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Abstract. We study the uniform path connectivity of sets of matrix tuples
that satisfy some additional constraints, and more specifically, given ε > 0, a
fixed metric ð in Mn(C)m induced by the operator norm ‖ · ‖, any collection
of r nonconstant polynomials p1(x1, . . . , xm), . . . , pr(x1, . . . , xm) over C with
finite zero set Z(p1, . . . , pr) ⊂ Cm and any m-tuple X = (X1, . . . , Xm) in
the set ZDm

n (p1, . . . , pr) ⊆ Mm
n (C) of commuting normal matrix contractions

such that ‖pj(Y1, . . . , Ym)‖ = 0 for each (Y1, . . . , Ym) ∈ ZDm
n (p1, . . . , pr) and

each 1 ≤ j ≤ r. The author proves the existence of paths between arbitrary
m-tuples that belong to the intersection of ZDm

n (p1, . . . , pr) and the open δ-ball
Bð(X, δ) centered at X for some δ > 0 that can be chosen independently of
n. In addition, the author proves that the aforementioned paths are contained
in the intersection of Bð(X, ε) and ZDm

n (p1, . . . , pr). Some connections of the
main results with structure-preserving perturbation theory and preconditioning
techniques are outlined.

1. Introduction

In this document we study the uniform local path connectivity of sets of matrix
tuples of commuting normal matrices with some additional geometric and alge-
braic constraints in their joint spectrum.

Let ε > 0 be given, along with a fixed metric ð in Mn(C)m induced
by the operator norm ‖ · ‖, any collection of r nonconstant polynomials
p1(x1, . . . , xm), . . . , pr(x1, . . . , xm) of m complex variables with coefficients over
C and finite zero set
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Z(p1, . . . , pr) =
{
x ∈ Cm

∣∣ pj(x) = 0, 1 ≤ j ≤ r
}
⊂ Cm

and any m-tuple X = (X1, . . . , Xm) ∈ Mn(C)m of pairwise commuting normal
matrix contractions such that ‖pj(X1, . . . , Xm)‖ = 0 for each 1 ≤ j ≤ r. We
prove the existence of paths between arbitrary m-tuples that belong to the inter-
section of the set of m-tuples of pairwise commuting normal matrix contractions
in Mn(C)m and the δ-ball

Bð(X, δ) =
{
Y ∈Mn(C)m

∣∣ ð(X,Y) < δ
}

centered at X for some δ > 0 that can be chosen independently of n. In addi-
tion, we prove that the aforementioned paths are contained in the intersection
of Bð(X, ε), and the set ZDm

n (p1, . . . , pr) of m-tuples of pairwise commuting nor-
mal matrix contractions such that ‖pj(Y1, . . . , Ym)‖ = 0 for each (Y1, . . . , Ym) ∈
ZDm

n (p1, . . . , pr) and each 1 ≤ j ≤ r.
Let ε > 0 and m ∈ Z+ be given. The reason why independence on matrix

size n (uniformity) is important in this study is that, in many applications, one
needs to perform computations such as matrix inversion or matrix decomposi-
tion/factorization, with some approximations {Xk}k≥1 of sequences of matrix
m-tuples {Yk}k≥1 such that Xk,Yk ∈ Mnk

(C)m and ‖Xk −Yk‖ ≤ ε for k ≥ 1,
and {nk}k≥1 ⊆ Z+ is an increasing sequence of positive integers. In these cir-
cumstances, one needs some properties of {Xk}k≥1 and {Yk}k≥1 to be (uniform)
independent of the matrix size nk.

A common technique, implemented in order to achieve uniformity in the
approximation of the sequences already mentioned, consists in preconditioning
each pair of m-tuples Xk,Yk ∈ Mnk

(C)m of the original sequences {Xk}k≥1,

{Yk}k≥1 in order to obtain two sequences {X̂k}k≥1, {Ŷk}k≥1 with some desirable

artificial properties that, in addition, satisfy the constraints ‖X̂k − Ŷk‖ ≤ ν(ε)
for each k ≥ 1, and with some function ν : R → R determined by the precondi-
tioning/preprocessing technique.

