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Abstract. In this paper, we consider square functions (also called Littlewood–
Paley g-functions) associated to Hankel convolutions acting on functions in
the Bochner–Lebesgue space Lp((0,∞),B), where B is a UMD Banach space.
As special cases, we study square functions defined by fractional derivatives
of the Poisson semigroup for the Bessel operator ∆λ = −x−λ d

dxx
2λ d

dxx
−λ,

λ > 0. We characterize the UMD property for a Banach space B by using
Lp((0,∞),B)-boundedness properties of g-functions defined by Bessel–Poisson
semigroups. As a by-product, we prove that the fact that the imaginary power
∆iω

λ , ω ∈ R \ {0}, of the Bessel operator ∆λ is bounded in Lp((0,∞),B),
1 < p < ∞, characterizes the UMD property for the Banach space B. As
applications of our results for square functions, we establish the boundedness
in Lp((0,∞),B) of spectral multipliers m(∆λ) of Bessel operators defined by
functions m which are holomorphic in sectors Σϑ.

1. Introduction

Square functions (also called Littlewood–Paley g-functions) were considered in
the works of Littlewood, Paley, Zygmund, and Marcinkiewicz during the decade
of the 1930s (see [34], [55]). These functions were introduced to get new equiva-
lent norms, for example, in Lp-spaces. By using these new equivalent norms the
boundedness of some operators (e.g., multipliers) can be established.
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Suppose that (Ω,Σ, µ) is a σ-finite measure space and that {Tt}t>0 is a sym-
metric diffusion semigroup of operators in the sense of Stein [45]. For every k ∈ N,
the square function gk associated to {Tt}t>0 is defined by

gk
(
{Tt}t>0

)
(f)(x) =

(∫ ∞

0

∣∣tk∂kt Tt(f)(x)∣∣2dtt )1/2

.

In [45, p. 120] it is shown that, for every k ∈ N and 1 < p < ∞, there exists
C > 0 such that

1

C

∥∥f − E0(f)
∥∥
Lp(Ω,µ)

≤
∥∥gk({Tt}t>0

)
(f)

∥∥
Lp(Ω,µ)

≤ C‖f‖Lp(Ω,µ), f ∈ Lp(Ω, µ), (1.1)

where E0(f) = limt→∞ Tt(f) is the projection onto the fixed-point space of
{Tt}t>0. As an application of (1.1), it can be proved that Laplace transform-
type multipliers associated with {Tt}t>0 are bounded from Lp(Ω, µ) into itself,
1 < p <∞ (see [45, p. 121]). Note that when E0 = 0, (1.1) says that by defining
for every 1 < p <∞ and k ∈ N,

‖|f‖|k =
∥∥gk({Tt}t>0

)
(f)

∥∥
Lp(Ω,µ)

, f ∈ Lp(Ω, µ),

‖| · ‖|k is a norm equivalent to the usual one in Lp(Ω, µ). Meda in [37] extends the
property (1.1) to symmetric contraction semigroups {Tt}t>0 with E0 = 0 and he
applies it to get the boundedness in Lp of spectral multipliers m(L), where the
operator L is the infinitesimal generator of {Tt}t>0 and m is a holomorphic and
bounded function in a sector Σϑ = {z ∈ C : |Arg z| < ϑ}. Here 1 < p < ∞ and
ϑ ∈ [0, π/2] are connected.

We consider the functions

Wt(z) =
e−|z|2/4t

(4πt)n/2
, z ∈ Rn and t > 0, (1.2)

and

Pt(z) = bn
t

(t2 + |z|2)(n+1)/2
, z ∈ Rn and t > 0,

where bn = π−(n+1)/2Γ((n+ 1)/2).
As it is well known, the classical heat semigroup {Wt}t>0 is defined by

Wt(f)(x) =

∫
Rn

Wt(x− y)f(y) dy, x ∈ Rn and t > 0,

and the classical Poisson semigroup {Pt}t>0 is given by

Pt(f)(x) =
∫
Rn

Pt(x− y)f(y) dy, x ∈ Rn and t > 0,

for every f ∈ Lp(Rn). Note that {Wt}t>0 and {Pt}t>0 are generated by −∆

and −
√
∆, respectively, where ∆ = −

∑n
j=1

∂2

∂x2i
denotes the Laplace operator.

The classical heat and Poisson semigroups are the first examples of diffusion
semigroups having a trivial fixed-point space. For every measurable function g :
Rn → C, we define gt(x) = t−ng(x/t), x ∈ Rn and t > 0.
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Let k ∈ N. We can write

gk
(
{Wt}t>0

)
(f)(x) =

(∫ ∞

0

∣∣(ϕ√
t ∗ f)(x)

∣∣2dt
t

)1/2

, x ∈ Rn,

being ϕ(x) = ∂ktG
√
t(x)|t=1 and G(x) = (4π)−n/2e−|x|2/4, x ∈ Rn. Also, we have

gk
(
{Pt}t>0

)
(f)(x) =

(∫ ∞

0

∣∣(φt ∗ f)(x)∣∣2dt
t

)1/2

, x ∈ Rn,

where φ(x) = ∂kt Pt(x)|t=1, x ∈ Rn.
If ψ ∈ L2(Rn), we consider the square function defined by

gψ(f)(x) =
(∫ ∞

0

∣∣(ψt ∗ f)(x)∣∣2dt
t

)1/2

, x ∈ Rn.

Thus, gψ includes as special cases gk({Wt}t>0) and gk({Pt}t>0).
In the rest of this article, if f ∈ S(Rn), the Schwartz class, then we denote by

f̂ the Fourier transform of f given by

f̂(y) =
1

(2π)n/2

∫
Rn

f(x)e−ix·y dx, y ∈ Rn.

As it is well known, the Fourier transform can be extended to L2(Rn) as an
isometry in L2(Rn).

Theorem A. Suppose that ψ ∈ L2(Rn) satisfies the following properties:

(i) if α = (α1, . . . , αn) ∈ {0, 1}n and |α| =
∑n

j=1 αj ≤ 1+ [n/2], then the dis-

tributional derivative ∂|α|

∂x
α1
1 ···∂xαn

n
ψ̂ is represented by a measurable function

and

sup
|z|=1

∫ ∞

0

t2|α|
∣∣∣( ∂|α|

∂xα1
1 · · · ∂xαn

n

ψ̂
)
(tz)

∣∣∣2dt
t
<∞,

(ii) inf |z|=1

∫∞
0

|ψ̂(tz)|2 dt
t
> 0.

Then, for every 1 < p <∞, there exists C > 0 such that

1

C
‖f‖Lp(Rn) ≤

∥∥gψ(f)∥∥Lp(Rn)
≤ C‖f‖Lp(Rn), f ∈ Lp(Rn).

Also, square functions can be defined by using functional calculus for operators
(see, for instance, [32], [38]). Note that if A is the infinitesimal generator of the
analytic semigroup {Tt}t>0, we can write, for every k ∈ N,

tk∂kt Tt = Fk(tA), t > 0,

where Fk(z) = (−z)ke−z, z ∈ C.
Suppose that B is a Banach space and that T is a linear bounded operator

from Lp(Ω, µ) into itself, where 1 < p < ∞. We define T ⊗ IB on Lp(Ω, µ) ⊗ B
in the usual way. If T is positive, T ⊗ IB can be extended to Lp(Ω, µ,B) as a
bounded operator from Lp(Ω, µ,B) into itself. To simplify, we continue denoting
this extension by T .
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The objective is to give a definition for the square functions, when we consider
functions taking values in a Banach space B, which define equivalent norms in
the Bochner–Lebesgue space Lp(Ω, µ,B), 1 < p <∞.

Let {Tt}t>0 be a symmetric diffusion semigroup on a σ-finite measure space
(Ω,Σ, µ). We denote by {Pt}t>0 the subordinated semigroup to {Tt}t>0, that is,

Pt(f) =
t

2
√
π

∫ ∞

0

e−t
2/(4u)

u3/2
Tu(f) du, t > 0.

Thus, {Pt}t>0 is also a symmetric diffusion semigroup. The classical Poisson semi-
group is the subordinated semigroup of the classical heat semigroup.

In order to define g-functions in a Banach-valued setting, the more natural way
is to replace the absolute value in the scalar definition by the norm in B. This
is the way followed, for instance, in [36] and [53], where those authors work with
square functions defined by subordinated semigroups {Pt}t>0 as follows:

g1,B
(
{Pt}t>0

)
(f)(x) =

(∫ ∞

0

∥∥t∂tPt(f)(x)∥∥2

B
dt

t

)1/2

, x ∈ Ω.

Actually, in [36] and [53] the generalized square functions are considered where
the L2-norm is replaced by the Lq-norm, 1 < q < ∞. As a consequence of [36,
Theorems 5.2 and 5.3] (see also [30]), we deduce that for a certain 1 < p < ∞
there exists C > 0 such that, for every f ∈ Lp(Rn,B),

1

C
‖f‖Lp(Rn,B) ≤

∥∥g1,B({Pt}t>0

)
(f)

∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn,B),

if and only if B is isomorphic to a Hilbert space.
In order to get new equivalent norms for Lp(Ω, µ,B) by using square functions

and for Banach spaces B which are not isomorphic to Hilbert spaces, stochastic
integrals and γ-radonifying operators have been considered. We point out the
work of Bourgain [11]; Hytönen [23]; Hytönen, Van Neerven and Portal [25];
Hytönen and Weis [26]; Kaiser [27]; and Kaiser and Weis [28] among others.

In the present article we use γ-radonifying operators. We recall some definitions
and properties about this kind of operator that will be useful later.

Assume that B is a Banach space and that H is a Hilbert space. We choose
a sequence {γj}j∈N of independent standard Gaussian variables defined on some
probability space (Ω,F , ρ). By E we denote the expectation with respect to ρ.
A linear operator T : H → B is said to be γ-summing (T ∈ γ∞(H,B)) when

‖T‖γ∞(H,B) = sup
(
E
∥∥∥ k∑
j=1

γjT (hj)
∥∥∥2

B

)1/2

<∞,

where the supremum is taken over all the finite family {hj}kj=1 of orthonormal
vectors in H. Note that γ∞(H,B) endowed with the norm ‖ ·‖γ∞(H,B) is a Banach
space. We say that a linear operator T : H → B is γ-radonifying (in short,

T ∈ γ(H,B)) when T ∈ F(H,B)
γ∞(H,B)

, where F(H,B) denotes the span of
finite-range operators from H to B. If B does not contain isomorphic copies of
c0, then γ(H,B) = γ∞(H,B) (see [22], [31], [50, Theorem 4.3]). Note that if B is
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UMD, B does not contain isomorphic copies of c0. If H is separable and {hn}n∈N
is an orthonormal basis of H, a linear operator T : H → B is γ-radonifying if and
only if the series

∑∞
j=1 γjT (hj) converges in L

2(Ω,B). In this case, we have

‖T‖γ∞(H,B) =
(
E
∥∥∥ ∞∑
j=1

γjT (hj)
∥∥∥2

B

)1/2

.

From this point on, we write ‖ · ‖γ(H,B) to refer to ‖ · ‖γ∞(H,B) when operators act
on γ(H,B).

Throughout this paper we always consider H = L2((0,∞), dt/t). Suppose that
f : (0,∞) → B is a measurable function such that S ◦ f ∈ H, for every S ∈ B∗,
the dual space of B. Then, there exists a bounded linear operator Tf : H → B
[shortly, Tf ∈ L(H,B)] such that〈

S, Tf (h)
〉
B∗,B =

∫ ∞

0

〈
S, f(t)

〉
B∗,Bh(t)

dt

t
, h ∈ H and S ∈ B∗.

We say that f ∈ γ((0,∞), dt/t,B) provided that Tf ∈ γ(H,B). The space {Tf :
f ∈ γ((0,∞), dt/t,B)} is dense in γ(H,B). It is usual to identify f and Tf .

Usually, γ-radonifying operators are considered for real Banach B and real
Hilbert space H. However, as has been mentioned in [19], [29], and [50], the main
properties of γ-radonifying operators (in particular, the properties we use in this
article) also hold for complex Banach space B and complex Hilbert spaces H.

Banach spaces with the UMD property play an important role in our results.
The Hilbert transform H(f) of f ∈ Lp(R), 1 ≤ p <∞, is defined by

H(f)(x) = lim
ε→0+

1

π

∫
|x−y|>ε

f(y)

x− y
dy, a.e. x ∈ R.

As it is well known, the Hilbert transform defines a bounded linear operator from
Lp(R) into itself, 1 < p < ∞, and from L1(R) into L1,∞(R); also, H is defined
on Lp(R) ⊗ B, 1 ≤ p < ∞, in a natural way. We identify B as a UMD space
when the Hilbert transform can be extended to Lp(R,B) as a bounded operator
from Lp(R,B) into itself for some (equivalently, for every) 1 < p < ∞. There
exist a lot of characterizations of UMD Banach spaces. The articles of Bourgain
[11] and Burkholder [12] have been fundamental in the development of the theory
of Banach spaces with the UMD property. UMD Banach spaces are the suitable
setting to analyze vector-valued Littlewood–Paley functions.

Kaiser and Weis [28] (see also [27]) considered, for every ψ ∈ L2(Rn), the
operator (usually called a wavelet transform associated to ψ) Wψ defined by

Wψ(f)(t, x) = (ψt ∗ f)(x), x ∈ Rn and t > 0,

for every f ∈ S(Rn,B), the B-valued Schwartz space.
The following result was established by Kaiser and Weis.

Theorem B ([28, Theorem 4.2]). Suppose that B is a UMD Banach space with
Fourier type r ∈ (1, 2] and that ψ ∈ L2(Rn) satisfies the following two conditions:
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(i) If α = (α1, . . . , αn) ∈ {0, 1}n and |α| ≤ 1 + [n/r], then the distributional

derivative ∂|α|

∂x
α1
1 ···∂xαn

n
ψ̂ is represented by a measurable function and

sup
|z|=1

∫ ∞

0

t2|α|
∣∣∣( ∂|α|

∂xα1
1 · · · ∂xαn

n

ψ̂
)
(tz)

∣∣∣2dt
t
<∞;

(ii) inf |z|=1

∫∞
0

|ψ̂(tz)|2 dt
t
> 0.

Then, for every 1 < p <∞ there exists C > 0 such that

1

C
‖f‖Lp(Rn,B) ≤

∥∥Wψ(f)
∥∥
Lp(Rn,γ(H,B)) ≤ C‖f‖Lp(Rn,B), f ∈ S(Rn,B).

Note that since γ(H,C) = H, Theorem B can be seen as a vector-valued
generalization of Theorem A. We recall that every UMD Banach space has Fourier
type greater than 1 (see [10]) and the complex plane C has Fourier type 2.

Our objective here is to get new equivalent norms for Lp((0,∞),B) when B is
a UMD Banach space by using square functions involving Hankel convolutions
and Poisson semigroups associated with Bessel operators. These square functions
allow us to obtain new characterizations of UMD Banach spaces. We also describe
the UMD property by the boundedness in Lp((0,∞),B), 1 < p < ∞, of the
imaginary power ∆iω

λ , ω ∈ R\{0}, of the Bessel operator ∆λ = −x−λ d
dx
x2λ d

dx
x−λ,

on (0,∞). As a consequence of our results about square functions in the Bessel
setting, we obtain Lp((0,∞),B)-boundedness properties for spectral multipliers
associated with Bessel operators.

If Jν denotes the Bessel function of the first kind and order ν > −1, we have

∆λ,x

(√
xyJλ−1/2(xy)

)
= y2

√
xyJλ−1/2(xy), x, y ∈ (0,∞). (1.3)

Here and later, unless otherwise stated, we assume that λ > 0. The Hankel
transform hλ(f) of f ∈ L1(0,∞) is defined by

hλ(f)(x) =

∫ ∞

0

√
xyJλ−1/2(xy)f(y) dy, x ∈ (0,∞).

This transform plays in the Bessel setting the same role as the Fourier transfor-
mation in the classical (Laplacian) setting [see (1.3)].

