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Abstract. We study the Schatten-class membership of generalized Volterra
companion integral operators on the standard Fock spaces F2

α. The
Schatten Sp(F2

α) membership of the operators are characterized in terms of

Lp/2-integrability of certain generalized Berezin-type integral transforms on
the complex plane. We also give a more simplified and easy-to-apply descrip-
tion in terms of Lp-integrability of the symbols inducing the operators against
super-exponentially decreasing weights. Asymptotic estimates for the Sp(F2

α)
norms of the operators have also been provided.

1. Introduction and main results

For functions f and g, we consider the Volterra-type integral operator Vg and
its companion Ig defined by

Vgf(z) =

∫ z

0

f(w)g′(w) dw and Igf(z) =

∫ z

0

f ′(w)g(w) dw.

Performing integration by parts in any one of the above integrals gives the relation

Vgf + Igf =Mgf − f(0)g(0),

where Mgf = gf is the multiplication operator induced by g. These integral op-
erators have been studied extensively on various spaces of holomorphic functions
with the aim to explore the connection between their behaviors with the function-
theoretic properties of the symbols g, especially after the works of Pommerenke
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[15] and subsequently by Aleman, Cima, and Siskakis [1]–[3], [16]. Later, in 2008,
S. Li and S. Stević took the study further by introducing the following operators
induced by pairs of holomorphic symbols (g, ψ),

I(g,ψ)f(z) =

∫ z

0

f ′(ψ(w))g(w) dw, C(g,ψ)f(z) =

∫ ψ(z)

0

f ′(w)g(w) dw, (1.1)

V ψ
g f(z) =

∫ z

0

f
(
ψ(w)

)
g′(w) dw, Cψ

g f(z) =

∫ ψ(z)

0

f(w)g′(w) dw, (1.2)

and studied their operator-theoretic properties on some spaces of analytic func-
tions on the unit disk (see, e.g., [8]–[10]). Since then, these classes of generalized
integral operators have constituted an active area of research. In particular, there
has been a growing interest in studying the operators V ψ

g and Cψ
g , partly because

some of their properties are related to the notion of Carleson measures and prop-
erties of Toeplitz operators, which are readily available for several known spaces.
In contrast, the operators I(g,ψ) and C(g,ψ) have drawn little attention, even if they
have found applications in the study of linear isometries of spaces of holomorphic
functions. An interesting example in this arena could be the following: if Dp de-
notes the space of all analytic functions f in the unit disk for which its derivative
f ′ belongs to the Hardy space Hp, then, for p 6= 2, any surjective isometry U of
Dp under the norm ‖f‖Dp = |f(0)|+ ‖f ′‖Hp is of the form

Uf = λf(0) + λI(g,ψ)f

for some unimodular λ in C, a nonconstant inner function ψ, and a function g in
Hp (see [5]).

The bounded and compact Schatten-class properties of the operators in (1.2)
acting on the classical Fock spaces were studied in [12] and [11]. Recently, this
study was pursued further and the bounded and compact properties of the op-
erators in (1.1) were addressed in [13]. In this article, we continue those lines of
research and address the question of Schatten-class membership for this class of
operators. It turns out that such maps belong to the Schatten Sp(F2

α) =: Sp class
if and only if certain Berezin-type integral transforms are Lp/2-integrable on the
complex plane C. After that, an easier and simple-to-apply description is given.
As will be seen later, an immediate consequence of our main results shows that
the operators in (1.2) belong to the Sp class whenever the class of operators in
(1.1) do, while the converse in general fails.

We note that the operators in (1.1) are called the generalized Volterra compan-
ion operators because the particular choice ψ(z) = z reduces both I(g,ψ) and C(g,ψ)

to the Volterra companion operator Ig. Some call them the generalized composi-
tion operators because the choices g = ψ′ and g = 1 reduce the operators I(g,ψ)
and C(g,ψ), respectively, to the composition operator Cψ up to certain constants.

