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Abstract. We study new classes of linear preservers between C∗-algebras
and between JB∗-triples. Let E and F be JB∗-triples with ∂e(E1) 6= ∅. We
prove that every linear map T : E → F strongly preserving Brown–Pedersen
quasi-invertible elements is a triple homomorphism. Among the consequences,
we establish that, given two unital C∗-algebras A and B, for each linear map
T strongly preserving Brown–Pedersen quasi-invertible elements, there exists
a Jordan ∗-homomorphism S : A → B satisfying T (x) = T (1)S(x) for every
x ∈ A. We also study the connections between linear maps strongly preserv-
ing Brown–Pedersen quasi-invertibility and other clases of linear preservers be-
tween C∗-algebras like Bergmann-zero pairs preservers, Brown–Pedersen quasi-
invertibility preservers, and extreme points preservers.

1. Introduction

LetX be a Banach space. In many favorable cases, the set ∂e(X1), of all extreme
points of the closed unit ball, X1, of X, reveals many of the geometric properties
of the whole Banach space X. There are spaces X with ∂e(X1) = ∅; however, the
Krein–Milman theorem guarantees that ∂e(X1) is nonempty when X is a dual
space.
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Let A be a C∗-algebra. It is known that ∂e(A1) 6= ∅ if and only if A is unital
(see [29, Theorem I.10.2(i)]). A theorem due to R. V. Kadison establishes that
the extreme points of the closed unit ball of a C∗-algebra A are precisely the
maximal partial isometries of A, that is, partial isometries e ∈ A satisfying (1−
ee∗)A(1−e∗e) = 0 (cf. [29, Theorem I.10.2]). When A is commutative, the unitary
elements in A are precisely the extreme points of the closed unit ball of A. The
same statement remains true when A is a finite von Neumann algebra (cf. [24,
Lemma 2]). For a general unital C∗-algebra A, every unitary element in A is an
extreme point of the closed unit ball of A; however, the reciprocal statement is,
in general, false (e.g., a nonsurjective isometry in B(H) is not a unitary element
in this C∗-algebra).

Let A and B be unital C∗-algebras. One of the consequences derived from
the Russo–Dye theorem assures that a linear mapping T : A → B mapping
unitary elements in A to unitary elements in B admits a factorization of the
form T (a) = uS(a) (a ∈ A), where u is a unitary in B and S is a unital Jordan
∗-homomorphism (cf. [27, Corollary 2]). We recall that a linear map T : A → B
between Banach algebras is a Jordan homomorphism if T (a2) = T (a)2 for all
a ∈ A (equivalently, T (ab + ba) = T (a)T (b) + T (b)T (a) for all a, b ∈ A). If A
and B are unital, T is called unital if T (1) = 1. If A and B are C∗-algebras and
T (a∗) = T (a)∗, for every a ∈ A, then T is called symmetric. Symmetric Jordan
homomorphisms are named Jordan ∗-homomorphisms.

Consequently, the problem of studying the linear maps T : A → B such that
T (∂e(A1)) ⊆ ∂e(B1) is a more general challenge, which is directly motivated by
the aforementioned consequence of the Russo–Dye theorem. We only know partial
answers to this problem. Concretely, V. Mascioni and L. Molnár studied the linear
maps on a von Neumann factor M which preserve the extreme points of the unit
ball of M . They prove that if M is infinite, then every linear mapping T on M
preserving extreme points admits a factorization of the form T (a) = uS(a) (a ∈
M), where u is a (fixed) unitary in M , and S is either a unital ∗-homomorphism
or a unital ∗-anti-homomorphism (see [24, Theorem 1]). Theorem 2 in [24] states
that, for a finite von Neumann algebra M , a linear map T : M → M preserves
extreme points of the unit ball of M if and only if there exist a unitary operator
u ∈ M and a unital Jordan ∗-homomorphism S : M → M such that T (a) = uS(a)
(a ∈ A). In [22], L. E. Labuschagne and V. Mascioni study linear maps between
C∗-algebras whose adjoints preserve extreme points of the dual ball.

The above results of Mascioni and L. Molnár are the most conclusive answers
we know about linear maps between unital C∗-algebras preserving extreme points.
In this note, we shall revisit the problem in full generality. We present several
counterexamples to illustrate that the conclusions proved by Mascioni and Molnár
for von Neumann factors need not be true for linear mappings preserving extreme
points between unital C∗-algebras (cf. Remarks 5.9 and 5.10). It seems natural
to ask whether a different class of linear preservers satisfies the same conclusions
found by Mascioni and Molnár.

Every unital Jordan homomorphism between Banach algebras strongly pre-
serves invertibility ; that is, T (a−1) = T (a)−1 for every invertible element a ∈ A.



LINEAR MAPS PRESERVING EXTREME POINTS 549

Moreover, Hua’s theorem (see [15]) states that every unital additive map be-
tween skew fields that strongly preserves invertibility is either an isomorphism or
an anti-isomorphism.

Let A be a Banach algebra. Recall that an element a ∈ A is called regular or
von Neumann regular if there is b in A satisfying aba = a and b = bab. Given a
and b in a C∗-algebra A, we shall say that b is a Moore–Penrose inverse of a if
a = aba, b = bab, and ab and ba are self-adjoint. It is known that every regular
element a in A admits a unique Moore–Penrose inverse that will be denoted by
a† (see [14]). Let A† denote the set of regular elements in the C∗-algebra A.

We say that a linear map T between C∗-algebras A and B strongly preserves
Moore–Penrose invertibility if T (a†) = T (a)† for all a ∈ A†. It is known that every
Jordan ∗-homomorphism strongly preserves Moore–Penrose invertibility. In [25],
M. Mbekhta proved that a surjective unital bounded linear map from a real rank-
zero C∗-algebra to a prime C∗-algebra strongly preserves Moore–Penrose invert-
ibility if and only if it is either a ∗-homomorphism or an ∗-anti-homomorphism.
Recently, in [6] the first three authors of this note show that a linear map T
strongly preserving Moore–Penrose invertibility between C∗-algebras A and B
is a Jordan ∗-homomorphism multiplied by a regular element of B commuting
with the image of T whenever the domain C∗-algebra A is unital and linearly
spanned by its projections, or when A is unital and has real rank zero and T
is bounded. It is also proved that every bijective linear map strongly preserv-
ing Moore–Penrose invertibility from a unital C∗-algebra with essential socle
is a Jordan ∗-isomorphism multiplied by an involutory element. The problem
for linear maps strongly preserving Moore–Penrose invertibility between general
C∗-algebras remains open.

The set, A−1
q , of quasi-invertible elements in a unital C∗-algebra A was intro-

duced by L. Brown and G. K. Pedersen as the set A−1∂e(A1)A
−1, where A−1 and

∂e(A1) denote the set of invertible elements in A and the set of extreme points
of the closed unit ball of A, respectively (see [2]). It is known that a ∈ A−1

q if
and only if there exists b ∈ A such that B(a, b) = 0, where B(a, b) denotes the
Bergmann operator on A associated with the pair (a, b) (cf. [2, Theorem 1.1] and
[18, Theorem 11], and see Section 2 for details and definitions).

The notion of a quasi-invertible element was extended by F. B. Jamjoom, A. A.
Siddiqui, and H. M. Tahlawi to the wider setting of JB∗-triples. An element x
in a JB∗-triple E is called Brown–Pedersen quasi-invertible if there exists y ∈
E such that B(x, y) = 0 (cf. [18]). The element y is called a Brown–Pedersen
quasi-inverse of x. It is known that B(x, y) = 0 implies B(y, x) = 0. Moreover, the
Brown–Pedersen quasi-inverse of an element is not unique. Indeed, if B(x, y) = 0,
then it can be checked that B(x,Q(y)(x)) = 0, and so, for any Brown–Pedersen
quasi-inverse y of x, Q(y)(x) also is a Brown–Pedersen quasi-inverse of x. It is
established in [18, Theorems 6 and 11] that an element x in E is Brown–Pedersen
quasi-invertible if and only if it is (von Neumann) regular and its range tripotent is
an extreme point of the closed unit ball of E; equivalently, there exists a complete
tripotent v ∈ E such that x is positive and invertible in E2(v). Every regular
element x in E admits a unique generalized inverse, which is denoted by x∧ (see
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Section 2 for more details). In particular, the set, E−1
q , of all Brown–Pedersen

quasi-invertible elements in E contains all extreme points of the closed unit ball
of E.

We consider in this article a new class of linear preserver. A linear map T be-
tween JB∗-triples strongly preserves Brown–Pedersen quasi-invertibility if T pre-
serves Brown–Pedersen quasi-invertibility and T (x∧) = T (x)∧ for every x ∈ E−1

q .
In the main result of this note, we prove the following: Let A and B be unital
C∗-algebras, considered as JB∗-triples. Let T : A → B be a linear map strongly
preserving Brown–Pedersen quasi-invertible elements. Then there exists a Jordan
∗-homomorphism S : A → B satisfying T (x) = T (1)S(x) for every x ∈ A (see
Theorem 5.13).

In Section 5, we also explore the connections between linear maps strongly pre-
serving Brown–Pedersen quasi-invertibility and other classes of linear preservers
between C∗-algebras such as Bergmann-zero pairs preservers, Brown–Pedersen
quasi-invertibility preservers, and extreme points preservers.

The reader should have realized at this point that novelties here rely on re-
sults and tools of Jordan theory and JB∗-triples (see Section 2 for definitions).
The research on linear preservers on C∗-algebras benefits from new results on
linear preservers on JB∗-triples. In Theorem 3.2, we prove that every linear map
strongly preserving regularity between JB∗-triples E and F with ∂e(E1) 6= ∅ is
a triple homomorphism (i.e., it preserves triple products). We complement this
result by showing that the same conclusion remains true for every bounded linear
operator strongly preserving regularity from a weakly compact JB∗-triple into
another JB∗-triple (see Theorem 4.1). The assumption of continuity cannot be
dropped in the result for weakly compact JB∗-triples (cf. Remark 4.2). The most
significant result (Theorem 5.12) assures that every linear map strongly preserv-
ing Brown–Pedersen quasi-invertible elements between JB∗-triples E and F , with
∂e(E1) 6= ∅, is a triple homomorphism.

2. Preliminaries

As we commented in the Introduction, in this article, we employ techniques
and results in JB∗-triple theory to study new classes of linear preservers between
C∗-algebras in connection with linear maps preserving extreme points. For this
purpose, we shall regard every C∗-algebra as an element in the wider class of
JB∗-triples. Following [20], a JB∗-triple is a complex Banach space E together
with a continuous triple product {·, ·, ·} : E × E × E → E, which is conjugate
linear in the middle variable and symmetric and bilinear in the outer variables
satisfying the following:

(a) L(a, b)L(x, y) = L(x, y)L(a, b) + L(L(a, b)x, y) − L(x, L(b, a)y), where
L(a, b) is the operator on E given by L(a, b)x = {a, b, x};

(b) L(a, a) is a Hermitian operator with nonnegative spectrum;
(c) ‖L(a, a)‖ = ‖a‖2.

For each x in a JB∗-triple E, Q(x) will stand for the conjugate linear operator
on E defined by the assignment y 7→ Q(x)y = {x, y, x}.
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The Bergmann operator, B(x, y), associated with a pair of elements x, y ∈ E
is the mapping defined by

B(x, y) = IE − 2L(x, y) +Q(x)Q(y).

Every C∗-algebra is a JB∗-triple via the triple product given by

2{x, y, z} = xy∗z + zy∗x, (2.1)

and every JB∗-algebra is a JB∗-triple under the triple product

{x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x− (x ◦ z) ◦ y∗. (2.2)

It is worth mentioning that, by the Kaup–Banach–Stone theorem, a linear sur-
jection between JB∗-triples is an isometry if and only if it is a triple isomorphism
(cf. [20, Proposition 5.5]). We recall that a linear map T : E → F between
JB∗-triples is a triple homomorphism if

T
(
{x, y, z}

)
=

{
T (x), T (y), T (z)

}
for every x, y, z ∈ E.

It follows, among many other consequences, that when a JB∗-algebra J is a
JB∗-triple for a suitable triple product and the original norm, then the latter
coincides with the one defined in (2.2).

A JBW∗-triple is a JB∗-triple which is also a dual Banach space (with a unique
isometric predual; see [1]). It is known that the triple product of a JBW∗-triple
is separately weak∗ continuous (see [1]). The second dual of a JB∗-triple E is a
JBW∗-triple with a product extending the product of E (see [9]).

An element e in a JB∗-triple E is said to be a tripotent if {e, e, e} = e. Each
tripotent e in E gives rise to the following decomposition of E:

E = E2(e)⊕ E1(e)⊕ E0(e),

where for i = 0, 1, 2, Ei(e) is the
i
2
eigenspace of L(e, e) (cf. [23, Theorem 25]). The

natural projections of E onto Ei(e) will be denoted by Pi(e). This decomposition
is termed the Peirce decomposition of E with respect to the tripotent e. The
Peirce decomposition satisfies certain rules known as Peirce arithmetic:{

Ei(e), Ej(e), Ek(e)
}
⊆ Ei−j+k(e)

if i− j + k ∈ {0, 1, 2} and is zero otherwise. In addition,{
E2(e), E0(e), E

}
=

{
E0(e), E2(e), E

}
= 0.

We observe that, for a tripotent e ∈ E, B(e, e) = P0(e).
The Peirce space E2(e) is a JB∗-algebra with product x ◦e y := {x, e, y} and

involution x]e := {e, x, e}.
A tripotent e in E is called complete if the equality E0(e) = 0 holds. When

E2(e) = Ce 6= {0}, we say that e is minimal.
For each element x in a JB∗-triple E, we shall denote x[1] := x, x[3] :=

{x, x, x}, and x[2n+1] := {x, x, x[2n−1]} (n ∈ N). The symbol Ex will stand for
the JB∗-subtriple generated by the element x. It is known that Ex is JB∗-triple
isomorphic (and hence isometric) to C0(Ω) for some locally compact Hausdorff
space Ω contained in (0, ‖x‖] such that Ω ∪ {0} is compact, where C0(Ω) de-
notes the Banach space of all complex-valued continuous functions vanishing at
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0 with the triple product (f, g, h) 7→ fgh. It is also known that there exists a
triple isomorphism Ψ from Ex onto C0(Ω) satisfying Ψ(x)(t) = t (t ∈ Ω) (cf. [20,
Corollary 1.15] and [13]). The set Ω = Sp(x) is called the triple spectrum of x.
We should note that C0(Sp(x)) = C(Sp(x)) whenever 0 /∈ Sp(x).

Therefore, for each x ∈ E, there exists a unique element y ∈ Ex satisfying
{y, y, y} = x. The element y, denoted by x[ 1

3
], is termed the cubic root of x. We

can inductively define x
[ 1

3n
]
= (x

[ 1

3n−1
]
)[

1
3
], n ∈ N. The sequence (x

[ 1

3n
]
) converges

in the weak∗ topology of E∗∗ to a tripotent denoted by r(x) and called the range
tripotent of x. The tripotent r(x) is the smallest tripotent e ∈ E∗∗ satisfying the
property that x is positive in the JBW∗-algebra E∗∗

2 (e) (cf. [10, Lemma 3.3]).
Regular elements in Jordan triple systems and JB∗-triples have been deeply

studied in [11], [21], and [5]. An element a in a JB∗-triple E is called von Neumann
regular if there exists (a unique) b ∈ E such that Q(a)(b) = a, Q(b)(a) = b, and
Q(a)Q(b) = Q(b)Q(a), or, equivalently, Q(a)(b) = a and Q(a)(b[3]) = b. The
element b is called the generalized inverse of a. We observe that every tripotent
e in E is von Neumann regular and its generalized inverse coincides with itself.

Throughout this note, we shall denote by E∧ the set of regular elements in a
JB∗-triple E, and, for an element a ∈ E∧, a∧ will stand for its generalized inverse.

To simplify notation, for a C∗-algebra A, let EA denote the JB∗-triple with
underlying Banach space A and the triple product defined by (2.1). Let a be an
element in EA. Then the mapping Q(a) is given by Q(a)(x) = {a, x, a} = ax∗a.
Thus, a is Moore–Penrose invertible in A with Moore–Penrose inverse a† if and
only if a ∈ E∧

A and a∧ = (a†)∗ = (a∗)†.
Every triple homomorphism T : E → F between JB∗-triples strongly preserves

regularity ; that is, T (x∧) = T (x)∧ for every x ∈ E∧. In [7], the authors character-
ized the triple homomorphisms between C∗-algebras as the linear maps strongly
preserving regularity. As a consequence, it is proved that a self-adjoint linear map
from a unital C∗-algebra A into a C∗-algebra B is a triple homomorphism if and
only if it strongly preserves Moore–Penrose invertibility (see [7, Theorem 3.5]).

3. Linear maps strongly preserving regularity on JB∗-triples

It is known that a nonzero element a in a JB∗-triple E is von Neumann regular
if and only if Q(a)(E) is closed if and only if the range tripotent r(a) of a lies
in E and a is a positive and invertible element in the JB∗-algebra E2(r(a)) (cf.
[11], [21], or [5]). Moreover, when a is von Neumann regular,

L(a, a∧) = L(a∧, a) = L
(
r(a), r(a)

)
and

Q(a)Q(a∧) = Q(a∧)Q(a) = P2

(
r(a)

)
(cf. [5, Theorem 3.4] and its proof). Recall that an element a in a unital Jordan
algebra J = (J, ◦) is invertible if there exists a (unique) element b ∈ J such that
a ◦ b = 1 and a2 ◦ b = a; equivalently, Ua is invertible with inverse Ub, where Ua is
defined by Ua(x) = 2a◦(a◦x)−a2◦x (see [16, p. 52, Theorem 13]). If a is invertible,
its inverse is denoted by a−1. Moreover, if a and b are invertible elements in the



LINEAR MAPS PRESERVING EXTREME POINTS 553

Jordan algebra J such that a − b−1 is also invertible, then a−1 + (b−1 − a)−1 is
invertible, and the so-called Hua’s identity,(

a−1 − (a− b−1)−1
)−1

=
(
a−1 + (b−1 − a)−1

)−1
= a− Ua(b), (3.1)

holds (see [16, p. 54, Exercise 3]).
A linear map T : E → F between JB∗-triples strongly preserves regularity if

T (x∧) = T (x)∧ for every x ∈ E∧.
The next result is inspired by [6, Lemma 3.1].

Proposition 3.1. Let E and F be JB∗-triples, and let T : E → F be a linear
map such that T (x∧) = T (x)∧ for every x ∈ E∧. Then

T (x[3]) = T (x)[3]

for every x ∈ E∧.

Proof. Let x ∈ E∧ \ {0}. Let e = r(x) be the range tripotent of x in E∗∗. As we
have just mentioned, e ∈ E, and x is positive and invertible in the JB∗-algebra
E2(e) with inverse x∧ and 0 /∈ Sp(x). We identify Ex (the JB∗-subtriple of E
generated by x) with C(Sp(x)) in such a way that x corresponds to the function
t 7→ t; hence, for every λ ∈ C with 0 < |λ| < ‖x∧‖−2, the element λx∧ − x is
invertible in Ex, and hence invertible in E2(e) with inverse (λx∧ − x)∧. In this
case, x∧ + (λx∧ − x)∧ is invertible in Ex (and in E2(e)).

Further, the inverses of x − λx∧ and x∧ − (x − λx∧)∧ in Ex (or in E2(e)) are
their generalized inverses in E (let us recall that the triple product induced on
E2(e) by the Jordan ∗-algebra structure coincides with its original triple product,
and Q(x) = Ux ◦ ] for every x ∈ E). By Hua’s identity applied to a = x and
b = λ−1x, we obtain

x− λ−1x[3] =
(
x∧ − (x− λx∧)∧

)∧
(see (3.1)). Let x ∈ E∧. We may assume that T (x) 6= 0. Since T strongly pre-
serves regularity, T (x)∧ = T (x∧). Thus, for λ ∈ C with 0 < |λ| < Min{‖x∧‖−2,
‖T (x)∧‖−2}, we have

T (x)− λ−1T (x)[3] =
(
T (x)∧ −

(
T (x)− λT (x)∧

)∧)∧
.

Since T is linear and strongly preserves regularity, it follows that

T (x)− λ−1T (x)[3] =
(
T (x)∧ −

(
T (x)− λT (x)∧

)∧)∧
=

(
T (x∧)− T (x− λx∧)∧

)∧
= T

((
x∧ − (x− λx∧)∧

)∧)
= T (x)− λ−1T (x[3]),

and thus T (x[3]) = T (x)[3]. �

Recall that two elements a, b in a JB∗-triple E are orthogonal (written as a ⊥ b)
if L(a, b) = 0 (see [4, Lemma 1] for several equivalent reformulations).

Notice that a JB∗-triple might contain no nontrivial tripotents (consider, e.g.,
the C∗-algebra C0(0, 1] of all complex-valued continuous functions on [0, 1] van-
ishing at 0). However, since the complete tripotents of a JB∗-triple E coincide
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with the extreme points of its closed unit ball , every JBW∗-triple contains a large
set of complete tripotents (see [8, Theorem 3.2.3]).

Let us recall that, by Lemma 2.1 in [17], an element a in a JB∗-triple E is
Brown–Pedersen quasi-invertible if and only if a is regular and {a}⊥ = {0},
where {a}⊥ = {b ∈ E : a ⊥ b}.

Theorem 3.2. Let E and F be JB∗-triples with ∂e(E1) 6= ∅. Let T : E → F be
a linear map strongly preserving regularity. Then T is a triple homomorphism.

Proof. Pick a complete tripotent e ∈ E. For every x ∈ E, let λ ∈ C with |λ| >
‖P2(e)(x)‖. It is clear that P2(e)(x−λe) = P2(e)(x)−λe is invertible in the unital
JB∗-algebra E2(e). It follows from [17, Lemma 2.2] that x−λe is Brown–Pedersen
quasi-invertible. We know by Proposition 3.1 that

T
(
(x− λe)[3]

)
= T (x− λe)[3].

Since the above identity holds for every λ ∈ C, with |λ| > ‖P2(e)(x)‖, we deduce
that

T (x[3]) = T (x)[3]

for every x ∈ E. The polarization formula

8{x, y, z} =
3∑

k=0

2∑
j=1

ik(−1)j
(
x+ iky + (−1)jz

)[3]
(3.2)

and the linearity of T assure that T is a triple homomorphism. �

The particularization of the previous result to the setting of C∗-algebras seems
to be a new result.

Corollary 3.3. Let T : A → B be a linear map strongly preserving regularity
between C∗-algebras. Suppose that ∂e(A1) 6= ∅. Then T is a triple homomorphism.

4. Maps strongly preserving regularity on weakly
compact JB∗-triples

The notions of compact and weakly compact elements in JB∗-triples are due to
L. J. Bunce and C.-H. Chu [3]. Recall that an element a in a JB∗-triple E is said to
be compact or weakly compact if the mapping Q(a) is compact or weakly compact,
respectively. These notions extend, in a natural way, the corresponding definitions
in the settings of C∗- and JB∗-algebras. A JB∗-triple E is weakly compact (resp.,
compact) if every element in E is weakly compact (resp., compact).

In a JB∗-triple, the set of weakly compact elements is, in general, strictly bigger
than the set of compact elements (cf. [3, Theorem 3.6]). A nonzero tripotent e in
E is called minimal whenever E2(e) = Ce. The socle, soc(E), of a JB∗-triple E
is the linear span of all minimal tripotents in E. Following [3], the symbol K0(E)
denotes the norm closure of soc(E). By [3, Lemma 3.3 and Proposition 4.7], the
triple ideal K0(E) coincides with the set of all weakly compact elements in E;
hence a JB∗-triple E is weakly compact whenever E = K0(E). Every finite sum
of mutually orthogonal minimal tripotents in a JB∗-triple E lies in the socle of E.
It is also known that an element a in a JB∗-triple E is weakly compact if and only
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if L(a, a) is a weakly compact operator (see [3]). Therefore, for each tripotent e
in the socle of E, P1(e) = 2L(e, e)−P2(e) = 2L(e, e)−Q(e)2 is a weakly compact
operator on E (cf. [12, Section 2]).

It is well known that every element in the socle of a JB∗-triple is regular.
Moreover, for every JB∗-triple E,

E∧ + soc(E) ⊆ E∧.

Indeed, given a ∈ E∧ and x ∈ soc(E),

(a+ x)−Q(a+ x)(a∧) = x− 2{a, a∧, x} − {x, a∧, x} ∈ soc(E) ⊆ E∧.

By McCoy’s lemma, a + x ∈ E∧ (see [26]). Let E, F be JB∗-triples. Let us
assume that E has nonzero socle, and let T : E → F be a linear map strongly
preserving regularity. The polarization formula (3.2) and Proposition 3.1 show
that T ({x, y, z}) = {T (x), T (y), T (z)} whenever one of the elements x, y, z is
regular and the others lie in the socle.

Theorem 4.1. Let E, F be JB∗-triples with E weakly compact. Let T : E →
F be a bounded linear map strongly preserving regularity. Then T is a triple
homomorphism.

Proof. We know from Proposition 3.1 that T preserves cubes of regular elements.
Since every element in the socle of a JB∗-triple is regular, it follows that T (x[3]) =

T (x)[3] for every x ∈ soc(E). Since E = K0(E) = soc(E), the continuity of T ,
together with the norm continuity of the triple product and the polarization
identity, proves that T is a triple homomorphism. �

In the next example, we show that the continuity assumption cannot be dropped
from the hypothesis in the previous theorem (even in the setting of C∗-algebras).

Remark 4.2. Let c0 denote the C∗-algebra of all scalar null sequences. It is clear
that c0 is a weakly compact JB∗-triple with soc(c0) = c00; that is, the sub-
space of eventually zero sequences in c0. Let {en} denote the standard coordinate
(Schauder) basis of c0. We extend this basis via Zorn’s lemma to an algebraic
(Hamel) basis of c0, say, B = {en} ∪ {zn}.

We define T : c0 → c0 as the linear (unbounded) mapping given by

T (en) = en, T (zn) = nzn.

Clearly, T is not a triple homomorphism, but it strongly preserves regularity. Let
us note that c∧0 = c00 and T (c00) = c00.

5. Linear maps strongly preserving Brown–Pedersen
quasi-invertibility

In [12], the authors proved that Bergmann operators can be used to characterize
the relation of being orthogonal in JB∗-triples. More concretely, it is proved in
[12, Proposition 7] that, for any element x in a JB∗-triple E with ‖x‖ <

√
2, the

orthogonal annihilator of x in E coincides with the set of all fixed points of the
Bergmann operator B(x, x). It is also obtained in the aforementioned paper that a
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norm one element e in a JB∗-triple E is a tripotent if and only if B(e, e)(E) = {e}⊥
(cf. [12, Proposition 9]).

Having in mind all the characterizations of tripotents and Brown–Pedersen
quasi-invertible elements commented above, and recalling that extreme points of
the closed unit ball of a JB∗-triple E are precisely the complete tripotents in E,
it can be deduced that the equivalence

e ∈ ∂e(E1) ⇔ B(e, e) = 0 (5.1)

holds for every e ∈ E.
Let T : E → F be a linear map between JB∗-triples. We introduce the following

definitions.

Definition 5.1. T preserves Brown–Pedersen quasi-invertibility if T (E−1
q ) ⊆ F−1

q ;
that is, T maps Brown–Pedersen quasi-invertible elements in E to Brown–
Pedersen quasi-invertible elements in F .

Definition 5.2. T preserves Bergmann-zero pairs if

B(x, y) = 0 ⇒ B
(
T (x), T (y)

)
= 0.

Definition 5.3. T strongly preserves Brown–Pedersen quasi-invertibility if T pre-
serves Brown–Pedersen quasi-invertibility and T (x∧) = T (x)∧ for every x ∈ E−1

q .

Definition 5.4. T preserves extreme points if T (∂e(E1)) ⊆ ∂e(F1).

It is worth noting that all definitions above make sense for linear operators
between C∗-algebras. In this article, we employ Jordan techniques to study these
kinds of mappings, and so we set the above definitions in the most general setting.

Suppose T : E → F is a linear mapping strongly preserving Brown–Pedersen
quasi-invertibility between two JB∗-triples. Suppose u ∈ ∂e(E1). Then u is Brown–
Pedersen quasi-invertible with u∧ = u. It follows from our assumptions that T (u)
is Brown–Pedersen quasi-invertible and T (u)∧ = T (u∧) = T (u). In such a case,
{T (u), T (u), T (u)} = Q(T (u))(T (u)) = T (u) is a tripotent and Brown–Pedersen
quasi-invertible, which implies that T (u) ∈ ∂e(E1) (cf. [17, Lemma 2.1]). We have
therefore shown that every linear mapping between JB∗-triples strongly preserv-
ing Brown–Pedersen quasi-invertibility also preserves extreme points.

The characterization of the extreme points of the closed unit ball of a JB∗-triple
given in (5.1) implies that every linear mapping between JB∗-triples preserving
Bergmann-zero pairs also preserves extreme points.

Clearly, a linear mapping T : E → F preserving Bergmann-zero pairs maps
Brown–Pedersen quasi-invertible elements in E to Brown–Pedersen quasi-
invertible elements in F .
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Therefore, for every linear mapping T between JB∗-triples, the following im-
plications hold:

T preserves
Bergmann-zero pairs

====⇒ T preserves
BP quasi-invertible elementswww� (Remark 5.10) 6

www� ~www
T preserves extreme points

⇐====

6
(Remark 5.10)
========⇒

T strongly preserves
BP quasi-invertible elements

The other implications are, for the moment, unknown. We have already com-
mented that V. Mascioni and L. Molnár characterized the linear maps on a von
Neumann factor M preserving the extreme points of the unit ball of M in [24].
According to our terminology, they prove that, for a von Neumann factor M ,
a linear map T : M → M such that B(T (a), T (a)) = 0 whenever B(a, a) = 0
is a unital Jordan ∗-homomorphism multiplied by a unitary element (see [24,
Theorems 1–2]).

Suppose T : E → E is a linear mapping between JB∗-triples which preserves
Bergmann-zero pairs. Given a Brown–Pedersen quasi-invertible element x, with
generalized inverse x∧, we have

B(x, x∧) = B(x∧, x) = B
(
r(x), r(x)

)
= 0,

and hence B(T (x), T (x∧)) = 0. This shows that

Q
(
T (x)

)(
T (x∧)

)
= T (x) and Q

(
T (x∧)

)(
T (x)

)
= T (x∧).

However, T (x∧) may not coincide, in general, with T (x)∧. We shall present in
Remark 5.10 an example of a linear operator preserving Bergmann-zero pairs
which is not a strongly Brown–Pedersen quasi-invertibility preserver.

We mainly focus our study on maps between C∗-algebras. Let A be a unital
C∗-algebra A. It is easy to see that, for an element a in A,

B(a, a)(x) = (1− aa∗)x(1− a∗a) for all x ∈ A.

Moreover, it is also a well-known fact that the extreme points of the closed unit
ball of A are precisely those elements v in A for which (1− vv∗)A(1− v∗v) = {0}
(see [29, Theorem I.10.2]). Hence a linear operator T : A → A preserves extreme
points if and only if B(a, a) = 0 implies B(T (a), T (a)) = 0.

Let T : A → B be a linear map between unital C∗-algebras which preserves
extreme points. Since for every unitary element u ∈ A, B(u, u) = 0, it follows that
B(T (u), T (u)) = 0, which, in particular, shows that T (u) is a partial isometry;
hence, T is automatically bounded and ‖T‖ = 1 (cf. [27, Section 3]). Therefore,
for every self-adjoint element a ∈ A, we have{

T (eita), T (eita), T (eita)
}
= T (eita) (t ∈ R).

Differentiating both sides of the above identity with respect to t, we deduce that

2
{
iT (aeita), T (eita), T (eita)

}
+
{
T (eita), iT (aeita), T (eita)

}
= iT (aeita),

and hence
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2
{
T (aeita), T (eita), T (eita)

}
−
{
T (eita), T (aeita), T (eita)

}
= T (aeita) (5.2)

for every t ∈ R. For t = 0, we get

2
{
T (a), T (1), T (1)

}
−
{
T (1), T (a), T (1)

}
= T (a);

equivalently,

T (a) = T (a)T (1)∗T (1) + T (1)T (1)∗T (a)− T (1)T (a)∗T (1) (5.3)

for every a = a∗ in A.
Differentiating (5.2) with respect to t, we obtain

T (a2eita) = 2
{
T (a2eita), T (eita), T (eita)

}
− 4

{
T (aeita), T (aeita), T (eita)

}
+ 2

{
T (aeita), T (eita), T (aeita)

}
+
{
T (eita), T (a2eita), T (eita)

}
for every t ∈ R. In the case t = 0 we get

T (a2) = 2
{
T (a2), T (1), T (1)

}
− 4

{
T (a), T (a), T (1)

}
+ 2

{
T (a), T (1), T (a)

}
+
{
T (1), T (a2), T (1)

}
,

or, equivalently,

T (a2) = T (a2)T (1)∗T (1) + T (1)T (1)∗T (a2)− 2T (a)T (a)∗T (1)

− 2T (1)T (a)∗T (a) + 2T (a)T (1)∗T (a) + T (1)T (a2)∗T (1)
(5.4)

for every a = a∗ in A.
Multiplying identity (5.3) by T (1)∗ from both sides, and taking into account

that T (1) is a (maximal) partial isometry, we deduce that

T (1)∗T (a)T (1)∗ = T (1)∗T (1)T (a)∗T (1)T (1)∗ (5.5)

for every self-adjoint element a ∈ A.

Proposition 5.5. Let A and B be unital C∗-algebras. Let T : A → B be a linear
map preserving extreme points. Suppose that T (1) is a unitary in B. Then there
exists a unital Jordan ∗-homomorphism S : A → B satisfying T (a) = T (1)S(a)
for every a ∈ A.

Proof. By hypothesis, v = T (1) is a unitary in B. We deduce from (5.3) that

T (a) = vT (a)∗v

for every self-adjoint element a ∈ A, and hence, by linearity,

T (a) = vT (a∗)∗v, or, equivalently, v∗T (a) = T (a∗)∗v (5.6)

for every a ∈ A. Therefore, the mapping S : A → B, given by S(x) := v∗T (x), is
symmetric (S(x∗) = S(x)∗), and S(1) = v∗T (1) = v∗v = 1.

Now, since v∗v = 1 = vv∗, we deduce from (5.4) and (5.6) that

T (a2) = vT (a)∗T (a)

for every a = a∗ in A. Multiplying on the left by v∗, we obtain

S(a2) = v∗vT (a)∗T (a) = T (a)∗T (a) = S(a)∗S(a) = S(a)2
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for every a = a∗ in A, and hence S is a Jordan ∗-homomorphism. It is also clear
that T (a) = vv∗T (a) = vS(a) for every a in A. �

Remark 5.6. Let A and B be unital C∗-algebras, and let T : A → B be a linear
map preserving extreme points. Let v = T (1).

(a) If v∗v = 1, then S(a) := v∗T (a) is a positive unital mapping, and therefore
satisfies Kadison’s generalized Schwarz inequality: S(a2) ≥ S(a)2 for all
a ∈ Asa.

(b) If vv∗ = 1, then S(a) := vT (a) is a positive unital mapping, and therefore
satisfies Kadison’s generalized Schwarz inequality: S(a2) ≥ S(a)2 for all
a ∈ Asa.

Proof. In each case, the map S is a unital contraction, and therefore positive by
[27, Corollary 1]. The rest follows from [19]. �

We recall that, according to [29, Theorem 10.2], for a C∗-algebra, A, the in-
tersection ∂e(A1) ∩ Asa is precisely the set of all self-adjoint unitary elements
of A.

Corollary 5.7. Let A and B be unital C∗-algebras. Let T : A → B be a symmetric
linear map. If T preserves extreme points, then T (1) is a self-adjoint unitary
element in B, and there exists a unital Jordan ∗-homomorphism S : A → B
satisfying T (a) = T (1)S(a) for every a ∈ A.

Proof. Suppose that T preserves extreme points. Since T is symmetric, the el-
ement T (1) must be a self-adjoint extreme point of the closed unit ball of B,
and hence a self-adjoint unitary element. Proposition 5.5 assures that S(a) :=
T (1)T (a) (a ∈ A) is a unital Jordan ∗-homomorphism and T (a) = T (1)S(a) for
every a ∈ A. �

The next result gives sufficient conditions for the reciprocal statement of Propo-
sition 5.5 and Corollary 5.7.

Proposition 5.8. Let T : A → B be a linear map between unital C∗-algebras.
Suppose that T can be written in the form T = vS, where v is a unitary element
in B and S : A → B is a unital Jordan ∗-homomorphism such that B equals the
C∗-algebra generated by S(A). Then T preserves extreme points.

Proof. Suppose that T = vS, where v is a unitary element in B and S : A → B
is a unital Jordan ∗-homomorphism. Since S∗∗ : A∗∗ → B∗∗ is a unital Jor-
dan ∗-homomorphism between von Neumann algebras (cf. [28, Lemma 3.1]),
Theorem 3.3 in [28] implies the existence of two orthogonal central projections
E and F in B∗∗ such that S1 = S∗∗ : A∗∗ → B∗∗E is a ∗-homomorphism,
S2 = S∗∗ : A∗∗ → B∗∗F is an ∗-anti-homomorphism, E+F = 1, and S∗∗ = S1+S2.
The equality 1 = S(1) = S1(1) + S2(1) implies that S1(1) = E and S2(1) = F .

Take e ∈ ∂e(A1). We claim that S(e) ∈ ∂e(B1). Indeed, the equalities(
1− S(e)S(e)∗

)
S(A)

(
1− S(e)∗S(e)

)
=

(
1− S1(e)S1(e)

∗ − S2(e)S2(e)
∗)S(A)(1− S1(e)

∗S1(e)− S2(e)
∗S2(e)

)
=

(
E − S1(e)S1(e)

∗)S1(A)
(
E − S1(e)

∗S1(e)
)
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+
(
F − S2(e)S2(e)

∗)S2(A)
(
F − S2(e)

∗S2(e)
)

= S1

(
(1− ee∗)A(1− e∗e)

)
+ S2

(
(1− e∗e)A(1− ee∗)

)
= {0},

together with the fact that B equals the C∗-algebra generated by S(A), show that
S(e) ∈ ∂e(B1).

Finally, given e ∈ ∂e(A1), we know that S(e) ∈ ∂e(B1), and hence(
1− T (e)T (e)∗

)
B
(
1− T (e)∗T (e)

)
=

(
1− vS(e)S(e)∗v

)
B
(
1− S(e∗)v∗vS(e)

)
= v

(
1− S(e)S(e)∗

)
v∗B

(
1− S(e∗)S(e)

)
⊆ v

(
1− S(e)S(e)∗

)
B
(
1− S(e∗)S(e)

)
= {0}

because S(e) ∈ ∂e(B1). We have therefore shown that T (e) ∈ ∂e(B1). �

When M is an infinite von Neumann factor, a linear map T : M → M pre-
serves extreme points if and only if there exist a unitary u in M and a linear
map Φ : M → M which is either a unital ∗-homomorphism or a unital ∗-anti-
homomorphism such that T (a) = uΦ(a) (a ∈ A) (see [24, Theorem 1]). When
M is a finite von Neumann algebra, a linear map T on M preserves extreme
points if and only if there exist a unitary u in M and a Jordan ∗-homomorphism
Φ : M → M satisfying T (a) = uΦ(a) (a ∈ A) (see [24, Theorem 2]). Motivated
by these results, it is natural to ask whether a similar conclusion remains true for
operators preserving extreme points between unital C∗-algebras. The next simple
examples show that the answer is, in general, negative.

Remark 5.9. Let H be an infinite-dimensional complex Hilbert space. Suppose
v is a maximal partial isometry in B(H) which is not a unitary. The operator
T : C → B(H), λ 7→ λv, preserves extreme points, but we cannot write T
in the form T = uΦ, where u is a unitary in B(H) and Φ is a unital Jordan
∗-homomorphism.

Remark 5.10. Under the assumptions of Remark 5.9, let v, w ∈ ∂e(B(H)1) such
that v∗v = 1 = w∗w and vv∗ ⊥ ww∗. Let A = C⊕∞C. We consider the following
operator:

T : A → B(H)

T (λ, µ) =
λ

2
(v + w) +

µ

2
(v − w).

Clearly, T (1, 1) = v. Furthermore, every extreme point of the closed unit ball of
A can be written in the form (λ0, µ0) with |λ0| = |µ0| = 1. Therefore, T (λ0, µ0) =
λ0

2
(v + w) +

µ0

2
(v − w) =

λ0+µ0

2
v +

λ0−µ0

2
w satisfies

T (λ0, µ0)
∗T (λ0, µ0) =

(λ0 + µ0

2
v +

λ0 − µ0

2
w
)∗(λ0 + µ0

2
v +

λ0 − µ0

2
w
)

=
|λ0 + µ0|2

4
v∗v +

|λ0 − µ0|2

4
w∗w
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=
( |λ0 + µ0|2

4
+

|λ0 − µ0|2

4

)
1

=
2(|λ0|2 + |µ0|2)

4
1 = 1,

which proves that T (λ0, µ0) ∈ ∂e(B(H)1), and hence T preserves extreme points.
The mapping T satisfies a stronger property. Elements a and b in the C∗-algebra

A satisfy B(a, b) = 0 if and only if ab∗ = 1. We observe that A−1
q = A−1, and hence

an element (λ, µ) ∈ A−1
q if and only if λµ 6= 0. Let us pick a = (λ0, µ0) ∈ A−1

q

(with λ0µ0 6= 0). Clearly, a∧ = (λ−1
0 , µ−1

0 ). It is easy to check that

T (a∧)∗T (a) =
(λ0

−1
+ µ0

−1

2
v +

λ0
−1 − µ0

−1

2
w
)∗(λ0 + µ0

2
v +

λ0 − µ0

2
w
)

=
(λ0

−1 + µ0
−1

2
v∗ +

λ0
−1 − µ0

−1

2
w∗

)(λ0 + µ0

2
v +

λ0 − µ0

2
w
)

=
1

4

(λ0 + µ0)
2 − (λ0 − µ0)

2

λ0µ0

1 = 1,

and hence B(T (a), T (a∧)) = 0, which shows that T preserves Bergmann-zero
pairs.

It is easy to check that T (1,−1) = w, and hence v∗T (1,−1) = v∗w = 0, and
vv∗T (1,−1) = 0. For S = v∗T we have S(1,−1)2 = 0, but S((1,−1)2) = S(1, 1) =
v; that is, S is not a Jordan homomorphism. We can further check that T is not a
triple homomorphism; for example, (1, 0) is a tripotent in A but ‖T (1, 0)‖ = 1√

2
,

and hence T (1, 0) is not a tripotent in B(H).

Finally, for a = (λ0, µ0) ∈ A−1
q (with λ0µ0 6= 0), T (a∧) =

λ0
−1

2
(v + w) +

µ0
−1

2
(v − w) need not coincide with T (a)∧ = (

λ0

2
(v + w) +

µ0

2
(v − w))∧. Indeed,

T (2, 1) = 3
2
v+ 1

2
w =

√
10

2
r, where r = 3√

10
v+ 1√

10
w is the range tripotent of T (2, 1),

and thus T (2, 1)∧ = 2√
10
r = 3

5
v + 1

5
w. Clearly, T ((2, 1)∧) = T (1/2, 1) = 3

4
v − 1

4
w.

The counterexamples provided by Remark 5.10 point out that the conclusions
found by Mascioni and Molnár for linear maps preserving extreme points on
the infinite von Neumann factor are not expectable for general C∗-algebras (cf.
[24]). We shall show that a more tractable description is possible for linear maps
strongly preserving Brown–Pedersen quasi-invertibility. The proofs are based on
the JB∗-triple structure underlying every C∗-algebra.

The following variant of Proposition 3.1 follows with similar arguments; its
proof is outlined here.

Proposition 5.11. Let E and F be JB∗-triples, and let T : E → F be a lin-
ear map strongly preserving Brown–Pedersen quasi-invertible elements; that is,
T (x∧) = T (x)∧ for every x ∈ E−1

q . Then

T (x[3]) = T (x)[3]

for every x ∈ E−1
q .
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Proof. Let x be an element in E−1
q , and let e = r(x) ∈ ∂e(E1) denote its range

tripotent. For each 0 < λ < ‖x∧‖−2 the element λx∧ − x is Brown–Pedersen
quasi-invertible in E. Indeed, if we regard λx∧−x as an element in Ex ≡ C(Sp(x)),
the JB∗-subtriple of E generated by x (see p. 551), then x−λx∧ is invertible and
positive in Ex, and its range tripotent is r(x − λx∧) = e ∈ ∂e(E1). By Hua’s
identity, we have

x− λ−1x[3] =
(
x∧ − (x− λx∧)∧

)∧
(cf. (3.1)).

Given 0 < λ < Min{‖x∧‖−2, ‖T (x)∧‖−2}, since T strongly preserves Brown–
Pedersen quasi-invertible elements, and x, λx∧ − x, T (x) and T (λx∧ − x) are
Brown–Pedersen quasi-invertible, we deduce that

T (x)− λ−1T (x)[3] =
(
T (x)∧ −

(
T (x)− λT (x)∧

)∧)∧
=

(
T (x∧)−

(
T (x)− λT (x∧)

)∧)∧
= T

((
x∧ − (x− λx∧)∧

)∧)
= T (x)− λ−1T (x[3])

for every 0 < λ as above, which proves the desired statement. �

The full meaning of Theorem 3.2 (and the role played by [17, Lemma 2.2]
in its proof) is more explicit in the following result, whose proof follows the
lines we gave in the aforementioned theorem but replaces Proposition 3.1 with
Proposition 5.11.

Theorem 5.12. Let E and F be JB∗-triples with ∂e(E1) 6= ∅. Suppose T : E → F
is a linear map strongly preserving Brown–Pedersen quasi-invertible elements.
Then T is a triple homomorphism.

We can state now our conclusions on linear maps strongly preserving Brown–
Pedersen quasi-invertibility.

Theorem 5.13. Let A and B be unital C∗-algebras. Let T : A → B be a linear
map strongly preserving Brown–Pedersen quasi-invertible elements. Then there
exists a Jordan ∗-homomorphism S : A → B satisfying T (x) = T (1)S(x) for
every x ∈ A.

We further know that

T (A) ⊆ T (1)T (1)∗BT (1)∗T (1), S(A) ⊆ T (1)∗T (1)BT (1)∗T (1),

and S : A → T (1)∗T (1)BT (1)∗T (1) is a unital Jordan ∗-homomorphism.

Proof. Since T preserves extreme points, v = T (1) ∈ ∂e(B1) is a partial isometry
with

(1− vv∗)T (x)(1− v∗v) = 0 (5.7)

for every x ∈ A. It follows from (5.5) that vT (a)∗v = vv∗T (a)v∗v for every
a = a∗ ∈ A.

Now, Theorem 5.12 assures that T is a triple homomorphism. Thus, we
have
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T (x) = T{x, 1, 1} =
{
T (x), v, v

}
=

1

2

(
T (x)v∗v + vv∗T (x)

)
(5.8)

and

T (x∗) = T{1, x, 1} =
{
v, T (x), v

}
= vT (x)∗v (5.9)

for every x ∈ A. Identities (5.7) and (5.8) give

T (x) = vv∗T (x)v∗v = vv∗T (x) = T (x)v∗v (5.10)

for every x ∈ A. Multiplying on the left by v∗, we get

v∗T (x) = v∗T (x)v∗v =
(
by (5.9)

)
= T (x∗)∗v

for every x ∈ A, which proves that S = v∗T : A → B is a symmetric operator.
Furthermore, since T is a triple homomorphism, we have

S(x2) = v∗T{x, 1, x} = v∗
{
T (x), v, T (x)

}
= v∗T (x)v∗T (x) = S(x)2

for all x ∈ A, which guarantees that S is a Jordan ∗-homomorphism. The identity
in (5.10) gives T (x) = vv∗T (x) = vS(x) for every x ∈ A. The rest is clear. �

Remark 5.14. Under the hypothesis of Theorem 5.13 we can similarly prove that
the mapping S1 : A → B, S1(x) = T (x)T (1)∗ is a Jordan ∗-homomorphism and
T (x) = S1(x)v for every x in A.

If v is an extreme point of the closed unit ball of a prime unital C∗-algebra B,
then 1 = vv∗ or v∗v = 1. Therefore, the next result is a straight consequence of
the previous Theorem 5.13.

Corollary 5.15. Let A and B be unital C∗-algebras with B prime. Let T : A → B
be a linear map strongly preserving Brown–Pedersen quasi-invertible elements.
Then one of the following statements holds:

(a) T (1)∗T (1) = 1, T (1)T (1)∗T (a) = T (a) for every a ∈ A, and there exists
a unital Jordan ∗-homomorphism S : A → B satisfying T (a) = T (1)S(a)
for every a ∈ A;

(b) T (1)T (1)∗ = 1, T (a)T (1)∗T (1) = T (a) for every a ∈ A, and there exists
a unital Jordan ∗-homomorphism S : A → B satisfying T (a) = S(a)T (1)
for every a ∈ A. �
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10. C. M. Edwards and G. T. Rüttimann, Compact tripotents in bi-dual JB∗-triples, Math.
Proc. Cambridge Philos. Soc. 120 (1996), no. 1, 155–174. Zbl 0853.46070. MR1373355.
DOI 10.1017/S0305004100074740. 552
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Facultad de Ciencias, 18071 Granada, Spain.

E-mail address: aperalta@ugr.es

http://www.emis.de/cgi-bin/MATH-item?0519.32024
http://www.ams.org/mathscinet-getitem?mr=0710768
http://dx.doi.org/10.1007/BF01173928
http://dx.doi.org/10.1007/BF01173928
http://www.emis.de/cgi-bin/MATH-item?0904.46039
http://www.ams.org/mathscinet-getitem?mr=1644656
http://www.emis.de/cgi-bin/MATH-item?0944.46054
http://www.ams.org/mathscinet-getitem?mr=1645056
http://dx.doi.org/10.1006/aima.1998.1738
http://molle.fernuni-hagen.de/~loos/jordan/archive/irvine
http://www.emis.de/cgi-bin/MATH-item?0228.32012
http://www.emis.de/cgi-bin/MATH-item?0919.47024
http://www.ams.org/mathscinet-getitem?mr=1658239
http://dx.doi.org/10.4153/CMB-1998-057-7
http://www.emis.de/cgi-bin/MATH-item?1215.47031
http://www.ams.org/mathscinet-getitem?mr=2511235
http://dx.doi.org/10.3318/PRIA.2008.109.2.109
http://dx.doi.org/10.3318/PRIA.2008.109.2.109
http://www.emis.de/cgi-bin/MATH-item?0253.17017
http://www.ams.org/mathscinet-getitem?mr=0332901
http://www.emis.de/cgi-bin/MATH-item?0171.11503
http://www.ams.org/mathscinet-getitem?mr=0193530
http://www.emis.de/cgi-bin/MATH-item?0136.11401
http://www.ams.org/mathscinet-getitem?mr=0185463
http://www.emis.de/cgi-bin/MATH-item?0436.46043
http://www.ams.org/mathscinet-getitem?mr=0548728
mailto:maria.burgos@uca.es
mailto:acmarquez@ual.es
mailto:amorales@ual.es
mailto:aperalta@ugr.es

	1 Introduction
	2 Preliminaries
	3 Linear maps strongly preserving regularity on JB*-triples
	4 Maps strongly preserving regularity on weakly compact JB*-triples
	5 Linear maps strongly preserving Brown–Pedersen quasi-invertibility
	Acknowledgments
	References
	Author's addresses