We consider the space Sλ(0,∞) of all those smooth functions φ on (0,∞) such
that, for every m, k ∈ N,

ηλm,k(φ) = sup
x∈(0,∞)

xm
∣∣∣(1
x

d

dx

)k(
x−λφ(x)

)∣∣∣ <∞.

If Sλ(0,∞) is endowed with the topology generated by the family {ηλm,k}m,k∈N
of seminorms, then Sλ(0,∞) is a Fréchet space and hλ is an isomorphism on
Sλ(0,∞) (see [54, Lemma 8]). Moreover, h−1

λ = hλ on Sλ(0,∞). The Hankel
transformation hλ can be also extended to L2(0,∞) as an isometry (see [48,
p. 214 and Theorem 129]).
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By adapting the results in [21], we define the Hankel convolution f#λg of
f, g ∈ L1((0,∞), xλdx) by

(f#λg)(x) =

∫ ∞

0

f(y)λτx(g)(y) dy, x ∈ (0,∞),

where the Hankel translation λτx(g) of g is given by

λτx(g)(y) =
(xy)λ√

π2λ−1/2Γ(λ)

∫ π

0

(sin θ)2λ−1 g(
√

(x− y)2 + 2xy(1− cos θ))

((x− y)2 + 2xy(1− cos θ))λ/2
dθ,

for each x, y ∈ (0,∞). Note that there is not a group operation ◦ on (0,∞) for
which

λτx(g)(y) = g(x ◦ y), x, y ∈ (0,∞).

The following interchange formula holds:

hλ(f#λg) = x−λhλ(f)hλ(g), f, g ∈ L1
(
(0,∞), xλ dx

)
. (1.4)

If ψ is a measurable function on (0,∞), then we define

ψ(t)(x) = ψλ(t)(x) =
1

tλ+1
ψ
(x
t

)
, t, x ∈ (0,∞).

If ψ ∈ Sλ(0,∞) and B is a Banach space, then we define the operator (Hankel
wavelet transform) Wλ

ψ,B as

Wλ
ψ,B(f)(t, x) = (ψ(t)#λf)(x), t, x ∈ (0,∞),

for every f ∈ Lp((0,∞),B), 1 < p <∞.
We establish in our first result a Hankel version of Theorem B.

Theorem 1.1. Let B be a UMD Banach space, λ > 0 and 1 < p < ∞. Suppose
that ψ ∈ Sλ(0,∞) is not identically zero and that

∫∞
0
xλψ(x) dx = 0. Then, there

exists C > 0 such that

1

C
‖f‖Lp((0,∞),B) ≤

∥∥Wλ
ψ,B(f)

∥∥
Lp((0,∞),γ(H,B)) ≤ C‖f‖Lp((0,∞),B)

for every f ∈ Lp((0,∞),B).

Harmonic analysis associated with Bessel operators was first analyzed by Muck-
enhoupt and Stein [39]. Recently, that study has been completed (see [2], [5], [7]).

The Poisson semigroup {P λ
t }t>0 associated to the operator ∆λ is defined as

P λ
t (f)(x) =

∫ ∞

0

P λ
t (x, y)f(y) dy, t, x ∈ (0,∞),

for every f ∈ Lp(0,∞), 1 ≤ p <∞. The Poisson kernel P λ
t (x, y), t, x, y ∈ (0,∞),

is defined by (see [52])

P λ
t (x, y) =

2λ(xy)λt

π

∫ π

0

(sin θ)2λ−1

((x− y)2 + t2 + 2xy(1− cos θ))λ+1
dθ,

t, x, y ∈ (0,∞).
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For every t > 0, we can write

P λ
t (f) = Kλ

(t)#λf, f ∈ Lp(0,∞), 1 ≤ p <∞,

where

Kλ(x) =
2λ+1/2Γ(λ+ 1)√

π

xλ

(1 + x2)λ+1
, x ∈ (0,∞).

Then, for every k ∈ N and f ∈ Lp(0,∞), 1 < p <∞,

gk
(
{P λ

t }t>0

)
(f)(x) =

(∫ ∞

0

∣∣(tk∂ktKλ
(t)#λf)(x)

∣∣2dt
t

)1/2

, x ∈ (0,∞).

g-functions in the Bessel setting were studied in [8].
In [7] it was considered the square function defined by

g1,B
(
{P λ

t }t>0

)
(f)(x) =

(∫ ∞

0

∥∥t∂tP λ
t (f)(x)

∥∥2

B
dt

t

)1/2

, x ∈ (0,∞)

for every f ∈ Lp((0,∞),B), 1 < p < ∞. According to [7, Theorems 2.4 and 2.5]
and [30], we have that B is isomorphic to a Hilbert space if and only if, for some
(equivalently, for every) 1 < p < ∞, there exists C > 0 such that, for every
f ∈ Lp((0,∞),B),

1

C
‖f‖Lp((0,∞),B) ≤

∥∥g1,B({P λ
t }t>0

)
(f)

∥∥
Lp(0,∞)

≤ C‖f‖Lp((0,∞),B).

Note that the semigroup {P λ
t }t>0 is not Markovian. Hence, the results in [36] do

not imply those in [7]. Also, the theory developed in [23] does not apply for the
Bessel–Poisson semigroup.

In [44] Segovia and Wheeden defined a fractional derivative as follows. Suppose
that F : Ω × (0,∞) → C is a good enough function, where Ω ⊂ Rn, and β > 0.

The β-derivative ∂βt F is defined by

∂βt F (x, t) =
e−iπ(m−β)

Γ(m− β)

∫ ∞

0

∂mt F (x, t+ s)sm−β−1 ds, x ∈ Ω, t ∈ (0,∞),

where m ∈ N and m − 1 ≤ β < m. By using this fractional derivative, Segovia
and Wheeden obtained characterizations of Sobolev spaces.

If B is a Banach space and β > 0, we define the operator Gλ,β
P,B by

Gλ,β
P,B(f)(x) = tβ∂βt P

λ
t (f)(x), t, x ∈ (0,∞),

for every f ∈ Lp((0,∞),B), 1 < p <∞.

We now prove that the operators Gλ,β
P,B allow us to get new equivalent norms in

Lp((0,∞),B) provided that B is a UMD space.

Theorem 1.2. Let B be a UMD Banach space, λ, β > 0 and 1 < p < ∞. Then,
there exists C > 0 such that

1

C
‖f‖Lp((0,∞),B) ≤

∥∥Gλ,β
P,B(f)

∥∥
Lp((0,∞),γ(H,B)) ≤ C‖f‖Lp((0,∞),B), (1.5)

for every f ∈ Lp((0,∞),B).
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In [37, Theorem 1] it is assumed that the semigroup is contractive. As was
mentioned earlier, the Poisson semigroup {P λ

t }t>0 associated with ∆λ is not con-
tractive when 0 < λ < 1. A crucial point in the proof of [37, Theorem 1] is [37,
Theorem 2], where the Lp-boundedness properties for the g-functions on contrac-
tive semigroups are stated. In order to prove Theorem 1.5 below, we will use
Theorem 1.2, which holds in the noncontractive range 0 < λ < 1.

For every λ > 0, the Poisson semigroup {P λ
t }t>0 is generated by −

√
∆λ in

Lp(0,∞), 1 < p < ∞. According to [41, Proposition 6.1], {P λ
t }t>0 is contractive

in Lp(0,∞), 1 < p < ∞, provided that λ ≥ 1. Then, by [47, Theorem 6.1],
equivalence (1.5) follows from [51, Proposition 2.16] (see also [35, Lemma 2.3])
when λ ≥ 1, β > 0, 1 < p < ∞, and B is a UMD Banach space. In Theorem 1.2
(1.5) is established for every λ > 0. Our proof (see Section 3) does not use
functional calculus arguments. We exploit the fact that the Bessel operator ∆λ

is, in some sense, a nice perturbation of the Laplacian operator −d2/dx2. We

connect the g-function operator Gλ,β
P,B with the corresponding operator associated

with the classical Poisson semigroup and then we apply Theorem B.
We also consider square functions associated with Bessel–Poisson semigroups

involving a derivative with respect to x. If B is a Banach space, we define, for
every f ∈ Lp((0,∞),B), 1 < p <∞,

GλP,B(f)(t, x) = tD∗
λ,xP

λ+1
t (f)(x), x, t ∈ (0,∞),

where D∗
λ = −x−λ d

dx
xλ.

Theorem 1.3. Let B be a UMD Banach space, λ > 0 and 1 < p <∞. Then the
operator GλP,B is bounded from Lp((0,∞),B) into Lp((0,∞), γ(H,B)).

The operators Gλ,1
P,B and GλP,B are connected by certain Cauchy–Riemann-type

equations and Riesz transforms associated with Bessel operators. These relations
allow us to get new characterizations of UMD Banach spaces. Also, the equiv-
alence of Lp-norms in Theorem 1.2 characterizes UMD Banach spaces. In order
to see this last property, we need first to describe UMD Banach spaces by using
Lp-boundedness of the imaginary power ∆iω

λ , ω ∈ R \ {0}, of Bessel operators
(see Proposition 5.1).

Theorem 1.4. Let B be a Banach space and λ > 0. The following assertions are
equivalent:

(i) B is UMD;
(ii) for some (equivalently, for every) 1 < p < ∞, there exists C > 0 such

that

1

C
‖f‖Lp((0,∞),B) ≤

∥∥Gλ,1
P,B(f)

∥∥
Lp((0,∞),γ(H,B)), f ∈ Lp(0,∞)⊗ B, (1.6)

and∥∥GλP,B(f)∥∥Lp((0,∞),γ(H,B)) ≤ C‖f‖Lp((0,∞),B), f ∈ Lp(0,∞)⊗ B; (1.7)
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(iii) for some (equivalently, for every) 1 < p < ∞ and β > 0, there exists
C > 0 such that, for δ = β and δ = β + 1,

1

C
‖f‖Lp((0,∞),B) ≤

∥∥Gλ,δ
P,B(f)

∥∥
Lp((0,∞),γ(H,B))

≤ C‖f‖Lp((0,∞),B), f ∈ Lp(0,∞)⊗ B. (1.8)

Inspired in [37, Theorem 1] as an application of the result in Theorem 1.2, we
give sufficient conditions in order that spectral multipliers associated with Bessel
operators are bounded in Lp((0,∞),B), 1 < p <∞.

If f ∈ Sλ(0,∞), then from (1.3) we deduce that

hλ(∆λf)(x) = x2hλ(f)(x), x ∈ (0,∞).

We define

∆λf = hλ
(
x2hλ(f)

)
, f ∈ D(∆λ),

where the domain D(∆λ) of ∆λ is

D(∆λ) =
{
f ∈ L2(0,∞) : x2hλ(f) ∈ L2(0,∞)

}
.

Suppose that m ∈ L∞(0,∞). The spectral multiplier m(∆λ) is defined by

m(∆λ)(f) = hλ
(
m(x2)hλ

)
, f ∈ L2(0,∞). (1.9)

Since hλ is bounded in L2(0,∞), it is clear that m(∆λ) is bounded from L2(0,∞)
into itself. At this point, the question is to give conditions on the function m
which imply that the operator m(∆λ) can be extended from L2(0,∞)∩Lp(0,∞)
to Lp(0,∞) as a bounded operator from Lp(0,∞) into itself for some p ∈ (1,∞)\
{2}.

In [3] and [9] Laplace transform-type Hankel multipliers were investigated.
A function m is said to be of Laplace transform type when

m(y) = y

∫ ∞

0

e−ytψ(t) dt, y ∈ (0,∞),

for some ψ ∈ L∞(0,∞). If m is of Laplace transform type, then the operator
m(∆λ) defined in (1.9) can be extended to Lp(0,∞) as a bounded operator from
Lp(0,∞) into itself, 1 < p < ∞, and from L1(0,∞) into L1,∞(0,∞) (see [3], [9],
[45, p. 121]).

Let ω ∈ R \ {0}. The imaginary power ∆iω
λ of ∆λ is defined by

∆iω
λ (f) = hλ

(
y2iωhλ(f)

)
, f ∈ L2(0,∞).

Since

yiω = y

∫ ∞

0

e−yt
t−iω

Γ(1− iω)
dt, y ∈ (0,∞),

the operator ∆iω
λ is a Laplace transform-type Hankel multiplier.

In Proposition 5.1 (Section 5) we show that a Banach space B is UMD if and
only if the operator ∆iω

λ , ω ∈ R, is a bounded operator from Lp((0,∞),B) into
itself, for some (equivalently, for every) 1 < p < ∞. This is a Bessel version of
[18, Theorem, p. 402].
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In the following theorem we establish a Banach-valued version of [37, Theo-
rem 1] for the Bessel operator.

If m ∈ L∞(0,∞), we define, for every n ∈ N,

mn(t, y) = (ty)ne−ty/2m(y2), t, y ∈ (0,∞),

and Mn(t, u), t ∈ (0,∞), u ∈ R, represents the Mellin transform of mn with
respect to the variable y, that is,

Mn(t, u) =

∫ ∞

0

mn(t, y)y
−iu−1 dy, u ∈ R and t > 0.

Theorem 1.5. Let B be a UMD Banach space, λ > 0 and m ∈ L∞(0,∞).
Suppose that for some 1 < p <∞ and n ∈ N the following property holds:∫

R
sup
t>0

∣∣Mn(t, u)
∣∣‖∆iu/2

λ ‖Lp((0,∞),B)→Lp((0,∞),B) du <∞. (1.10)

Then, m(∆λ) can be extended from Sλ(0,∞) ⊗ B to Lp((0,∞),B) as a bounded
operator from Lp((0,∞),B) into itself.

We now specify some conditions over the function m and the UMD Banach
space B for which (1.10) is satisfied. As in [37, Theorem 3], we consider m ∈
L∞(0,∞) that extends to a bounded analytic function in a sector Σϑ = {z ∈ C :
|Arg z| < ϑ}. In this case, we have

sup
t>0

∣∣Mn(t, u)
∣∣ ≤ Ceπ|u|/2

(
1 + |u|

)
, u ∈ R.

By [13, Corollary 1] (see also [3, Corollary 1.2]), we can obtain, for every 1 <
p <∞,

‖∆iu
λ ‖Lp(0,∞)→Lp(0,∞)

≤ C
(
1 + |u|3 log |u|

)|1/p−1/2|
exp

(
π|1/p− 1/2||u|

)
, u ∈ R, (1.11)

where C > 0 depends on p but does not depend on u.
Even when we consider the usual Laplacian operator instead of the Bessel

operator ∆λ, it is not known if (1.11) holds when the functions take values in a
UMD Banach space (see, for instance, [46, Corollary 2.5.3]). In order to get an
estimate as (1.11), replacing Lp(0,∞) by Lp((0,∞),B), we need to strengthen
the property of the Banach spaces as follows. B must be isomorphic to a closed
subspace of a complex interpolation space [H, X]θ, where 0 < θ < 1, H is a
Hilbert space, and X is a UMD Banach space. When B satisfies this property
for some θ ∈ (0, 1), we write B ∈ Iθ(H,UMD). The class

⋃
θ∈(0,1) Iθ(H,UMD)

includes all UMD lattices ([42, Corollary on p. 216]) and it also includes the
Schatten ideals Cp, p ∈ (1,∞) (see [14]). It is clear that B is UMD provided that
B ∈

⋃
θ∈(0,1) Iθ(H,UMD).

As far as it is known, it is an open problem whether every UMD Banach space
is in

⋃
θ∈(0,1) Iθ(H,UMD) ([42, Problem 4 on p. 220]). This class of Banach spaces

has been used, for instance, in [23], [36], and [46], and also it plays a central role
in the vector-valued version of Carleson’s theorem recently established in [24].
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Theorem 1.6. Let λ > 0. Suppose that m is a bounded holomorphic function in
Σϑ, for certain ϑ ∈ (0, π), and suppose that the Banach space B is in Iθ(H,UMD),
for some θ ∈ (0, ϑ/π). Then, the spectral multiplier m(∆λ) can be extended to
Lq((0,∞),B) as a bounded operator from Lq((0,∞),B) into itself, for every q ∈
[2/(1 + θ), 2/(1− θ)].