The classical Fock space F2
α consists of all entire functions f for which

‖f‖2 = α

π

∫
C

∣∣f(z)∣∣2e−α|z|2 dm(z) <∞, (1.3)
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where dm denotes the usual Lebesgue area measure on C and α is a positive pa-
rameter. The space F2

α is a reproducing kernel Hilbert space with kernel function
Kw(z) = eα〈z,w〉 and normalized kernel function kw(z) = eα〈z,w〉−α|w|

2/2. Because
of the reproducing property of the kernel and Parseval identity, it holds that

Kw(z) =
∞∑
n=1

〈Kw, en〉en(z) =
∞∑
n=1

en(z)en(w) and

(1.4)

‖Kw‖2 =
∞∑
n=1

∣∣en(w)∣∣2
for any orthonormal basis (en)n∈N of F2

α. These series representations ofKw and its
norm will be used several times in our subsequent considerations. An immediate
consequence of (1.4) is that

∂

∂w
Kw(z) =

∞∑
n=1

en(z)e′n(w) and
∥∥∥ ∂

∂w
Kw

∥∥∥2

=
∞∑
n=1

∣∣e′n(w)∣∣2. (1.5)

We set Qg(z) = |g(z)|e−α
2
|z|2(1+ |z|)−1. Then our first result is expressed in terms

of generalized Berezin-type integral transforms

B(|g|,ψ)(w) =

∫
C

∣∣(|w|+ 1
)
kw

(
ψ(z)

)
Qg(z)

∣∣2 dm(z) and

B(|g(ψ)|,ψ)(w) =

∫
C

∣∣(|w|+ 1
)
kw

(
ψ(z)

)
ψ′(z)Qg(ψ)(z)

∣∣2 dm(z).

Having fixed the notions, we may now state our first main result.

Theorem 1.1. Let 0 < p < ∞ and (g, ψ) be a pair of entire functions on C.
Then the operator

(i) I(g,ψ) : F2
α → F2

α belongs to the Schatten Sp class if and only if B(|g|,ψ)
belongs to Lp/2(C, dm). In this case, we also have the asymptotic norm
estimate

‖I(g,ψ)‖Sp '
(∫

C
B
p/2
(|g|,ψ)(z) dm(z)

)1/p

. (1.6)

(ii) C(g,ψ) : F2
α → F2

α belongs to the Schatten Sp class if and only if B(|g(ψ)|,ψ)
belongs to Lp/2(C, dm). Furthermore, we have

‖C(g,ψ)‖Sp '
(∫

C
B
p/2
(|g(ψ)|,ψ)(z) dm(z)

)1/p

.

Note that notation U(z) . V (z) (or, equivalently, V (z) & U(z)) means that
there is a constant C such that U(z) ≤ CV (z) holds for all z in the set of a
question. We write U(z) ' V (z) if both U(z) . V (z) and V (z) . U(z).

We note that Theorem 1.1 is formulated in terms of a condition that involves
a double integral. In what follows we give a simplified and easy-to-apply descrip-
tion in terms of Lp-integrability of the symbol g against a super-exponentially
decreasing weight.
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Theorem 1.2. Let 0 < p < ∞ and (g, ψ) be a pair of entire functions on C.
Then

(i) I(g,ψ) : F2
α → F2

α belongs to the Schatten Sp class if and only if∫
C

∣∣g(z)∣∣pe pα
2
(|ψ(z)|2−|z|2) dm(z) <∞. (1.7)

(ii) C(g,ψ) : F2
α → F2

α belongs to the Schatten Sp class if and only if∫
C

∣∣g(ψ(z))∣∣pe pα
2
(|ψ(z)|2−|z|2) dm(z) <∞.

As mentioned earlier, setting ψ(z) = z reduces the operators in (1.1) to Ig. By
Corollary 3.1 of [13], Ig belongs to Sp if and only if g is the zero function. This
fails to hold in general for the operators I(g,ψ) and C(g,ψ). One such example could
be seen by scaling ψ as ψ0(z) =

1
2
z. In this case, for p = 2, condition (1.7) holds

if and only if ∫
C

∣∣g(z)∣∣2e− 3α
4
|z|2 dm(z) <∞.

Then I(g0,ψ0) belongs to S2 if we set, for instance, g0(z) = z since∫
C
|z|2e−

3α
4
|z|2 dm(z) '

∫ ∞

0

r3e−
3α
4
r2 dr =

2

9
α−2Γ(2) <∞.

Seemingly, for this particular choice (g0, ψ0), the operator C(g0,ψ0) also belongs to
the Schatten class S2. This example, in addition, verifies that the operators I(g,ψ)
and C(g,ψ) have a much richer operator-theoretic structure than the operator Ig.