In this document, we focus on some artificial spectral properties, more specif-
ically on eigenvalue clustering in the sense of [1], [9], [18]. It is worth mention-
ing that, on occasion, eigenvalue clustering appears naturally in computational
models, before any preconditioning has been performed; as an example, one can
consider lossless Drude dispersive metallic photonic crystals in the sense of [9].

The main motivation for the research reported in this document came from
structure-preserving perturbation theory in the sense of [16], especially by the
effect that preconditioning (in the sense of [6], [7], [11], [17]–[19]) has on the
numerical solution of linear systems of equations and eigenvalue/diagonalization
problems, which are two of the main problems in numerical linear algebra. Two
other sources of motivation include the perturbation theory of matrix polynomials
in the sense of [10], and the simultaneous block-diagonalization of matrices in the
sense of [14].

In this document, we combine the duality between matrix paths and numerical
linear algebra algorithms studied in [5] with the geometric approach to matrix
perturbation theory presented in [8] in order to derive a topological approach
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to the solution of normal matrix approximation problems. We do this by inter-
preting structure-preserving (and almost-structure-preserving) numerical approx-
imation/refinement problems as algebraically constrained topological conectivity
problems in the metric matrix space (Mn(C)m, ð).

Matrix sets like ZDm
n (p1, . . . , pr) are called algebraic matrix sets in this docu-

ment. The path connectivity properties of some important families of algebraic
matrix sets are studied in Section 3.3. In order to extend the applicability of
these connectivity results, some connections with the approximation theory for
matrix functions of several normal (preconditioned) matrix variables are studied
in Section 3.4.

One of the reasons for extending the results in Section 3.3 to those in Section 3.4
comes from the study of the notion of approximate solvability and stability of
(Krylov-type) iterative and direct methods implemented to solve linear algebra
problems numerically, especially when the computation is performed with finite
precision in the sense of [15].

2. Preliminaries and notation

Given r polynomials p1(x1, . . . , xm), . . . , pr(x1, . . . , xm) of m complex variables,
with coefficients over C, we denote by Z(p1, . . . , pr) the subset of Cm determined
by the expression.

Z(p1, . . . , pr) =
{
(x1, . . . , xm) ∈ Cm

∣∣ pj(x1, . . . , xm) = 0, 1 ≤ j ≤ r
}
. (2.1)

We write Mm,n to denote the set Mm,n(C) of (m × n) complex matrices; if
m = n, then we write Mn; we write M

m
n to denote the set Mn(C)m of m-tuples of

n×n complex matrices. The symbols 1n and 0m,n are used to denote the identity
matrix and the zero matrix in Mn and Mm,n, respectively; if m = n, then we
write 0n. Given a matrix A ∈Mn, we write A

∗ to denote the conjugate transpose
(Ā)> of A.

A matrix X ∈ Mn is said to be normal if XX∗ = X∗X; a matrix H ∈ Mn is
said to be Hermitian if H∗ = H; a matrix K ∈Mn is said to be skew-Hermitian
if K∗ = −K; and a matrix U ∈Mn such that U∗U = UU∗ = 1n is called unitary.
The set of all unitary matrices in Mn is denoted by U(n). We write i to denote
the number

√
−1. Given any set S, we write |S| to denote the number of elements

of S, counted without multiplicity.
Let (X, d) be a metric space. We say that X̃δ ⊂ X is a δ-dense subset ofX if, for

all x ∈ X, there exists x̃ ∈ X̃δ such that d(x, x̃) ≤ δ. Given two locally compact
Hausdorff spaces X, Y , we write C(X,Y ) and C1(X, Y ) to denote the sets of
continuous and (differentiable) C1-functions between X and Y , respectively.

For the remainder of this article, ‖ · ‖ denotes the operator norm defined for
any A ∈Mn by ‖A‖ := sup‖x‖2=1 ‖Ax‖2, where ‖ · ‖2 denotes the Euclidean norm

in Cn. Let us denote by ð the metric in Mm
n defined by ð : Mm

n ×Mm
n → R+

0 ,
(S,T) 7→ maxj ‖Sj−Tj‖. We write D2 to denote the closed unit disk in C defined
by D2 := {Z ∈ C | |z| ≤ 1}. Given any x0 ∈ Cm, we write B(x0, r) to denote the
r-ball {x ∈ Cm | ‖x− x0‖2 < r} in Cm.
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We say throughout this document that bymatrix contraction we mean a matrix
X in Mn such that ‖X‖ ≤ 1. A matrix P ∈Mn such that P ∗ = P = P 2 is called
a projector or a projection. Given two projectors P and Q, if PQ = QP = 0n,
then we consider P and Q to be orthogonal. By an orthogonal partition of unity
(OPU) in Mn, we mean a finite set of pairwise orthogonal projectors {Pj} in
Mn\{0n} such that