In the following sections, we present proofs for our theorems. Throughout this
paper C and c always denote positive constants, not necessarily the same in each
occurrence.

2. Proof of Theorem 1.1

2.1. First we prove that there exists C > 0 such that∥∥Wλ
ψ,B(f)

∥∥
Lp((0,∞),γ(H,B)) ≤ C‖f‖Lp((0,∞),B), (2.1)

for every f ∈ Lp((0,∞),B).
We choose φ ∈ S(R) such that φ(x2) = x−λψ(x), x ∈ (0,∞) (see [49, p. 85]).

Then, we can write, for each t, x, y ∈ (0,∞),

λτx(ψ(t))(y) =
(xy)λt−λ−1

√
π2λ−1/2Γ(λ)

∫ π

0

ψ
(√(x− y)2 + 2xy(1− cos θ)

t

)
×

(
(x− y)2 + 2xy(1− cos θ)

)−λ/2
(sin θ)2λ−1 dθ

=
(xy)λt−2λ−1

√
π2λ−1/2Γ(λ)

∫ π

0

(sin θ)2λ−1φ
((x− y)2 + 2xy(1− cos θ)

t2

)
dθ.

We define the function Φ as follows:

Φ(x) =
1√

π2λ+1/2Γ(λ)

∫ ∞

0

uλ−1φ(x2 + u) du, x ∈ R.

It is not hard to see that Φ ∈ S(R). Hence, since Φ̂(0) = 0 (see [5, (17)]), Φ
satisfies conditions (C1) and (C2) in [28, p. 111] [(i) and (ii) in Theorem A].

We consider the operator

WΦ,B(f)(t, x) = (Φt ∗ f)(x), f ∈ Lp(R,B), t ∈ (0,∞), and x ∈ R.

According to [28, Theorem 4.2] (Theorem B), we have that, for every f ∈
S(R)⊗ B, ∥∥WΦ,B(f)

∥∥
Lp(R,γ(H,B)) ≤ C‖f‖Lp(R,B). (2.2)

We are going too see that the inequality (2.2) holds for every f ∈ Lp(R,B). Let
f ∈ Lp(R,B). We choose a sequence (fn)n∈N ⊂ S(R) ⊗ B such that fn → f , as
n→ ∞, in Lp(R,B). According to (2.2), by defining

W̃Φ,B(f) = lim
n→∞

WΦ,B(fn),

where the limit is understood in Lp(R, γ(H,B)), we have that∥∥W̃Φ,B(f)
∥∥
Lp(R,γ(H,B)) ≤ C‖f‖Lp(R,B).
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Also, there exists an increasing sequence (nk)k∈N ⊂ N and a subset Ω of R such
that

W̃Φ,B(f)(x) = lim
k→∞

WΦ,B(fnk
)(·, x), x ∈ Ω,

where the limit is understood in γ(H,B), and |R \ Ω| = 0.
For every ε > 0,

WΦ,B(fn)(·, x) → WΦ,B(f)(·, x), as n→ ∞, in L2
(
(ε,∞), dt/t,B

)
,

uniformly in x ∈ R. Indeed, let ε > 0. By using Minkowski’s inequality we get(∫ ∞

ε

∥∥WΦ,B(fn)(t, x)−WΦ,B(f)(t, x)
∥∥2

B
dt

t

)1/2

≤
∫
R

∥∥fn(y)− f(y)
∥∥
B

(∫ ∞

ε

1

t3

∣∣∣Φ( |x− y|
t

)∣∣∣2 dt)1/2

dy

≤ C

∫
R

∥∥fn(y)− f(y)
∥∥
B

(∫ ∞

ε

1

(t+ |x− y|)3
dt
)1/2

dy

≤ C

∫
R

‖fn(y)− f(y)‖B
ε+ |x− y|

dy ≤ C‖fn − f‖Lp(R,B)

(∫
R

dy

(ε+ |y|)p′
)1/p′

≤ Cε−1/p‖fn − f‖Lp(R,B), n ∈ N and x ∈ R,

where p′ is the conjugated exponent of p, that is, p′ = p/(p− 1).
Let S ∈ B∗. Since γ(H,B) is continuously contained in the space L(H,B) of

linear bounded operators from H into B, for every x ∈ Ω and h ∈ L2((0,∞), dt/t)
with supp(h) ⊂ (0,∞), we have that〈

S,
[
W̃Φ,B(f)(x)

]
(h)

〉
B∗,B = lim

k→∞

〈
S,

[
WΦ,B(fnk

)(·, x)
]
(h)

〉
B∗,B

= lim
k→∞

∫ ∞

0

〈
S,WΦ,B(fnk

)(t, x)
〉
B∗,Bh(t)

dt

t

=

∫ ∞

0

〈
S,WΦ,B(f)(t, x)

〉
B∗,Bh(t)

dt

t
.

Hence, for every x ∈ Ω, 〈S,WΦ,B(f)(·, x)〉B∗,B ∈ L2((0,∞), dt/t) and〈
S,

[
W̃Φ,B(f)(x)

]
(h)

〉
B∗,B =

∫ ∞

0

〈
S,WΦ,B(f)(t, x)

〉
B∗,Bh(t)

dt

t
, h ∈ H.

We conclude that W̃Φ,B(f)(x) = WΦ,B(f)(·, x), x ∈ Ω, as elements of γ(H,B).
Hence, (2.2) holds for every f ∈ Lp(R,B).

Suppose now that f ∈ Lp((0,∞),B). By defining the function fo as the odd
extension of f to R, we have that

WΦ,B(fo)(t, x) =
1

t

∫ +∞

−∞
Φ
(x− y

t

)
fo(y) dy

= −1

t

∫ ∞

0

Φ
(x+ y

t

)
f(y) dy +

1

t

∫ ∞

0

Φ
(x− y

t

)
f(y) dy

= L1
Φ,B(f)(t, x) + L2

Φ,B(f)(t, x), x ∈ R and t ∈ (0,∞).
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Since B is UMD, by [50, Theorem 4.3], we can write, for each x ∈ (0,∞),

∥∥L1
Φ,B(f)(·, x)

∥∥
γ(H,B) = sup

(
E
∥∥∥ k∑
j=1

γj

∫ ∞

0

L1
Φ,B(f)(t, x)hj(t)

dt

t

∥∥∥2

B

)1/2

,

where the supremum is taken over all the finite family {hj}kj=1 of orthonormal

elements of H. Let x ∈ (0,∞). Assume that {hj}kj=1 is a set of orthonormal
functions in H. We have that

k∑
j=1

γj

∫ ∞

0

L1
Φ,B(f)(t, x)hj(t)

dt

t

=
k∑
j=1

γj

∫ ∞

0

1

t

∫ ∞

0

Φ
(x+ y

t

)
f(y) dyhj(t)

dt

t

=

∫ ∞

0

f(y)
k∑
j=1

γj

∫ ∞

0

1

t
Φ
(x+ y

t

)
hj(t)

dt

t
dy.

The interchange of the order of integration is justified because∫ ∞

0

∥∥f(y)∥∥B

∫ ∞

0

∣∣∣1
t
Φ
(x+ y

t

)
hj(t)

∣∣∣dt
t
dy

≤
∫ ∞

0

∥∥f(y)∥∥B

(∫ ∞

0

1

t3

∣∣∣Φ(x+ y

t

)∣∣∣) dt)1/2 dy
≤ C

∫ ∞

0

‖f(y)‖B
x+ y

dy ≤ ‖f‖Lp((0,∞),B)

(∫ ∞

0

dy

(x+ y)p′
dy

)1/p′

<∞,

where p′ = p/(p− 1).
Then, we obtain, by using Minkowski’s inequality,(

E
∥∥∥ k∑
j=1

γj

∫ ∞

0

L1
Φ,B(f)(t, x)hj(t)

dt

t

∥∥∥2

B

)1/2

=
(
E
∥∥∥∫ ∞

0

f(y)
k∑
j=1

γj

∫ ∞

0

1

t
Φ
(x+ y

t

)
hj(t)

dt

t
dy

∥∥∥2

B

)1/2

≤
(
E
(∫ ∞

0

∥∥f(y)∥∥B

∣∣∣ k∑
j=1

γj

∫ ∞

0

1

t
Φ
(x+ y

t

)
hj(t)

dt

t

∣∣∣dy)2)1/2

≤
∫ ∞

0

∥∥f(y)∥∥B

(
E
∣∣∣ k∑
j=1

γj

∫ ∞

0

1

t
Φ
(x+ y

t

)
hj(t)

dt

t

∣∣∣2)1/2

dy

≤
∫ ∞

0

∥∥f(y)∥∥B

(∫ ∞

0

1

t3

∣∣∣Φ(x+ y

t

)∣∣∣2 dt)1/2

dy.

In the last inequality, we have taken into account that γ(H,C) = H.



352 J. J. BETANCOR, A. J. CASTRO, and L. RODRÍGUEZ-MESA

Hence, it follows that∥∥L1
Φ,B(f)(·, x)

∥∥
γ(H,B) ≤ C

∥∥f(y)∥∥B

(∫ ∞

0

1

t3

∣∣∣Φ(x+ y

t

)∣∣∣2 dt)1/2

dy

≤ C

∫ ∞

0

‖f(y)‖B
x+ y

dy ≤ C
(
H0

(
‖f‖B

)
(x) +H∞

(
‖f‖B

)
(x)

)
,

where H0 and H∞ denote the Hardy operators defined by

H0(g)(z) =
1

z

∫ z

0

g(y) dy, z ∈ (0,∞),

and

H∞(g)(z) =

∫ ∞

z

g(y)

y
dy, z ∈ (0,∞).

Since H0 and H∞ are bounded operators from Lp(0,∞) into itself (see [20, p. 244,
(9.9.1) and (9.9.2)]), L1

Φ,B is a bounded operator from Lp((0,∞),B) into the space
Lp((0,∞), γ(H,B)).

Inequality (2.1) will be proved once we establish that∥∥[Wλ
ψ,B − L2

Φ,B](f)
∥∥
Lp((0,∞),γ(H,B)) ≤ C‖f‖Lp((0,∞),B), f ∈ Lp

(
(0,∞),B

)
. (2.3)

In order to do this, we study the function

Kλ(t, x, y) = λτx(ψ(t))(y)− Φt(x− y), t, x, y ∈ (0,∞).

First we write

λτx(ψ(t))(y) = Hλ,1(t, x, y) +Hλ,2(t, x, y), t, x, y ∈ (0,∞),

where, for every t, x, y ∈ (0,∞),

Hλ,1(t, x, y) =
(xy)λt−2λ−1

√
π2λ−1/2Γ(λ)

∫ π/2

0

(sin θ)2λ−1φ
((x− y)2 + 2xy(1− cos θ)

t2

)
dθ.

We have that, for every x, y ∈ (0,∞),∥∥Hλ,2(·, x, y)
∥∥
H

≤ C(xy)λ

×
(∫ ∞

0

t−4λ−3
(∫ π

π/2

(sin θ)2λ−1
∣∣∣φ((x− y)2 + 2xy(1− cos θ)

t2

)∣∣∣ dθ)2

dt
)1/2

≤ C(xy)λ



1
|x−y|2λ+1 (

∫∞
0
u−4λ−3(

∫ π
π/2

(sin θ)2λ−1

× |φ( (x−y)
2+2xy(1−cos θ)
(x−y)2u2 )| dθ)2 du)1/2, y /∈ (x

2
, 2x),

1
(xy)λ+1/2 (

∫∞
0
u−4λ−3(

∫ π
π/2

(sin θ)2λ−1

× |φ( (x−y)
2+2xy(1−cos θ)
xyu2

)| dθ)2 du)1/2, y ∈ (x
2
, 2x).
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Then, since φ ∈ S(R), it follows that∥∥Hλ,2(·, x, y)
∥∥
H
≤ C

(xy)λ

|x− y|2λ+1

(∫ ∞

1

u−4λ−3 du+

∫ 1

0

du
)1/2

≤ C

{
1
x
, 0 < y < x/2,

1
y
, y > 2x > 0,

(2.4)

and ∥∥Hλ,2(·, x, y)
∥∥
H
≤ C

1

(xy)1/2

(∫ ∞

1

u−4λ−3 du+

∫ 1

0

du
)1/2

≤ C

x
, y ∈

(x
2
, 2x

)
. (2.5)

By proceeding in a similar way we can see that

∥∥Hλ,1(·, x, y)
∥∥
H
≤ C

{
1
x
, 0 < y < x

2
,

1
y
, y > 2x > 0,

(2.6)

and also that∥∥Φt(x− y)
∥∥
H
≤ C

|x− y|
≤ C

{
1
x
, 0 < y < x/2,

1
y
, y > 2x,

x ∈ (0,∞). (2.7)

Suppose now that x ∈ (0,∞) and that x/2 < y < 2x. We split the difference
Hλ,1(t, x, y)− Φt(x− y), t ∈ (0,∞), as follows:

Hλ,1(t, x, y)− Φt(x− y)

=
(xy)λt−2λ−1

√
π2λ−1/2Γ(λ)

∫ π/2

0

[
(sin θ)2λ−1 − θ2λ−1

]
φ
((x− y)2 + 2xy(1− cos θ)

t2

)
dθ

+
(xy)λt−2λ−1

√
π2λ−1/2Γ(λ)

×
∫ π/2

0

θ2λ−1
[
φ
((x− y)2 + 2xy(1− cos θ)

t2

)
− φ

((x− y)2 + xyθ2

t2

)]
dθ

+
(xy)λt−2λ−1

√
π2λ−1/2Γ(λ)

∫ π/2

0

θ2λ−1φ
((x− y)2 + xyθ2

t2

)
dθ − Φt(x− y)

= Hλ,1,1(t, x, y) +Hλ,1,2(t, x, y) +Hλ,1,3(t, x, y), t, x, y ∈ (0,∞).

By using the mean-value theorem, we get∥∥Hλ,1,1(·, x, y)
∥∥
H

≤ C(xy)λ
{∫ ∞

0

(∫ π/2

0

θ2λ+1
∣∣∣φ((x− y)2 + 2xy(1− cos θ)

t2

)∣∣∣ dθ)2 dt

t4λ+3

}1/2

≤ C

(xy)1/2

{∫ ∞

0

(∫ π/2

0

θ2λ+1
∣∣∣φ((x− y)2 + 2xy(1− cos θ)

u2xy

)∣∣∣ dθ)2 du

u4λ+3

}1/2
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≤ C

(xy)1/2

{∫ ∞

1

du

u4λ+3

+

∫ 1

0

(∫ π/2

0

θ2λ+1
( u2xy

(x− y)2 + xyθ2

)λ+3/4

dθ
)2 du

u4λ+3

}1/2

≤ C

x
,

and∥∥Hλ,1,2(·, x, y)
∥∥
H

≤ C

(xy)1/2

{∫ ∞

0

(∫ π/2

0

θ2λ−1
∣∣∣∫ θ2/2

1−cos θ

φ′
((x− y)2 + 2xyz

u2xy

)
dz

∣∣∣ dθ)2 du

u4λ+7

}1/2

≤ C

(xy)1/2

{∫ ∞

1

du

u4λ+7

+

∫ 1

0

(∫ π/2

0

θ2λ−1

∫ θ2/2

1−cos θ

( u2xy

(x− y)2 + 2xyz

)λ+7/4

dz dθ
)2 du

u4λ+7

}1/2

≤ C

(xy)1/2

{
1 +

∫ 1

0

(∫ π/2

0

θ2λ−1
∣∣∣∫ θ2/2

1−cos θ

dz

zλ+7/4

∣∣∣ dθ)2

du
}1/2

≤ C

x
.