Our main results, coupled with a similar result from [12] for the class of op-
erators in (1.2), give the following sufficient conditions for the Schatten-class
membership of V ψ

g and Cψ
g .

Corollary 1.3. Let 0 < p < ∞ and (g, ψ) be a pair of entire functions on C.
Then if the operator

(i) I(g,ψ) : F2
α → F2

α belongs to Sp, so does the map V ψ
g : F2

α → F2
α.

(ii) C(g,ψ) : F2
α → F2

α belongs to Sp, so does the map Cψ
g : F2

α → F2
α.

The corollary shows that the conditions for Schatten-class membership of the
operators I(g,ψ) and C(g,ψ) are respectively stronger than the corresponding con-
ditions for V ψ

g and Cψ
g . But the converses of the statements both in (i) and (ii) in

general fail. To see this, we may in particular set ψ(z) = z and observe that the
class of operators in (1.2) reduces to the operator Vg. By Corollary 4 of [12], any
compact Vg belongs to Sp for all g whenever p > 2, while its Sp membership for
p ≤ 2 holds if and only if g is a constant function. On the other hand, by Corol-
lary 3.1 of [13], Ig belongs to Sp if and only if g is the zero function. A similar
observation was recorded in [13], contrasting the boundedness and compactness
conditions for the two classes of maps in (1.1) and (1.2).
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2. Preliminaries

Before embarking on the proof of our first main result, we give a key lemma,
which provides a link to how the Berezin-type integral transforms in the condition
of the theorem come into play.

Lemma 2.1. Let (g, ψ) be a pair of entire functions on C. Then for any function
f in F2

α, the following estimates hold:

‖I(g,ψ)f‖2 .
∫
C

∣∣f ′(w)
∣∣2 e−α|w|

2

(1 + |w|)2
B(|g|,ψ)(w) dm(w), (2.1)

‖C(g,ψ)f‖2 .
∫
C

∣∣f ′(w)
∣∣2 e−α|w|

2

(1 + |w|)2
B(|g(ψ)|,ψ)(w) dm(w). (2.2)

Proof. The proof of the lemma is implicitly contained in the proof of Theorem 3.1
in [13]. We explicitly reproduce it here for the sake of completeness. Since |f ′|2
is subharmonic for each holomorphic function f , by Lemma 1 of [6], we have the
local estimate ∣∣f ′(z)

∣∣2e−α|z|2 . ∫
D(z,1)

∣∣f ′(w)
∣∣2e−α|w|2 dm(w). (2.3)

On the other hand, a recent result of Constantin [4, Proposition 1.4] ensures that,
for each entire function f , the Littlewood–Paley-type estimate∫

C

∣∣f(z)∣∣pe−αp
2
|z|2 dm(z) '

∣∣f(0)∣∣p + ∫
C

∣∣f ′(z)
∣∣p(1 + |z|

)−p
e−

αp
2
|z|2 dm(z) (2.4)

holds for all 0 < p <∞. Applying this for p = 2 and (2.3), we obtain

‖I(g,ψ)f‖2 .
∫
C
eα(|ψ(z)|

2−|z|2) |g(z)|2

(1 + |z|)2

×
∫
C
χD(ψ(z),1)(w)

∣∣f ′(w)
∣∣2e−α|w|2 dm(w) dm(z),

where χD(ψ(z),1) refers to the characteristic function on the set D(ψ(z), 1). Since
χD(ψ(z),1)(w) = χD(w,1)(ψ(z)), for each point w and z in C, by Fubini’s theorem
it follows that the right-hand side of the above inequality is equal to∫

C

∣∣f ′(w)
∣∣2e−α|w|2 ∫

D(w,1)

eα|ξ|
2

dµ(g,ψ)(ξ) dm(w)

'
∫
C

∣∣f ′(w)
∣∣2 e−α|w|

2

(1 + |w|)2

∫
D(w,1)

(
1 + |ξ|

)2
eα|ξ|

2

dµ(g,ψ)(ξ) dm(w), (2.5)

where we set ξ = ψ(z),

dµ(g,ψ)(E) =

∫
ψ−1(E)

|g(z)|2

(1 + |z|)2
e−α|z|

2

dm(z)

for every Borel subset E of C, and use the fact that 1 + |w| ' 1 + |ξ| whenever
ξ belongs to the disk D(w, 1). To arrive at the desired conclusion, it suffices to



272 T. MENGESTIE

show that ∫
D(w,1)

(
1 + |ξ|

)2
eα|ξ|

2

dµ(g,ψ)(ξ) . B(|g|,ψ)(w).

But this estimate easily holds because∫
D(w,1)

(
1 + |ξ|

)2
eα|ξ|

2

dµ(g,ψ)(ξ) '
(
1 + |w|

)2 ∫
D(w,1)

eα|ξ|
2

dµ(g,ψ)(ξ)

. B(|g|,ψ)(w),

where in the last relationship we have used a simple fact that if ξ ∈ D(w, 1), then∣∣kw(ξ)∣∣2 = |e−
α
2
|w|2+αwξ|2 = eα(|ξ|

2−|ξ−w|2) & eα|ξ|
2

, (2.6)

and integrating (2.6) against the measure µ(g,ψ) we have that∫
D(w,1)

eα|ξ|
2

dµ(g,ψ)(ξ) .
∫
C

∣∣kw(ξ)∣∣2 dµ(g,ψ)(ξ) =
B(|g|,ψ)(w)

(1 + |w|)2
.

The proof of the estimate in (2.2) is very similar to the proof of (2.1). Thus we
omit it. �

Lemma 2.2. Let (g, ψ) be a pair of entire functions on C. Then:
(i) If 0 < p ≤ 2, we have the estimate∫
C

∣∣kw(ψ(ζ))∣∣2 |g(ζ)|2e−α|ζ|2
(1 + |ζ|)2

dm(ζ) .
(∫

C

∣∣kw(ψ(ζ))∣∣p |g(ζ)|pe−αp
2
|ζ|2

(1 + |ζ|)p
dm(ζ)

) 2
p
.

(ii) If p > 2, we have the reverse estimate∫
C

∣∣kw(ψ(ζ))∣∣p |g(ζ)|pe−αp
2
|ζ|2

(1 + |ζ|)p
dm(ζ) .

(∫
C

∣∣kw(ψ(ζ))∣∣2 |g(ζ)|2e−α|ζ|2
(1 + |ζ|)2

dm(ζ)
) p

2
.

Proof. Using the fact that Fp
α ⊂ F2

α for 0 < p ≤ 2 (see [7, Theorem 7.2]) and the
Littlewood–Paley estimate for Fock spaces, we have(∫

C

∣∣kw(ψ(ζ))∣∣2 |g(ζ)|2e−α|ζ|2
(1 + |ζ|)2

dm(ζ)
) 1

2

'
(∫

C

∣∣∣∫ z

0

kw
(
ψ(ζ)

)
g(ζ) dm(ζ)

∣∣∣2e−α|z|2 dm(z)
) 1

2

.
(∫

C

∣∣∣∫ z

0

kw
(
ψ(ζ)

)
g(ζ) dm(ζ)

∣∣∣pe−αp
2
|z|2 dm(z)

) 1
p

'
(∫

C

∣∣kw(ψ(ζ))∣∣p |g(ζ)|pe−αp
2
|ζ|2

(1 + |ζ|)p
dm(ζ)

) 1
p
,

from which the assertion in (i) follows.
The proof of part (ii) is similar to the preceding proof. This time we only have

to use the inclusion F2
α ⊂ Fp

α for p > 2, which can be read, for instance, in
Theorem 2.10 of [19]. �

Lemma 2.3. Let (g, ψ) be a pair of entire functions on C, and let I(g,ψ) be a
compact operator on F2

α. Then ψ(z) = az+ b for some a and b in C, and |a| < 1.
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Proof. Let F∞
α denote the space of all entire functions f for which

sup
z∈C

∣∣f(z)∣∣e−α
2
|z|2 <∞.

Since F2
α ⊂ F∞

α , it follows that I(g,ψ) : F2
α → F∞

α is also compact. Then Theo-
rem 3.1 of [13] ensures that

sup
z∈C

|g(z)ψ(z)|
1 + |z|

e
α
2
(|ψ(z)|2−|z|2) <∞ and

(2.7)
lim

|ψ(z)|→∞

|g(z)ψ(z)|
1 + |z|

e
α
2
(|ψ(z)|2−|z|2) = 0.

Observe that the first part of (2.7) implies that

M∞
(
gψ, |z|

)
.

1 + |z|
e

α
2
(|ψ(z)|2−|z|2) , (2.8)

where M∞(gψ, |z|) is the integral mean (maximum modulus) of the function gψ.
Now (2.8), along with the fact that M∞(gψ, |z|) is a nondecreasing function of
|z|, gives

lim sup
|z|→∞

(∣∣ψ(z)∣∣− |z|
)
≤ 0; (2.9)

otherwise, there would be a sequence (zj) such that |zj| → ∞ as j → ∞ and

lim sup
j→∞

(∣∣ψ(zj)∣∣− |zj|
)
> 0.

This, along with the fact that ψ is an entire function, implies that

M∞
(
gψ, |zj|

)
.

1 + |zj|
e

α
2
(|ψ(zj)|2−|zj |2)

is bounded, which gives a contradiction whenever gψ is unbounded. The case for
bounded gψ follows easily.

From relation (2.9), we deduce that ψ has the linear form ψ(z) = az + b for
some a and b in C and |a| ≤ 1, and b = 0 whenever |a| = 1. From the second part
of (2.7), we easily see that |a| < 1. �

3. Proof of Theorem 1.1

We first prove the necessity of the condition following a classical approach, as,
for example, in [14] and [17]. Since I(g,ψ) : F2

α → F2
α is compact, it admits a

Schmidt decomposition, and there exist an orthonormal basis (en)n∈N of F2
α and

a sequence of nonnegative numbers (λ(n,g,ψ))n∈N with λ(n,g,ψ) → 0 as n→ ∞ such
that, for all f in F2

α,

I(g,ψ)f =
∞∑
n=1

λ(n,g,ψ)〈f, en〉en. (3.1)

The operator I(g,ψ) with such a decomposition belongs to the Sp class if and only
if

‖I(g,ψ)‖pSp
=

∞∑
n=1

|λ(n,g,ψ)|p <∞. (3.2)
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Applying (3.1), in particular, to the kernel function, we obtain the relation

‖I(g,ψ)Kz‖2 =
∞∑
n=1

|λ(n,g,ψ)|2
∣∣en(z)∣∣2,

from which we have∫
C
‖I(g,ψ)kz‖p dm(z) =

∫
C

( ∞∑
n=1

|λ(n,g,ψ)|2
∣∣en(z)∣∣2) p

2
e−

pα
2
|z|2 dm(z). (3.3)

We may now consider two different cases depending on the size of the exponent
p and proceed first to show the case for p ≥ 2. Applying Hölder’s inequality to
the sum shows that the left-hand side in (3.3) is bounded by∫

C

∞∑
n=1

|λ(n,g,ψ)|p
∣∣en(z)∣∣2( ∞∑

n=1

∣∣en(z)∣∣2) p−2
2
e−

pα
2
|z|2 dm(z)

=
∞∑
n=1

|λ(n,g,ψ)|p
∫
C

∣∣en(z)∣∣2e−α|z|2 dm(z)

'
∞∑
n=1

|λ(n,g,ψ)|p = ‖I(g,ψ)‖pSp
, (3.4)

where the last equality follows by (3.2).
We may now assume that 0 < p < 2. Since I(g,ψ) is assumed to be in Sp,

the positive operator I∗(g,ψ)I(g,ψ) also belongs to Sp/2 (see [18]). In addition, there

exists a sequence (fn) of orthonormal basis in F2
α for which we have the Schmidt

decomposition

I∗(g,ψ)I(g,ψ)f =
∞∑
n=1

βn〈f, fn〉Efn, (3.5)

where the sequence (βn) comprises the singular values of I∗(g,ψ)I(g,ψ) and 〈·, ·〉E is

an inner product in F2
α defined by

〈f, h〉E = f(0)h(0) +

∫
C
f ′(z)h′(z)

e−α|z|
2

(|+ |z|)2
dm(z). (3.6)

Observe that, because of (2.4), the inner product in (3.6) gives a norm on F2
α

equivalent to the classical norm. Now using (2.4) and since 0 < p < 2, it follows
that∫

C
‖I(g,ψ)kz‖p dm(z) '

∫
C

(∫
C

∣∣wkw(ψ(ζ))∣∣2 |g(ζ)|2e−α|ζ|2
(1 + |ζ|)2

dm(ζ)
) p

2
dm(w)

.
∫
C

∫
C

∣∣wkw(ψ(ζ))∣∣p |g(ζ)|pe−αp
2
|ζ|2

(1 + |ζ|)p
dm(ζ) dm(w), (3.7)

where the second estimate follows by Lemma 2.2.
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By completing the square in the inner product from the kernel function again
and making a change of variables, we obtain∫

C

∣∣wkw(ψ(ζ))∣∣p dm(w) = e
pα
2
|ψ(ζ)|2

∫
C
|w|pe−

αp
2
|ψ(ζ)−w|2 dm(w)

'
∣∣ψ(ζ)∣∣pe pα

2
|ψ(ζ)|2 . (3.8)

Applying (1.3) and the techniques above, we also estimate∥∥∥ ∂

∂w
Kw

∥∥∥2

'
∫
C

∣∣zKw(z)
∣∣2e−α|z|2 dm(z) ' |w|2eα|w|2 , (3.9)

and from (1.4), (3.8), and (1.5) we find that the double integral in (3.7) is in turn
bounded by a positive multiple of∫

C

|g(ζ)ψ(ζ)|pe pα
2
|ψ(ζ)|2

(1 + |ζ|)pe pα
2
|ζ|2 dm(ζ)

'
∫
C

|g(ζ)ψ(ζ)|p

(1 + |ζ|)p
e

pα
2
(|ψ(ζ)|2−|ζ|2)

‖ ∂

∂ψ(ζ)
Kψ(ζ)‖2

(|ψ(ζ)|+ 1)2eα|ψ(ζ)|2
dm(ζ)

=
∞∑
n=1

∫
C

|g(ζ)ψ(ζ)|p

(1 + |ζ|)p
e

pα
2
(|ψ(ζ)|2−|ζ|2) |f ′

n(ψ(ζ))|2

(|ψ(ζ)|+ 1)2eα|ψ(ζ)|2
dm(ζ). (3.10)

Applying Hölder’s inequality, it follows that the above sum is bounded by

∞∑
n=1

(∫
C

|g(ζ)|2

(1 + |ζ|)2
|f ′
n

(
ψ(ζ)

)
|2e−α|ζ|2 dm(ζ)

) p
2

×
(∫

C

|f ′
n(ψ(ζ))|2

(|ψ(ζ)|+ 1)2
e−α|ψ(ζ)|

2

dm(ζ)
) 2−p

2
. (3.11)

Again, since I(g,ψ) belongs to the Schatten Sp class, it is compact, and by
Lemma 2.3 ψ has the linear form ψ(z) = az + b for some a and b in C and
|a| < 1. This together with (2.4) and substitution yield

sup
n∈N

∫
C

|f ′
n(ψ(ζ))|2

(|ψ(ζ)|+ 1)2
e−α|ψ(ζ)|

2

dm(ζ) <∞.

Making use of this, (3.5), and (3.6), we observe that the quantity in (3.11) is
bounded up, to a positive multiple, by

∞∑
n=1

(∫
C

|g(ζ)|2

(1 + |ζ|)2
∣∣f ′
n

(
ψ(ζ)

)∣∣2e−α|ζ|2 dm(ζ)
) p

2

.
∞∑
n=1

〈I∗(g,ψ)I(g,ψ)fn, fn〉
p
2
E

=
∞∑
n=1

β
p
2
n = ‖I∗(g,ψ)I(g,ψ)‖

p/2
Sp/2

= ‖I(g,ψ)‖pSp
. (3.12)
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From the series of estimates in (3.7)–(3.12), together with (3.3) and (3.4), we
deduce that∫

C

(∫
C

∣∣wkw(ψ(ζ))∣∣2 |g(ζ)|2e−α|ζ|2
(1 + |ζ|2)

dm(ζ)
) p

2
dm(w) . ‖I(g,ψ)‖pSp

.

From this and (3.7), we conclude the estimate∫
C
‖I(g,ψ)kz‖p dm(z) . ‖I(g,ψ)‖pSp

. (3.13)

We may first note that∫
C
B
p/2
(|g|,ψ)(w) dm(w) =

∫
|w|<1

B
p/2
(|g|,ψ)(w) dm(w) +

∫
|w|≥1

B
p/2
(|g|,ψ)(w) dm(w).

As for |w| > 1, one has B
p/2
(|g|,ψ)(w) ≤ ‖I(g,ψ)kw‖p, and the estimate in (3.13) implies∫

|w|≥1

B
p/2
(|g|,ψ)(w) dm(w) .

∫
C
‖I(g,ψ)kz‖p dm(z). (3.14)

On the other hand, since I(g,ψ) is in the Schatten Sp class, it is bounded with
‖I(g,ψ)‖ . ‖I(g,ψ)‖Sp , where ‖I(g,ψ)‖ denotes the operator norm of the bounded
operator I(g,ψ). Therefore, by Theorem 2.1 of [13], we have

sup
w∈C

B
p/2
(|g|,ψ)(w) . ‖I(g,ψ)‖p,

from which we have the remaining estimate∫
|w|<1

B
p/2
(|g|,ψ)(w) dm(w) . ‖I(g,ψ)‖pm

{
|w| < 1

}
. ‖I(g,ψ)‖pSp

. (3.15)

Taking into account the estimates in (3.13), (3.14), and (3.15), we get∫
C
B
p/2
(|g|,ψ)(w) dm(w) . ‖I(g,ψ)‖pSp

,

from which we also have one part of the estimate in (1.6).
We now turn to the proof of the sufficiency of the condition in part (i) of the

main result. First observe that relation (3.2) implies

‖I(g,ψ)‖pSp
=

∞∑
n=1

|λ(n,g,ψ)|p‖en‖2 '
∞∑
n=1

|λ(n,g,ψ)|p
∫
C

∣∣en(z)∣∣2‖Kz‖−2 dm(z),

from which for p < 2, Hölder’s inequality applied with exponent 2/p, and subse-
quently invoking relations (3.3) give

‖I(g,ψ)‖pSp
≤

∫
C

( ∞∑
n=1

|λ(n,g,ψ)|2
∣∣en(z)∣∣2) p

2
( ∞∑
n=1

∣∣en(z)∣∣2) 2−p
2 ‖Kz‖−2 dm(z)

=

∫
C

( ∞∑
n=1

|λ(n,g,ψ)|2
∣∣en(z)∣∣2) p

2‖Kz‖−p dm(z)
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=

∫
C
‖I(g,ψ)kz‖p dm(z)

≤
∫
C
B

p
2

(|g|,ψ)(z) dm(z). (3.16)

It remains to prove the assertion for p ≥ 2. We first note that condition (i)
in Theorem 1.1 along with Theorem 3.1 of [13] ensure that I(g,ψ) is a compact
operator. We also recall that a compact map I(g,ψ) belongs to Sp if and only if
the sequence ‖I(g,ψ)en‖, n ∈ N belongs to `p for any orthonormal set {en} of F2

α

(see [18, Theorem 1.33]). This fact together with Lemma 2.1 imply

∞∑
n=1

‖I(g,ψ)en‖p '
∞∑
n=1

(∫
C

∣∣e′n(ψ(z))∣∣2 |g(z)|2e−α|z|2(1 + |z|)2
dm(z)

) p
2

.
∞∑
n=1

(∫
C

∣∣e′n(w)∣∣2 e−α|w|
2

(1 + |w|)2
B(|g|,ψ)(w) dm(w)

) p
2
. (3.17)

Applying Hölder’s inequality again and subsequently taking into account (2.4),
(1.5), and (3.9), we see that the right-hand side above is bounded by

∞∑
n=1

(∫
C

∣∣e′n(w)∣∣2 e−α|w|
2

(1 + |w|)2
dm(w)

)(p−2)/2
∫
C

∣∣e′n(w)∣∣2 e−α|w|
2

(1 + |w|)2
B

p
2

(|g|,ψ)(w) dm(w)

'
∫
C

( ∞∑
n=1

∣∣e′n(w)∣∣2 e−α|w|
2

(1 + |w|)2
)
B

p
2

(|g|,ψ)(w) dm(w)

'
∫
C
B

p
2

(|g|,ψ)(w) dm(w). (3.18)

From (3.16), (3.17), and (3.18), we conclude our assertion and also establish the
remaining estimate in (1.6).

The statement in part (ii) follows from a simple variant of the proof of part (i).
This is because (C(g,ψ)f)

′(z) = f ′(ψ(z))g(ψ(z))ψ′(z), which shows that we only
need to replace the quantity g(z) by g(ψ(z))ψ′(z) and proceed as in the proof of
the preceding part. We omit the details and leave it to the interested reader.

4. Proof of Theorem 1.2

We first note that Theorem 1.1 simply means that I(g,ψ) is in the Sp class if and
only if the function w → ‖I(g,ψ)kw‖ belongs to Lp(C, dm). Thus the sufficiency
of the condition for the case 0 < p ≤ 2 follows easily from Theorem 1.1 and
the estimates in (3.8) and (3.7). On the other hand, we notice that the series of
estimates from (3.10)–(3.12) and Lemma 2.3 give∫

C

∣∣g(z)∣∣pe pα
2
(|ψ(z)|2−|z|2) dm(z)

'
∫
C

(1 + |ψ(z)|
1 + |z|

)p∣∣g(z)∣∣pe pα
2
(|ψ(z)|2−|z|2) dm(z)
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'
∫
C

∫
C

∣∣wkw(ψ(ζ))∣∣p |g(ζ)|pe−αp
2
|ζ|2

(1 + |ζ|)p
dm(ζ) dm(w)

. ‖I(g,ψ)‖pSp
,

which verifies the necessity part of the case.
Next we prove the case for p > 2. Taking into account the estimate in (3.8)

and the case for p > 2 of Lemma 2.2, we have∫
C

∣∣g(ζ)∣∣pe pα
2
(|ψ(ζ)|2−|ζ|2) |ψ(ζ)|p

(1 + |ζ|)p
dm(ζ)

'
∫
C

∫
C

∣∣kw(ψ(ζ))∣∣p |g(ζ)|pe− pα
2
|ζ|2

(1 + |ζ|)p
dm(ζ) dm(w)

.
∫
C
‖I(g,ψ)kw‖p dm(w),

from which the necessity condition follows after an application of Lemma 2.3.
For sufficiency as done before, it is enough to prove that

∞∑
n=1

‖I(g,ψ)en‖p ≤ C <∞

for any orthonormal set {en} of F2
α. From (3.17), we have

∞∑
n=1

‖I(g,ψ)en‖p '
∞∑
n=1

(∫
C

∣∣e′n(ψ(z))∣∣2 |g(z)|2e−α|z|2(1 + |z|)2
dm(z)

) p
2
.

Applying Hölder’s inequality we get

In :=
(∫

C

∣∣e′n(ψ(z))∣∣2 |g(z)|2e−α|z|2(1 + |z|)2
dm(z)

) p
2

≤
(∫

C

∣∣e′n(ψ(z))∣∣2 |g(z)|pe−α p
2
|z|2(1 + |ψ(z)|)p

(1 + |z|)p(1 + |ψ(z)|)2
eα(

p
2
−1)|ψ(z)|2 dm(z)

)
×

(∫
C

∣∣e′n(ψ(z))∣∣2 e−α|ψ(z)|
2

(1 + |ψ(z)|)2
dm(z)

) p−2
2
.

Making a change of variables again yields∫
C

∣∣e′n(ψ(z)∣∣2 e−α|ψ(z)|
2

(1 + |ψ(z)|)2
dm(z) . ‖en‖2 . 1,

which implies that

In .
∫
C

∣∣e′n(ψ(z))∣∣2 |g(z)|pe−α p
2
|z|2(1 + |ψ(z)|)p

(1 + |z|)p(1 + |ψ(z)|)2
eα(

p
2
−1)|ψ(z)|2 dm(z).

From this and the estimate
∞∑
n=1

∣∣e′n(ψ(z))∣∣2 ' ∣∣ψ(z)∣∣2eα|ψ(z)|2 ,
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we obtain

∞∑
n=1

‖I(g,ψ)en‖p '
∞∑
n=1

In .
∫
C

∣∣g(z)∣∣peα p
2
(|ψ(z)|2−|z|2) (1 + |ψ(z)|)p

(1 + |z|)p
dm(z),

from which the result follows since, as done before, condition (1.7) implies that
ψ is a linear map.

The statement in part (ii) of Theorem 1.2 follows from a simple variant of the
proof of part (i) above. Thus we omit the details again.
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