∑
j Pj = 1n (we omit the explicit reference to Mn when it is

clear from the context).
Given m mutually orthogonal projections P1, . . . , Pm ∈Mn, let us consider the

m linear subspaces U1, . . . , Um of Cn, determined by the expressions Uj = PjCn =
{Pjz|z ∈ Cn}. We write U1⊕U2⊕· · ·⊕Um to denote the direct sum of the normed
linear spaces U1, . . . , Um, defined in the usual way.

Given any two matrices X,Y ∈ Mn we write [X,Y ] and Ad[X](Y ) to denote
the operations [X,Y ] := XY − Y X and Ad[X](Y ) := XYX∗.

A ∗-homomorphism ϕ : Mn → Mn is a linear and multiplicative map that
satisfies ϕ(X∗) = ϕ(X)∗ for all X inMn. Given U ∈ U(n), it can be easily verified
that the map ψ : Mn → Mn defined by ψ := Ad[U ] is a ∗-homomorphism; any
∗-homomorphism of this form is called an inner ∗-homomorphism.

Given any map Ψ : Mn → Mn in Mn, we write Ψ̆ to denote the extended
map Ψ̆ : Mm

n → Mm
n in Mm

n determined by the assignment Ψ̆ : (X1, . . . , Xm) 7→
(Ψ(X1), . . . ,Ψ(Xm)) for all (X1, . . . , Xm) in M

m
n .

We write GLn to denote the set of invertible elements in Mn. Given a matrix
A ∈Mn, we write σ(X) to denote the set {λ ∈ C |A−λ1n /∈ GLn} of eigenvalues
of A; the set σ(A) is called the spectrum of A. Given a matrix X ∈Mn, we write
X ≥ 0 if X is Hermitian and σ(X) ⊆ R+

0 .

Definition 2.1 (~ operation). Given two matrix paths α, β ∈ C([0, 1],Mm
n ), we

write α~ β to denote the concatenation of α and β, which is the matrix path
defined in terms of α and β by the expression,

α~ β(s) :=

{
α(2s), 0 ≤ s ≤ 1

2
,

β(2s− 1), 1
2
≤ s ≤ 1.

Given a matrix A ∈Mn, we write D(A) to denote the diagonal matrix defined
by the following operation.

D(A) := diag[a11, a22, . . . , ann]

=


a11 0 · · · 0

0 a22 · · · ...
...

. . . . . . 0
0 · · · 0 ann

 .

It can be seen that D(D(A)) = D(A) for any A ∈Mn; the map D is called a full
pinching.

Remark 2.1. By “pinching inequalities” (used here in the sense of [3]), we have
‖D(A)− D(B)‖ = ‖D(A−B)‖ ≤ ‖A−B‖ for any two matrices A,B ∈Mn.
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Given m-matrices A1, . . . , Am such that Aj ∈ Mnj
for each 1 ≤ j ≤ m and

some nj ∈ Z+, we write A1 ⊕A2 ⊕ · · · ⊕Am to denote the block-diagonal matrix
in Mn1+···+nm , determined by the following expression:

A1 ⊕ A2 ⊕ · · · ⊕ Am := diag[A1, A2, . . . , Am]

=


A1 0n1,n2 · · · 0n1,nm

0n2,n1 A2 · · · ...
...

. . . . . . 0nm−1,nm

0nm,n1 · · · 0nm,nm−1 Am

 .

Given any matrix X in Mn, we write Re(X) and Im(X) to denote the Hermitian
matrices defined by the equations{

Re(X) = (X +X∗)/2,

Im(X) = (X −X∗)/(2i).
(2.2)

Remark 2.2. It is important here to recall that, for any X in Mn, it holds that
X∗X = XX∗ if and only if Re(X) Im(X) = Im(X) Re(X).