On the other hand, a suitable change of variables allows us to write

Hλ,1,3(t, x, y) =
(xy)λt−2λ−1

√
π2λ−1/2Γ(λ)

∫ π/2

0

θ2λ−1φ
((x− y)2 + xyθ2

t2

)
dθ

− 1

t
√
π2λ+1/2Γ(λ)

∫ ∞

0

uλ−1φ
((x− y

t

)2

+ u
)
du

= − (xy)λt−2λ−1

√
π2λ−1/2Γ(λ)

∫ ∞

π/2

θ2λ−1φ
((x− y)2 + xyθ2

t2

)
dθ, t > 0.

Hence, we deduce that∥∥Hλ,1,3(·, x, y)
∥∥
H

≤ C

(xy)1/2

{∫ ∞

0

(∫ ∞

π/2

θ2λ−1
∣∣∣φ((x− y)2 + xyθ2

xyu2

)∣∣∣ dθ)2 du

u4λ+3

}1/2

≤ C

(xy)1/2

{∫ ∞

1

(∫ ∞

π/2

θ2λ−1
( xyu2

(x− y)2 + xyθ2

)λ+1/4

dθ
)2 du

u4λ+3

+

∫ 1

0

(∫ ∞

π/2

θ2λ−1
( xyu2

(x− y)2 + xyθ2

)λ+3/4

dθ
)2 du

u4λ+3

}1/2

≤ C

x
.

By putting together the above estimates we obtain∥∥Hλ,1(·, x, y)− Φt(x− y)
∥∥
H
≤ C

x
, 0 <

x

2
< y < 2x. (2.8)
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From (2.4)–(2.8) we deduce that∥∥Kλ(·, x, y)
∥∥
H
≤ C

max{x, y}
, x, y ∈ (0,∞). (2.9)

By proceeding as in the case of L1
Φ,B, since γ(H,C) = H, we infer from (2.9) that

the operator Wλ
ψ,B−L2

Φ,B is bounded from Lp((0,∞),B) into Lp((0,∞), γ(H,B)).
Thus, (2.3) is established.

2.2. Our next objective is to show that there exists C > 0 such that

‖f‖Lp((0,∞),B) ≤ C
∥∥Wλ

ψ,B(f)
∥∥
Lp((0,∞),γ(H,B)), (2.10)

for every f ∈ Lp((0,∞),B). It is enough to see (2.10) for every f ∈ Sλ(0,∞)⊗ B.
Indeed, suppose that (2.10) is true for every f ∈ Sλ(0,∞)⊗B. Let f ∈ Lp((0,∞),
B). We choose a sequence (fn)n∈N ⊂ Sλ(0,∞)⊗ B such that fn → f , as n→ ∞,
in Lp((0,∞),B). Then, by (2.10)

‖fn‖Lp((0,∞),B) ≤ C
∥∥Wλ

ψ,B(fn)
∥∥
Lp((0,∞),γ(H,B)), n ∈ N. (2.11)

Since, as it was proved in Section 2.1, Wλ
ψ,B is a bounded operator from Lp((0,∞),

B) into Lp((0,∞), γ(H,B)), by letting n→ ∞ in (2.11) we conclude that

‖f‖Lp((0,∞),B) ≤ C
∥∥Wλ

ψ,B(f)
∥∥
Lp((0,∞),γ(H,B)).

The following result was established in [5, after Lemma 2.4].

Lemma 2.1. Let λ > 0. If ψ ∈ Sλ(0,∞) is not identically zero, then there exists
φ ∈ Sλ(0,∞) such that∫ ∞

0

hλ(ψ)(y)hλ(φ)(y)y
−2λ−1 dy = 1, (2.12)

where the last integral is absolutely convergent.

In order to see (2.10), we need to show the next result.

Lemma 2.2. Let λ > 0. Suppose that ψ, φ ∈ Sλ(0,∞) satisfy (2.12), with the
integral absolutely convergent. If f, g ∈ Sλ(0,∞), then∫ ∞

0

f(x)g(x) dx =

∫ ∞

0

∫ ∞

0

(f#λψ(t))(y)(g#λφ(t))(y)
dy dt

t
. (2.13)

Proof. Let f, g ∈ Sλ(0,∞). Note first that the integral in the right-hand side of
(2.13) is absolutely convergent. Indeed, according to (2.1), we get∫ ∞

0

∫ ∞

0

∣∣(f#λψ(t))(y)
∣∣∣∣(g#λφ(t))(y)

∣∣dy dt
t

≤
∥∥Wλ

ψ,C(f)
∥∥
Lp((0,∞),H)

∥∥Wλ
φ,C(g)

∥∥
Lp′ ((0,∞),H)

≤ C‖f‖Lp(0,∞)‖g‖Lp′ (0,∞).
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Plancherel equality and the interchange formula for Hankel transforms (1.4)
lead to∫ ∞

0

(f#λψ(t))(y)(g#λφ(t))(y) dy

=

∫ ∞

0

hλ(f#λψ(t))(y)hλ(g#λφ(t))(y) dy

=

∫ ∞

0

hλ(f)(y)hλ(g)(y)(ty)
−2λhλ(ψ)(ty)hλ(φ)(ty) dy, t ∈ (0,∞).

Hence, it follows that∫ ∞

0

∫ ∞

0

(f#λψ(t))(y)(g#λφ(t))(y)
dy dt

t

=

∫ ∞

0

∫ ∞

0

hλ(f)(y)hλ(g)(y)(ty)
−2λhλ(ψ)(ty)hλ(φ)(ty)

dy dt

t

=

∫ ∞

0

hλ(f)(y)hλ(g)(y)

∫ ∞

0

hλ(ψ)(ty)hλ(φ)(ty)(ty)
−2λdt dy

t

=

∫ ∞

0

hλ(f)(y)hλ(g)(y) dy

=

∫ ∞

0

f(x)g(x) dx. �

An immediate consequence of Lemma 2.2 is the following.

Lemma 2.3. Let B be a Banach space and λ > 0. Suppose that ψ, φ ∈ Sλ(0,∞)
satisfy (2.12), with the integral absolutely convergent. If f ∈ Sλ(0,∞) ⊗ B and
g ∈ Sλ(0,∞)⊗ B∗, then∫ ∞

0

〈
g(x), f(x)

〉
B∗,B dx =

∫ ∞

0

∫ ∞

0

〈
(g#λφ(t))(x), (f#λψ(t))(x)

〉
B∗,B

dx dt

t
.

Let f ∈ Sλ(0,∞)⊗B. Since Sλ(0,∞)⊗B∗ is dense in Lp
′
((0,∞),B∗), according

to [17, Lemma 2.3], we have

‖f‖Lp((0,∞),B) = sup
g∈Sλ(0,∞)⊗B∗

‖g‖
Lp′ ((0,∞),B∗)≤1

∣∣∣∫ ∞

0

〈
g(x), f(x)

〉
B∗,B dx

∣∣∣.
By Lemma 2.1, we choose ψ, φ ∈ Sλ(0,∞) such that (2.12) holds, with the integral
absolutely convergent. Since B∗ is UMD, it was proved in Section 2.1 that the op-
erator Wλ

φ,B∗ is bounded from Lp
′
((0,∞),B∗) into Lp

′
((0,∞), γ(H,B∗)). Accord-

ing to Lemma 2.3 and [26, Proposition 2.2], we get, for every g ∈ Sλ(0,∞)⊗ B∗,∣∣∣∫ ∞

0

〈
g(x), f(x)

〉
B∗,B dx

∣∣∣ = ∣∣∣∫ ∞

0

∫ ∞

0

〈
(g#λφ(t))(x), (f#λψ(t))(x)

〉
B∗,B

dx dt

t

∣∣∣
≤

∫ ∞

0

∫ ∞

0

∣∣〈(g#λφ(t))(x), (f#λψ(t))(x)
〉
B∗,B

∣∣dx dt
t
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≤
∫ ∞

0

∥∥Wλ
φ,B∗(g)(·, x)

∥∥
γ(H,B∗)

∥∥Wλ
ψ,B(f)(·, x)

∥∥
γ(H,B) dx

≤
∥∥Wλ

φ,B∗(g)
∥∥
Lp′ ((0,∞),γ(H,B∗))

∥∥Wλ
ψ,B(f)

∥∥
Lp((0,∞),γ(H,B))

≤ C‖g‖Lp′ ((0,∞),B∗)

∥∥Wλ
ψ,B(f)

∥∥
Lp((0,∞),γ(H,B)).

Hence,

‖f‖Lp((0,∞),B) ≤ C
∥∥Wλ

ψ,B(f)
∥∥
Lp((0,∞),γ(H,B)).

Thus, the proof of Theorem 1.1 is finished.

3. Proof of Theorem 1.2

3.1. In this section we prove that∥∥Gλ,β
P,B(f)

∥∥
Lp((0,∞),γ(H,B)) ≤ C‖f‖Lp((0,∞),B), f ∈ Lp

(
(0,∞),B

)
, (3.1)

for some C > 0 independent of f .
We define the g-operator associated with the classical Poisson semigroup on R

as

Gβ
P,B(f)(t, x) = tβ∂βt Pt(f)(x), x ∈ R and t ∈ (0,∞)

for every f ∈ Lp(R,B).
By [4, Proposition 1] there exists C > 0 such that∥∥Gβ

P,B(f)
∥∥
Lp(R,γ(H,B)) ≤ C‖f‖Lp(R,B), f ∈ S(R)⊗ B.

The arguments developed in the proof of Theorem 1.1 allow us to show that∥∥Gβ
P,B(f)

∥∥
Lp(R,γ(H,B)) ≤ ‖f‖Lp(R,B), f ∈ Lp(R,B). (3.2)

In [4, Lemma 1] it was established that

tβ∂βt Pt(z) =
(m+1)/2∑
k=0

ck
t
ϕk

(z
t

)
, z ∈ R and t ∈ (0,∞),

wherem ∈ N is such thatm−1 ≤ β < m, and, for every k ∈ N, 0 ≤ k ≤ (m+1)/2,
ck ∈ C and

ϕk(z) =

∫ ∞

0

(1 + v)m+1−2kvm−β−1

((1 + v)2 + z2)m−k+1
dv, z ∈ R.

By proceeding as in the proof of [4, Lemma 1], we can obtain the analogous
identity in the Bessel setting:

tβ∂βt P
λ
t (x, y) =

(m+1)/2∑
k=0

bλk
t2λ+1

(xy)λ

×
∫ π

0

(sin θ)2λ−1ϕλ,k
(√(x− y)2 + 2xy(1− cos θ)

t

)
dθ, (3.3)
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wherem ∈ N is such thatm−1 ≤ β < m, and, for every k ∈ N, 0 ≤ k ≤ (m+1)/2,

ϕλ,k(z) =

∫ ∞

0

(1 + v)m+1−2kvm−β−1

((1 + v)2 + z2)λ+m−k+1
dv, z ∈ (0,∞),

and

bλk =
2λ(λ+ 1) · · · (λ+m− k)

(m− k)!
ck.

Let k ∈ N, 0 ≤ k ≤ (m+ 1)/2. We define, for every f ∈ Lp(R,B),

Pk(f)(t, x) =
∫
R
ϕkt (x− y)f(y) dy, t ∈ (0,∞) and x ∈ R.

Let f ∈ Lp((0,∞),B). If fo denotes the odd extension of f to R, we write

Pk(fo)(t, x) =
∫ ∞

0

ϕkt (x− y)f(y) dy −
∫ ∞

0

ϕkt (x+ y)f(y) dy

= Pk,1(f)(t, x)− Pk,2(f)(t, x), t, x ∈ (0,∞).

We have that, for every x, y ∈ (0,∞),∥∥ϕkt (x+ y)
∥∥
H
≤

∫ ∞

0

(1 + v)m+1−2kvm−β−1

×
(∫ ∞

0

1

t3
t4(m−k+1)

((1 + v2)t2 + (x+ y)2)2(m−k+1)
dt
)1/2

dv

≤ C

x+ y
. (3.4)

Since γ(H,C) = H, we deduce that∥∥Pk,2(f)(·, x)∥∥γ(H,B) ≤ ∫ ∞

0

∥∥f(y)∥∥B

∥∥∥1
t
ϕk

(x+ y

t

)∥∥∥
H
dt

≤ C

∫ ∞

0

‖f(y)‖B
x+ y

dy

≤ C
[
H0

(
‖f‖B

)
(x) +H∞

(
‖f‖B

)
(x)

]
, x ∈ (0,∞).

Thus, according to [20, p. 244, (9.9.1) and (9.9.2)], Pk,2 is a bounded operator
from Lp((0,∞),B) into Lp((0,∞), γ(H,B)).

We define, for every f ∈ Lp((0,∞),B),

Gβ,−
P,B(f)(t, x) =

∫ ∞

0

tβ∂βt Pt(x+ y)f(y) dy, t, x ∈ (0,∞).

Since Gβ,−
P,B =

∑(m+1)/2
k=0 ckPk,2, we conclude that Gβ,−

P,B is a bounded operator from
Lp((0,∞),B) into Lp((0,∞), γ(H,B)). Then, according to (3.2), if for every f ∈
Lp((0,∞),B), we define

Gβ,+
P,B(f)(t, x) =

∫ ∞

0

tβ∂βt Pt(x− y)f(y) dy, t, x ∈ (0,∞),

the operator Gβ,+
P,B is also bounded from Lp((0,∞),B) into Lp((0,∞), γ(H,B)).
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In order to prove (3.1), it is enough to show that the difference Gλ,β
P,B −Gβ,+

P,B is
bounded from Lp((0,∞),B) into Lp((0,∞), γ(H,B)).

By proceeding as in (3.4), we get, for every x ∈ (0,∞),

∥∥tβ∂βt Pt(x− y)
∥∥
H
≤ C

|x− y|
≤ C

{
1
x
, 0 < y < x

2
,

1
y
, y > 2x.

(3.5)

We split P λ
t (x, y), t, x, y ∈ (0,∞), as follows:

P λ
t (x, y) =

2λ(xy)λt

π

∫ π/2

0

(sin θ)2λ−1

((x− y)2 + t2 + 2xy(1− cos θ))λ+1
dθ

+
2λ(xy)λt

π

∫ π

π/2

(sin θ)2λ−1

((x− y)2 + t2 + 2xy(1− cos θ))λ+1
dθ

= P λ,1
t (x, y) + P λ,2

t (x, y).

From (3.3) we have∥∥tβ∂βt P λ,2
t (x, y)

∥∥
H
≤ C(xy)λ

∫ π

π/2

(sin θ)2λ−1

×
(m+1)/2∑
k=0

∥∥∥ 1

t2λ+1
ϕλ,k

(√(x− y)2 + 2xy(1− cos θ)

t

)∥∥∥
H
dθ,

and, for every k ∈ N, 0 ≤ k ≤ (m+ 1)/2,∥∥∥ 1

t2λ+1
ϕλ,k

(√(x− y)2 + 2xy(1− cos θ)

t

)∥∥∥
H

≤ C

∫ ∞

0

(1 + v)m+1−2kvm−β−1
(∫ ∞

0

t4(λ+1+m−k)−4λ−3

((1 + v2)t2 + (x+ y)2)2(λ+m−k+1)
dt
)1/2

dv

≤ C

(x+ y)2λ+1

∫ ∞

0

vm−β−1

(1 + v)m
dv

(∫ ∞

0

u4(m−k)+1

(1 + u)4(λ+m−k+1)
du

)1/2

≤ C

(x+ y)2λ+1
, x, y ∈ (0,∞) and θ ∈

(π
2
, π

)
.

Hence, ∥∥tβ∂βt P λ,2
t (x, y)

∥∥
H
≤ C

(xy)λ

(x+ y)2λ+1

≤ C

x+ y
, x, y ∈ (0,∞). (3.6)

Similar manipulations lead to

∥∥tβ∂βt P λ,1
t (x, y)

∥∥
H
≤ C

|x− y|
≤ C

{
1
x
, 0 < y < x/2,

1
y
, y > 2x > 0.

