ‖g − fn‖,

so limn→∞
g(xn)−g(yn)
‖xn−yn‖ = 1, which proves that g attains its norm at v in the direc-

tion u. �
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5. Bishop–Phelps–Bollobás theorem for uniformly convex spaces

Let us recall the well-known concept of uniform convexity.

Definition 5.1. A Banach space X is said to be uniformly convex if for every ε > 0
there is such a δ > 0 that for every pair x, y ∈ BX the condition ‖x − y‖ ≥ ε
implies ‖x+y

2
‖ ≤ 1− δ. (Equivalently, ‖(x + y)/2‖ > 1− δ ⇒ ‖x− y‖ < ε.) The

best possible value of δ is denoted δX(ε).

The unit ball of a uniformly convex space has many small slices. Recall, that
if X is a Banach space, for any given x∗ ∈ SX∗ and δ > 0 the corresponding
slice of the unit ball is defined as S(BX , x

∗, δ) := {x ∈ BX : x∗(x) > 1− δ}. The
following easy result states a “uniform way” to find small slices on a uniformly
convex space.

Lemma 5.2 ([2, Lemma 2.1]). Let X be a uniformly convex space and let ε > 0.
Then

diamS
(
BX , f, δX(ε)

)
< ε

for every f ∈ SX∗ and every ε > 0.

We may now state and prove the main result of the paper.

Theorem 5.3. Every uniformly convex Banach space X has the local directional
Bishop–Phelps–Bollobás property for Lipschitz functionals.

This result implies, in particular, that for a uniformly convex Banach space X,
the set of those Lipschitz functions which attain their norm (locally/)directionally
is dense in the space Lip0(X) (with the Lipschitz norm). We do not know whether
this density holds in every Banach space X.

Proof of Theorem 5.3. For a fixed ε ∈ (0, 1/2), let us chose such a δ ∈ (0, ε2/2)

that
√
2δ < 1

2
δX(ε). Let f ∈ Lip0(X), with ‖f‖ = 1 and x, y ∈ X, x 6= y,

such that f(x)−f(y)
‖x−y‖ > 1 − δ. Select x̃, ỹ ∈ conv{x, y} in such a way that ‖x̃ −

ỹ‖ < 1
4
min{ε, ‖x̃‖, ‖ỹ‖}, the vector x̃ỹ looks at the same direction that xy (i.e.,

x̃−ỹ
‖x̃−ỹ‖ = x−y

‖x−y‖), and such that still f(x̃)−f(ỹ)
‖x̃−ỹ‖ > 1− δ.

Define F ∈ Lip0(X) by the formula F (z) = max{‖x̃− ỹ‖ − ‖x̃− z‖, 0}. Then
‖F‖ = 1 and F (x̃)−F (ỹ)

‖x̃−ỹ‖ = 1. Let us denote x∗ ∈ SX∗ the supporting functional at

the point x̃−ỹ
‖x̃−ỹ‖ . Then, by linearity,

x∗(x̃)−x∗(ỹ)
‖x̃−ỹ‖ = 1, so we can apply the preliminary

LipBPB Theorem (Lemma 4.1) with f , (x, y), and h = 1
2
(F + x∗) ∈ Lip0(X).

According to it there exist g ∈ Lip0(X) with ‖g‖ = 1, ‖f − g‖ <
√
2δ < ε, and a

sequence of pairs {(vn, wn)} in X ×X with vn 6= wn such that

h
( vn − wn

‖vn − wn‖

)
=

1

2

(F (vn)− F (wn)

‖vn − wn‖
+

x∗(vn)− x∗(wn)

‖vn − wn‖

)
> 1−

√
2δ (5.1)

for all n ∈ N, and

lim
n→∞

g(vn)− g(wn)

‖vn − wn‖
= 1.
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The inequality (5.1) and the fact that ‖x∗‖ = ‖F‖ = 1 imply that

F (vn)− F (wn)

‖vn − wn‖
> 1− 2

√
2δ > 1− 2ε (5.2)

and that
x∗(vn)− x∗(wn)

‖vn − wn‖
> 1− 2

√
2δ > 1− δX(ε).

The last condition means geometrically that vn−wn

‖vn−wn‖ ∈ S(BX , x
∗, δX(ε)). Since

also x−y
‖x−y‖ = x̃−ỹ

‖x̃−ỹ‖ ∈ S(BX , x
∗, δX(ε)), we get from Lemma 5.2 that∥∥∥ x− y

‖x− y‖
− vn − wn

‖vn − wn‖

∥∥∥ < ε

for every n ∈ N. The function F takes only nonnegative values, and the condition
(5.2) implies that F (vn)−F (wn) > 0, so vn ∈ suppF . Since the maximal possible
value of F is ‖x̃− ỹ‖ < ε/4, the condition (5.2) implies also that

‖vn − wn‖ <
F (vn)− F (wn)

1− 2ε
<

ε

4(1− 2ε)
< ε.

As vn ∈ suppF , we have ‖vn − x̃‖ < ‖x̃− ỹ‖ < ε, so dist(vn, conv{x, y}) < ε.
We have verified all the conditions of Lemma 4.4. The application of that

Lemma shows that X has the local directional Bishop–Phelps–Bollobás property
for Lipschitz functionals. �
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