It is often convenient to have N -tuples (or 2N -tuples) of matrices with real
spectra. For this purpose, we use the following construction. If X = (X1, . . . , XN)
is a N -tuple of n by n matrices, then we can always decompose Xj in the form
Xj = Re(Xj) + i Im(Xj) for each 1 ≤ j ≤ N .

We write π̂(X) to denote the operation π̂(X) := (Re(X1), . . . ,Re(XN), Im(X1),
. . . , Im(XN)); we call π̂(X) a partition of X. If all the matrix coordinates of π̂(X)
commute, then we say that π̂(X) is a commuting partition, and if all the matrix
coordinates of π̂(X) are simultaneously triangularizable, then π̂(X) is called a
triangularizable partition. If all the matrix coordinates of π̂(X) are semisimple
(diagonalizable), then π̂(X) is called a semisimple partition. Given a 2m-tuple
X = (X11, . . . , X1m, X21, . . . , X2m) in M2m

n , the m-tuple obtained through the
operation υ(X) := (X11+ iX21, . . . , X1m+ iX2m) ∈Mm

n is called a juncture of X.
We say that N normal matrices X1, . . . , XN ∈ Mn are simultaneously diago-

nalizable if there is a unitary matrix Q ∈ Mn such that Q∗XjQ is diagonal for
each j = 1, . . . , N . In this case, for 1 ≤ k ≤ n, let Λ(k)(Xj) := (Q∗XjQ)kk the
(k, k) element of Q∗XjQ, and set Λ(k)(X1, . . . , XN) := (Λ(k)(X1), . . . ,Λ

(k)(XN))
in CN . The set

Λ(X1, . . . , XN) :=
{
Λ(k)(X1, . . . , XN)

}
1≤k≤N

is called the joint spectrum of X1, . . . , XN with respect to Q, or just the joint
spectrum of X1, . . . , XN for short (we omit the explicit reference to Q when it
is clear from the context). The unitary matrix Q is called a joint diagonalizer of
X1, . . . , XN in this document.

Given a set S ⊆ Mm
n of m-tuples of pairwise commuting normal matrices, we

write Λ(S) to denote the set {Λ(X) | X ∈ S}; the set Λ(S) is called the joint
spectra of S. We write Λ(Xj) to denote the diagonal matrix representation of the
j-component of Λ(X1, . . . , XN); in other words, we have



CONNECTIVITY OF MATRIX SETS 923

Λ(Xj) = diag
[
Λ(1)(Xj), . . . ,Λ

(n)(Xj)
]
.

Given a m-tuple X = (X1, . . . , Xm) ∈ Mm
n of commuting normal matrices, any

orthogonal projection P ∈ Mn such that XjP = PXj = Λ(r)(Xj)P for each
1 ≤ j ≤ m and some 1 ≤ r ≤ n is called a joint spectral projector of X.

3. Path connectivity of algebraic normal matrix sets

3.1. Algebraic Hermitian matrix sets. For any n ∈ Z+, we write Imn to
denote the subset of Mm

n determined by the following expression,

Imn =

(X1, . . . , Xm) ∈Mm
n

∣∣∣∣∣∣
XjXk −XkXj = 0n,
Xj −X∗

j = 0n,
‖Xj‖ ≤ 1

1 ≤ j, k ≤ m

 . (3.1)

The set Imn (p1, . . . , pr) is called a matrix m-cube in this document.
Given any n ∈ Z+ and any r nonconstant polynomials p1(x1, . . . , xm), . . . ,

pr(x1, . . . , xm) of m complex variables with coefficients over R, we write ZImn (p1 ,
. . . , pr) to denote the subset of Imn determined by the expression

ZImn (p1, . . . , pr)
=

{
(X1, . . . , Xm) ∈ Imn

∣∣ pj(X1, . . . , Xm) = 0n, 1 ≤ j ≤ r
}
. (3.2)

The algebraic Hermitian matrix set ZImn (p1, . . . , pr) is called an algebraic matrix
m-cube in this document.

3.2. Algebraic normal matrix sets. For any n ∈ Z+, we write Dm
n to denote

the subset of Mm
n determined by the following expression.

Dm
n =

(X1, . . . , Xm) ∈Mm
n

∣∣∣∣∣∣
XjXk −XkXj = 0n,
XjX

∗
j −X∗

jXj = 0n,
‖Xj‖ ≤ 1

1 ≤ j, k ≤ m

 . (3.3)

The set ZDm
n (p1 , . . . , pr) is called a matrix m-disk in this document.

Given any n ∈ Z+ and any r nonconstant polynomials p1(z1, . . . , zm), . . . ,
pr(z1, . . . , zm) of m complex variables with coefficients over C, we write ZDm

n (p1
, . . . , pr) to denote the subset of Dm

n determined by the expression

ZDm
n (p1, . . . , pr)

=
{
(X1, . . . , Xm) ∈ Dm

n

∣∣ pj(X1, . . . , Xm) = 0n, 1 ≤ j ≤ r
}
, (3.4)

the algebraic normal matrix set ZDm
n (p1, . . . , pr) is called an algebraic matrix

m-disk in this document.

3.3. Uniform path connectivity of algebraic normal contractions.

Lemma 3.1. Given any 2 matrix m-tuples (X1, . . . , Xm), (Y1, . . . , Ym) ∈ Imn such
that XjYk = YkXj for each 1 ≤ j, k ≤ m, there is a path γ ∈ C1([0, 1], Imn ) that
satisfies the conditions {

γ(0) = (X1, . . . , Xm),

γ(1) = (Y1, . . . , Ym),

together with the constraints,
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ð
(
γ(t), (Y1, . . . , Ym)

)
≤ ð

(
(X1, . . . , Xm), (Y1, . . . , Ym)

)
for each 0 ≤ t ≤ 1.

Proof. Given (X1, . . . , Xm), (Y1, . . . , Ym) ∈ Imn such that XjYk = YkXj for each
1 ≤ j, k ≤ m, we have that, for each 1 ≤ j ≤ m, each matrix path of the form
γj(t) = Xj + t(Yj − Xj) satisfies the interpolating conditions γj(0) = Xj and
γj(1) = Yj, together with the constraints∥∥γj(t)− Yj

∥∥ ≤ (1− t)‖Xj − Yj‖ ≤ ‖Xj − Yj‖ (3.5)

for each 0 ≤ t ≤ 1.
Let us set γ(t) = (γj(t)), 0 ≤ t ≤ 1. It can be easily verified that γ(t) ∈ Imn

for each 0 ≤ t ≤ 1. By the definition of ð and as a consequence of (3.5), we can
derive the following estimate,

ð
(
γ(t), (Y1, . . . , Ym)

)
= max

j

∥∥γj(t)− Yj
∥∥

≤ max
j

‖Xj − Yj‖

= ð
(
(X1, . . . , Xm), (Y1, . . . , Ym)

)
(3.6)

for each 0 ≤ t ≤ 1. This completes the proof. �

Lemma 3.2. Given any two simultaneously commuting OPU P := {P1, . . . , Pr}
and Q := {Q1, . . . , Qs} in Mn, there is an OPU R := {R1, . . . , Rt} of Mn such
that spanP ∪Q ⊆ spanR and |R| ≤ |P||Q|.

Proof. Since the elements of P and Q simultaneously commute, by setting Rj,k :=
PjQk and R := {Rj,k}\{0} it can be easily verified that P ,Q ⊆ span{Rj,k}. Let
us set R := {Rj,k}. It can be seen that |R| ≤ |P||Q| and span{P ,Q} ⊆ spanR.
This completes the proof. �

Definition 3.1 (Projective Refinement). Given any collection of OPU P1 =
{P1,j1}r1j1=1, . . . ,Ps = {Ps,js}rsjs=1 such that Pk,jkPl,jl = Pl,jlPk,jk for any 1 ≤ k, l ≤
s, each Pk,jk ∈ Pk and each Pl,jl ∈ Pl. The set R(P1, . . . ,Ps) defined by the
expression

R(P1, . . . ,Ps) = {P1,j1P2,j2 · · ·Ps,js | Pk,jk ∈ Pk}\{0}, (3.7)

is called a projective refinement of P1, . . . ,Ps.

By iterating on Lemma 3.2, we can obtain the following corollary.

Corollary 3.1. For any collection of simultaneously commuting OPU P1, . . . ,Ps,
we have that R(P1, . . . ,Ps) is an OPU.

Lemma 3.3 (Projective Polar Decomposition). Given an OPU P = {Pj}rj=1 in
Mn, and given any matrix X ∈ Mn, there is a polar decomposition Xj,j = VjRj

of the matrix Xj,j = PjXPj that satisfies the conditions VjV
∗
j = V ∗

j Vj = Pj,
Rj ≥ 0n, PjVj = VjPj = Vj, PjRj = RjPj = Rj and PkVj = PkRj = RjPk =
VjPk = 0n, for 1 ≤ k, j ≤ r with k 6= j.
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Proof. By changing basis, if necessary, we can assume that the elements of P
are diagonal matrices. We have that, for each j = 1, . . . , r, there is a unitary
(permutation) matrix Sj ∈ Mn, such that Pj = SjP̂jS

∗
j with P̂j = 1mj

⊕ 0n−mj
,

for some 1 ≤ mj ≤ n. If we set ψj := Ad[Sj], then each ψj is a ∗-homomorphism.
We have, for each j,

P̂jS
∗
jXSjP̂j = X̂j,jP̂j = X̂j,j (3.8)

with X̂j,j = X̃j,j ⊕ 0n−mj
for some X̃j,j ∈Mmj

. Let X̃j,j = ŨjΣ̃jW̃j be a singular

value decomposition of X̃j,j, with Ṽj, W̃j ∈ Mmj
unitary and Σ̃j ≥ 0. It can be

seen that if we set Ṽj = ŨjW̃j and R̃j = W̃ ∗
j Σ̃jW̃j, then Ṽj is unitary and R̃j ≥ 0.

Moreover, we have that ṼjR̃j = ŨjΣ̃jW̃j = X̃j,j determines a representation of

the polar decomposition of X̃j,j, with Ṽj unitary and R̃j ≥ 0, for each 1 ≤ j ≤ r.

Let us set V̂j = Ṽj ⊕ 0n−mj
and R̂j = R̃j ⊕ 0n−mj

. It can be seen that, for
1 ≤ k, j ≤ r, k 6= j, 

X̂j,j = V̂jR̂j,

V̂jV̂
∗
j = V̂ ∗

j V̂j = P̂j,

R̂j ≥ 0n,

P̂jV̂j = V̂jP̂j = V̂j,

P̂jR̂j = R̂jP̂j = R̂j,

P̂kV̂j = P̂kR̂j = R̂jP̂k = V̂jP̂k = 0n.

(3.9)

We can use ψj together with (3.8) and (3.9) in order to obtain the following
decomposition:

Xj,j = PjXPj

= ψj(P̂j)Xψj(P̂j)

= ψj(P̂jS
∗
jXSjP̂j)

= ψj(X̂j,jP̂j)

= ψj(V̂j,jR̂j,jP̂j)

= ψj(V̂j,jR̂j,j)

= ψj(V̂j,j)ψj(R̂j,j).

Let us set Vj = ψj(V̂j) and Rj = ψj(R̂j). Since each ψj preserves commutativity
and positivity, by (3.9) we have VjV

∗
j = V ∗

j Vj = Pj, Rj ≥ 0n, PjVj = VjPj = Vj,
PjRj = RjPj = Rj for each 1 ≤ j ≤ r. By the previous commutativity relations,
we have Vj = PjVjPj and Rj = PjRjPj for each j. In addition, since the set
{Pj}rj=1 is an OPU, then for 1 ≤ k, j ≤ r with k 6= j, one can derive the following
relations: 

PkVj = PkPjVj = 0nVj = 0n

VjPk = VjPjPk = Vj0n = 0n

PkRj = PkPjRj = 0nRj = 0n

RjPk = RjPjPk = Rj0n = 0n.

This completes the proof. �
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Lemma 3.4. Given an OPU {P1, . . . , Pm} in Mn, let us consider m matrices
A1, . . . , Am ∈Mn such that

AjPj = PjAj = Aj. (3.10)

If we set A =
∑m

j=1Aj, then ‖A‖ = max1≤j≤m ‖Aj‖.

Proof. Given anOPU {P1, . . . , Pm} inMn, let us considermmatrices A1, . . . , Am ∈
Mn that satisfy (3.10) for 1 ≤ j ≤ m. Then (3.10) implies that

PjA
∗
j = (AjPj)

∗ = (PjAj)
∗ = A∗

jPj, (3.11)

for 1 ≤ j ≤ m. By (3.10) and (3.11), we have that the matrix A :=
∑m

j=1Aj is a
direct sum of operators on the direct sum of normed linear spaces P1Cn⊕P2Cn⊕
· · · ⊕ PmCn. We also have

A∗A =
( m∑

j=1

Aj

)∗( m∑
j=1

Aj

)
=

( m∑
j=1

A∗
jPj

)( m∑
j=1

PjAj

)
=

m∑
j=1

A∗
jPjPjAj =

m∑
j=1

A∗
jAj.

By elementary spectral theory, since A∗A is normal, there is an orthonormal
basis {v1, v2, . . . , vn} of Cn consisting of eigenvectors of A∗A. This implies that
for each vj there is λj ≥ 0 in σ(A∗A) such that

A∗Avj = λjvj. (3.12)

By (3.12) we have, for each 1 ≤ j ≤ n and each 1 ≤ k ≤ m,

A∗
kAkPkvj = PkA

∗
kAkvj = PkA

∗Avj = λjPkvj. (3.13)

Since each x ∈ Cn has a representation

x =
n∑

j=1

(v∗jx)vj, (3.14)

then (3.14) implies that

A∗Ax =
n∑

j=1

(v∗jx)A
∗Avj =

n∑
j=1

(v∗jx)λjvj. (3.15)

Let us set µ = maxλ∈σ(A∗A)

√
λ. Since σ(A∗A) ⊆ [0,∞), by orthonormality of the

eigenvectors {v1, . . . , vn} and by (3.15), we have

‖Ax‖22 = x∗A∗Ax

=
( n∑

j=1

(v∗jx)v
∗
j

)( n∑
j=1

(v∗jx)λjvj

)
=

n∑
j=1

|v∗jx|2λj ≤ µ2‖x‖22. (3.16)
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By taking x = xk, where xk is an eigenvector such that

A∗Axk = µ2xk, (3.17)

we have that (3.16) is tight. From (3.16) we have, for any x ∈ Cn such that
‖x‖2 = 1,

‖Ax‖2 ≤ µ (3.18)

By (3.18), by the compactness of Sn(C) = {x ∈ Cn|‖x‖2 = 1}, and by the
continuity of ‖A · ‖2 on Sn(C), we have that

‖A‖ = sup
‖x‖2=1

‖Ax‖2 = max
λ∈σ(A∗A)

√
λ.

Elementary matrix theory implies that

‖Aj‖ = ‖PjA‖ ≤ ‖A‖. (3.19)

Let us consider again the eigenvector xk that satisfies (3.17). We have that if
A∗

jAjxk = 0 for each 1 ≤ j ≤ m, then, on one hand,

0 = ‖Ajxk‖2 ≤ µ = ‖A‖ = ‖Axk‖2 =

∥∥∥∥∥∑
j

Ajxk

∥∥∥∥∥
2

= 0. (3.20)

On the other hand, if there is an Aj such that A∗
jAjxk 6= 0, then if we set

x̂k = 1/(‖Pjxk‖2)Pjxk we have ‖x̂k‖2 = 1, and by (3.13) we have that

‖Ax̂k‖2 ≤ ‖A‖ = µ = ‖Ajx̂k‖2 ≤ ‖Aj‖. (3.21)

By (3.19), (3.20), and (3.21), we have

max
1≤j≤m

‖Aj‖ ≤ ‖A‖ ≤ max
1≤j≤m

‖Aj‖. (3.22)

Now (3.22) implies that ‖A‖ = max1≤j≤m ‖Aj‖. This completes the proof. �

We can generalize the proof of [2, VI.6.6] to obtain the following lemma.

Lemma 3.5. Given a unitary W and a normal contraction D in Mn for n ≥ 2,
if D =

∑r
j=1 αjPj is diagonal for 2 ≤ r ∈ Z, and if α1, . . . , αr ∈ D2, {Pj} is an

OPU of diagonal matrices in Mn, and αj 6= αk whenever k 6= j, then there is a
unitary matrix Z ∈ Mn and a constant C depending on r and σ(D) such that
[Z, Pj] = [Z,D] = 0 for 1 ≤ j ≤ r, and ‖1n −WZ‖ ≤ C‖WDW ∗ −D‖.

Proof. We have r mutually orthogonal projections 0n ≤ P1, . . . , Pr ≤ 1n in Mn

such that
∑

j Pj = 1n and D :=
∑

j αjPj with αj ∈ D2. By setting Wj,k :=

PjWPk, we have that W has a decomposition W =
∑

j,kWj,k, and it can be seen
that

‖WDW ∗ −D‖ = ‖WD −DW‖

=
∥∥∥∑

j,k

(αjPjWj,k − αkWj,kPk

∥∥∥
=

∥∥∥∑
j,k

(αj − αk)Wj,k

∥∥∥.
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Hence, for j 6= k,

‖Wj,k‖ ≤
1

|αj − αk|
‖WDW ∗ −D‖

≤ max
j,k

{ 1

|αj − αk|

}
‖WDW ∗ −D‖.

Hence, by setting s = minj,k,j 6=k |αj − αk|, we have∥∥∥W −
∑
j

Wj,j

∥∥∥ ≤ r(r − 1)

s
‖WDW ∗ −D‖.

By Lemma 3.3 for 1 ≤ j, k ≤ r, there is a projective polar decomposition Wj,j :=
VjRj of Wj,j that satifies the constraints VjV

∗
j = V ∗

j Vj = Pj, Rj ≥ 0n, PjVj =
VjPj = Vj, PjRj = RjPj = Rj, and PkVj = PkRj = RjPk = VjPk = 0n, if k 6= j.

Let X :=
∑

j Wj,j =
∑

j PjWPj, R :=
∑

j Rj and V :=
∑

j Vj. Let us set

RPj
= PjCn = {Pjz|z ∈ Cn}. Building on the proof of Lemma 3.3, the above

relations imply that X, V and R are a direct sums of operators in the direct sum
RP1 ⊕RP2 ⊕ · · · ⊕RPr of the normed linear spaces RPj

, 1 ≤ j ≤ r. Moreover, it
can be seen that

X = V R.

By Lemma 3.4, we also have ‖X‖ = max1≤j≤r ‖Wj,j‖ ≤ ‖W‖ = 1.
It can be easily verified that each Rj satisfies the contraint ‖Rj‖ ≤ 1. We also

have

‖Wj,j − Vj‖ = ‖Rj − Pj‖ ≤ ‖R2
j − Pj‖,

since Rj is a contraction. It can be verified that V =
∑

j Vj ∈ Un, and from the
above inequality and by Lemma 3.4, we see that

‖X−V ‖ = max
1≤j≤r

‖Wj,j−Vj‖ ≤ max
1≤j≤r

‖R2
j −Pj‖ = ‖X∗X−1n‖ = ‖X∗X−W ∗W‖.

Hence,

‖V −W‖ ≤ ‖V −X‖+ ‖X −W‖ ≤ ‖W −X‖+ ‖X∗X −W ∗W‖
≤ ‖W −X‖+

∥∥(X∗ −W ∗)X
∥∥+

∥∥W ∗(X −W )
∥∥

≤ 3‖W −X‖ ≤ 3r(r − 1)

s
‖WDW ∗ −D‖.

By setting Z := V ∗ and C := 3r(r−1)
s

, it can be seen that ‖1n−WZ‖ = ‖V −W‖ ≤
C‖WDW ∗ −D‖, and by definition of V we have

V Pj =
(∑

k

Vk

)
Pj =

(∑
k

VkPk

)
Pj = VjP

2
j = VjPj = Vj (3.23)

and

PjV = Pj

(∑
k

Vk

)
= Pj

(∑
k

PkVk

)
= P 2

j Vj = PjVj = Vj. (3.24)

By (3.23) and (3.24), we have V Pj = PjV for 1 ≤ j ≤ r, and this implies that

ZPj = V ∗Pj = (PjV )∗ = (V Pj)
∗ = PjV

∗ = PjZ, (3.25)
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for each 1 ≤ j ≤ r. Then (3.25) implies that

ZD = Z
(∑

j

αjPj

)
=

∑
j

αjZPj =
∑
j

αjPjZ =
(∑

j

αjPj

)
Z = DZ.

This completes the proof. �

Remark 3.1. