

MULTIPLIERS AND HADAMARD PRODUCTS IN THE VECTOR-VALUED SETTING

ÓSCAR BLASCO and CARME ZARAGOZA-BERZOSA*

Communicated by R. Villena

Abstract

Let E_{i} be Banach spaces, and let $X_{E_{i}}$ be Banach spaces continuously contained in the spaces of E_{i}-valued sequences $(\hat{x}(j))_{j} \in E_{i}^{\mathbb{N}}$, for $i=1,2,3$. Given a bounded bilinear map $B: E_{1} \times E_{2} \rightarrow E_{3}$, we define $\left(X_{E_{2}}, X_{E_{3}}\right)_{B}$, the space of B-multipliers between $X_{E_{2}}$ and $X_{E_{3}}$, to be the set of sequences $\left(\lambda_{j}\right)_{j} \in E_{1}^{\mathbb{N}}$ such that $\left(B\left(\lambda_{j}, \hat{x}(j)\right)\right)_{j} \in X_{E_{3}}$ for all $(\hat{x}(j))_{j} \in X_{E_{2}}$, and we define the Hadamard projective tensor product $X_{E_{1}} \circledast_{B} X_{E_{2}}$ as consisting of those elements in $E_{3}^{\mathbb{N}}$ that can be represented as $\sum_{n} \sum_{j} B\left(\hat{x}_{n}(j), \hat{y}_{n}(j)\right)$, where $\left(x_{n}\right)_{n} \in X_{E_{1}},\left(y_{n}\right)_{n} \in X_{E_{2}}$, and $\sum_{n}\left\|x_{n}\right\|_{X_{E_{1}}}\left\|y_{n}\right\|_{X_{E_{2}}}<\infty$.

We will analyze some properties of these two spaces, relate them, and compute the Hadamard tensor products and the spaces of vector-valued multipliers in several cases, getting applications in the particular case where $E=\mathcal{L}\left(E_{1}, E_{2}\right)$ and $B(T, x)=T(x)$.

1. Introduction and preliminaries

One of the classic problems in Fourier analysis is the description of the space of coefficient multipliers between function spaces. Several papers have shown mathematicians' interest in determining this space in particular cases (see the recent monograph [18]; see also [20] for the historical situation for Hardy spaces and [16] and [17] for several techniques and results regarding mixed norm; we refer the

[^0]It is not difficult to see that this space, normed in a natural way, is also $\mathcal{S}(E)$-admissible for bilinear maps satisfying the following condition: $\exists C>0$ such that for each $e \in E$ there exists $\left(x_{n}, y_{n}\right) \in E_{1} \times E_{2}$ verifying

$$
\begin{equation*}
e=\sum_{n} B\left(x_{n}, y_{n}\right), \quad \sum_{n}\left\|x_{n}\right\|_{E_{1}}\left\|y_{n}\right\|_{E_{2}} \leq C\|e\|_{E} \tag{1.2}
\end{equation*}
$$

(see Theorem 4.3).
A particular example with such a condition, and one very important for our purposes, is the following bilinear map, defined using the projective tensor product

$$
B_{\pi}: E_{1} \times E_{2} \longrightarrow E_{1} \hat{\otimes}_{\pi} E_{2}, \quad(x, y) \mapsto x \otimes y
$$

We refer the reader to [10] or [22] for the definitions and properties of the projective tensor product and norm.

Hadamard tensor products and multipliers are closely related. One first connection with multipliers comes using the topological dual and the vector-valued Köthe dual $X_{E}^{K}=\left(X_{E}, \ell^{1}\right)_{B_{\mathcal{D}}}$. It will be shown that

$$
\left(X_{E_{1}} \circledast_{B} X_{E_{2}}\right)^{K}=\left(X_{E_{1}}, X_{E_{2}}^{K}\right)_{B^{*}}
$$

and

$$
\left(X_{E_{1}} \circledast_{B} X_{E_{2}}\right)^{\prime}=\left(X_{E_{1}}, X_{E_{2}}^{\prime}\right)_{B^{*}}
$$

where $B^{*}: E^{\prime} \times E_{1} \rightarrow E_{2}^{\prime}$ is the bounded bilinear map defined by

$$
\left\langle B^{*}\left(e^{\prime}, x\right), y\right\rangle=\left\langle e^{\prime}, B(x, y)\right\rangle, \quad x \in E_{1}, y \in E_{2}, e^{\prime} \in E^{\prime}
$$

(see Proposition 4.6).
Given a continuous bilinear map $B: X \times Y \longrightarrow Z$, there then exist unique bounded linear operators $T_{B}: X \hat{\otimes}_{\pi} Y \longrightarrow Z$ and $\Phi_{B}: X \rightarrow \mathcal{L}(Y, Z)$ satisfying

$$
\begin{equation*}
T_{B}(x \otimes y)=B(x, y)=\Phi_{B}(x)(y), \quad x \in X, y \in Y \tag{1.3}
\end{equation*}
$$

Using these identifications, one gets that

$$
\mathcal{B}(X \times Y, Z)=\mathcal{L}\left(X \hat{\otimes}_{\pi} Y, Z\right)=\mathcal{L}(X, \mathcal{L}(Y, Z))
$$

are isometric isomorphisms. These identifications will give us a basic formula (see Theorem 4.7),

$$
\begin{equation*}
\left(X_{E_{1}} \circledast_{B_{\pi}} X_{E_{2}}, X_{E_{3}}\right)_{B_{\mathcal{L}}}=\left(X_{E_{1}},\left(X_{E_{2}}, X_{E_{3}}\right)_{B_{\mathcal{L}}}\right)_{B_{\mathcal{L}}} \tag{1.4}
\end{equation*}
$$

which shows that describing Hadamard tensor products helps to determine multipliers.

We shall get the description of Hadamard tensor products in some cases. A particularly interesting example is the description of $H^{1}(\mathbb{D}) \circledast_{B_{0}} H^{1}\left(\mathbb{D}, L^{p}\right)$ for the values $1<p \leq 2$ in Theorem 5.5. We will use the above formula and the previously mentioned description to recover some known results on vector-valued multipliers (see [6]):

$$
\begin{aligned}
& \left(H^{1}(\mathbb{T}), \operatorname{BMOA}\left(\mathbb{T}, L^{p}\right)\right)_{B_{\mathcal{L}}}=\mathcal{B} \operatorname{loch}\left(\mathbb{D}, \mathcal{L}\left(L^{p}, L^{p}\right)\right), \quad 2 \leq p<\infty \\
& \left(H^{1}\left(\mathbb{T}, L^{p}\right), \operatorname{BMOA}(\mathbb{T})\right)_{B_{\mathcal{L}}}=\mathcal{B} \operatorname{loch}\left(\mathbb{D}, \mathcal{L}\left(L^{p^{\prime}}, L^{p^{\prime}}\right)\right), \quad 1 \leq p \leq 2
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ (see Corollary 5.6).

The paper is organized as follows: Section 2 is devoted to introducing $\mathcal{S}(E)$ admissibility and gives some examples. In Section 3, we introduce coefficient multipliers through a bilinear map, deal with solid spaces, and relate multipliers with the Köthe dual. The Hadamard tensor product is defined in Section 4, where we find its connection with multipliers via the Köthe dual and show the formula (1.4). In the last section, we first use multipliers to determine the Hadamard tensor product of some spaces and, in the other direction, we also use the Hadamard product to obtain some vector-valued multiplier spaces showing applications to vector-valued Hardy spaces.

2. Vector-valued \mathcal{S}-admissibility

Let E be a Banach space. We use the notation $\mathcal{S}(E)$ for the space of sequences $f=\left(x_{j}\right)_{j \geq 0}$, where $x_{j} \in E$, endowed with the locally convex topology given by the seminorms $p_{j}(f)=\left\|x_{j}\right\|_{E}, j \geq 0$. We shall think of f as a formal power series with coefficients in E, that is, $f(z)=\sum_{j \geq 0} x_{j} z^{j}$, and most of the time we will write $\hat{f}(j)$ instead of x_{j}. Hence a sequence $\left(f_{n}\right)_{n} \subset \mathcal{S}(E)$ converges to $f \in \mathcal{S}(E)$ if and only if $p_{j}\left(f-f_{n}\right) \rightarrow 0$ for all $j \geq 0$ if and only if $\left\|\hat{f}(j)-\hat{f}_{n}(j)\right\|_{E} \rightarrow 0$ as $n \rightarrow \infty$ for all $j \geq 0$.

We will write $e_{j}(z)=z^{j}$ for each $j \geq 0$ and $\mathcal{P}(E)$ for the vector space of the analytic polynomials with coefficients in E; that is, $\sum_{j}^{N} x_{j} e_{j}$, where $x_{j} \in E$.

We first introduce the basic notion that plays a fundamental role in what follows.

Definition 2.1. Let E be a Banach space, and let X_{E} be a subspace of $\mathcal{S}(E)$. We will say that X_{E} is $\mathcal{S}(E)$-admissible (or simply admissible) if
(i) $\left(X_{E},\|\cdot\|_{X_{E}}\right)$ is a Banach space,
(ii) the projection $\pi_{j}: X_{E} \longrightarrow E, f \mapsto \hat{f}(j)$ is continuous, and
(iii) the inclusion $i_{j}: E \longrightarrow X_{E}, x \mapsto x e_{j}$ is continuous.

We denote $\pi_{j}\left(X_{E}\right)=\left\|\pi_{j}\right\|$ and $i_{j}\left(X_{E}\right)=\left\|i_{j}\right\|$.
Hence, for each $j \geq 0$, we have

$$
\|\hat{f}(j)\|_{E} \leq \pi_{j}\left(X_{E}\right)\|f\|_{X_{E}}, \quad\left\|x e_{j}\right\|_{X_{E}} \leq i_{j}\left(X_{E}\right)\|x\|_{E}
$$

Remark 2.1. Let $X_{E_{2}}$ be $\mathcal{S}\left(E_{2}\right)$-admissible, and let E_{1} be isomorphic to a closed subspace of E_{2}, say, $I\left(E_{1}\right)$. Define

$$
X_{E_{1}}=\left\{\left(x_{j}\right)_{j}: x_{j} \in E_{1},\left(I\left(x_{j}\right)\right)_{j} \in X_{E_{2}}\right\}
$$

and the norm

$$
\left\|\left(x_{j}\right)_{j}\right\|_{X_{E_{1}}}=\left\|\left(I\left(x_{j}\right)\right)_{j}\right\|_{X_{E_{2}}} .
$$

Then $X_{E_{1}}$ is $\mathcal{S}\left(E_{1}\right)$-admissible.
Also, we have that if Z is a Banach space and $X_{E} \subset Z \subset Y_{E}$ where X_{E} and Y_{E} are $\mathcal{S}(E)$-admissible, then Z is $\mathcal{S}(E)$-admissible.

Let us give a method to generate $\mathcal{S}(E)$-admissible spaces from classical \mathcal{S} admissible spaces (i.e., keeping our notation, $\mathcal{S}(\mathcal{K})$-admissible spaces).

Proposition 2.2. Let E be a Banach space, and let X be \mathcal{S}-admissible. We denote

$$
\begin{aligned}
X[E] & =\left\{\left(x_{j}\right)_{j \geq 0} \in \mathcal{S}(E):\left\|\left(\left\|x_{j}\right\|_{E}\right)_{j}\right\|_{X}<\infty\right\} \\
X_{\text {weak }}(E) & =\left\{\left(x_{j}\right)_{j \geq 0} \in \mathcal{S}(E):\left\|\left(x_{j}\right)_{j}\right\|_{X_{\text {weak }}(E)}=\sup _{\left\|x^{\prime}\right\|_{E^{\prime}}=1}\left\|\left(\left\langle x_{j}, x^{\prime}\right\rangle\right)_{j}\right\|_{X}<\infty\right\}
\end{aligned}
$$

Then $X \hat{\otimes}_{\pi} E, X[E]$ and $X_{\text {weak }}(E)$ are $\mathcal{S}(E)$-admissible.
Proof. The fact that $X[E]$ is a Banach space is easy and left to the reader. Clearly, $X_{\text {weak }}(E)=\mathcal{L}\left(E^{\prime}, X\right)$ and $X \hat{\otimes}_{\pi} E$ have complete norms.

Due to the continuous embeddings

$$
X \hat{\otimes}_{\pi} E \subset X[E] \subset X_{\text {weak }}(E)
$$

we only need to see that $\mathcal{P}(E) \subset X \hat{\otimes}_{\pi} E$ with continuous injections i_{j} for $j \geq 0$ and that $X_{\text {weak }}(E) \subset \mathcal{S}(E)$ with continuity. Both assertions follow trivially from the facts

$$
\left\|x e_{j}\right\|_{X \hat{\otimes}_{\pi} E}=\|x\|_{E}\left\|e_{j}\right\|_{X} \leq i_{j}(X)\|x\|_{E}
$$

and

$$
\left\|x_{j}\right\|_{E}=\sup _{\left\|x^{\prime}\right\|_{E^{\prime}}=1}\left|\left\langle x_{j}, x^{\prime}\right\rangle\right| \leq \pi_{j}(X)\left\|\left(x_{k}\right)_{k}\right\|_{X_{\text {weak }}(E)}
$$

Definition 2.3. Let X_{E} be $\mathcal{S}(E)$-admissible, and denote $X_{E}^{0}=\overline{\mathcal{P}}(E)^{X_{E}}$. We say that X_{E} is minimal whenever $\mathcal{P}(E)$ is dense in X_{E}; that is to say $X_{E}^{0}=X_{E}$.

Of course, X_{E}^{0} is $\mathcal{S}(E)$-admissible whenever X_{E} is.
Proposition 2.4. Let X_{E} be $\mathcal{S}(E)$-admissible, and let F be a Banach space. Then $\mathcal{L}\left(X_{E}, F\right)$ is $\mathcal{S}(\mathcal{L}(E, F))$-admissible.

In particular, $\left(X_{E}\right)^{\prime}$ and $\left(X_{E}^{0}\right)^{\prime}$ are $\mathcal{S}\left(E^{\prime}\right)$-admissible.
Proof. Identifying each $T \in \mathcal{L}\left(X_{E}, F\right)$ with the sequence $(\hat{T}(j))_{j} \in \mathcal{S}(\mathcal{L}(E, F))$ given by $\hat{T}(j)(x)=T\left(x e_{j}\right)$, we have that $\mathcal{L}\left(X_{E}, F\right) \hookrightarrow \mathcal{S}(\mathcal{L}(E, F))$. Moreover, $\pi_{j}\left(\mathcal{L}\left(X_{E}, F\right)\right) \leq i_{j}\left(X_{E}\right)$ due to the estimate $\|\hat{T}(j)\|_{\mathcal{L}(E, F)} \leq i_{j}\left(X_{E}\right)\|T\|_{\mathcal{L}\left(X_{E}, F\right)}$.

To show $\mathcal{P}(\mathcal{L}(E, F)) \subset \mathcal{L}\left(X_{E}, F\right)$, we use that, for each $j \geq 0$ and $S \in \mathcal{L}(E, F)$, $S e_{j}$ defines an operator in $\mathcal{L}\left(X_{E}, F\right)$ by means of

$$
S e_{j}(f)=S\left(x_{j}\right), \quad f=\left(x_{j}\right) \in X_{E}
$$

Moreover, $i_{j}(\mathcal{L}(E, F)) \leq \pi_{j}\left(X_{E}\right)$ because $\left\|S e_{j}\right\|_{\mathcal{L}\left(X_{E}, F\right)} \leq \pi_{j}\left(X_{E}\right)\|S\|_{\mathcal{L}(E, F)}$.
Example 2.1. Some examples of $\mathcal{S}(E)$-admissible spaces are $\ell^{p}(E), \ell_{\text {weak }}^{p}(E)$, and $\ell^{p} \hat{\otimes}_{\pi} E$ for $1 \leq p \leq \infty$, where

$$
\begin{gathered}
\ell^{p}(E)=\ell^{p}[E]=\left\{\left(x_{n}\right)_{n \geq 0}:\left\|\left(x_{n}\right)\right\|_{\ell^{p}(E)}=\left(\sum_{n=0}^{\infty}\left\|x_{n}\right\|_{E}^{p}\right)^{1 / p}<\infty\right\}, \\
\ell_{\text {weak }}^{p}(E)=\left\{\left(x_{n}\right)_{n \geq 0}:\left\|\left(x_{n}\right)\right\|_{\ell_{\text {weak }}^{p}(E)}=\sup _{\left\|x^{\prime}\right\|_{E^{\prime}}=1}\left(\sum_{n=0}^{\infty}\left|\left\langle x_{n}, x^{\prime}\right\rangle\right|^{p}\right)^{1 / p}<\infty\right\},
\end{gathered}
$$

with the obvious modifications for $p=\infty$.

In particular, $c_{0}(E)=\left(\ell^{\infty}(E)\right)^{0}$ and
$U C(E)=\left(\ell_{\text {weak }}^{1}\right)^{0}(E)=\left\{\left(x_{n}\right)_{n \geq 0} \in \ell_{\text {weak }}^{1}(E) ; \sum_{n} x_{n}\right.$ converges unconditionally $\}$ are $S(E)$-admissible spaces.

Another interesting space, not coming from the above constructions, is

$$
\operatorname{Rad}(E)=\left\{\left(x_{j}\right)_{j \geq 0}: \sup _{N}\left[\int_{0}^{1}\left\|\sum_{j=0}^{N} x_{j} r_{j}(t)\right\|_{E}^{2} d t\right]^{1 / 2}<\infty\right\}
$$

where r_{j} stands for the Rademacher functions (see [9]).
It is well known (see [9]) that

$$
\ell_{\text {weak }}^{1}(E) \subset \operatorname{Rad}(E) \subset \ell_{\text {weak }}^{2}(E)
$$

with continuous embeddings, and therefore $\operatorname{Rad}(E)$ is $\mathcal{S}(E)$-admissible.
Let us mention the interplay with the geometry of Banach spaces when comparing the space $\operatorname{Rad}(E)$ and

$$
\operatorname{Rad}[E]=\left\{\left(x_{j}\right)_{j} \in \mathcal{S}(E):\left\|\left(\left\|x_{j}\right\|_{E}\right)_{j}\right\|_{\mathrm{Rad}}\right\}
$$

and

$$
\begin{aligned}
\operatorname{Rad}_{\text {weak }}(E)= & \left\{\left(x_{j}\right)_{j \geq 0} \in \mathcal{S}(E):\right. \\
& \left.\left\|\left(x_{j}\right)_{j}\right\|_{\operatorname{Rad}_{\text {weak }}(E)}=\sup _{\left\|x^{\prime}\right\|_{E^{\prime}}=1}\left\|\left(\left\langle x_{j}, x^{\prime}\right\rangle\right)_{j}\right\|_{\operatorname{Rad}}<\infty\right\},
\end{aligned}
$$

where $\operatorname{Rad}=\operatorname{Rad}(\mathbb{K})$. Recall that the notions of type 2 and cotype 2 correspond to $\ell^{2}(E) \subset \operatorname{Rad}(E)$ and $\operatorname{Rad}(E) \subset \ell^{2}(E)$, respectively (see [9]).
Proposition 2.5. Let E be a Banach space.
(i) $\operatorname{Rad}(E)=\operatorname{Rad}[E]$ if and only if E is isomorphic to a Hilbert space.
(ii) $\operatorname{Rad}_{\text {weak }}(E)=\operatorname{Rad}[E]$ if and only if E is finite-dimensional.

Proof. Note that, using the orthonormality of r_{n}, Plancherel's theorem gives $\operatorname{Rad}[E]=\ell^{2}(E)$ and $\operatorname{Rad}_{\text {weak }}(E)=\ell_{\text {weak }}^{2}(E)$. Of course, if E is a Hilbert space, then $\operatorname{Rad}(E)=\ell^{2}(E)$ and, for finite-dimensional spaces, $\operatorname{Rad}_{\text {weak }}(E)=\ell_{\text {weak }}^{2}(E)=$ $\ell^{2}(E)$.

On the other hand, clearly $\operatorname{Rad}[E] \subset \operatorname{Rad}(E)$ if and only if E has type 2, and $\operatorname{Rad}(E) \subset \operatorname{Rad}[E]$ if and only if E has cotype 2 . Now use Kwapien's theorem (see [9, Corollary 12.20 , p. 246]) to conclude (i).

To see the direct implication in (ii), simply use that if $\operatorname{dim}(E)=\infty$, then $\ell^{2}(E) \subsetneq \ell_{\text {weak }}^{2}(E)$ (see [9, Theorem 2.18, p. 50]).
Example 2.2. Let E be a complex Banach space, and denote by $\mathcal{H}(\mathbb{D}, E)$ the space of holomorphic functions from the unit disk \mathbb{D} into E; that is,

$$
f(z)=\sum_{j=0}^{\infty} x_{j} z^{j}, \quad x_{j} \in E,|z|<1
$$

Then, with the notation in the Introduction, f would be written $\sum_{j \geq 0} \hat{f}(j) e_{j}$ and $\mathcal{P}(E)$ would actually be the E-valued polynomials.

In particular, for $E=\mathbb{C}$, most of the classical examples - such as Hardy spaces, Bergman spaces, Besov spaces, Bloch functions, and so on-become \mathcal{S}-admissible.

Let us introduce the vector-valued versions of those used in this paper. The vector-valued disk algebra and the bounded analytic functions will be denoted by

$$
A(\mathbb{D}, E)=\{f \in \mathcal{H}(\mathbb{D}, E), f \in C(\overline{\mathbb{D}}, E)\}
$$

and

$$
H^{\infty}(\mathbb{D}, E)=\left\{f \in \mathcal{H}(\mathbb{D}, E), \sup _{|z|<1}\|f(z)\|_{E}<\infty\right\}
$$

respectively, where we define

$$
\|f\|_{A(\mathbb{D}, E)}=\sup _{|z|=1}\|f(z)\|_{E}, \quad\|f\|_{H^{\infty}(\mathbb{D}, E)}=\sup _{|z|<1}\|f(z)\|_{E} .
$$

It is easy to see that $\left(H^{\infty}(\mathbb{D}, E)\right)^{0}=A(\mathbb{D}, E)$.
Given $1 \leq p<\infty$, the E-valued Bergman space $A^{p}(\mathbb{D}, E)$ is defined as the space of E-valued analytic functions on the unit disk such that

$$
\|f\|_{A^{p}(\mathbb{D}, E)}=\left[\int_{\mathbb{D}}\|f(z)\|_{E}^{p} d A(z)\right]^{1 / p}=\left[\int_{0}^{1} M_{p}(f, r)^{p} r d r\right]^{1 / p}<\infty
$$

where

$$
M_{p}(f, r)=\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|f\left(r e^{i t}\right)\right\|_{E}^{p} d t\right]^{1 / p}
$$

It is known that $A^{p}(\mathbb{D}, E)$ are minimal for $1 \leq p<\infty$ (see, e.g., [1]).
The E-valued Hardy space $H^{p}(\mathbb{D}, E)$ is defined as the space of E-valued analytic functions on the unit disk such that

$$
\|f\|_{H^{p}(\mathbb{D}, E)}=\sup _{0<r<1} M_{p}(f, r)<\infty .
$$

We also have the space defined at the boundary

$$
H^{p}(\mathbb{T}, E)=\left\{f \in L^{p}(\mathbb{T}, E): \hat{f}(n)=\int_{0}^{2 \pi} f\left(e^{i t}\right) e^{-i n t} \frac{d t}{2 \pi}=0, n \leq 0\right\}
$$

where $L^{p}(\mathbb{T}, E)$ stands for the functions which are p-integrable Bochner with values in E. It is not difficult to see that $H^{p}(\mathbb{T}, E)=\left(H^{p}(\mathbb{D}, E)\right)^{0}$.

It is also well known that, for $1 \leq p<\infty$,

$$
A(\mathbb{D}, E) \subset H^{\infty}(\mathbb{D}, E) \subset H^{p}(\mathbb{D}, E) \subset A^{p}(\mathbb{D}, E) \subseteq A^{1}(\mathbb{D}, E)
$$

Observe that $A(\mathbb{D}) \hat{\otimes}_{\pi} E \subset A(\mathbb{D}, E)$ and $A^{1}(\mathbb{D}, E) \subset A_{\text {weak }}^{1}(\mathbb{D}, E)$. Using that $A(\mathbb{D})=A(\mathbb{D}, \mathbb{K})$ and $A^{1}(\mathbb{D})=A^{1}(\mathbb{D}, \mathbb{K})$ are \mathcal{S}-admissible, we have that all the previous spaces of analytic functions are $\mathcal{S}(E)$-admissible.

Finally, we define the E-valued Bloch space, $\mathcal{B} \operatorname{loch}(\mathbb{D}, E)$, to be the set of E-valued holomorphic functions on the disk that verify

$$
\sup _{z \in \mathbb{D}}(1-|z|)\left\|f^{\prime}(z)\right\|_{E}<\infty
$$

It is a Banach space under the norm

$$
\|f\|_{\mathcal{B l o c h}(\mathbb{D}, E)}=\|f(0)\|_{E}+\sup _{z \in \mathbb{D}}(1-|z|)\left\|f^{\prime}(z)\right\|_{E}
$$

We will denote by $\operatorname{BMOA}(\mathbb{T}, E)$ the space of functions in $L^{1}(\mathbb{T}, E)$ with Fourier coefficients $\hat{f}(n)=0$ for $n<0$ and such that

$$
\sup \frac{1}{|I|} \int_{I}\left\|f\left(e^{i t}\right)-f_{I}\right\|_{E} \frac{d t}{2 \pi}<\infty
$$

where the supremum is taken over all intervals $I \subseteq[0,2 \pi),|I|$ is normalized I 's Lebesgue measure, and $f_{I}=\frac{1}{|I|} \int_{I} f\left(e^{i t}\right) \frac{d t}{2 \pi}$. This becomes a Banach space under the norm

$$
\|f\|_{\mathrm{BMOA}(\mathbb{T}, E)}=\|f(0)\|_{E}+\sup \frac{1}{|I|} \int_{I}\left\|f\left(e^{i t}\right)-f_{I}\right\|_{E} \frac{d t}{2 \pi} .
$$

Again we can use that

$$
A(\mathbb{D}, E) \subset \operatorname{BMOA}(\mathbb{T}, E) \subset \mathcal{B} \operatorname{loch}(\mathbb{D}, E)
$$

and $\mathcal{B} \operatorname{loch}(\mathbb{D}, E)=\mathcal{B l o c h}_{\text {weak }}(\mathbb{D}, E)$ to obtain that both spaces are $\mathcal{S}(E)$ admissible.

Remark 2.2. The spaces $X(E)$ and $X[E]$ are quite different whenever $X \subset \mathcal{H}(\mathbb{D})$ for infinite-dimensional Banach spaces E.

For instance, let $E=c_{0}$, and denote by $\left(e_{n}\right)_{n}$ the canonical basis. Consider the functions $f_{N}(z)=\sum_{n=0}^{N} e_{n} z^{n}$.

Let us analyze its norm in $H^{p}(\mathbb{D}, E)$ and $H^{p}(\mathbb{D})[E]$. We have

$$
\left\|f_{N}\right\|_{H^{p}\left(\mathbb{D}, c_{0}\right)} \leq\left\|f_{N}\right\|_{H^{\infty}\left(\mathbb{D}, c_{0}\right)}=1, \quad p \geq 1
$$

However,

$$
\begin{aligned}
\left\|f_{N}\right\|_{H^{\infty}(\mathbb{D})\left[c_{0}\right]} & =N+1 \\
\left\|f_{N}\right\|_{H^{p}(\mathbb{D})\left[c_{0}\right]} & \geq\left\|f_{N}\right\|_{H^{2}(\mathbb{D})\left[c_{0}\right]}=(N+1)^{1 / 2}, \quad 2 \leq p<\infty,
\end{aligned}
$$

and, using Hardy's inequality for functions in H^{1} (see [11]),

$$
\left\|f_{N}\right\|_{H^{p}(\mathbb{D})\left[c_{0}\right]} \geq\left\|f_{N}\right\|_{H^{1}(\mathbb{D})\left[c_{0}\right]} \geq C \sum_{n=0}^{N} \frac{1}{n+1} \geq C \log (N+1), \quad 1 \leq p<2
$$

Similarly,

$$
A^{2}(\mathbb{D})[E]=\left\{\left(x_{j}\right)_{j} \in E^{\mathbb{N}}: \sum_{j=0}^{\infty} \frac{\left\|x_{j}\right\|^{2}}{j+1}<\infty\right\}
$$

and then, for $p \geq 2$,

$$
\left\|f_{N}\right\|_{A^{p}\left(\mathbb{D}, c_{0}\right)} \leq 1, \quad\left\|f_{N}\right\|_{A^{p}(\mathbb{D})\left[c_{0}\right]} \geq C(\log (N+1))^{1 / 2}
$$

which exhibits the difference between the spaces above and the vector-valued interpretation $X[E]$.

3. Multipliers associated to bilinear maps

Now that we have introduced new classes of sequence spaces, we define a general convolution using bilinear maps, which will be the main notion in this paper.

Definition 3.1. Let E_{1}, E_{2}, and E_{3} be Banach spaces, and let $B: E_{1} \times E_{2} \longrightarrow E_{3}$ be a bounded bilinear map.

We define the B-convolution product as the continuous bilinear map $\mathcal{S}\left(E_{1}\right) \times$ $\mathcal{S}\left(E_{2}\right) \rightarrow \mathcal{S}\left(E_{3}\right)$ given by $(\lambda, f) \rightarrow \lambda *_{B} f$, where

$$
\widehat{\lambda *_{B} f}(j)=B(\hat{\lambda}(j), \hat{f}(j)), \quad j \geq 0 .
$$

In particular, our results in the sequel could be applied to the following bilinear maps:

- For $B_{0}: E \times \mathbb{K} \longrightarrow E,(x, \alpha) \mapsto \alpha x$, we get

$$
\lambda *_{B_{0}} f=\left(\alpha_{j} x_{j}\right)_{j} .
$$

- For $B_{\mathcal{D}}: E^{\prime} \times E \longrightarrow \mathbb{K},\left(x^{\prime}, x\right) \mapsto\left\langle x^{\prime}, x\right\rangle$, we get

$$
\lambda *_{\mathcal{D}} f=\left(\left\langle x_{j}^{\prime}, x_{j}\right\rangle\right)_{j} .
$$

- For $B_{\mathcal{L}}: \mathcal{L}\left(E_{1}, E_{2}\right) \times E_{1} \longrightarrow E_{2},(T, x) \mapsto T(x)$, we get

$$
\lambda *_{\mathcal{L}} f=\left(T_{j}\left(x_{j}\right)\right)_{j}
$$

- For $B_{\pi}: E_{1} \times E_{2} \longrightarrow E_{1} \hat{\otimes}_{\pi} E_{2},(x, y) \mapsto x \otimes y$, we get

$$
f *_{\pi} g=\left(x_{j} \otimes y_{j}\right)_{j}
$$

- For a Banach algebra (A, \cdot) and $P: A \times A \longrightarrow A,(a, b) \mapsto a b$, we get

$$
\lambda *_{P} f=\left(a_{j} b_{j}\right)_{j} .
$$

Associated to a bilinear convolution we have the spaces of multipliers.
Definition 3.2. Let E_{1}, E_{2}, and E be Banach spaces, and let $B: E \times E_{1} \longrightarrow E_{2}$ be a bounded bilinear map. Let $X_{E_{1}}$ and $X_{E_{2}}$ be $S\left(E_{1}\right)$ - and $S\left(E_{2}\right)$-admissible Banach spaces, respectively. We define the multipliers space between $X_{E_{1}}$ and $X_{E_{2}}$ through the bilinear map B as

$$
\left(X_{E_{1}}, X_{E_{2}}\right)_{B}=\left\{\lambda \in \mathcal{S}(E): \lambda *_{B} f \in X_{E_{2}} \forall f \in X_{E_{1}}\right\}
$$

with the norm

$$
\|\lambda\|_{\left(X_{E_{1}}, X_{E_{2}}\right)_{B}}=\sup _{\|f\|_{X_{E_{1}}} \leq 1}\left\|\lambda *_{B} f\right\|_{X_{E_{2}}}
$$

In the particular case where $E=\mathcal{L}\left(E_{1}, E_{2}\right)$ and $B=B_{\mathcal{L}}$, we simply write $\left(X_{E_{1}}, X_{E_{2}}\right)$.

It is easy to prove that $\|\cdot\|_{\left(X_{E_{1}}, X_{E_{2}}\right)_{B}}$ is a norm on $\left(X_{E_{1}}, X_{E_{2}}\right)_{B}$ whenever B satisfies the condition

$$
B(e, x)=0, \quad \forall x \in E_{1} \quad \Longrightarrow \quad e=0
$$

In other words, the mapping $E \rightarrow \mathcal{L}\left(E_{1}, E_{2}\right)$, given by $e \rightarrow T_{e}$ where $T_{e}(x)=$ $B(e, x)$, is injective.

Theorem 3.3. Let E_{1}, E_{2}, and E be Banach spaces, and let $B: E \times E_{1} \longrightarrow E_{2}$ be a bounded bilinear map for which there exists $C>0$ such that

$$
\begin{equation*}
\|e\|_{E} \leq C \sup _{\|x\|_{E_{1}}=1}\|B(e, x)\|_{E_{2}}, \quad e \in E . \tag{3.1}
\end{equation*}
$$

If $X_{E_{1}}$ and $X_{E_{2}}$ are $\mathcal{S}\left(E_{1}\right), \mathcal{S}\left(E_{2}\right)$-admissible Banach spaces, respectively, then $\left(X_{E_{1}}, X_{E_{2}}\right)_{B}$ is $\mathcal{S}(E)$-admissible.

Proof. We shall consider first the case where $E=\mathcal{L}\left(E_{1}, E_{2}\right)$ and $B=B_{\mathcal{L}}$.
Let $\lambda=\left(T_{j}\right)_{j} \in\left(X_{E_{1}}, X_{E_{2}}\right)$ and $j \geq 0$. For each $x \in E_{1}$, using the admissibility of $X_{E_{1}}$ and $X_{E_{2}}$, we have

$$
\begin{aligned}
\left\|T_{j}(x)\right\|_{E_{2}} & \leq \pi_{j}\left(X_{E_{2}}\right)\left\|T_{j}(x) e_{j}\right\|_{X_{E_{2}}} \\
& =\pi_{j}\left(X_{E_{2}}\right)\left\|\lambda *_{\mathcal{L}} x e_{j}\right\|_{X_{E_{2}}} \\
& \leq \pi_{j}\left(X_{E_{2}}\right)\|\lambda\|_{\left(X_{E_{1}}, X_{E_{2}}\right)}\left\|x e_{j}\right\|_{X_{E_{1}}} \\
& \leq \pi_{j}\left(X_{E_{2}}\right) i_{j}\left(X_{E_{1}}\right)\|\lambda\|_{\left(X_{E_{1}}, X_{E_{2}}\right)}\|x\|_{E_{1}} .
\end{aligned}
$$

This gives $\left(X_{E_{1}}, X_{E_{2}}\right) \hookrightarrow \mathcal{S}\left(\mathcal{L}\left(E_{1}, E_{2}\right)\right)$ with continuity.
On the other hand, if $p \in \mathcal{P}\left(\mathcal{L}\left(E_{1}, E_{2}\right)\right)$ and $f \in X_{E_{1}}$, we have $p *_{\mathcal{L}} f \in \mathcal{P}\left(E_{2}\right) \subset$ $X_{E_{2}}$. Hence $p \in\left(X_{E_{1}}, X_{E_{2}}\right)$. For each $j \geq 0$ and $T \in \mathcal{L}\left(E_{1}, E_{2}\right)$, we have to show that $\left\|T e_{j}\right\|_{\left(X_{E_{1}}, X_{E_{2}}\right)} \leq C_{j}\|T\|$. Now given $f \in X_{E_{1}}$, again by the admissibility of $X_{E_{1}}$ and $X_{E_{2}}$,

$$
\begin{aligned}
\left\|T e_{j} *_{\mathcal{L}} f\right\|_{X_{E_{2}}} & =\left\|T(\hat{f}(j)) e_{j}\right\|_{X_{E_{2}}} \\
& \leq i_{j}\left(X_{E_{2}}\right)\|T(\hat{f}(j))\|_{E_{2}} \\
& \leq i_{j}\left(X_{E_{2}}\right)\|T\|\|\hat{f}(j)\|_{E_{1}} \\
& \leq i_{j}\left(X_{E_{2}}\right) \pi_{j}\left(X_{E_{1}}\right)\|T\|\|f\|_{X_{E_{1}}} .
\end{aligned}
$$

Therefore $C_{j}=i_{j}\left(X_{E_{2}}\right) \pi_{j}\left(X_{E_{1}}\right)$.
Let us now show the completeness of $\left(X_{E_{1}}, X_{E_{2}}\right)$. Let $\left(\lambda_{n}\right)_{n} \subset\left(X_{E_{1}}, X_{E_{2}}\right)$ be a Cauchy sequence of multipliers. Since the sequence of operators $\Lambda_{n}(f)=\lambda_{n} *_{\mathcal{L}} f$ is a Cauchy sequence in $\mathcal{L}\left(X_{E_{1}}, X_{E_{2}}\right)$, we define $\Lambda \in \mathcal{L}\left(X_{E_{1}}, X_{E_{2}}\right)$ to be its limit in the norm. Therefore

$$
\left\|\Lambda-\Lambda_{n}\right\| \rightarrow 0 \quad \Rightarrow \quad\left\|\Lambda(f)-\Lambda_{n}(f)\right\|_{X_{E_{2}}} \rightarrow 0 \quad \Rightarrow \quad \lambda_{n} *_{\mathcal{L}} f \rightarrow \Lambda(f) \in \mathcal{S}\left(E_{2}\right) .
$$

On the other hand, we know that $\left(X_{E_{1}}, X_{E_{2}}\right) \hookrightarrow \mathcal{S}\left(\mathcal{L}\left(E_{1}, E_{2}\right)\right)$, and then there exists $\lambda \in \mathcal{S}\left(\mathcal{L}\left(E_{1}, E_{2}\right)\right)$ such that

$$
\lambda_{n} *_{\mathcal{L}} f \rightarrow \lambda *_{\mathcal{L}} f
$$

in $\mathcal{S}\left(\mathcal{L}\left(E_{1}, E_{2}\right)\right)$. Hence, necessarily, $\Lambda(f)=\lambda * \mathcal{L} f$.
For the general case, assumption (3.1) allows us to use Remark 2.1 where the isomorphism is given by $e \in E \rightarrow T_{e} \in \mathcal{L}\left(E_{1}, E_{2}\right)$ where $T_{e}(x)=B(e, x)$ for each $e \in E$ and $x \in E_{1}$. Just note that

$$
\left(X_{E_{1}}, X_{E_{2}}\right)_{B}=\left\{(\hat{\lambda}(j))_{j} \in E^{\mathbb{N}}:\left(T_{\hat{\lambda}(j)}\right)_{j} \in\left(X_{E_{1}}, X_{E_{2}}\right)\right\} .
$$

Let us consider the particular cases $B=B_{0}$ and $B=B_{\mathcal{D}}$.

Definition 3.4. Let X_{E} be $\mathcal{S}(E)$-admissible. We define

$$
X_{E}^{S}=\left\{f=\left(x_{j}\right)_{j} \in \mathcal{S}(E):\left(\alpha_{j} x_{j}\right)_{j} \in X_{E}, \forall\left(\alpha_{j}\right)_{j} \in \ell^{\infty}\right\}
$$

with the norm

$$
\left\|\left(x_{j}\right)_{j}\right\|_{X_{E}^{S}}=\sup _{\left\|\left(\alpha_{j}\right)_{j}\right\|_{\infty}=1}\left\|\left(\alpha_{j} x_{j}\right)_{j}\right\|_{X_{E}}
$$

and

$$
X_{E}^{K}=\left\{f=\left(x_{j}^{\prime}\right)_{j} \in \mathcal{S}\left(E^{\prime}\right): \sum_{j}\left|\left\langle x_{j}^{\prime}, x_{j}\right\rangle\right|<\infty, \forall\left(x_{j}\right)_{j} \in X_{E}\right\}
$$

where

$$
\left\|\left(x_{j}\right)_{j}\right\|_{X_{E}^{K}}=\sup _{\left\|\left(x_{j}\right)_{j}\right\|_{X_{E}}=1} \sum_{j}\left|\left\langle x_{j}^{\prime}, x_{j}\right\rangle\right| .
$$

We also denote

$$
X_{E}^{K K}=\left\{f=\left(x_{j}\right)_{j} \in \mathcal{S}(E): \sum_{j}\left|\left\langle x_{j}^{\prime}, x_{j}\right\rangle\right|<\infty, \forall\left(x_{j}^{\prime}\right)_{j} \in X_{E}^{K}\right\} .
$$

In general we have

$$
X_{E}^{S} \subseteq X_{E} \subseteq X_{E}^{K K}
$$

One basic concept in the theory of multipliers is the notion of solid space (see [3]). We have the analogue notion in our setting.

Definition 3.5. We say that $X_{E} \subset \mathcal{S}(E)$ is $\mathcal{S}(E)$-solid (or simply solid) whenever X_{E} is an $\mathcal{S}(E)$-admissible space verifying $\left(\alpha_{j} \hat{f}(j)\right)_{j} \in X_{E}$ for $f \in X_{E}$ and $\left(\alpha_{j}\right)_{j} \in$ ℓ^{∞}; that is to say $X_{E}=X_{E}^{S}$.

Using that $\left(\ell^{\infty}, X_{E}\right)_{B_{0}}=X_{E}^{S}$ and $X_{E}^{K}=\left(X_{E}, \ell^{1}\right)_{B_{\mathcal{D}}}$ together with Theorem 3.3, we obtain the following corollary.

Corollary 3.6. Let X_{E} be $\mathcal{S}(E)$-admissible. Then X_{E}^{S} and X_{E}^{K} are $\mathcal{S}(E)$-solid and $\mathcal{S}\left(E^{\prime}\right)$-solid, respectively.

Remark 3.1. Let us collect here some observations of solid spaces.
(a) $X[E], X_{\text {weak }}(E)$, and $X \hat{\otimes}_{\pi} E$ are $\mathcal{S}(E)$-solid if and only if X is a solid space.
(b) $\operatorname{Rad}(E)$ is a $\mathcal{S}(E)$-solid space. (This follows from Kahane's contraction principle [9, Contraction Principle 12.2, p. 231].)
(c) Neither $H^{p}(\mathbb{D}, E)$ nor $A^{p}(\mathbb{D}, E)$ are $\mathcal{S}(E)$-solid unless $p=2$.

Assuming that they are $\mathcal{S}(E)$-solid, and restricting to $\phi(z) x$ for $\phi \in \mathcal{H}(\mathbb{D})$ and $x \in E$, we will have that also H^{p} or A^{p} must be solid for $p \neq 2$, which is not the case.

Proposition 3.7. Let X be \mathcal{S}-solid, and let E be a Banach space. Then
(i) $\left(X \hat{\otimes}_{\pi} E\right)^{K}=\left(X^{K}\right)_{\text {weak }}\left(E^{\prime}\right)$;
(ii) $(X[E])^{K}=X^{K}\left[E^{\prime}\right]$.

Proof. (i) We first claim that $\left(x_{j}^{\prime}\right)_{j} \in\left(X^{K}\right)_{\text {weak }}\left(E^{\prime}\right)$ if and only if $\left(\left\langle x_{j}^{\prime}, x\right\rangle\right)_{j} \in X^{K}$ for all $x \in E$. We only need to see that if

$$
\sup _{\|x\|_{E}=1}\left\|\left(\left\langle x_{j}^{\prime}, x\right\rangle\right)_{j}\right\|_{X^{K}}<\infty
$$

then $\left(\left\langle x^{\prime \prime}, x_{j}^{\prime}\right\rangle\right)_{j} \in X^{K}$ for $x^{\prime \prime} \in E^{\prime \prime}$.
For each $\left(\alpha_{j}\right)_{j} \in X,\left\|\left(\alpha_{j}\right)_{j}\right\|_{X} \leq 1$, and $N \in \mathbb{N}$, there are ϵ_{j} with $\left|\epsilon_{j}\right|=1$,

$$
\begin{aligned}
\sum_{j=0}^{N}\left|\left\langle x^{\prime \prime}, x_{j}^{\prime}\right\rangle \alpha_{j}\right| & =\left|\sum_{j=0}^{N}\left\langle x^{\prime \prime}, x_{j}^{\prime}\right\rangle \alpha_{j} \epsilon_{j}\right| \\
& =\left|\left\langle x^{\prime \prime}, \sum_{j=0}^{N} x_{j}^{\prime} \alpha_{j} \epsilon_{j}\right\rangle\right| \\
& \leq\left\|x^{\prime \prime}\right\|_{E^{\prime \prime}}\left\|\sum_{j=0}^{N} x_{j}^{\prime} \alpha_{j} \epsilon_{j}\right\|_{E^{\prime}} \\
& \leq\left\|x^{\prime \prime}\right\|_{E^{\prime \prime}} \sup _{\|x\|_{E}=1} \sum_{j=0}^{N}\left|\left\langle x_{j}^{\prime}, x\right\rangle \alpha_{j}\right| \\
& \leq\left\|x^{\prime \prime}\right\|_{E^{\prime \prime}} \sup _{\|x\|_{E}=1}\left\|\left(\left\langle x_{j}^{\prime}, x\right\rangle\right)_{j}\right\|_{X^{K}}
\end{aligned}
$$

This concludes the claim.
We show first that $\left(X \hat{\otimes}_{\pi} E\right)^{K} \subseteq\left(X^{K}\right)_{\text {weak }}\left(E^{\prime}\right)$. Take $\lambda=\left(x_{j}^{\prime}\right)_{j} \in\left(X \hat{\otimes}_{\pi} E\right)^{K}$, $x \in E$, and $\left(\alpha_{j}\right)_{j} \in X$. Note that

$$
\begin{equation*}
\lambda *_{\mathcal{D}}\left(\left(\alpha_{j}\right) \otimes x\right)=\left(\left\langle x_{j}^{\prime}, x\right\rangle \alpha_{j}\right)_{j} \in \ell^{1} \tag{3.2}
\end{equation*}
$$

and then we obtain $\left(x_{j}^{\prime}\right)_{j} \in\left(X^{K}\right)_{\text {weak }}\left(E^{\prime}\right)$ with $\left\|\left(x_{j}^{\prime}\right)_{j}\right\|_{\left(X^{K}\right)_{\text {weak }}\left(E^{\prime}\right)} \leq\|\lambda\|$ from the previous result.

Assume now that $\lambda=\left(x_{j}^{\prime}\right)_{j} \in\left(X^{K}\right)_{\text {weak }}\left(E^{\prime}\right)$, and let us show that $\lambda \in$ $\left(X \hat{\otimes}_{\pi} E\right)^{K}$. If $\epsilon>0$ and $f=\sum_{n} f_{n} \otimes x_{n} \in X \hat{\otimes}_{\pi} E$ with $\hat{f}_{n}(j)=\alpha_{j}^{n}$ and $\sum_{n}\left\|f_{n}\right\|_{X}\left\|x_{n}\right\|_{E}<\|f\|_{X \hat{\otimes}_{\pi} E}+\epsilon$, then we have

$$
\begin{aligned}
\sum_{j}\left|\widehat{\lambda *_{\mathcal{D}} f}(j)\right| & \leq \sum_{j} \sum_{n}\left|\left\langle x_{j}^{\prime}, x_{n}\right\rangle \alpha_{j}^{n}\right| \\
& =\sum_{n} \sum_{j}\left|\left\langle x_{j}^{\prime}, x_{n}\right\rangle \alpha_{j}^{n}\right| \\
& \leq \sum_{n}\left\|x_{n}\right\|_{E}\left\|\left(\left\langle x_{j}^{\prime}, \frac{x_{n}}{\left\|x_{n}\right\|}\right\rangle\right)_{j}\right\|_{X^{K}}\left\|f_{n}\right\|_{X} \\
& \leq\left\|\left(x_{j}^{\prime}\right)_{j}\right\|_{\left(X^{K}\right)_{\text {weak }}\left(E^{\prime}\right)}\left(\sum_{n}\left\|x_{n}\right\|_{E}\left\|f_{n}\right\|_{X}\right) \\
& \leq\left\|\left(x_{j}^{\prime}\right)_{j}\right\|_{\left(X^{K}\right)_{\text {weak }}\left(E^{\prime}\right)}\left(\|f\|_{X \hat{\otimes}_{\pi} E}+\epsilon\right) .
\end{aligned}
$$

(ii) We first notice that

$$
\sum_{j}\left|\left\langle x_{j}^{\prime}, x_{j}\right\rangle\right| \leq \sum_{j}\left\|x_{j}^{\prime}\right\|_{E^{\prime}}\left\|x_{j}\right\|_{E} \leq\left\|\left(\left\|x_{j}^{\prime}\right\|_{E^{\prime}}\right)_{j}\right\|_{X^{K}}\left\|\left(\left\|x_{j}\right\|_{E}\right)_{j}\right\|_{X}
$$

This shows that $X^{K}\left[E^{\prime}\right] \subseteq(X[E])^{K}$.
To see the other inclusion, let $\lambda=\left(x_{j}^{\prime}\right)_{j} \in(X[E])^{K}$ and show that $\left(\left\|x_{j}^{\prime}\right\|_{E^{\prime}}\right)_{j \geq 0} \in$ X^{K}. Fix $\left(\alpha_{j}\right)_{j} \in X, \epsilon>0$, and $j \geq 0$. Select $x_{j} \in E$ with $\left\|x_{j}\right\|_{E}=1$ and $\left\|x_{j}^{\prime}\right\|_{E^{\prime}}=\left|\left\langle x_{j}^{\prime}, x_{j}\right\rangle\right|+\epsilon 2^{-(j+1)}\left|\alpha_{j}\right|^{-1}$ for $\alpha_{j} \neq 0$. Consider now $f=\left(\alpha_{j} x_{j}\right)_{j} \in X[E]$ and observe that, using that X is solid, we get

$$
\begin{aligned}
\sum_{j}\left\|x_{j}^{\prime}\right\|_{E^{\prime}}\left|\alpha_{j}\right| & =\sum_{j}\left|\left\langle x_{j}^{\prime}, x_{j}\right\rangle\right|\left|\alpha_{j}\right|+\epsilon \\
& =\left\|\lambda *_{\mathcal{D}} f\right\|_{\ell^{1}}+\epsilon \\
& \leq\|\lambda\|_{(X[E])^{K}}\|f\|_{X[E]}+\epsilon \\
& \leq\|\lambda\|_{(X[E])^{K}}\left\|\left(\alpha_{j}\right)_{j}\right\|_{X}+\epsilon .
\end{aligned}
$$

This finishes the proof.
Remark 3.2. In general, $X^{K} \hat{\otimes}_{\pi} E^{\prime} \subseteq\left(X_{\text {weak }}(E)\right)^{K}$.
Indeed, for each $g=\left(\beta_{j}\right)_{j} \in X^{K}, x^{\prime} \in E^{\prime}$, and $f=\left(x_{j}\right)_{j} \in X_{\text {weak }}(E)$, we have that

$$
\begin{equation*}
\left(g \otimes x^{\prime}\right) *_{\mathcal{D}} f=\left(\left\langle x^{\prime}, x_{j}\right\rangle \beta_{j}\right)_{j} \tag{3.3}
\end{equation*}
$$

which satisfies

$$
\sum_{j}\left|\left\langle x^{\prime}, x_{j}\right\rangle \beta_{j}\right| \leq\|g\|_{X^{K}}\left\|x^{\prime}\right\|_{E^{\prime}}\|f\|_{X_{\text {weak }}(E)},
$$

and then

$$
\left\|g \otimes x^{\prime}\right\|_{\left(X_{\text {weak }}(E)\right)^{K}} \leq\|g\|_{X^{K}}\left\|x^{\prime}\right\|_{E^{\prime}}
$$

Now we extend using linearity and density to obtain $X^{K} \hat{\otimes}_{\pi} E^{\prime} \subseteq\left(X_{\text {weak }}(E)\right)^{K}$.
For the case $X=\ell^{p}, 1<p<\infty$, it has been shown (see [8], [13], [2]) that

$$
\left(\ell_{\text {weak }}^{p}(E)\right)^{K}=\ell^{p^{\prime}} \hat{\otimes}_{\pi} E^{\prime}
$$

Theorem 3.8. Let E_{1}, E_{2}, and E be Banach spaces, and let $B: E \times E_{1} \longrightarrow E_{2}$ be a bounded bilinear map satisfying (3.1).

Define $B_{*}: E \times E_{2}^{\prime} \rightarrow E_{1}^{\prime}$ given by

$$
\left\langle B_{*}\left(e, y^{\prime}\right), x\right\rangle=\left\langle y^{\prime}, B(e, x)\right\rangle, \quad e \in E, x \in E_{1}, y^{\prime} \in E_{2}^{\prime}
$$

If $X_{E_{1}}$ and $X_{E_{2}}$ are admissible spaces and $X_{E_{2}}=X_{E_{2}}^{K K}$, then

$$
\left(X_{E_{1}}, X_{E_{2}}\right)_{B}=\left(X_{E_{2}}^{K}, X_{E_{1}}^{K}\right)_{B_{*}}
$$

Proof. From the definition we can write, for $\lambda \in \mathcal{S}(E), f \in \mathcal{S}\left(E_{1}\right), g \in \mathcal{S}\left(E_{2}^{\prime}\right)$, and $j \geq 0$,

$$
\left\langle\hat{g}(j), \widehat{\lambda *_{B} f}(j)\right\rangle=\left\langle\widehat{\lambda *_{B_{*}}} g(j), \hat{f}(j)\right\rangle .
$$

Assume now that $\lambda \in\left(X_{E_{1}}, X_{E_{2}}\right)_{B}$ and $g \in X_{E_{2}}^{K}$. We have

$$
\begin{aligned}
\left\|\lambda *_{B_{*}} g\right\|_{X_{E_{1}}^{K}} & =\sup \left\{\sum_{j}\left|\left\langle\widehat{\lambda *_{B_{*}}} g(j), \hat{f}(j)\right\rangle\right|:\|f\|_{X_{E_{1}}} \leq 1\right\} \\
& =\sup \left\{\sum_{j}\left|\left\langle\hat{g}(j), \widehat{\lambda *_{B}} f(j)\right\rangle\right|:\|f\|_{X_{E_{1}}} \leq 1\right\} \\
& \leq\|g\|_{X_{E_{2}}^{K}} \sup \left\{\left\|\left(\lambda *_{B} f\right)\right\|_{X_{E_{2}}}:\|f\|_{X_{E_{1}}} \leq 1\right\} \\
& \leq\|\lambda\|_{\left(X_{E_{1}}, X_{E_{2}}\right)_{B}}\|g\|_{X_{E_{2}}^{K}}
\end{aligned}
$$

Using the assumption $X_{E_{2}}=X_{E_{2}}^{K K}$, one can argue as above for $\lambda \in\left(X_{E_{2}}^{K}, X_{E_{1}}^{K}\right)_{B_{*}}$ and $f \in X_{E_{1}}$ to obtain

$$
\begin{aligned}
\left\|\lambda *_{B} f\right\|_{X_{E_{2}}} & =\sup \left\{\sum_{j}\left|\left\langle\hat{g}(j), \widehat{\lambda *_{B}}(j)\right\rangle\right|:\|g\|_{X_{E_{2}}^{K}} \leq 1\right\} \\
& =\sup \left\{\sum_{j} \mid\left\langle\widehat{\lambda *_{B_{*}}} g(j), \hat{f}(j)\right|:\|g\|_{X_{E_{2}}^{K}} \leq 1\right\} \\
& \leq\|f\|_{X_{E_{1}}} \sup \left\{\left\|\left(\lambda *_{B_{*}} g\right)\right\|_{X_{E_{1}}^{K}}:\|g\|_{X_{E_{2}}^{K}} \leq 1\right\} \\
& \leq\|\lambda\|_{\left(X_{E_{2}}^{K}, X_{E_{1}}^{K}\right)_{B_{*}}}\|f\|_{X_{E_{1}}}
\end{aligned}
$$

4. The B-Hadamard tensor product

Let us now generate a new $\mathcal{S}(E)$-admissible space using bilinear maps and tensor products.
Definition 4.1. Let E_{1}, E_{2}, and E_{3} be Banach spaces, and let $B: E_{1} \times E_{2} \longrightarrow E_{3}$ be a bounded bilinear map. Let $X_{E_{1}}, X_{E_{2}}$ be $\mathcal{S}\left(E_{1}\right), \mathcal{S}\left(E_{2}\right)$-admissible, respectively. We define the Hadamard projective tensor product $X_{E_{1}} \circledast_{B} X_{E_{2}}$ as the space of elements $h \in \mathcal{S}\left(E_{3}\right)$ that can be represented as

$$
h=\sum_{n} f_{n} *_{B} g_{n}
$$

where the convergence of $\sum_{n} f_{n} *_{B} g_{n}$ is considered in $\mathcal{S}\left(E_{3}\right)$, being $f_{n} \in X_{E_{1}}, g_{n} \in$ $X_{E_{2}}$, and

$$
\sum_{n}\left\|f_{n}\right\|_{X_{E_{1}}}\left\|g_{n}\right\|_{X_{E_{2}}}<\infty
$$

The particular case $E_{3}=E_{1} \hat{\otimes}_{\pi} E_{2}$ and $B_{\pi}: E_{1} \times E_{2} \rightarrow E_{3}$ will be simply denoted as $X_{E_{1}} \circledast X_{E_{2}}$

Proposition 4.2. Let E_{1}, E_{2}, and E_{3} be Banach spaces, and let $B: E_{1} \times E_{2} \longrightarrow$ E_{3} be a bounded bilinear map. Let $h \in X_{E_{1}} \circledast_{B} X_{E_{2}}$, and define

$$
\|h\|_{B}=\inf \sum_{n}\left\|f_{n}\right\|_{X_{E_{1}}}\left\|g_{n}\right\|_{X_{E_{2}}}
$$

where the infimum is taken over all possible representations of $h=\sum_{n} f_{n} *_{B} g_{n}$.
Then $\left(X_{E_{1}} \circledast_{B} X_{E_{2}},\|\cdot\|_{B}\right)$ is a Banach space.

Proof. Let $\|h\|_{B}=0$ and $\epsilon>0$. Thus there exists a representation $h=\sum_{n} f_{n} *_{B}$ g_{n} such that $\sum_{n}\left\|f_{n}\right\|_{X_{E_{1}}}\left\|g_{n}\right\|_{X_{E_{2}}}<\epsilon$. Since the series converges in $\mathcal{S}\left(E_{3}\right)$ we conclude that $\hat{h}(j)=\sum_{n} B\left(\hat{f}_{n}(j), \hat{g}_{n}(j)\right)$. Using the admissibility of $X_{E_{1}}$ and $X_{E_{2}}$,

$$
\begin{aligned}
\|\hat{h}(j)\|_{E_{3}} & \leq \sum_{n}\left\|B\left(\hat{f}_{n}(j), \hat{g}_{n}(j)\right)\right\|_{E_{3}} \\
& \leq\|B\| \sum_{n}\left\|\hat{f}_{n}(j)\right\|_{E_{1}}\left\|\hat{g}_{n}(j)\right\|_{E_{2}} \\
& \leq\|B\| \pi_{j}\left(X_{E_{1}}\right) \pi_{j}\left(X_{E_{2}}\right) \sum_{n}\left\|\hat{f}_{n}\right\|_{X_{E_{1}}}\left\|\hat{g}_{n}\right\|_{X_{E_{2}}}<\epsilon
\end{aligned}
$$

Consequently, $\hat{h}(j)=0$ for all $j \geq 0$.
Of course, $\|\alpha h\|_{B}=|\alpha|\|h\|_{B}$ for any $\alpha \in \mathbb{K}$ and $h \in X_{E_{1}} \circledast_{B} X_{E_{2}}$.
The triangle inequality follows using that if $h_{1}=\left(f_{n}^{1} *_{B} g_{n}^{1}\right)_{n}$ and $h_{2}=\left(f_{n}^{2} *_{B} g_{n}^{2}\right)_{n}$ such that

$$
\sum_{n}\left\|f_{n}^{i}\right\|_{X_{E_{1}}}\left\|g_{n}^{i}\right\|_{X_{E_{2}}}<\left\|h_{i}\right\|_{B}+\frac{\epsilon}{2}, \quad i=1,2
$$

then $h_{1}+h_{2}=\sum_{n} f_{n}^{1} *_{B} g_{n}^{1}+\sum_{m} f_{m}^{2} *_{B} g_{m}^{2}$ and then

$$
\left\|h_{1}+h_{2}\right\|_{B} \leq \sum_{n}\left\|f_{n}^{1}\right\|_{X_{E_{1}}}\left\|g_{n}^{1}\right\|_{X_{E_{2}}}+\sum_{m}\left\|f_{m}^{2}\right\|_{X_{E_{1}}}\left\|g_{m}^{2}\right\|_{X_{E_{2}}}<\left\|h_{1}\right\|_{B}+\left\|h_{2}\right\|_{B}+\epsilon .
$$

Finally, let us see that $X_{E_{1}} \circledast_{B} X_{E_{2}}$ is complete. Let $\sum_{n} h_{n}$ be an absolute convergent series in $X_{E_{1}} \circledast_{B} X_{E_{2}}$ with $h_{n} \in X_{E_{1}} \circledast_{B} X_{E_{2}}$. For each $n \in \mathbb{N}$ select a decomposition $h_{n}(z)=\sum_{k} f_{k}^{n} *_{B} g_{k}^{n}$ such that

$$
\sum_{k}\left\|f_{k}^{n}\right\|_{X_{E_{1}}}\left\|g_{k}^{n}\right\|_{X_{E_{2}}}<2\left\|h_{n}\right\|_{B}
$$

Let us now show that $\sum_{n} h_{n}=\sum_{n} \sum_{k} f_{k}^{n} *_{B} g_{k}^{n}$ in $\mathcal{S}\left(E_{3}\right)$. Indeed, for each $j \geq 0$, we have

$$
\begin{aligned}
\sum_{n} \sum_{k}\left\|B\left(\widehat{f_{k}^{n}}(j), \widehat{g_{k}^{n}}(j)\right)\right\|_{E_{3}} & \leq\|B\| \pi_{j}\left(X_{E_{1}}\right) \pi_{j}\left(X_{E_{2}}\right) \sum_{n} \sum_{k}\left\|f_{k}^{n}\right\|_{X_{E_{1}}}\left\|g_{k}^{n}\right\|_{X_{E_{2}}} \\
& <2\|B\| \pi_{j}\left(X_{E_{1}}\right) \pi_{j}\left(X_{E_{2}}\right) \sum_{n}\left\|h_{n}\right\|_{B}
\end{aligned}
$$

and since E_{3} is complete we get the result.
Moreover, $h=\sum_{n} h_{n} \in X_{E_{1}} \circledast_{B} X_{E_{2}}$ because $\sum_{n} \sum_{k}\left\|f_{k}^{n}\right\|_{X_{E_{1}}}\left\|g_{k}^{n}\right\|_{X_{E_{2}}}<\infty$. Now use that

$$
\left\|\sum_{n=N}^{\infty} h_{n}\right\|_{B} \leq \sum_{n=N}^{\infty} \sum_{k}^{\infty}\left\|f_{k}^{n}\right\|_{X_{E_{1}}}\left\|g_{k}^{n}\right\|_{X_{E_{2}}}<2 \sum_{n=N}^{\infty}\left\|h_{n}\right\|_{B}
$$

to conclude that the series $\sum_{n} h_{n}$ converges to h in $X_{E_{1}} \circledast_{B} X_{E_{2}}$.
Remark 4.1. If $h=\sum_{n} f_{n} *_{\pi} g_{n} \in X_{E_{1}} \circledast_{B} X_{E_{2}}$, then $\sum_{n}\left\|f_{n} *_{B} g_{n}\right\|_{B}<\infty$ and $h=\sum_{n} f_{n} *_{B} g_{n}$ converges in $X_{E_{1}} \circledast_{B} X_{E_{2}}$.

Indeed, simply use that

$$
\left\|f *_{B} g\right\|_{B} \leq\|f\|_{X_{E_{1}}}\|g\|_{X_{E_{2}}}
$$

for $f \in X_{E_{1}}$ and $g \in X_{E_{2}}$ and that, for $M>N$,

$$
\left\|\sum_{n=N}^{M} f_{n} *_{B} g_{n}\right\|_{B} \leq \sum_{n=N}^{M}\left\|f_{n} *_{B} g_{n}\right\|_{B} \leq \sum_{n=N}^{M}\left\|f_{n}\right\|_{X_{E_{1}}}\left\|g_{n}\right\|_{X_{E_{2}}}
$$

Theorem 4.3. Let E_{1}, E_{2}, and E be Banach spaces, and let $B: E_{1} \times E_{2} \longrightarrow E$ be a bounded bilinear map satisfying that there exists $C>0$ such that for each $e \in E$ there exists $\left(x_{n}, y_{n}\right) \in E_{1} \times E_{2}$ such that

$$
\begin{equation*}
e=\sum_{n} B\left(x_{n}, y_{n}\right), \quad \sum_{n}\left\|x_{n}\right\|_{E_{1}}\left\|y_{n}\right\|_{E_{2}} \leq C\|e\|_{E} . \tag{4.1}
\end{equation*}
$$

If $X_{E_{1}}$ and $X_{E_{2}}$ are admissible spaces, then $X_{E_{1}} \circledast_{B} X_{E_{2}}$ is $\mathcal{S}(E)$-admissible.
In particular, $X_{E_{1}} \circledast X_{E_{2}}$ is admissible.
Proof. We show first that $X_{E_{1}} \circledast_{B} X_{E_{2}} \subset \mathcal{S}(E)$ with continuity. For $\epsilon>0$ we can find a representation $h=\sum_{n} f_{n} *_{B} g_{n}$ such that $\sum_{n}\left\|f_{n}\right\|_{X_{E_{1}}}\left\|g_{n}\right\|_{X_{E_{2}}}<\|h\|_{B}+\epsilon$. Therefore, for each $j \geq 0$,

$$
\begin{aligned}
\|\hat{h}(j)\|_{E} & \leq \sum_{n}\left\|B\left(\hat{f}_{n}(j), \hat{g}_{n}(j)\right)\right\|_{E} \\
& \leq\|B\| \sum_{n}\left\|\hat{f}_{n}(j)\right\|_{E_{1}}\left\|\hat{g}_{n}(j)\right\|_{E_{2}} \\
& \leq\|B\| \pi_{j}\left(X_{E_{1}}\right) \pi_{j}\left(X_{E_{2}}\right) \sum_{n}\left\|f_{n}\right\|_{X_{E_{1}}}\left\|g_{n}\right\|_{X_{E_{2}}} \leq C_{j}\|h\|_{B}+\epsilon
\end{aligned}
$$

To show that $\mathcal{P}(E) \subset X_{E_{1}} \circledast_{B} X_{E_{2}}$, it suffices to see that $e e_{j} \in X_{E_{1}} \circledast_{B} X_{E_{2}}$ for each $j \geq 0$ and $e \in E$. Now use condition (4.1) to write $e=\sum_{n} B\left(x_{n}, y_{n}\right) \in E$, and therefore

$$
e e_{j}=\sum_{n}\left(x_{n} e_{j}\right) *_{B}\left(y_{n} e_{j}\right)
$$

and

$$
\sum_{n}\left\|x_{n} e_{j}\right\|_{X_{E_{1}}}\left\|y_{n} e_{j}\right\|_{X_{E_{2}}} \leq i_{j}\left(X_{E_{1}}\right) i_{j}\left(X_{E_{2}}\right) \sum_{n}\left\|x_{n}\right\|_{E_{1}}\left\|y_{n}\right\|_{E_{2}} \leq C_{j}\|e\|_{E}
$$

Hence $e e_{j} \in X_{E_{1}} \circledast_{B} X_{E_{2}}$ and $\left\|e e_{j}\right\|_{B} \leq C i_{j}\left(X_{E_{1}}\right) i_{j}\left(X_{E_{2}}\right)\|e\|_{E}$.
Remark 4.2. If E_{1}, E_{2}, and E are Banach spaces and $B: E_{1} \times E_{2} \longrightarrow E$ is a surjective bounded bilinear map such that there exists $C>0$ such that for every $e \in E$ there exists $(x, y) \in E_{1} \times E_{2}$ verifying

$$
\begin{equation*}
e=B(x, y), \quad\|x\|_{E_{1}}\|y\|_{E_{2}} \leq C\|e\|_{E} \tag{4.2}
\end{equation*}
$$

then we can apply Theorem 4.3.
A simple application of (4.2) gives the following cases.

Corollary 4.4.

(i) If X and X_{E} are admissible spaces and $B_{0}: \mathbb{K} \times E \rightarrow E$ is given by $(\alpha, x) \rightarrow \alpha x$, then $X \circledast_{B_{0}} X_{E}$ is $\mathcal{S}(E)$-admissible.
(ii) Let (Σ, μ) be a measure space, $1 \leq p_{j} \leq \infty$ for $i=1,2,3$ and $1 / p_{3}=1 / p_{1}+$ $1 / p_{2}$. Let $B: L^{p_{1}}(\mu) \times L^{p_{2}}(\mu) \rightarrow L^{p_{3}}(\mu)$ be given by $(f, g) \rightarrow f g$. Then if
$X_{L^{p_{1}}}$ and $X_{L^{p_{2}}}$ are admissible spaces, then $X_{L^{p_{1}}} \circledast_{B} X_{L^{p_{2}}}$ is admissible.
(iii) Let A be a Banach algebra with identity and $P: A \times A \rightarrow A$ given by $(a, b) \rightarrow a b$. If X_{A} and Y_{A} are admissible spaces, then $X_{A} \circledast_{P} Y_{A}$ is admissible.

Remark 4.3. It is straightforward to see that, under the assumptions of Theorem 4.3, if either $X_{E_{1}}$ or $X_{E_{2}}$ are solid spaces, then $X_{E_{1}} \circledast_{B} X_{E_{2}}$ is an $\mathcal{S}(E)$-solid space.

Proposition 4.5. Let E_{1}, E_{2}, and E be Banach spaces, and let $B: E_{1} \times E_{2} \longrightarrow E$ be a bounded bilinear map satisfying (4.1). Let $X_{E_{1}}, X_{E_{2}}$ be admissible Banach spaces such that either $X_{E_{1}}$ or $X_{E_{2}}$ are minimal spaces; then $X_{E_{1}} \circledast_{B} X_{E_{2}}$ is a minimal $\mathcal{S}(E)$-admissible space.

Proof. We shall prove the case $X_{E_{1}}^{0}=X_{E_{1}}$. Let $h \in X_{E_{1}} \circledast_{B} X_{E_{2}}$. From Remark 4.1, there exist $f_{n} \in X_{E_{1}}, g_{n} \in X_{E_{2}}$, and $N \in \mathbb{N}$ such that

$$
\left\|h-\sum_{n=0}^{N} f_{n} *_{B} g_{n}\right\|_{B}<\frac{\epsilon}{2} .
$$

By density, choose polynomials p_{n} with coefficients in E_{1} such that

$$
\left\|f_{n}-p_{n}\right\|_{X_{E_{1}}} \leq \frac{\epsilon}{2(N+1)\left\|g_{n}\right\|_{X_{E_{2}}}}
$$

Then $\sum_{n=0}^{N} p_{n} *_{B} g_{n} \in \mathcal{P}(E)$ and

$$
\begin{aligned}
\left\|h-\sum_{n=0}^{N} p_{n} *_{B} g_{n}\right\|_{B} & \leq\left\|h-\sum_{n=0}^{N} f_{n} *_{B} g_{n}\right\|_{B}+\left\|\sum_{n=0}^{N}\left(f_{n}-p_{n}\right) *_{B} g_{n}\right\|_{B} \\
& \leq \frac{\epsilon}{2}+\sum_{n=0}^{N}\left\|f_{n}-p_{n}\right\|_{X_{E_{1}}}\left\|g_{n}\right\|_{X_{E_{2}}} \leq \frac{\epsilon}{2}+\sum_{n=0}^{N} \frac{\epsilon}{2(N+1)} \\
& =\epsilon
\end{aligned}
$$

Proposition 4.6. Let $B: E_{1} \times E_{2} \rightarrow E$ be a bounded bilinear map satisfying (4.1). Denote by $B^{*}: E^{\prime} \times E_{1} \rightarrow E_{2}^{\prime}$ the bounded bilinear map defined by

$$
\left\langle B^{*}\left(e^{\prime}, x\right), y\right\rangle=\left\langle e^{\prime}, B(x, y)\right\rangle, \quad x \in E_{1}, y \in E_{2}, e^{\prime} \in E^{\prime}
$$

If $X_{E_{1}}$ and $X_{E_{2}}$ are admissible, then

$$
\begin{aligned}
\left(X_{E_{1}} \circledast_{B} X_{E_{2}}\right)^{K} & =\left(X_{E_{1}}, X_{E_{2}}^{K}\right)_{B^{*}} ; \\
\left(X_{E_{1}} \circledast_{B} X_{E_{2}}\right)^{\prime} & =\left(X_{E_{1}}, X_{E_{2}}^{\prime}\right)_{B^{*}} .
\end{aligned}
$$

In particular, $\left(X_{E_{1}} \circledast X_{E_{2}}\right)^{\prime}=\left(X_{E_{1}}, X_{E_{2}}^{\prime}\right)$ and $\left(X_{E_{1}} \circledast X_{E_{2}}\right)^{K}=\left(X_{E_{1}}, X_{E_{2}}^{K}\right)$.
Proof. Let $\lambda \in\left(X_{E_{1}}, X_{E_{2}}^{K}\right)_{B^{*}}$, and define, for $f \in X_{E_{1}}$ and $g \in X_{E_{2}}$,

$$
\tilde{\lambda}\left(f *_{B} g\right)^{\wedge}(j)=\left\langle\left(\lambda *_{B^{*}} f\right)^{\wedge}(j), \hat{g}(j)\right\rangle, \quad j \geq 0 .
$$

Let us see that, $\tilde{\lambda} \in\left(X_{E_{1}} \circledast_{B} X_{E_{2}}\right)^{K}$,

$$
\begin{aligned}
\sum_{j}\left|\tilde{\lambda}\left(f *_{B} g\right)^{\wedge}(j)\right| & =\sum_{j}\left|\left\langle\left(\lambda *_{B^{*}} f\right)^{\wedge}(j), \hat{g}(j)\right\rangle\right| \\
& \leq\left\|\lambda *_{B^{*}} f\right\|_{X_{E_{2}}^{K}}\|g\|_{X_{E_{2}}} \\
& \leq\|\lambda\|_{\left(X_{E_{1}}, X_{E_{2}}^{K}\right)_{B^{*}}}\|f\|_{X_{E_{1}}}\|g\|_{X_{E_{2}}}
\end{aligned}
$$

By linearity we can extend the result to finite linear combinations of $*_{B}$-products and, by continuity, to $X_{E_{1}} \circledast_{B} X_{E_{2}}$; that is,

$$
\tilde{\lambda}(h)=\sum_{n} \tilde{\lambda}\left(f_{n} *_{B} g_{n}\right)
$$

whenever $h=\sum_{n} f_{n} *_{B} g_{n}$ and $\sum_{n}\left\|f_{n} *_{B} g_{n}\right\|_{B} \leq \infty$. Therefore we conclude that $\left(X_{E_{1}}, X_{E_{2}}^{K}\right)_{B^{*}} \subseteq\left(X_{E_{1}} \circledast_{B} X_{E_{2}}\right)^{K}$.

For the other inclusion, consider $\gamma \in\left(X_{E_{1}} \circledast_{B} X_{E_{2}}\right)^{K}$ and define $\tilde{\gamma}(f)^{\wedge}(j) \in E_{2}^{\prime}$ by

$$
\left\langle\tilde{\gamma}(f)^{\wedge}(j), y\right\rangle=\gamma\left(f *_{B} y e_{j}\right)^{\wedge}(j), \quad f \in X_{E_{1}}, y \in E_{2}, j \geq 0
$$

This gives

$$
\left\langle\tilde{\gamma}(f)^{\wedge}(j), \hat{g}(j\rangle\right)=\gamma\left(f *_{B} g\right)^{\wedge}(j), \quad f \in X_{E_{1}}, g \in X_{E_{2}}, j \geq 0
$$

Let us see that, $\tilde{\gamma} \in\left(X_{E_{1}}, X_{E_{2}}^{K}\right)_{B^{*}}$,

$$
\begin{aligned}
\|\tilde{\gamma}(f)\|_{X_{E_{2}}^{K}} & =\sup _{\|g\|_{X_{E_{2}}}=1} \sum_{j}\left|\gamma\left(f *_{B} g\right)^{\wedge}(j)\right| \\
& \leq\|\gamma\|_{\left(X_{E_{1}} \circledast_{B} X_{E_{2}}\right)^{K} \sup _{\|g\|_{X_{E_{2}}}=1}\left\|f *_{B} g\right\|_{B}} \\
& \leq\|\gamma\|_{\left(X_{E_{1}} \circledast_{B} X_{E_{2}}\right)^{K}}\|f\|_{X_{E_{1}}}
\end{aligned}
$$

The argument to study the dual is similar: Let $\lambda \in\left(X_{E_{1}}, X_{E_{2}}^{\prime}\right)_{B^{*}}$, and define $\phi_{\lambda}\left(f *_{B} g\right)=\left\langle\lambda *_{B^{*}} f, g\right\rangle$. Note that $X_{E_{2}}^{\prime}$ is also $\mathcal{S}\left(E_{2}^{\prime}\right)$-admissible and that

$$
\left|\phi_{\lambda}\left(f *_{B} g\right)\right| \leq\|\lambda\|_{\left(X_{E_{1}}, X_{E_{2}}^{\prime}\right)_{B^{*}}}\|f\|_{X_{E_{1}}}\|g\|_{X_{E_{2}}}
$$

By linearity we can extend the result to finite linear combinations of $*_{B}$-products and extend by continuity $X_{E_{1}} \circledast_{B} X_{E_{2}}$; that is,

$$
\phi_{\lambda}(h)=\sum_{n} \phi_{\lambda}\left(f_{n} *_{B} g_{n}\right)
$$

whenever $h=\sum_{n} f_{n} *_{B} g_{n}$ and $\sum_{n}\left\|f_{n} *_{B} g_{n}\right\|_{B} \leq \infty$. Therefore we conclude that $\left(X_{E_{1}}, X_{E_{2}}^{\prime}\right)_{B^{*}} \subseteq\left(X_{E_{1}} \circledast_{B} X_{E_{2}}\right)^{\prime}$.

For the other inclusion, consider $T \in\left(X_{E_{1}} \circledast_{B} X_{E_{2}}\right)^{\prime}$, and define

$$
\lambda_{T}(f)(g)=T\left(f *_{B} g\right)
$$

Then

$$
\left\|\lambda_{T}(f)\right\|_{X_{E_{2}}^{\prime}}=\sup _{\|g\|_{X_{E_{2}}}=1}\left|\lambda_{T}(f)(g)\right| \leq \sup _{\|g\|_{X_{E_{2}}}=1}\|T\|\left\|f *_{B} g\right\|_{B} \leq\|T\|\|f\|_{X_{E_{1}}}
$$

Theorem 4.7. Let $X_{E_{1}}, X_{E_{2}}, X_{E_{3}}$ be admissible Banach spaces. Then

$$
\left(X_{E_{1}} \circledast X_{E_{2}}, X_{E_{3}}\right)=\left(X_{E_{1}},\left(X_{E_{2}}, X_{E_{3}}\right)\right) .
$$

Proof. Due to the identification between $\mathcal{L}\left(E_{1} \hat{\otimes}_{\pi} E_{2}, E_{3}\right)$ and $\mathcal{L}\left(E_{1}, \mathcal{L}\left(E_{2}, E_{3}\right)\right)$, where the correspondence was given by $\phi(x \otimes y)=T_{\phi}(x)(y)$, we obtain, in our case, that each $\lambda \in \mathcal{S}\left(\mathcal{L}\left(E_{1} \hat{\otimes}_{\pi} E_{2}, E_{3}\right)\right)$ can be identified with $\tilde{\lambda} \in \mathcal{S}\left(\mathcal{L}\left(E_{1}\right.\right.$, $\left.\mathcal{L}\left(E_{2}, E_{3}\right)\right)$ satisfying

$$
\hat{\lambda}(j)(\hat{f}(j) \otimes \hat{g}(j))=\widehat{\tilde{\lambda}}(j)(\hat{f}(j))(\hat{g}(j))
$$

Let $\lambda \in\left(X_{E_{1}} \circledast X_{E_{2}}, X_{E_{3}}\right)$. For each $f \in X_{E_{1}}$ and $g \in X_{E_{2}}$, we have

$$
\begin{equation*}
\lambda *_{1}\left(f *_{\pi} g\right)=\left(\tilde{\lambda} *_{2} f\right) *_{3} g, \tag{4.3}
\end{equation*}
$$

where $*_{1}$ is used for multipliers in $\mathcal{S}\left(\mathcal{L}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right), E_{3}\right)$, $*_{2}$ is used for multipliers in $\mathcal{S}\left(\mathcal{L}\left(E_{1}, \mathcal{L}\left(E_{2}, E_{3}\right)\right)\right.$), and $*_{3}$ is used for multipliers in $\mathcal{S}\left(\mathcal{L}\left(E_{2}, E_{3}\right)\right)$.

Let us now show that $\tilde{\lambda} \in\left(X_{E_{1}},\left(X_{E_{2}}, X_{E_{3}}\right)\right)$.
We use (4.3) to get

$$
\begin{aligned}
\left\|\left(\tilde{\lambda} *_{2} f\right) *_{3} g\right\|_{X_{E_{3}}} & \left.\leq\|\lambda\|_{\left(X_{E_{1}} \circledast X_{E_{2}}, X_{E_{3}}\right)}\right)\left\|\left(f *_{\pi} g\right)\right\| \\
& \left.=\|\lambda\|_{\left(X_{E_{1}} \circledast X_{E_{2}}, X_{E_{3}}\right)}\right)\|f\|_{X_{E_{1}}}\|g\|_{X_{E_{2}}} .
\end{aligned}
$$

Therefore $\|\tilde{\lambda}\|_{\left(X_{E_{1}},\left(X_{E_{2}}, X_{E_{3}}\right)\right)} \leq\|\lambda\|_{\left(X_{E_{1}} \circledast X_{E_{2}}, X_{E_{3}}\right)}$.
For the converse, take $\tilde{\lambda} \in\left(X_{E_{1}},\left(X_{E_{2}}, X_{E_{3}}\right)\right)$ and $h \in X_{E_{1}} \circledast X_{E_{2}}$. Assume that $h=\sum_{n} f_{n} *_{\pi} g_{n}$ with $\sum_{n}\left\|f_{n}\right\|_{X_{E_{1}}}\left\|g_{n}\right\|_{X_{E_{2}}}<\infty$. Hence

$$
\begin{aligned}
\left\|\lambda *_{1} h\right\|_{X_{E_{3}}} & \leq \sum_{n}\left\|\lambda *_{1}\left(f_{n} *_{\pi} g_{n}\right)\right\|_{X_{E_{3}}} \\
& =\sum_{n}\left\|\left(\tilde{\lambda} *_{2} f_{n}\right)\right\|_{\left(X_{E_{2}}, X_{E_{3}}\right)}\left\|g_{n}\right\|_{X_{E_{2}}} \\
& \leq \sum_{n}\|\tilde{\lambda}\|_{\left(X_{E_{1}},\left(X_{E_{2}}, X_{E_{3}}\right)\right)}\left\|f_{n}\right\|_{X_{E_{1}}}\left\|g_{n}\right\|_{X_{E_{2}}} \\
& \leq\|\tilde{\lambda}\|_{\left(X_{E_{1}},\left(X_{E_{2}}, X_{E_{3}}\right)\right)} \sum_{n}\left\|f_{n}\right\|_{X_{E_{1}}}\left\|g_{n}\right\|_{X_{E_{2}}}
\end{aligned}
$$

which gives $\|\lambda\|_{\left(X_{E_{1}} \circledast X_{E_{2}}, X_{E_{3}}\right)} \leq\|\tilde{\lambda}\|_{\left(X_{E_{1}},\left(X_{E_{2}}, X_{E_{3}}\right)\right)}$.

5. Examples and applications

In this section we use Theorem 4.7 in both directions; that is, we compute multiplier spaces and Hadamard tensor products.

We first start with a characterization of $\mathcal{S}(E)$-solid spaces in terms of Hadamard tensor products.

Proposition 5.1. Let X_{E} be admissible. Then $\ell^{\infty} \circledast_{B_{0}} X_{E}$ is the smallest $\mathcal{S}(E)$ solid space which contains X_{E}.

In particular, X_{E} is $\mathcal{S}(E)$-solid if and only if $X_{E}=\ell^{\infty} \circledast_{B_{0}} X_{E}$.

Proof. Of course, $X_{E} \subseteq \ell^{\infty} \circledast_{B_{0}} X_{E}$, and $\ell^{\infty} \circledast_{B_{0}} X_{E}$ is solid (due to Remark 4.3).
Let Y_{E} be a solid space with $X_{E} \subset Y_{E}$. We shall see that $\ell^{\infty} \circledast_{B_{0}} X_{E} \subset Y_{E}$. Let $h \in \ell^{\infty} \circledast_{B_{0}} X_{E}$ be given by $h=\sum_{n} f_{n} * g_{n}$, where $f_{n} \in \ell^{\infty}, g_{n} \in X_{E}$, and $\sum_{n}\left\|f_{n}\right\|_{\infty}\left\|g_{n}\right\|_{X_{E}}<\infty$. Note that $f_{n} * g_{n} \in Y_{E}$ and $\left\|f_{n} * g_{n}\right\|_{Y_{E}} \leq\left\|f_{n}\right\|_{\infty}\left\|g_{n}\right\|_{Y_{E}}$ for each n because Y_{E} is solid. Hence

$$
\sum_{n}\left\|f_{n} * g_{n}\right\|_{Y_{E}} \leq \sum_{n}\left\|f_{n}\right\|_{\infty}\left\|g_{n}\right\|_{Y_{E}} \leq C \sum_{n}\left\|f_{n}\right\|_{\infty}\left\|g_{n}\right\|_{X_{E}}<\infty
$$

and then $h \in Y_{E}$.
Proposition 5.2. Let $1 \leq p, q \leq \infty$ with $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\ell^{p}\left(E_{1}\right) \circledast \ell^{q}\left(E_{2}\right)=\ell^{1}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)
$$

Proof. Let $f \in \ell^{p}\left(E_{1}\right)$ and $g \in \ell^{q}\left(E_{2}\right)$. Since $\widehat{f *_{\pi} g}(j)=\hat{f}(j) \otimes \hat{g}(j)$ and

$$
\left\|\widehat{f *_{\pi} g}(j)\right\|_{E_{1} \hat{\otimes}_{\pi} E_{2}} \leq\|\hat{f}(j)\|_{E_{1}}\|\hat{g}(j)\|_{E_{2}},
$$

we have, using Hölder's inequality,

$$
\begin{equation*}
\left\|f *_{\pi} g\right\|_{\ell^{1}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)} \leq\|f\|_{\ell^{p}\left(E_{1}\right)}\|g\|_{\ell q\left(E_{2}\right)} . \tag{5.1}
\end{equation*}
$$

Let $h \in \ell^{p}\left(E_{1}\right) \circledast \ell^{q}\left(E_{2}\right)$. Let $\epsilon>0$, and take $h=\sum_{n} f_{n} *_{\pi} g_{n}$ with $f_{n} \in \ell^{p}\left(E_{1}\right)$ and $g_{n} \in \ell^{q}\left(E_{2}\right)$ and $\sum_{n}\left\|f_{n}\right\|_{\ell^{p}\left(E_{1}\right)}\left\|g_{n}\right\|_{\ell^{q}\left(E_{2}\right)} \leq\|h\|_{B_{\pi}}+\epsilon$.

From (5.1) we have that $h=\sum_{n} f_{n} *_{\pi} g_{n}$ converges in $\ell^{1}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)$ and $\|h\|_{\ell^{1}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)} \leq\|h\|_{B_{\pi}}+\epsilon$. This implies that $\ell^{p}\left(E_{1}\right) \circledast \ell^{q}\left(E_{2}\right) \subseteq \ell^{1}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)$ with inclusion of norm 1 .

Take now $h \in \ell^{1}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)$. In particular, for each $j \geq 0$ and $\epsilon>0$, there exists $x_{n}^{j} \in E_{1}$ and $y_{n}^{j} \in E_{2}$ such that $\hat{h}(j)=\sum_{n} x_{n}^{j} \otimes y_{n}^{j}$ and

$$
\sum_{n}\left\|x_{n}^{j}\right\|_{E_{1}}\left\|y_{n}^{j}\right\|_{E_{2}}<\|\hat{h}(j)\|_{E_{1} \hat{\otimes}_{\pi} E_{2}}+\frac{\epsilon}{2^{j}}
$$

Define F_{n} and G_{n} by the formulas

$$
\hat{F}_{n}(j)=\left(\left\|x_{n}^{j}\right\|_{E_{1}}\left\|y_{n}^{j}\right\|_{E_{2}}\right)^{1 / p} \frac{x_{j}^{n}}{\left\|x_{j}^{n}\right\|_{E_{1}}}, \quad \hat{G}_{n}(j)=\left(\left\|x_{n}^{j}\right\|_{E_{1}}\left\|y_{n}^{j}\right\|_{E_{2}}\right)^{1 / q} \frac{y_{j}^{n}}{\left\|y_{j}^{n}\right\|_{E_{2}}}
$$

Note that

$$
\left\|F_{n}\right\|_{\ell p\left(E_{1}\right)}=\left(\sum_{j}\left\|x_{n}^{j}\right\|_{E_{1}}\left\|y_{n}^{j}\right\|_{E_{2}}\right)^{1 / p}, \quad\left\|G_{n}\right\|_{\ell q\left(E_{2}\right)}=\left(\sum_{j}\left\|x_{n}^{j}\right\|_{E_{1}}\left\|y_{n}^{j}\right\|_{E_{2}}\right)^{1 / q}
$$

and

$$
\sum_{n}\left\|F_{n}\right\|_{\ell^{p}\left(E_{1}\right)}\left\|G_{n}\right\|_{\ell^{q}\left(E_{2}\right)}=\sum_{n, j}\left\|x_{n}^{j}\right\|_{E_{1}}\left\|y_{n}^{j}\right\|_{E_{2}} \leq\|h\|_{\ell^{1}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)}+\epsilon
$$

In such a way we have $h=\sum_{n} F_{n} *_{\pi} G_{n} \in \ell^{p}\left(E_{1}\right) \circledast \ell^{q}\left(E_{2}\right)$ with $\|h\|_{B_{\pi}} \leq$ $\|h\|_{\ell^{1}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)}$.

To analyze the other values of p, we shall make use of the following result of multipliers (see [1, Proposition 2.2]):

$$
\begin{equation*}
\left(\ell^{p_{1}}\left(E_{1}\right), \ell^{p_{2}}\left(E_{2}\right)\right)=\ell^{p_{3}}\left(\mathcal{L}\left(E_{1}, E_{2}\right)\right) \tag{5.2}
\end{equation*}
$$

where $0<\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}<1$.
Proposition 5.3. Let $1 \leq p, q \leq \infty$ with $0<\frac{1}{p}+\frac{1}{q}=\frac{1}{r}<1$. Then

$$
\ell^{p}\left(E_{1}\right) \circledast \ell^{q}\left(E_{2}\right)=\ell^{r}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)
$$

Proof. Note that the same argument as in Proposition 5.2 gives $\ell^{p}\left(E_{1}\right) \circledast \ell^{q}\left(E_{2}\right) \subseteq$ $\ell^{r}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)$ with inclusion of norm 1.

Indeed, as above, if $f \in \ell^{p}\left(E_{1}\right)$ and $g \in \ell^{q}\left(E_{2}\right)$, then

$$
\left\|\widehat{f *_{\pi} g}(j)\right\|_{E_{1} \hat{\otimes}_{\pi} E_{2}} \leq\|\hat{f}(j)\|_{E_{1}}\|\hat{g}(j)\|_{E_{2}} .
$$

Hence

$$
\begin{equation*}
\left\|f *_{\pi} g\right\|_{\ell^{r}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)} \leq\|f\|_{\ell^{p}\left(E_{1}\right)}\|g\|_{\ell^{q}\left(E_{2}\right)} . \tag{5.3}
\end{equation*}
$$

For a general $h=\sum_{n} f_{n} *_{\pi} g_{n} \in \ell^{p}\left(E_{1}\right) \circledast \ell^{q}\left(E_{2}\right)$, where f_{n}, g_{n} are chosen such that $f_{n} \in \ell^{p}\left(E_{1}\right)$ and $g_{n} \in \ell^{q}\left(E_{2}\right)$ and $\sum_{n}\left\|f_{n}\right\|_{\ell^{p}\left(E_{1}\right)}\left\|g_{n}\right\|_{\ell^{q}\left(E_{2}\right)} \leq\|h\|_{B_{\pi}}+\epsilon$, we have from (5.3) that $\sum_{n}\left\|f_{n} *_{\pi} g_{n}\right\|_{\ell^{r}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)}<\infty$. Then $h=\sum_{n} f_{n} *_{\pi} g_{n}$ converges in $\ell^{r}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)$ and $\|h\|_{\ell^{r}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)} \leq\|h\|_{B_{\pi}}+\epsilon$.

To see that they coincide it suffices to show that $\left(\ell^{p}\left(E_{1}\right) \circledast \ell^{q}\left(E_{2}\right)\right)^{\prime}=$ $\left(\ell^{r}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)\right)^{\prime}$. It is well known that, for $\frac{1}{r^{\prime}}=1-\frac{1}{r}$,

$$
\left(\ell^{r}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)\right)^{\prime}=\ell^{r^{\prime}}\left(\mathcal{L}\left(E_{1}, E_{2}^{\prime}\right)\right)
$$

On the other hand, using Proposition 4.6 and (5.2) we have

$$
\left(\ell^{p}\left(E_{1}\right) \circledast \ell^{q}\left(E_{2}\right)\right)^{\prime}=\left(\ell^{p}\left(E_{1}\right), \ell^{q^{\prime}}\left(E_{2}^{\prime}\right)\right)=\ell^{r^{\prime}}\left(\mathcal{L}\left(E_{1}, E_{2}^{\prime}\right)\right)
$$

where $\frac{1}{q^{\prime}}=1-\frac{1}{q}$.
We now compute the Hadamard tensor product in some particular cases of spaces of analytic functions. We shall analyze the case H^{1} and $H^{1}(\mathbb{D}, E)$, at least for particular Banach spaces E, following the ideas developed in [7].

We need some notions and lemmas before the statement of the result. Given an E-valued analytic function, $F(z)=\sum_{j=0}^{\infty} x_{j} z^{j}$, we define

$$
D F(z)=\sum_{j=0}^{\infty}(j+1) x_{j} z^{j}
$$

Lemma 5.4. Let E be a complex Banach space, $1 \leq p \leq \infty$.
(i) There exist $A_{1}, A_{2}>0$ such that

$$
A_{1} r^{m}\|f\|_{H^{p}(\mathbb{D}, E)} \leq M_{p}(f, r) \leq A_{2} r^{n}\|f\|_{H^{p}(\mathbb{D}, E)}, \quad 0<r<1
$$

for $f \in \mathcal{P}(E)$ given by $f(z)=\sum_{j=n}^{m} x_{j} z^{j}, x_{j} \in E, n, m \in \mathbb{N}$, and where $M_{p}(f, r)=\left(\int_{0}^{1}\left\|f\left(r e^{i t}\right)\right\|^{p} \frac{d t}{2 \pi}\right)^{1 / p}$.
(ii) If $P(z)=\sum_{k=2^{n-1}}^{2^{n+1}} \hat{P}(k) z^{k}, \hat{P}(k) \in \mathbb{C}$, then there exist constants B_{1} and B_{2} such that

$$
\begin{equation*}
B_{1} 2^{n}\left\|P *_{B_{0}} f\right\|_{H^{p}(\mathbb{D}, E)} \leq\left\|P *_{B_{0}} D f\right\|_{H^{p}(\mathbb{D}, E)} \leq B_{2} 2^{n}\left\|P *_{B_{0}} f\right\|_{H^{p}(\mathbb{D}, E)} \tag{5.4}
\end{equation*}
$$

for any $f \in H^{p}(\mathbb{D}, E)$.
Proof. It is well known (see Lemma 3.1 [19]) that

$$
r^{m}\|\phi\|_{\infty} \leq M_{\infty}(\phi, r) \leq r^{n}\|\phi\|_{\infty}, \quad 0<r<1
$$

for each scalar-valued polynomial $\phi(z)=\sum_{j=n}^{m} \alpha_{j} z^{j}$, where $\|\phi\|_{\infty}=\sup _{|z|=1}|\phi(z)|$ and $M_{\infty}(\phi, r)=\sup _{|z|=1}|\phi(r z)|$.

This allows us to conclude, composing with elements in the unit ball of the dual space,

$$
r^{m}\|F\|_{\infty} \leq M_{\infty}(F, r) \leq r^{n}\|F\|_{\infty}, \quad 0<r<1
$$

for any $F(z)=\sum_{j=n}^{m} y_{j} z^{j}$ where $y_{j} \in Y$ and where Y is a complex Banach space.
For $f: \mathbb{D} \rightarrow \mathbb{K}$ an analytic function, define f_{w} to be $f_{w}(z)=f(w z)$. Now select $Y=H^{p}(\mathbb{D}, E)$ and $F(z)=f_{z}$; that is to say

$$
F(z)(w)=\sum_{j=n}^{m} x_{j} w^{j} z^{j}
$$

Using that

$$
\|F\|_{\infty}=\sup _{|z|=1}\left\|f_{z}\right\|_{H^{p}(\mathbb{D}, E)}=\|f\|_{H^{p}(\mathbb{D}, E)}
$$

and $M_{\infty}(F, r)=M_{p}(f, r)$, we obtain the result.
To see (ii) we first use [7, Lemma 7.2], which guarantees the existence of constants B_{1}, B_{2} such that

$$
B_{1} 2^{n}\left\|P *_{B_{0}} \phi\right\|_{\infty} \leq\left\|P *_{B_{0}} D \phi\right\|_{\infty} \leq B_{2} 2^{n}\left\|P *_{B_{0}} \phi\right\|_{\infty}
$$

for any $\phi \in H^{\infty}(\mathbb{D})$. Now apply the same argument as above to extend it to $H^{p}(\mathbb{D}, E)$.

Theorem 5.5. Let $\mathfrak{B}^{1}(\mathbb{D}, E)$ denote the space of E-valued analytic functions $F(z)=\sum_{j=0} x_{j} z^{j}$ such that $D F(z) \in A^{1}(\mathbb{D}, E)$ with the norm given by

$$
\|F\|_{\mathfrak{B}^{1}(\mathbb{D}, E)}=\|F(0)\|_{E}+\int_{\mathbb{D}}\|D F(z)\|_{E} d A(z) .
$$

Let $E=L^{p}(\mu)$ for any measure μ and $1 \leq p \leq 2$. Then

$$
\left(H^{1}(\mathbb{D}) \circledast_{B_{0}} H^{1}\left(\mathbb{D}, L^{p}(\mu)\right)\right)=\mathfrak{B}^{1}\left(\mathbb{D}, L^{p}(\mu)\right)
$$

Proof. Let us first show that $\mathfrak{B}^{1}(\mathbb{D}, E) \subseteq\left(H^{1}(\mathbb{D}) \circledast_{B_{0}} H^{1}(\mathbb{D}, E)\right)$ for any Banach space E. We argue similarly to [7, Theorem 7.1].

Let $\left\{W_{n}\right\}_{0}^{\infty}$ be a sequence of polynomials such that

$$
\operatorname{supp}\left(\hat{W}_{n}\right) \subset\left[2^{n-1}, 2^{n+1}\right] \quad(n \geq 1), \quad \operatorname{supp}\left(\hat{W}_{0}\right) \subset[0,1], \quad \sup _{n}\left\|W_{n}\right\|_{1}<\infty
$$

and

$$
g=\sum_{n=0}^{\infty} W_{n} *_{B_{0}} g, \quad g \in \mathcal{H}(\mathbb{D}, E) .
$$

Let $f \in \mathfrak{B}^{1}(\mathbb{D}, E)$. Note that

$$
\left\|\left(W_{n} *_{B_{0}} f\right)_{r}\right\|_{H^{1}(\mathbb{D}, E)} \leq\left\|W_{n}\right\|_{1}\left\|f_{r}\right\|_{H^{1}(\mathbb{D}, E)} \leq C\|f\|_{H^{1}(\mathbb{D}, E)}
$$

Hence, $\left\|W_{n} *_{B_{0}} f\right\|_{H^{1}(\mathbb{D}, E)} \leq C\|f\|_{H^{1}(\mathbb{D}, E)}$.
Denoting $Q_{n}=W_{n-1}+W_{n}+W_{n+1}$ we can write

$$
f=\sum_{n=0}^{\infty} Q_{n} *_{B_{0}} W_{n} *_{B_{0}} f
$$

Note now that Lemma 5.4 allows us to conclude that

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left\|Q_{n}\right\|_{1}\left\|W_{n} *_{B_{0}} f\right\|_{H^{1}(\mathbb{D}, E)} & \leq K \sum_{n=0}^{\infty}\left\|W_{n} *_{B_{0}} f\right\|_{H^{1}(\mathbb{D}, E)} \\
& \leq K \sum_{n=0}^{\infty} \int_{1-2^{-n}}^{1-2^{-(n+1)}} 2^{n} r^{2^{n}}\left\|W_{n} *_{B_{0}} f\right\|_{H^{1}(\mathbb{D}, E)} d r \\
& \leq K \sum_{n=0}^{\infty} \int_{1-2^{-n}}^{1-2^{-(n+1)}} r^{2^{n}}\left\|W_{n} *_{B_{0}} D f\right\|_{H^{1}(\mathbb{D}, E)} d r \\
& \leq K \sum_{n=0}^{\infty} \int_{1-2^{-n}}^{1-2^{-(n+1)}} M_{1}\left(W_{n} *_{B_{0}} D f, r\right) d r \\
& \leq K \sum_{n=0}^{\infty} \int_{1-2^{-n}}^{1-2^{-(n+1)}} M_{1}(D f, r) d r \\
& =K \int_{0}^{1} M_{1}(D f, r) d r \\
& \leq K\|f\|_{\mathfrak{B}^{1}(\mathbb{D}, E)}
\end{aligned}
$$

To show the other inclusion between these spaces we shall use that $E=$ $L^{p}(\mu)$ for $1 \leq p \leq 2$ satisfies the following vector-valued extension of a HardyLittlewood theorem (see [14]):

$$
\begin{equation*}
\left[\int_{0}^{1}(1-r) M_{1}^{2}(D f, r) d r\right]^{1 / 2} \leq A\|f\|_{H^{1}(\mathbb{D}, E)} \tag{5.5}
\end{equation*}
$$

for some constant $A>0$ (see [6, Definition 3.5, Proposition 4.4]).
It suffices to see that $\phi *_{B_{0}} g \in \mathfrak{B}^{1}\left(\mathbb{D}, L^{p}(\mu)\right)$ for each $\phi \in H^{1}(\mathbb{D})$ and $g \in$ $H^{1}\left(\mathbb{D}, L^{p}(\mu)\right)$. Now taking into account that $D^{2}\left(\phi *_{B_{0}} g\right)=D \phi *_{B_{0}} D g$ and

$$
r D\left(\phi *_{B_{0}} g\right)\left(r e^{i t}\right)=\sum_{j=0}^{\infty}(j+1) \hat{\phi}(j) \hat{g}(j) r^{j+1} e^{i t j}=\int_{0}^{r} D^{2}\left(\phi *_{B_{0}} g\right)\left(s e^{i t}\right) d s
$$

we have

$$
\begin{aligned}
\int_{0}^{1} M_{1}\left(D\left(\phi *_{B_{0}} g\right), r\right) r d r & \leq \int_{0}^{1}\left[\int_{0}^{r} M_{1}\left(D^{2}\left(\phi *_{B_{0}} g\right), s\right) d s\right] r d r \\
& =\int_{0}^{1}(1-s) M_{1}\left(D^{2}\left(\phi *_{B_{0}} g\right), s\right) d s \\
& \leq 2 \int_{0}^{1}\left(1-r^{2}\right) M_{1}(r, D \phi) M_{1}(D g, r) r d r
\end{aligned}
$$

Now, from Cauchy-Schwarz and (5.5), we obtain

$$
\begin{aligned}
\int_{0}^{1}\left(1-r^{2}\right) M_{1}(D \phi, r) M_{1}(D g, r) r d r \leq & {\left[\int_{0}^{1}\left(1-r^{2}\right) M_{1}^{2}(D \phi, r) r d r\right]^{1 / 2} } \\
& \cdot\left[\int_{0}^{1}\left(1-r^{2}\right) M_{1}^{2}(D g, r) r d r\right]^{1 / 2} \\
\leq & K\|\phi\|_{H^{1}}\|g\|_{H^{1}\left(\mathbb{D}, L^{p}(\mu)\right)}
\end{aligned}
$$

It is known, by Fefferman's duality result, that $\left(H^{1}\right)^{\prime}=$ BMOA (see [12], [23]). In the vector-valued case, using L^{p} as an unconditional martingale difference space for $1<p<\infty$, we have

$$
\left(H^{1}\left(\mathbb{T}, L^{p}(\mu)\right)\right)^{\prime}=\operatorname{BMOA}\left(\mathbb{T}, L^{p^{\prime}}(\mu)\right), \quad 1<p<\infty
$$

(see [4]). It is also well known that $\left(\mathfrak{B}^{1}\right)^{\prime}=\mathcal{B}$ loch (see [3]) and that, for the vector-valued case, $\left(\mathfrak{B}^{1}(\mathbb{D}, E)\right)^{\prime}=\mathcal{B} \operatorname{loch}\left(\mathbb{D}, E^{\prime}\right)$ for any complex Banach space E (see [5, Corollary 2.1]) under the pairing

$$
\langle F, G\rangle=\int_{\mathbb{D}}\langle D F(z), G(z)\rangle d A(z) .
$$

Using now Proposition 4.6, we recover the following result.
Corollary 5.6 ([6, Corollary 8.4]). Let $1 \leq p_{1} \leq 2$ and $2 \leq p_{2}<\infty$. Then we have

$$
\begin{aligned}
& \left(H^{1}\left(\mathbb{T}, L^{p_{1}}\right), \operatorname{BMOA}(\mathbb{T})\right)_{B_{\mathcal{L}}}=\mathcal{B} \operatorname{loch}\left(\mathbb{D}, \mathcal{L}\left(L^{p_{1}^{\prime}}, L^{p_{1}^{\prime}}\right)\right) \\
& \left(H^{1}(\mathbb{T}), \operatorname{BMOA}\left(\mathbb{T}, L^{p_{2}}\right)\right)_{B_{\mathcal{L}}}=\mathcal{B} \operatorname{loch}\left(\mathbb{D}, \mathcal{L}\left(L^{p_{2}}, L^{p_{2}}\right)\right)
\end{aligned}
$$

Acknowledgments. The work of both authors was partially supported by MECC Spain projects BMF2011-231674, MTM2011-23164, and MTM2014-53009-P. Carme Zaragoza-Berzosa's work was also supported by the predoctoral grant VALi+d from the Generalitat Valenciana (expedient no. ACIF/2012/107).

References

1. J. L. Arregui and O. Blasco, Bergman and Bloch spaces of vector-valued functions, Math. Nach. 261/262 (2003), 3-22. MR2020384. DOI 10.1002/mana.200310109. 77, 91
2. J. L. Arregui and O. Blasco, (p, q)-summing sequences of operators, Quaest. Math. 26 (2003), no. 4, 441-452. MR2046149. DOI 10.2989/16073600309486074. 72, 83
3. J. M. Anderson, J. Clunie, and C. Pommerenke, On Bloch functions and normal functions, J. Reine Anew. Math. 270 (1974), 12-37. Zbl 0292.30030. MR0361090. 81, 94
4. O. Blasco, Hardy spaces of vector-valued functions: Duality, Trans. Amer. Math. Soc. 308 (1988), 495-507. Zbl 0658.46021. MR0951618. DOI 10.2307/2001088. 94
5. O. Blasco, "Vector-valued Hardy spaces from operator theory" in Analysis at Urbana, Vol. II (Urbana, Ill., 1986-1987), London Math. Soc. Lecture Note Ser. 138, Cambridge Univ. Press, Cambridge, 1989, 52-60. MR1009185. 94
6. O. Blasco, Vector-valued analytic functions of bounded mean oscillation and geometry of Banach spaces, Illinois J. Math. 41 (1997), no. 4, 532-558. Zbl 0915.46009. MR1468865. 72, 73, 93, 94
7. O. Blasco and M. Pavlović, Coefficient multipliers on Banach spaces of analytic functions, Rev. Mat. Iberoam. 27 (2011), no. 2, 415-447. Zbl 1235.42004. MR2848526. DOI 10.4171/RMI/642. 72, 91, 92
8. Q. Bu and J. Diestel, Observations about the projective tensor product of Banach spaces, $I: \ell_{p} \hat{\otimes} X$, Quaest. Math. (4) 24 (2001), no. 4, 519-533. Zbl 1038.46061. MR1871895. DOI 10.1080/16073606.2001.9639238. 83
9. J. Diestel, H. Jarchow, and A. Tongue, Absolutely Summing Operators, Cambridge Univ. Press, 1995. MR1342297. DOI 10.1017/CBO9780511526138. 76, 81
10. J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977. MR0453964. 73
11. P. L. Duren, Theory of H^{p} Spaces, Pure Appl. Math. 38, Academic Press, New York, 1970. MR0268655. 72, 78
12. C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), nos. 3-4, 137-193. MR0447953. 94
13. J. H. Fourie and I. Röntgen, Banach space sequences and projective tensor products, J. Math. Anal. Appl. 277 (2003), no. 2, 629-644. Zbl 1043.46053. MR1961250. DOI 10.1016/S0022-247X(02)00635-2. 83
14. G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. (Oxford Ser.) 12 (1941), 221-256. MR0006581. 93
15. H. Hendenmaln, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Grad. Texts in Math. 199, Springer, New York, 2000. MR1758653. DOI 10.1007/978-1-4612-0497-8. 72
16. M. Jevtić and I. Jovanović, Coefficient multipliers of mixed norm spaces, Canad. Math. Bull. 36 (1993), no. 3, 283-285. Zbl 0801.30002. MR1245812. DOI 10.4153/CMB-1993-040-2. 71
17. M. Jevtić and J. Pavlović, Coefficient multipliers on spaces of analytic functions, Acta Sci. Math. 64 (1998), nos. 3-4, 531-545. Zbl 0926.46022. MR1666039. 71
18. M. Jevtić, D. Vukotić, and M. Arsenović, Taylor coefficients and coefficient multipliers of Hardy and Bergman-type spaces, in preparation. 71
19. M. Mateljević and M. Pavlović, L^{p}-behaviour of the integral means of analytic functions, Studia Math. 77 (1984), no. 3, 219-237. MR0745278. 92
20. B. Osikiewicz, Multipliers of Hardy spaces, Quaest. Math. 27 (2004), no. 1, 57-73. Zbl 1065.42011. MR2060908. DOI 10.2989/16073600409486084. 71
21. M. Pavlović, Function Classes on the Disk: An Introduction, De Gruyter Stud. Math. 52, De Gruyter, Berlin, 2013. MR3154590. 72
22. R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monogr. Math., Springer, London, 2002. MR1888309. DOI 10.1007/978-1-4471-3903-4. 73
23. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton Univ. Press, Princeton, 1993. MR1232192. 94
24. K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990. MR1074007. 72

Departamento de Análisis Matemático, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.

E-mail address: oscar.blasco@uv.es
E-mail address: carme.zaragoza@uv.es

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received Dec. 11, 2014; Accepted Apr. 14, 2015.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 46B28; Secondary 46E40.
 Keywords. vector-valued multipliers, Hadamard product, bilinear map.