(3.7)
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We decompose tβ∂βt P
λ,1
t (x, y), t, x, y ∈ (0,∞), as follows:

tβ∂βt P
λ,1
t (x, y)

=

(m+1)/2∑
k=0

bλk
t2λ+1

(xy)λ

×
{∫ π/2

0

[
(sin θ)2λ−1 − θ2λ−1

]
ϕλ,k

(√(x− y)2 + 2xy(1− cos θ)

t

)
dθ

+

∫ π/2

0

θ2λ−1
[
ϕλ,k

(√(x− y)2 + 2xy(1− cos θ)

t

)
− ϕλ,k

(√(x− y)2 + xyθ2

t

)]
dθ

−
∫ ∞

π/2

θ2λ−1ϕλ,k
(√(x− y)2 + xyθ2

t

)
dθ

+

∫ ∞

0

θ2λ−1ϕλ,k
(√(x− y)2 + xyθ2

t

)
dθ
}

=

(m+1)/2∑
k=0

bλk
[
Rλ,k

1 (t, x, y) +Rλ,k
2 (t, x, y) +Rλ,k

3 (t, x, y) +Rλ,k
4 (t, x, y)

]
.

Let k ∈ N, 0 ≤ k ≤ (m+1)/2. By using the mean-value theorem we obtain, when
0 < x/2 < y < 2x,∥∥Rλ,k

1 (·, x, y)
∥∥
H

≤ C(xy)λ
∫ π/2

0

θ2λ+1

∫ ∞

0

(1 + v)m+1−2kvm−β−1

×
(∫ ∞

0

t4(λ+1+m−k)−4λ−3

((1 + v)2t2 + (x− y)2 + xyθ2)2(λ+m−k+1)
dt
)1/2

dv dθ

≤ C(xy)λ
∫ π/2

0

θ2λ+1

((x− y)2 + xyθ2)λ+1/2
dθ ≤ C

x
, (3.8)

and∥∥Rλ,k
2 (·, x, y)

∥∥
H

≤ C(xy)λ
∫ π/2

0

θ2λ−1

∫ ∞

0

(1 + v)m+1−2kvm−β−1

×
{∫ ∞

0

t4(m−k)+1
∣∣∣ 1

((1 + v)2t2 + (x− y)2 + 2xy(1− cos θ))λ+m−k+1

− 1

((1 + v)2t2 + (x− y)2 + xyθ2)λ+m−k+1

∣∣∣2 dt}1/2

dv dθ

≤ C(xy)λ
∫ π/2

0

θ2λ−1

∫ ∞

0

(1 + v)m+1−2kvm−β−1
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×
{∫ ∞

0

t4(m−k)+1
( xyθ4

((1 + v)2t2 + (x− y)2 + xyθ2)λ+m−k+2

)2

dt
}1/2

dv dθ

≤ C(xy)λ+1

∫ π/2

0

θ2λ+3

((x− y)2 + xyθ2)λ+3/2
dθ ≤ C

x
, 0 <

x

2
< y < 2x. (3.9)

We have also that, when 0 < x/2 < y < 2x,∥∥Rλ,k
3 (·, x, y)

∥∥
H

≤ C(xy)λ
∫ ∞

π/2

θ2λ−1

∫ ∞

0

(1 + v)m+1−2kvm−β−1

×
(∫ ∞

0

t4(m−k)+1

((1 + v)2t2 + (x− y)2 + xyθ2)2(λ+m−k+1)
dt
)1/2

dv dθ

≤ C(xy)λ
∫ ∞

π/2

θ2λ−1

((x− y)2 + xyθ2)λ+1/2
dθ ≤ C

x
. (3.10)

Finally, we get that∫ ∞

0

θ2λ−1ϕλ,k
(√(x− y)2 + xyθ2

t

)
dθ

=

∫ ∞

0

θ2λ−1

∫ ∞

0

(1 + v)m+1−2kvm−β−1

((1 + v)2 + [(x− y)2 + xyθ2]/t2)λ+m−k+1
dv dθ

= t2(λ+m−k+1)

∫ ∞

0

(1 + v)m+1−2kvm−β−1

×
∫ ∞

0

θ2λ−1

((1 + v)2t2 + (x− y)2 + xyθ2)λ+m−k+1
dθ dv

=
t2(λ+m−k+1)

(xy)λ

∫ ∞

0

(1 + v)m+1−2kvm−β−1

((1 + v)2t2 + (x− y)2)m−k+1
dv

∫ ∞

0

u2λ−1

(1 + u2)λ+m−k+1
du

=
(m− k)!

2λ(λ+ 1) · · · (λ+m− k)

t2λ

(xy)λ
ϕk

(x− y

t

)
.

Then
(m+1)/2∑
k=0

bλkR
λ,k
4 (t, x, y) = tβ∂βt Pt(x− y), t, x, y ∈ (0,∞). (3.11)

By putting together (3.5)–(3.11) we conclude that Gλ,β
P,B −Gβ,+

P,B is bounded from

Lp((0,∞),B) into Lp((0,∞), γ(H,B)), and henceGλ,β
P,B is a bounded operator from

Lp((0,∞),B) into Lp((0,∞), γ(H,B)).

3.2. We are going to show that there exists C > 0 such that, for every f ∈
Lp((0,∞),B),

‖f‖Lp((0,∞),B) ≤ C
∥∥Gλ,β

P,B(f)
∥∥
Lp((0,∞),γ(H,B)). (3.12)

Since Gλ,β
P,B is bounded from Lp((0,∞),B) into Lp((0,∞), γ(H,B)) and Sλ(0,∞)⊗

B is a dense subspace of Lp((0,∞),B), (3.12) holds for every f ∈ Lp((0,∞),B)
whenever it is true for every f ∈ Sλ(0,∞)⊗ B.
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By proceeding as in Section 2.2, the inequality in (3.12) can be proved as a

consequence of a polarization identity involving the operator Gλ,β
P,B. To show this

equality, we first need to establish the following.

Lemma 3.1. Let λ, β > 0. Then, for every f ∈ Sλ(0,∞),

hλ(t
β∂βt P

λ
t f)(x) = eiπβ(tx)βe−xthλ(f)(x), t, x ∈ (0,∞).

Proof. Let f ∈ Sλ(0,∞). We have that (see [15, Section 8.5 (19)])

hλ(P
λ
t f)(x) = e−xthλ(f)(x), t, x ∈ (0,∞).

We choose m ∈ N such that m− 1 ≤ β < m. It is not hard to see that ∂βt e
−xt =

eiπβxβe−xt, t, x ∈ (0,∞). Then

∂βt hλ(P
λ
t f)(x) = eiπβxβe−xthλ(f)(x), t, x ∈ (0,∞).

According to [16, (4.6)], we can write, for every t, x, y ∈ (0,∞) and θ ∈ (0, π),

∂mt

[ t

[(x− y)2 + 2xy(1− cos θ) + t2]λ+1

]
= − 1

2λ
∂m+1
t

[ 1

[(x− y)2 + 2xy(1− cos θ) + t2]λ

]
=

1

2

(m+1)/2∑
k=0

(−1)m−kEm+1,kt
m+1−2k (λ+ 1)(λ+ 2) · · · (λ+m− k)

[(x− y)2 + 2xy(1− cos θ) + t2]λ+m−k+1
,

where

Em+1,k =
2m+1−2k(m+ 1)!

k!(m+ 1− 2k)!
, 0 ≤ k ≤ m+ 1

2
.

Hence, ∂mt [t/[(x − y)2 + 2xy(1 − cos θ) + t2]λ+1] is continuous in (t, x, y, θ) ∈
(0,∞)3 × (0, π). Moreover, for each t, x, y ∈ (0,∞) and θ ∈ (0, π),∣∣∣∂mt [ t

[(x− y)2 + 2xy(1− cos θ) + t2]λ+1

]∣∣∣ ≤ C

[(x− y)2 + t2]λ+(m+1)/2
.

Then∣∣∂mt P λ
t+s(f)(x)

∣∣ ≤ C

∫ ∞

0

∣∣f(y)∣∣ (xy)λ

[(x− y)2 + (t+ s)2]λ+(m+1)/2
dy, t, x ∈ (0,∞),

and ∂βt P
λ
t (f) ∈ L1(0,∞), t > 0. Since the function

√
zJν(z) is bounded on (0,∞)

when ν > −1/2, the derivation under the integral sign is justified and we get

hλ(∂
β
t P

λ
t f)(x) = ∂βt hλ

(
P λ
t (f)

)
(x) = eiπβxβe−xthλ(f)(x), t, x ∈ (0,∞). �

Lemma 3.2. Let B be a UMD Banach space and λ, β > 0. If f ∈ Sλ(0,∞)⊗ B
and g ∈ Sλ(0,∞)⊗ B∗, then∫ ∞

0

〈
g(x), f(x)

〉
B∗,B dx

=
ei2πβ22β

Γ(2β)

∫ ∞

0

∫ ∞

0

〈
tβ∂βt P

λ
t (g)(x), t

β∂βt P
λ
t (f)(x)

〉
B∗,B

dt dx

t
. (3.13)
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Proof. It is enough to show (3.13) when f, g ∈ Sλ(0,∞) and B = C. Let f, g ∈
Sλ(0,∞).

Since C is a UMD Banach space, as it was proved in Section 3.1, the operator
Gλ,β
P,C is bounded from Lp(0,∞) into Lp((0,∞), H), 1 < p <∞. Hence, the integral

in the right-hand side of (3.13) is absolutely convergent.
As hλ is an isometry in L2(0,∞) (see [48, p. 214 and Theorem 129]), Lemma 3.1

implies that tβ∂βt P
λ
t (f) ∈ L2(0,∞) and tβ∂βt P

λ
t (g) ∈ L2(0,∞) for every t > 0.

The Plancherel equality for Hankel transforms and Lemma 3.1 lead to∫ ∞

0

∫ ∞

0

tβ∂βt P
λ
t (f)(x)t

β∂βt P
λ
t (g)(x)

dt dx

t

=

∫ ∞

0

∫ ∞

0

tβ∂βt P
λ
t (f)(x)t

β∂βt P
λ
t (g)(x)

dx dt

t

= ei2πβ
∫ ∞

0

∫ ∞

0

(tx)2βe−2xthλ(f)(x)hλ(g)(x)
dx dt

t

= ei2πβ
∫ ∞

0

hλ(f)(x)hλ(g)(x)

∫ ∞

0

(tx)2βe−2xtdt dx

t

= ei2πβ
Γ(2β)

2−2β

∫ ∞

0

hλ(f)(x)hλ(g)(x) dx

= ei2πβ
Γ(2β)

2−2β

∫ ∞

0

f(x)g(x) dx. �

By using now Lemma 3.2, the arguments developed in Section 2.2 allow us to
show that (3.12) holds, for every f ∈ Lp((0,∞),B).

Thus, the proof of Theorem 1.2 is completed.

4. Proof of Theorem 1.3

The Riesz transform Rλ associated with the Bessel operator ∆λ is the principal
value integral operator defined, for every f ∈ Lp(0,∞), by

Rλ(f)(x) = lim
ε→0+

∫ ∞

0,|x−y|>ε
Rλ(x, y)f(y) dy, a.e. x ∈ (0,∞),

where

Rλ(x, y) =

∫ ∞

0

DλP
λ
t (x, y) dt, x, y ∈ (0,∞), x 6= y,

and Dλ = xλ d
dx
x−λ. Main properties of Riesz transform Rλ can be encountered

in [2]. We denote by R∗
λ the “adjoint” operator of Rλ defined, for every f ∈

Lp(0,∞), by

R∗
λ(f)(x) = lim

ε→0+

∫ ∞

0,|x−y|>ε
Rλ(y, x)f(y) dy, a.e. x ∈ (0,∞).

Riesz transforms Rλ and R∗
λ are bounded from Lp(0,∞) into itself. Moreover,

since B is a UMD Banach space, by defining Rλ and R∗
λ on Lp(0,∞)⊗ B in the

natural way, Rλ and R∗
λ can be extended to Lp((0,∞),B) as bounded operators

on Lp((0,∞),B) into itself (see [7, Theorem 2.1]).
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We define, for every f ∈ Lp(0,∞), the function Qλ
t (f) by

Qλ
t (f)(x) =

∫ ∞

0

Qλ
t (x, y)f(y) dy, t, x ∈ (0,∞),

where

Qλ
t (x, y) =

2λ(xy)λ

π

∫ π

0

(x− y cos θ)(sin θ)2λ−1

(x2 + y2 + t2 − 2xy cos θ)λ+1
dθ, t, x, y ∈ (0,∞).

The following Cauchy–Riemann equations hold:

DλP
λ
t (f) = ∂tQλ

t (f), D∗
λQλ

t (f) = ∂tP
λ
t (f), t > 0.

These relations motivate that Qλ
t (f) is called ∆λ-conjugated to the Poisson inte-

gral P λ
t (f).

The adjoint ∆λ-conjugated Qλ
t (f) of f ∈ Lp(0,∞) is defined by

Qλ
t (f)(x) =

∫ ∞

0

Qλ
t (y, x)f(y) dy, t, x ∈ (0,∞).

We have that

D∗
λP

λ+1
t (f) = ∂tQλ

t (f), DλQλ
t (f) = ∂tP

λ+1
t (f), t > 0.

By using the Hankel transform (see [39, (16.5)]) we can see that, for every f ∈
Sλ(0,∞),

P λ
t (R

∗
λf) = Qλ

t (f), t > 0.

Then, for every f ∈ Sλ(0,∞),

∂tP
λ
t (R

∗
λf) = D∗

λP
λ+1
t (f), t > 0. (4.1)

Equality (4.1) also holds for every f ∈ Sλ(0,∞)⊗ B. Then

GλP,B(f) = Gλ,1
P,B(R

∗
λf), f ∈ Sλ(0,∞)⊗ B. (4.2)

Since R∗
λ can be extended to Lp((0,∞),B) boundedly from Lp((0,∞),B) into

itself, Theorem 1.2 implies that the operator GλP,B can be extended from Sλ(0,∞)⊗
B as a bounded operator from Lp((0,∞),B) into Lp((0,∞), γ(H,B)). We denote

this extension by G̃λP,B.
We define

GλP,B(t, x, y) = tD∗
λP

λ+1
t (x, y), t, x, y ∈ (0,∞).

We have that, for each t, x, y ∈ (0,∞),

GλP,B(t, x, y)

= −2(λ+ 1)

π
t2yλ+1x−λ∂x

(
x2λ+1

∫ π

0

(sin θ)2λ+1

[(x− y)2 + t2 + 2xy(1− cos θ)]λ+2
dθ
)

= −2(λ+ 1)(2λ+ 1)

π
t2xλyλ+1

∫ π

0

(sin θ)2λ+1

[(x− y)2 + t2 + 2xy(1− cos θ)]λ+2
dθ

+
4(λ+ 1)(λ+ 2)

π
t2(xy)λ+1

∫ π

0

[(x− y) + y(1− cos θ)](sin θ)2λ+1

[(x− y)2 + t2 + 2xy(1− cos θ)]λ+3
dθ.
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Then∣∣GλP,B(t, x, y)∣∣
≤ C

√
t
{
xλyλ+1

(∫ π/2

0

+

∫ π

π/2

) (sin θ)2λ+1

[(x− y)2 + t2 + 2xy(1− cos θ)]λ+5/4
dθ

+ (xy)λ+1
(∫ π/2

0

+

∫ π

π/2

) (sin θ)2λ+1

[(x− y)2 + t2 + 2xy(1− cos θ)]λ+7/4
dθ
}

= Gλ,1,1P,B (t, x, y) + Gλ,1,2P,B (t, x, y) + Gλ,2,1P,B (t, x, y) + Gλ,2,2P,B (t, x, y), t, x, y > 0.

Let ε > 0. Since, for every x, y ∈ (0,∞) and θ ∈ (0, π/2),(∫ ∞

ε

dt

[(x− y)2 + t2 + 2xy(1− cos θ)]2λ+5/2

)1/2

≤ C

(|x− y|+ ε+
√
xyθ)2λ+2

,

and(∫ ∞

ε

dt

[(x− y)2 + t2 + 2xy(1− cos θ)]2λ+7/2

)1/2

≤ C

(|x− y|+ ε+
√
xyθ)2λ+3

,

we obtain ∥∥Gλ,1,1P,B (·, x, y)
∥∥
L2((ε,∞),dt/t)

+
∥∥Gλ,2,1P,B (·, x, y)

∥∥
L2((ε,∞),dt/t)

≤ C
(
xλyλ+1

∫ π/2

0

θ2λ+1

(|x− y|+ ε+
√
xyθ)2λ+2

dθ

+ (xy)λ+1

∫ π/2

0

θ2λ+1

(|x− y|+ ε+
√
xyθ)2λ+3

dθ
)

≤ C
( y

(|x− y|+ ε)2
+

xy

(|x− y|+ ε)3

)

≤ C


1/(x+ ε), 0 < y < x/2,

y/ε2 + y2/ε3, x/2 < y < 2x,

1/(y + ε), y > 2x > 0.

Analogously,∥∥Gλ,1,2P,B (·, x, y)
∥∥
L2((ε,∞),dt/t)

+
∥∥Gλ,2,2P,B (·, x, y)

∥∥
L2((ε,∞),dt/t)

≤ C
(
xλyλ+1

∫ π

π/2

(sin θ)2λ+1

(x+ y + ε)2λ+2
dθ + (xy)λ+1

∫ π

π/2

(sin θ)2λ+1

(x+ y + ε)2λ+3
dθ
)

≤ C

x+ y + ε
, x, y ∈ (0,∞).

Hence, for every x ∈ (0,∞), ‖GλP,B(·, x, y)‖L2((ε,∞),dt/t) ∈ Lp
′
(0,∞).

By proceeding now as in Section 2.1, we conclude that

GλP,B(f) = G̃λP,B(f), f ∈ Lp
(
(0,∞),B

)
,

and the proof of Theorem 1.3 is completed.
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5. Proof of Theorem 1.4

5.1. Proof of (i) ⇒ (ii) and (i) ⇒ (iii). In Theorems 1.2 and 1.3 it was proved
that if B is a UMD Banach space, then (1.6), (1.7), and (1.8) are satisfied, for
every 1 < p <∞.

5.2. Proof of (ii) ⇒ (i). Let 1 < p < ∞. Suppose that (1.6) and (1.7) hold.
Let f ∈ Sλ(0,∞) ⊗ B. Since R∗

λ is bounded from Lp(0,∞) into itself (see [2,
Theorem 4.2]), R∗

λf ∈ Lp(0,∞)⊗ B. According to (4.2), we obtain

‖R∗
λf‖Lp((0,∞),B) ≤ C

∥∥Gλ,1
P,B(R

∗
λf)

∥∥
Lp((0,∞),γ(H,B)) = C

∥∥GλP,B(f)∥∥Lp((0,∞),γ(H,B))

≤ C‖f‖Lp((0,∞),B).

Since Sλ(0,∞)⊗B is dense in Lp((0,∞),B), R∗
λ can be extended to Lp((0,∞),B)

as a bounded operator from Lp((0,∞),B) into itself. By using [7, Theorem 2.1],
we deduce that B is UMD.

5.3. Proof of (iii) ⇒ (i). Assume now that (1.8) holds. In order to show that
B is UMD, we prove first a characterization of UMD Banach spaces involving
Lp-boundedness properties of the imaginary powers ∆iω

λ , ω ∈ R \ {0}, of the
Bessel operator ∆λ.

Let ω ∈ R \ {0}. The iω-power ∆iω
λ of ∆λ is the Hankel multiplier defined by

∆iω
λ f = hλ

(
y2iωhλ(f)

)
, f ∈ L2(0,∞). (5.1)

Since hλ is an isometry in L2(0,∞), the operator ∆iω
λ is bounded from L2(0,∞)

into itself. Moreover,

y2iω = y2
∫ ∞

0

e−y
2u u−iω

Γ(1− iω)
du, y ∈ (0,∞),

and hence ∆iω
λ is a Hankel multiplier of Laplace transform type. This type of

Hankel multiplier was studied in [3] and [9]. Proceeding as in [3, Theorem 1.2],
for every f ∈ C∞

c (0,∞), we have

∆iω
λ f(x) = lim

ε→0+

(
α(ε)f(x)−

∫ ∞

0,|x−y|>ε
Kλ
ω(x, y)f(y) dy

)
, a.e. x ∈ (0,∞), (5.2)

where

Kλ
ω(x, y) =

∫ ∞

0

t−iω

Γ(1− iω)
∂tW

λ
t (x, y) dt, x, y ∈ (0,∞), x 6= y,

and W λ
t (x, y) is the Bessel heat kernel

W λ
t (x, y) =

1√
2t

(xy
2t

)1/2

Iλ−1/2

(xy
2t

)
e−(x2+y2)/4t, t, x, y ∈ (0,∞).

Here α denotes a bounded function on (0,∞) and Iν is the modified Bessel func-
tion of the first kind and order ν. By [9, Theorem 1.2], ∆iω

λ f can be extended
to Lp(0,∞) as a bounded operator from Lp(0,∞) into itself. Moreover, as in
[3, Theorem 1.4], we can see that this extension, that we will continue denoting
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by ∆iω
λ , is given by the limit in (5.2) for every f ∈ Lp(0,∞). The operator ∆iω

λ is
defined on Lp(0,∞)⊗ B in the usual way.

The following result is a Bessel version from [18].

Proposition 5.1 ([18, Theorem, p. 402]). Let X be a Banach space and let λ > 0.
Then X is UMD if and only if, for some (equivalently, for every) 1 < q <∞, the
operator ∆iω

λ , ω ∈ R \ {0}, can be extended from Lq(0,∞)⊗X to Lq((0,∞), X)
as a bounded operator from Lq((0,∞), X) into itself.

Proof. According to [18, Theorem, p. 402], X is UMD if and only if, for every
ω ∈ R \ {0} and for some (equivalently, for every) 1 < q < ∞, the iω-power

(− d2

dx2
)iω of the operator − d2

dx2
can be extended from Lq(R)⊗X to Lq(R, X) as a

bounded operator from Lq(R, X) into itself.
We recall that (see [6, Appendix] for a proof) for every f ∈ Lq(R), 1 < q <∞,

and ω ∈ R \ {0},(
− d2

dx2

)iω
f(x) = lim

ε→0+

(
α(ε)f(x)−

∫
|x−y|>ε

Kω(x, y)f(y) dy
)
, a.e. x ∈ R,

where

Kω(x, y) = −
∫ ∞

0

t−iω

Γ(1− iω)
∂tWt(x− y) dt, x, y ∈ R, x 6= y,

and Wt(z) denotes the classical heat kernel (1.2). Here α represents the same

function that appears in (5.2). The operator (− d2

dx2
)iω, ω ∈ R \ {0}, is defined on

Lq(R)⊗X, 1 < q <∞, in the natural way.
Let ω ∈ R\{0}. We are going to obtain some estimates for the kernels Kλ

ω(x, y)
and Kω(x, y), x, y ∈ (0,∞), that will allow us to get our characterization of the
UMD spaces by using imaginary powers of Bessel operators.

Note first that, for every x, y ∈ (0,∞),∣∣Kω(x,−y)
∣∣ ≤ C

∫ ∞

0

∣∣∂tWt(x+ y)
∣∣ dt ≤ C

∫ ∞

0

e−c(x+y)
2/t

t3/2
dt ≤ C

x+ y
. (5.3)

In a similar way we obtain, for every x ∈ (0,∞),∣∣Kω(x, y)
∣∣ ≤ C

{
1/x, 0 < y < x/2,

1/y, y > 2x.
(5.4)

Let Iν , ν > −1, be the modified Bessel function of the first kind and order ν,
which is given by

Iν(z) =
∞∑
k=0

zν+2k

2ν+2kΓ(k + 1)Γ(k + ν + 1)
, z ∈ (0,∞).

The main properties of Iν can be found in [33, Section 5.7]. According to [33, pp.
108 and 123], if ν > −1, then we have

Iν(z) ∼
zν

2νΓ(ν + 1)
, as z → 0+, (5.5)
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and

√
zIν(z) =

ez√
2π

( n∑
r=0

(−1)r[ν, r]

(2z)r
+O

( 1

zn+1

))
, (5.6)

where [ν, 0] = 1 and

[ν, r] =
(4ν2 − 1)(4ν2 − 32) · · · (4ν2 − (2r − 1)2)

22rΓ(r + 1)
, r = 1, 2, . . .

Since (see [33, p. 110])

d

dz

(
z−νIν(z)

)
= z−νIν+1(z), z ∈ (0,∞), ν > −1, (5.7)

it follows that, for every t, x, y ∈ (0,∞),

∂t
[
W λ
t (x, y)−Wt(x− y)

]
= ∂t

[
Wt(x− y)

{√
2π

(xy
2t

)ν+1/2(xy
2t

)−ν
Iν

(xy
2t

)
e−xy/2t − 1

}]
= ∂tWt(x− y)

{√
2π

(xy
2t

)1/2

Iν

(xy
2t

)
e−xy/2t − 1

}
−

√
2πWt(x− y)

{
(ν + 1/2)

(xy
2t

)ν−1/2 xy

2t2

(xy
2t

)−ν
Iν

(xy
2t

)
+
(xy
2t

)ν+1/2 xy

2t2

(xy
2t

)−ν
Iν+1

(xy
2t

)
− xy

2t2

(xy
2t

)1/2

Iν

(xy
2t

)}
e−xy/2t

= ∂tWt(x− y)
{√

2π
(xy
2t

)1/2

Iν

(xy
2t

)
e−xy/2t − 1

}
−

√
2πWt(x− y)

xy

2t2
e−xy/2t

×
{
(ν + 1/2)

2t

xy

(xy
2t

)1/2

Iν

(xy
2t

)
+
(xy
2t

)1/2

Iν+1

(xy
2t

)
−

(xy
2t

)1/2

Iν

(xy
2t

)}
,

with ν = λ− 1/2.
From (5.5), we deduce that

∣∣∂t[W λ
t (x, y)−Wt(x− y)

]∣∣ ≤ C
e−c(x−y)

2/t

t3/2
,

for every t, x, y ∈ (0,∞) and xy ≤ 2t, (5.8)

and by using (5.6), that

∣∣∂t[W λ
t (x, y)−Wt(x− y)

]∣∣ ≤ C
e−c(x−y)

2/t

t1/2xy
,

for every t, x, y ∈ (0,∞) and xy ≥ 2t. (5.9)
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Combining (5.8) and (5.9), we obtain∣∣Kω(x, y)−Kλ
ω(x, y)

∣∣ ≤ C

∫ ∞

0

∣∣∂t[W λ
t (x, y)−Wt(x− y)

]∣∣ dt
≤ C

(∫ xy/2

0

e−c(x−y)
2/t

t1/2xy
dt+

∫ ∞

xy/2

e−c(x
2+y2)/t

t3/2
dt
)

≤ C

(xy)1/2
≤ C

x
, x/2 < y < 2x, x ∈ (0,∞). (5.10)

Moreover, (5.8) and (5.9) imply that, for each x ∈ (0,∞),∣∣Kλ
ω(x, y)

∣∣ ≤ C

∫ ∞

0

e−c(x−y)
2/t

t3/2
dt ≤ C

|x− y|

≤ C

{
1/x, 0 < y < x/2,

1/y, y > 2x.
(5.11)

Suppose that X is UMD and 1 < q < ∞. Let f ∈ Lq(0,∞) ⊗X. We define the

function f̃ by

f̃(x) =

{
0, x ≤ 0,

f(x), x > 0.

Thus, f̃ ∈ Lq(R)⊗X. We have that(
− d2

dx2

)iω
f̃(x) = lim

ε→0+

(
f(x)α(ε)−

∫ ∞

0,|x−y|>ε
Kω(x, y)f(y) dy

)
, a.e. x ∈ (0,∞),

and

∆iω
λ f(x) = lim

ε→0+

(
f(x)α(ε)−

∫ ∞

0,|x−y|>ε
Kλ
ω(x, y)f(y) dy

)
, a.e. x ∈ (0,∞).

Then, (5.4), (5.10), and (5.11) lead to∥∥∥(− d2

dx2

)iω
f̃(x)−∆iω

λ f(x)
∥∥∥
X

≤ lim
ε→0+

∫ ∞

0,|x−y|>ε

∣∣Kω(x, y)−Kλ
ω(x, y)

∣∣∥∥f(y)∥∥
X
dy

≤ C
[
H0

(
‖f‖X

)
(x) +H∞

(
‖f‖X

)
(x)

]
, a.e. x ∈ (0,∞).

Hence, according to [20, p. 244, (9.9.1) and (9.9.2)], there exists C > 0 such that∥∥∥(− d2

dx2

)iω
f̃ −∆iω

λ f
∥∥∥
Lq((0,∞),X)

≤ C‖f‖Lq((0,∞),X), f ∈ Lq(0,∞)⊗X.

Moreover, by [18, Theorem, p. 402], we also have∥∥∥(− d2

dx2

)iω
f̃
∥∥∥
Lq((0,∞),X)

≤ C‖f‖Lq((0,∞),X), f ∈ Lq(0,∞)⊗X.

We conclude that

‖∆iω
λ f‖Lq((0,∞),X) ≤ C‖f‖Lq((0,∞),X), f ∈ Lq(0,∞)⊗X.
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Suppose now that ∆iω
λ can be extended from Lq(0,∞) ⊗ X to Lq((0,∞), X)

as a bounded operator from Lq((0,∞), X) into itself. According to [18, Theorem,
p. 402], in order to see that X is UMD, it is sufficient to see that, for a certain
C > 0, ∥∥∥(− d2

dx2

)iω
f
∥∥∥
Lq(R,X)

≤ C‖f‖Lq(R,X), f ∈ Lq(R)⊗X.

Let f ∈ Lp(R)⊗X. By defining

f+(x) = f(x), and f−(x) = f(−x), x ∈ (0,∞),

we have that(
− d2

dx2

)iω
f(x)

= lim
ε→0+

(
f+(x)α(ε)−

∫ ∞

0,|x−y|>ε
Kω(x, y)f+(y) dy −

∫ 0

−∞
Kω(x, y)f(y) dy

)
= lim

ε→0+

(
f+(x)α(ε)−

∫ ∞

0,|x−y|>ε
Kω(x, y)f+(y) dy

)
−

∫ ∞

0

Kω(x,−y)f−(y) dy a.e. x ∈ (0,∞),

and(
− d2

dx2

)iω
f(x)

= lim
ε→0+

(
f(x)α(ε)−

∫ 0

−∞,|x−y|>ε
Kω(x, y)f(y) dy −

∫ ∞

0

Kω(x, y)f(y) dy
)

= lim
ε→0+

(
f−(−x)α(ε)−

∫ ∞

0,|x+y|>ε
Kω(x,−y)f(−y) dy −

∫ ∞

0

Kω(x, y)f(y) dy
)

= lim
ε→0+

(
f−(−x)α(ε)−

∫ ∞

0,|x+y|>ε
Kω(x,−y)f−(y) dy

)
−

∫ ∞

0

Kω(x, y)f+(y) dy, a.e. x ∈ (−∞, 0).

We consider the operators

Tω,1(g)(x) = lim
ε→0+

(
g(x)α(ε)−

∫ ∞

0,|x−y|>ε
Kω(x, y)g(y) dy

)
, x ∈ (0,∞),

and

Tω,2(g)(x) =

∫ ∞

0

Kω(x,−y)g(y) dy, x ∈ (0,∞),

for every g ∈ Lq(0,∞)⊗X.
We can write∥∥∥(− d2

dx2

)iω
f
∥∥∥q
Lq(R,X)

=
∥∥Tω,1(f+)∥∥qLq((0,∞),X)

+
∥∥Tω,2(f−)∥∥qLq((0,∞),X)

+
∥∥Tω,1(f−)∥∥qLq((0,∞),X)

+
∥∥Tω,2(f+)∥∥qLq((0,∞),X)

. (5.12)
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According to (5.3), we get, for every g ∈ Lq(0,∞)⊗X,∥∥Tω,2(g)(x)∥∥X ≤ C

∫ ∞

0

‖g(y)‖X
x+ y

dy

≤ C
[
H0

(
‖g‖X

)
(x) +H∞

(
‖g‖X

)
(x)

]
, x > 0.

Also, by combining (5.4), (5.10), and (5.11), we obtain, for each g ∈ Lq(0,∞)⊗X,∥∥Tω,1(g)(x)−∆iω
λ (g)(x)

∥∥
X
≤ C

[
H0

(
‖g‖X

)
(x) +H∞

(
‖g‖X

)
(x)

]
, x ∈ (0,∞).

Then, by [20, p. 244, (9.9.1) and (9.9.2)] it follows that, for every g ∈ Lq(0,∞)⊗X,∥∥Tω,2(g)∥∥Lq((0,∞),X)
+
∥∥Tω,1(g)−∆iω

λ (g)
∥∥
Lq((0,∞),X)

≤ C‖g‖Lq((0,∞),X). (5.13)

Since ∆iω
λ can be extended from Lq(0,∞) ⊗ X to Lq((0,∞), X) as a bounded

operator from Lq((0,∞), X) into itself, (5.12) and (5.13) imply that∥∥∥(− d2

dx2

)iω
f
∥∥∥
Lq(R,X)

≤ C
(
‖f+‖Lq((0,∞),X) + ‖f−‖Lq((0,∞),X)

)
≤ C‖f‖Lq(R,X),

for every f ∈ Lq(R)⊗X. �

Let β > 0 and f ∈ Sλ(0,∞). According to Theorem 1.2, there exists a set
Ω ⊂ (0,∞), such that |(0,∞) \ Ω| = 0 and for every x ∈ Ω, the functions

Gλ,β
P,C(∆

iω
λ f)(·, x) and G

λ,β+1
P,C (f)(·, x) are in H. Let x ∈ Ω. We denote by A1 and

A2 the linear bounded operators from H into C defined by

A1(h) =

∫ ∞

0

Gλ,β
P,C(∆

iω
λ f)(t, x)h(t)

dt

t
, h ∈ H,

and

A2(h) =

∫ ∞

0

Gλ,β+1
P,C (f)(t, x)h(t)

dt

t
, h ∈ H.

We also define, for every h ∈ H,

Tω,β(h)(t) =
1

tβ

∫ t

0

(t− s)β−1h(t− s)φω(s) ds, t ∈ (0,∞),

where φω(s) = s−2iω/Γ(1 − 2iω), s ∈ (0,∞). Thus, Tω,β is a linear bounded
operator from H into itself. Indeed, Jensen’s inequality leads to∥∥Tω,β(h)∥∥H ≤

(∫ ∞

0

1

t2β+1

(∫ t

0

∣∣h(t− s)(t− s)β−1φω(s)
∣∣ ds)2

dt
)1/2

≤ C
(∫ ∞

0

1

t

(∫ t

0

∣∣h(u)∣∣uβ−1 du

tβ

)2

dt
)1/2

≤ C
(∫ ∞

0

1

tβ+1

∫ t

0

∣∣h(u)∣∣2uβ−1 du dt
)1/2

≤ C‖h‖H , h ∈ H.

We now show that

A1(h) = −A2(Tω,βh), h ∈ H. (5.14)
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Indeed, let h ∈ H. Since Tω,βh ∈ H, we can write

A2(Tω,βh) =

∫ ∞

0

Gλ,β+1
P,C (f)(t, x)(Tω,βh)(t)

dt

t

=

∫ ∞

0

tβ+1∂β+1
t P λ

t (f)(x)(Tω,βh)(t)
dt

t
.

By Lemma 3.1 we have that

∂β+1
t P λ

t (f)(x) = eiπ(β+1)hλ
(
yβ+1e−ythλ(f)(y)

)
(x), t, x ∈ (0,∞). (5.15)

Interchanging the order of integration twice, we get

A2(Tω,βh)

= eiπ(β+1)

∫ ∞

0

tβhλ
(
yβ+1e−ythλ(f)(y)

)
(x)(Tω,βh)(t) dt

= eiπ(β+1)hλ

(
hλ(f)(y)y

β+1

∫ ∞

0

e−yttβ(Tω,βh)(t) dt
)
(x)

= eiπ(β+1)hλ

(
hλ(f)(y)y

β+1

∫ ∞

0

e−yt
∫ t

0

(t− s)β−1h(t− s)φω(s) ds dt
)
(x)

= eiπ(β+1)hλ

(
yβ+2iωhλ(f)(y)

∫ ∞

0

e−yuuβ−1h(u) du
)
(x)

= eiπ(β+1)

∫ ∞

0

hλ
[
yβ+2iωhλ(f)(y)e

−yuuβ
]
(x)h(u)

du

u

= −
∫ ∞

0

hλ
[
uβeiπβyβ+2iωe−yuhλ(f)(y)

]
(x)h(u)

du

u

= −
∫ ∞

0

uβ∂βuP
λ
u

[
hλ

(
y2iωhλ(f)(y)

)]
(x)h(u)

du

u

= −A1(h), h ∈ H,

and (5.14) is established. Note that the interchanges in the order of integration
are justified because the function

√
zJλ−1/2(z) is bounded on (0,∞) and hλ(f) ∈

Sλ(0,∞).
From (5.14) we deduce that, for every f ∈ Sλ(0,∞)⊗ B,

Gλ,β
P,B(∆

iω
λ f)(·, x) = −Gλ,β+1

P,B (f)(·, x) ◦ Tω,β, a.e. x ∈ (0,∞),

as elements of L(H,B), the space of linear bounded operators from H into B.
Let f ∈ Sλ(0,∞)⊗ B. Since ∆iω

λ f ∈ Lp(0,∞)⊗ B, (1.8) implies that

Gλ,β
P,B(∆

iω
λ f)(·, x) = −Gλ,β+1

P,B (f)(·, x) ◦ Tω,β, a.e. x ∈ (0,∞), (5.16)

as elements of γ(H,B). Moreover, according to the ideal property for γ-radonifying
operators [50, Theorem 6.2], we get∥∥Gλ,β+1

P,B (f)(·, x) ◦ Tω,β
∥∥
γ(H,B) ≤ ‖Tω,β‖L(H,H)

∥∥Gλ,β+1
P,B (f)(·, x)

∥∥
γ(H,B),

for a.e. x ∈ (0,∞).
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Then, (1.8) and (5.16) lead to∥∥∆iω
λ (f)

∥∥
Lp((0,∞),B) ≤ C

∥∥Gλ,β
P,B(∆

iω
λ f)

∥∥
Lp((0,∞),γ(H,B))

= C
∥∥Gλ,β+1

P,B (f) ◦ Tω,β
∥∥
Lp((0,∞),γ(H,B))

≤ C
∥∥Gλ,β+1

P,B (f)
∥∥
Lp((0,∞),γ(H,B))

≤ C‖f‖Lp((0,∞),B).

Hence, ∆iω
λ can be extended from Lp(0,∞) ⊗ B to Lp((0,∞),B) as a bounded

operator from Lp((0,∞),B) into itself. By Proposition 5.1 we conclude that B is
UMD, and the proof of Theorem 1.4 is complete.

6. Proof of Theorem 1.5

The Bessel operator ∆λ is positive in L2(0,∞). Then the square root
√
∆λ of

∆λ is defined by √
∆λf = hλ

(
yhλ(f)

)
, f ∈ D(

√
∆λ),

where, since hλ is an isometry in L2(0,∞), the domain D(
√
∆λ) of

√
∆λ is the

following set:

D(
√
∆λ) =

{
f ∈ L2(0,∞) : yhλ(f) ∈ L2(0,∞)

}
.

The Poisson semigroup {P λ
t }t>0 is the one generated by the operator −

√
∆λ.

We define M(y) = m(y2), y ∈ (0,∞). It is clear that the
√
∆λ-multiplier associ-

ated with M coincides with the ∆λ-multiplier defined by m. Since the function
M satisfies the conditions specified in [37, Theorem 1], from the proof of [37,
Theorem 1] we deduce that, for every n ∈ N, and f ∈ Sλ(0,∞),

tn+1∂n+1
t P λ

t

(
M(

√
∆λ)f

)
(x)

=
1

2π

∫
R
Mn(t, u)t∂tP

λ
t/2(∆

iu/2
λ f)(x) du, t, x > 0, (6.1)

where

Mn(t, u) =

∫ ∞

0

y−iu−1Mn(t, y) dy, u ∈ R and t ∈ (0,∞),

and

Mn(t, y) = (ty)ne−ty/2M(y), t, y ∈ (0,∞).

We also have that, for every n ∈ N and f ∈ Sλ(0,∞)⊗ B,

tn+1∂n+1
t P λ

t

(
M(

√
∆λ)f

)
(x) =

1

2π

∫
R
Mn(t, u)t∂tP

λ
t/2(∆

iu/2
λ f)(x) du, t, x > 0.

Moreover, according to [37, Theorem 1], M(
√
∆λ)f ∈ Lp(0,∞) ⊗ B, f ∈

Sλ(0,∞)⊗ B.
Let n ∈ N. We define, for every u ∈ R, the operator

Ln,u(h)(t) = Mn(t, u)h(t), t ∈ (0,∞).



374 J. J. BETANCOR, A. J. CASTRO, and L. RODRÍGUEZ-MESA

Since

sup
u∈R

t∈(0,∞)

∣∣Mn(t, u)
∣∣ ≤ C‖m‖L∞(0,∞),

the family of operators {Ln,u}u∈R is bounded in L(H,H).
Let f ∈ Sλ(0,∞) ⊗ B. Since hλ is an isometry in L2(0,∞), (5.1) and (5.15)

allow us to write

t∂tP
λ
t/2(∆

iu/2
λ f)(x) = −1

2
hλ

(
tye−ty/2yiuhλ(f)(y)

)
(x),

for every t, x ∈ (0,∞) and u ∈ R.

Then, Minkowski’s inequality leads to(∫ ∞

0

∥∥t∂tP λ
t/2(∆

iu/2
λ f)(x)

∥∥2

B
dt

t

)1/2

≤ C

∫ ∞

0

∥∥hλ(f)(y)∥∥B

(∫ ∞

0

|tye−ty/2|2dt
t

)1/2

dy

≤ C

∫ ∞

0

∥∥hλ(f)(y)∥∥B dy <∞, x ∈ (0,∞) and u ∈ R,

because hλ(f) ∈ Sλ(0,∞) ⊗ B and the function
√
zJν(z) is bounded on (0,∞)

when ν > −1/2. We conclude that

t∂tP
λ
t/2(∆

iu/2
λ f)(x) ∈ γ(H,B), u ∈ R and x ∈ (0,∞).

According to [37, p. 642], we get∫
R

∣∣Mn(t, u)
∣∣∥∥t∂tP λ

t/2(∆
iu/2
λ f)(x)

∥∥
B du ∈ Lp

(
(0,∞), L2

(
(0,∞), dt/t

))
,

and we infer that∫ ∞

0

(∫
R

∣∣Mn(t, u)
∣∣∥∥t∂tP λ

t/2(∆
iu/2
λ f)(x)

∥∥
B du

)2dt

t
<∞, a.e. x ∈ (0,∞).

If h ∈ H, then we have that∫ ∞

0

∫
R
Mn(t, u)t∂tP

λ
t/2(∆

iu/2
λ f)(x)h(t)

du dt

t

=

∫
R

∫ ∞

0

Mn(t, u)t∂tP
λ
t/2(∆

iu/2
λ f)(x)h(t)

dt du

t
, a.e. x ∈ (0,∞).

Hence, if {hj}kj=1 is an orthonormal system in H, we can write(
E
∥∥∥ k∑
j=1

γj

∫ ∞

0

∫
R
Mn(t, u)t∂tP

λ
t/2(∆

iu/2
λ f)(x)hj(t)

du dt

t

∥∥∥2

B

)1/2

=
(
E
∥∥∥∫

R

k∑
j=1

γj

∫ ∞

0

Mn(t, u)t∂tP
λ
t/2(∆

iu/2
λ f)(x)hj(t)

dt du

t

∥∥∥2

B

)1/2
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≤
∫
R

(
E
∥∥∥ k∑
j=1

γj

∫ ∞

0

Mn(t, u)t∂tP
λ
t/2(∆

iu/2
λ f)(x)hj(t)

dt

t

∥∥∥2

B

)1/2

du

≤
∫
R

∥∥Mn(t, u)t∂tP
λ
t/2(∆

iu/2
λ f)(x)

∥∥
γ(H,B) du, a.e. x ∈ (0,∞).

Here {γj}∞j=1 is a sequence of independent Gaussian variables.
We conclude that, for a.e. x ∈ (0,∞),∥∥∥∫

R
Mn(t, u)t∂tP

λ
t/2(∆

iu/2
λ f)(x) du

∥∥∥
γ(H,B)

≤ C

∫
R

∥∥Mn(t, u)t∂tP
λ
t/2(∆

iu/2
λ f)(x)

∥∥
γ(H,B) du. (6.2)

For every u ∈ R we have that

Mn(t, u)t∂tP
λ
t/2(∆

iu/2
λ f)(x) = t∂tP

λ
t/2(∆

iu/2
λ f)(x) ◦ Ln,u, a.e. x ∈ (0,∞),

in the sense of equality in L(H,B). According to [50, Theorem 6.2], we get∥∥Mn(t, u)t∂tP
λ
t/2(∆

iu/2
λ f)(x)

∥∥
γ(H,B)

≤ ‖Ln,u‖L(H,H)

∥∥t∂tP λ
t/2(∆

iu/2
λ f)(x)

∥∥
γ(H,B)

≤ C sup
t>0

∣∣Mn(t, u)
∣∣∥∥t∂tP λ

t/2(∆
iu/2
λ f)(x)

∥∥
γ(H,B), a.e. x ∈ (0,∞). (6.3)

Putting together (6.1), (6.2), and (6.3) and by taking into account Theorem 1.2
and Proposition 5.1, we obtain∥∥m(∆λ)f

∥∥
Lp((0,∞),B)

=
∥∥M(

√
∆λ)f

∥∥
Lp((0,∞),B)

≤ C
∥∥Gλ,n+1

P,B
(
M(

√
∆λ)f

)∥∥
Lp((0,∞),γ(H,B))

≤ C
∥∥∥∫

R
Mn(t, u)t∂tP

λ
t/2(∆

iu/2
λ f)(x) du

∥∥∥
Lp((0,∞),γ(H,B))

≤ C

∫
R
sup
t>0

∣∣Mn(t, u)
∣∣∥∥Gλ,1

P,B(∆
iu/2
λ f)

∥∥
Lp((0,∞),γ(H,B)) du

≤ C

∫
R
sup
t>0

∣∣Mn(t, u)
∣∣‖∆iu/2

λ f‖Lp((0,∞),B) du

≤ C
(∫

R
sup
t>0

∣∣Mn(t, u)
∣∣‖∆iu/2

λ ‖Lp((0,∞),B)→Lp((0,∞),B) du
)
‖f‖Lp((0,∞),B).

Hence, m(∆λ) can be extended from Sλ(0,∞)⊗B to Lp((0,∞),B) as a bounded
operator from Lp((0,∞),B) into itself.
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7. Proof of Theorem 1.6

In order to apply Theorem 1.5, it is necessary to know nice estimations for the
norm

‖∆iω
λ ‖Lp((0,∞),B)→Lp((0,∞),B), ω ∈ R \ {0}.

For this purpose we use a Banach-valued version of [40, Theorem 4.3] concern-
ing to local Calderón–Zygmund operators. By taking in mind [43], the same proof
of [40, Theorem 4.3] also works to show the following result.

Proposition 7.1. Let X be a Banach space. Assume that K : (0,∞)× (0,∞) \
{(x, x) : x ∈ (0,∞)} → R is a differentiable function satisfying that, for certain
M > 0, ∣∣K(x, y)

∣∣ ≤ M

|x− y|
, x, y ∈ (0,∞), x 6= y,

and ∣∣∂xK(x, y)
∣∣+ ∣∣∂yK(x, y)

∣∣ ≤ M

|x− y|2
, 0 <

x

2
< y < 2x, x 6= y.

Suppose that T is a bounded operator from Lq((0,∞), X) into itself, for some
1 < q <∞, such that for every f ∈ Sλ(0,∞)⊗X,

(Tf)(x) =

∫ ∞

0

K(x, y)f(y) dy, a.e. x /∈ supp(f).

Then,

(i) for every 1 < p < ∞, T can be extended to Lp((0,∞), X) as a bounded
operator Tp from Lp((0,∞), X) into itself and, for certain C > 0,

‖Tp‖Lp((0,∞),X)→Lp((0,∞),X) ≤ C
(
M + ‖T‖Lq((0,∞),X)→Lq((0,∞),X)

)
; (7.1)

(ii) T can be extended to L1((0,∞), X) as a bounded operator T1 from
L1((0,∞), X) into L1,∞((0,∞), X) and, for certain C > 0,

‖T1‖L1((0,∞),X)→L1,∞((0,∞),X) ≤ C
(
M + ‖T‖Lq((0,∞),X)→Lq((0,∞),X)

)
. (7.2)

The constant C in (7.1) and (7.2) does not depend on T .

The next result cannot be deduced from [46, Theorem 2.5.1] when 0 < λ < 1
and p > 1 because the semigroup {P λ

t }t>0 is not contractive for 0 < λ < 1.

Proposition 7.2. Let X be a UMD Banach space, λ > 0 and 1 < p <∞. Then
there exists C > 0 such that

‖∆iω
λ ‖Lp((0,∞),X)→Lp((0,∞),X) ≤ Ceπ|ω|, ω ∈ R.

Moreover, if λ ≥ 1 for every ω ∈ R \ {0}, ∆iω
λ can be extended to L1((0,∞), X)

as a bounded operator from L1((0,∞), X) into L1,∞((0,∞), X), and

‖∆iω
λ ‖L1((0,∞),X)→L1,∞((0,∞),X) ≤ Ceπ|ω|,

where C > 0 does not depend on ω.
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Proof. Let ω ∈ R \ {0}. According to Proposition 5.1, the operator ∆iω
λ can be

extended to Lp((0,∞), X) as a bounded operator from Lp((0,∞), X) into itself.
Moreover, by (5.16), for every f ∈ Sλ(0,∞)⊗X, we have

Gλ,1
P,X(∆

iω
λ f)(·, x) = −Gλ,2

P,X(f)(·, x) ◦ Tω, a.e. x ∈ (0,∞),

as elements of γ(H,X), where

Tω(h)(t) =
1

t

∫ t

0

h(t− s)
s−2iω

Γ(1− 2iω)
ds, h ∈ H.

As in the proof of Theorem 1.4, we can see that

‖Tω‖L(H,H) ≤
1

|Γ(1− 2iω)|
≤ eπ|ω|,

and, for every f ∈ Sλ(0,∞)⊗X,

‖∆iω
λ f‖Lp((0,∞),X) ≤ C

∥∥Gλ,1
P,X(∆

iω
λ f)

∥∥
Lp((0,∞),γ(H,X))

≤ Ceπ|ω|
∥∥Gλ,2

P,X(f)
∥∥
Lp((0,∞),γ(H,X))

≤ Ceπ|ω|‖f‖Lp((0,∞),X),

that is,

‖∆iω
λ ‖Lp((0,∞),X)→Lp((0,∞),X) ≤ Ceπ|ω|, (7.3)

where C > 0 does not depend on ω.
We are going to show that ∆iω

λ is an X-valued local Calderón–Zygmund oper-
ator. According to (5.8) and (5.9), we have∣∣∂tW λ

t (x, y)
∣∣ ≤ C

e−c(x−y)
2/t

t3/2
, t, x, y ∈ (0,∞).

Then ∣∣Kλ
ω(x, y)

∣∣ ≤ C

∫ ∞

0

|t−iω|
|Γ(1− iω)|

e−c(x−y)
2/t

t3/2
dt

≤ C
eπ|ω|/2

|x− y|
, x, y ∈ (0,∞), x 6= y. (7.4)

From (7.4) we deduce that, for every f ∈ Sλ(0,∞)⊗X,∫ ∞

0

∣∣Kλ
ω(x, y)

∣∣∣∣f(y)∣∣ dy <∞, x /∈ supp(f).

Hence, for each f ∈ Sλ(0,∞)⊗X, (5.2) implies that

∆iω
λ f(x) =

∫ ∞

0

Kλ
ω(x, y)f(y) dy, a.e. x /∈ supp(f).

We can write

∂x ∂tW
λ
t (x, y) = ∂x ∂t

[
Wt(x− y)

√
2π

(xy
2t

)1/2

Iλ−1/2

(xy
2t

)
e−xy/2t

]
= ∂x ∂t

[
Wt(x− y)

]√
2π

(xy
2t

)1/2

Iλ−1/2

(xy
2t

)
e−xy/2t
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+ ∂x
[
Wt(x− y)

]√
2π∂t

[(xy
2t

)1/2

Iλ−1/2

(xy
2t

)
e−xy/2t

]
+ ∂t

[
Wt(x− y)

]√
2π∂x

[(xy
2t

)1/2

Iλ−1/2

(xy
2t

)
e−xy/2t

]
+Wt(x− y)

√
2π∂x ∂t

[(xy
2t

)1/2

Iλ−1/2

(xy
2t

)
e−xy/2t

]
=

4∑
j=1

Ej(t, x, y), t, x, y ∈ (0,∞).

Applying (5.6) and (5.7), we obtain the following:

(A) ∂t

[(xy
2t

)1/2

Iν

(xy
2t

)
e−xy/2t

]
= − xy

2t2
d

dz

[
zν+1/2z−νIν(z)e

−z]
|z=xy/2t

= − xy

2t2
[
(ν + 1/2)zν−1/2z−νIν(z)e

−z + zν+1/2z−νIν+1(z)e
−z

− zν+1/2z−νIν(z)e
−z]

|z=xy/2t

= − 1√
2π

xy

2t2

[ν + 1/2

z

{
1 +O

(1
z

)}
+ 1− [ν + 1, 1]

2z
+O

( 1

z2

)
− 1

+
[ν, 1]

2z
+O

( 1

z2

)]
|z=xy/2t

=
xy

t2
O
(( t

xy

)2)
, t, x, y ∈ (0,∞);

(B) ∂x

[(xy
2t

)1/2

Iν

(xy
2t

)
e−xy/2t

]
=
y

t
O
(( t

xy

)2)
, t, x, y ∈ (0,∞);

(C) ∂x ∂t

[(xy
2t

)1/2

Iν

(xy
2t

)
e−xy/2t

]
= ∂x

[
− xy

2t2
d

dz

[
zν+1/2z−νIν(z)e

−z]
|z=xy/2t

]
= − y

2t2
d

dz

[
zν+1/2z−νIν(z)e

−z]
|z=xy/2t

− xy2

4t3
d2

dz2
[
zν+1/2z−νIν(z)e

−z]
|z=xy/2t

=
y

t2
O
(( t

xy

)2)
− xy2

4t3
d

dz

[
(ν + 1/2)zν−1/2z−νIν(z)e

−z

+ zν+1/2z−νIν+1(z)e
−z − zν+1/2z−νIν(z)e

−z]
|z=xy/2t

=
y

t2
O
(( t

xy

)2)
− xy2

4t3

[ν2 − 1/4

z2
√
zIν(z)e

−z +
2ν + 2

z

√
zIν+1(z)e

−z

+
√
zIν+2(z)e

−z − 2
√
zIν+1(z)e

−z +
√
zIν(z)e

−z

− 2ν + 1

z

√
zIν(z)e

−z
]
|z=xy/2t
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=
y

t2
O
(( t

xy

)2)
− xy2

4
√
2πt3

[ν2 − 1/4

z2

{
1 +O

(1
z

)}
+

2ν + 2

z

{
1− [ν + 1, 1]

2z
+O

( 1

z2

)}
− 2ν + 1

z

{
1− [ν, 1]

2z
+O

( 1

z2

)}
+
{
1− [ν + 2, 1]

2z
+

[ν + 2, 2]

4z2
+O

( 1

z3

)}
− 2

{
1− [ν + 1, 1]

2z
+

[ν + 1, 2]

4z2
+O

( 1

z3

)}
+
{
1− [ν, 1]

2z
+

[ν, 2]

4z2
+O

( 1

z3

)}]
|z=xy/2t

=
xy2

t3
O
(( t

xy

)3)
, t, x, y ∈ (0,∞).

Here ν = λ− 1/2. Then we deduce the following:

• |E1(t, x, y)| ≤ C e−c(x−y)2/t

t2
, t, x, y ∈ (0,∞),

• |E2(t, x, y)| ≤ C e−c(x−y)2/t

t
xy
t2

t2

(xy)2
, t, x, y ∈ (0,∞),

• |E3(t, x, y)| ≤ C e−c(x−y)2/t

t3/2
y
t

t2

(xy)2
, t, x, y ∈ (0,∞),

and

• |E4(t, x, y)| ≤ C e−c(x−y)2/t

t1/2
xy2

t3
t3

(xy)3
, t, x, y ∈ (0,∞).

We now estimate ∫ xy/2

0

∣∣Ej(t, x, y)∣∣ dt, j = 1, 2, 3, 4.

First, we have that, when x, y ∈ (0,∞), x 6= y,∫ xy/2

0

∣∣E1(t, x, y)∣∣ dt ≤ C

∫ ∞

0

e−c(x−y)
2/t

t2
dt ≤ C

|x− y|2
,

and also∫ xy/2

0

∣∣E2(t, x, y)∣∣ dt ≤ C

∫ xy/2

0

e−c(x−y)
2/t

txy
dt ≤ C

∫ ∞

0

e−c(x−y)
2/t

t2
dt ≤ C

|x− y|2
.

To study E3 and E4, we distinguish two cases:∫ xy/2

0

(∣∣E3(t, x, y)∣∣+ ∣∣E4(t, x, y)∣∣) dt
≤ C

∫ xy/2

0

e−c(x−y)
2/t

√
t

dt

x2y

≤

C
∫ xy/2
0

e−c(x−y)2/t
√
t

1
x2y

(xy
t
)3/2 dt ≤ C

√
y
x

∫ xy/2
0

e−c(x−y)2/t

t2
dt,

C
∫ xy/2
0

e−c(x−y)2/t
√
t

1
x2y

(xy
t
)2 dt ≤ Cy

∫ xy/2
0

e−c(x−y)2/t

t5/2
dt

≤

C
∫∞
0

e−c(x−y)2/t

t2
dt ≤ C

|x−y|2 , y < 2x, x ∈ (0,∞),

Cy
∫∞
0

e−c(x−y)2/t

t5/2
dt ≤ C y

|x−y|3 ≤ C
|x−y|2 , y ≥ 2x, x > 0.
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Hence, we conclude that∫ xy/2

0

∣∣∂x ∂tW λ
t (x, y)

∣∣ dt ≤ C

|x− y|2
, x, y ∈ (0,∞), x 6= y. (7.5)

According to (5.5) and by taking in mind the above calculations, we get∣∣∂x ∂tW λ
t (x, y)

∣∣ ≤ C
e−c(x

2+y2)/t

t2

[(xy
t

)λ
+

y√
t

(xy
t

)λ−1]
≤ C

x2λ−1

tλ+3/2
,

for every t, x, y ∈ (0,∞) such that xy ≤ 2t and x/2 ≤ y ≤ 2x. Then∫ ∞

xy/2

∣∣∂x ∂tW λ
t (x, y)

∣∣ dt ≤ C

∫ ∞

xy/2

x2λ−1

tλ+3/2
dt ≤ C

x2
, 0 <

x

2
≤ y ≤ 2x. (7.6)

From (7.5) and (7.6) we deduce that∣∣∂xKλ
ω(x, y)

∣∣ ≤ C
eπ|ω|/2

|x− y|2
, 0 <

x

2
≤ y ≤ 2x, x 6= y. (7.7)

Since Kλ
ω(x, y) = Kλ

ω(y, x), x, y ∈ (0,∞), we also have that∣∣∂yKλ
ω(x, y)

∣∣ ≤ C
eπ|ω|/2

|x− y|2
, 0 <

x

2
≤ y ≤ 2x, x 6= y. (7.8)

By (7.4), (7.7), and (7.8), Kλ
ω is a local Calderón–Zygmund kernel.

By applying now Proposition 7.1, we obtain that the operator ∆iω
λ can be

extended to L1((0,∞), X) as a bounded operator, that we continue denoting by
∆iw
λ , from L1((0,∞), X) into L1,∞((0,∞), X). Moreover, (7.3), (7.4), (7.7), and

(7.8) lead to

‖∆iω
λ ‖L1((0,∞),X)→L1,∞((0,∞),X) ≤ Ceπ|ω|,

where C > 0 does not depend on ω. �

Proposition 7.3. Let H be a Hilbert space and λ > 0. Then, ‖∆iω
λ ‖L2((0,∞),H) = 1,

for every ω ∈ R \ {0}.

Proof. We consider f ∈ L2(0,∞) ⊗ H, that is, f =
∑n

j=1 ajfj where aj ∈ H
and fj ∈ L2(0,∞). By using the Plancherel equality for Hankel transforms on
L2(0,∞), we can write∫ ∞

0

∥∥hλ(f)(x)∥∥2

H dx =

∫ ∞

0

〈
hλ(f)(x), hλ(f)(x)

〉
H dx

=
n∑

i,j=1

〈ai, aj〉H
∫ ∞

0

hλ(fi)(x)hλ(fj)(x) dx

=
n∑

i,j=1

〈ai, aj〉H
∫ ∞

0

fi(x)fj(x) dx

=

∫ ∞

0

〈
f(x), f(x)

〉
H dx =

∫ ∞

0

∥∥f(x)∥∥2

H dx.
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Hence, hλ can be extended to L2((0,∞),H) boundedly from L2((0,∞),H) into
itself. Since |y2iω| = 1, y ∈ (0,∞) and ω ∈ R \ {0}, by (5.1) we conclude that, for
every ω ∈ R \ {0}, ∆iω

λ is bounded from L2((0,∞),H) into itself and

‖∆iω
λ ‖L2((0,∞),H)→L2((0,∞),H) = 1. �

Let ω ∈ R \ {0} and assume that B = [H, X]θ, where H is a Hilbert space and
X is a UMD space, 0 < θ < ϑ/π. Then, by using the interpolation theorem for
vector-valued Lebesgue spaces [1, Theorem 5.1.2] and Propositions 7.2 and 7.3,
we deduce that ∆iω

λ is a bounded operator from Lp((0,∞),B) into itself, with
p = 2/(1 + θ) and

‖∆iω
λ ‖Lp((0,∞),B)→Lp((0,∞),B)

≤ C‖∆iω
λ ‖1−θL2((0,∞),H)→L2((0,∞),H)‖∆

iω
λ ‖θL1((0,∞),X)→L1,∞((0,∞),X)

≤ Ce2π(1/p−1/2)|ω|.

Here C > 0 does not depend on ω.
Since ∆iω

λ is self-adjoint, by using duality and that [H, X]∗θ = [H∗, X∗]θ (see [23,
p. 1007]), we get

‖∆iω
λ ‖Lp′ ((0,∞),B)→Lp′ ((0,∞),B) ≤ Ce2π(1/p−1/2)|ω|.

Hence, another interpolation leads to

‖∆iω
λ ‖Lq((0,∞),B)→Lq((0,∞),B) ≤ Ce2π(1/p−1/2)|ω|, p ≤ q ≤ p′. (7.9)

Sincem is a bounded holomorphic function in
∑

ϑ, the functionM(y) = m(y2),
y ∈ (0,∞), is bounded and holomorphic in

∑
ϑ/2. The proof now can be finished

by proceeding as in the proof of [37, Theorem 3] and by using (7.9).
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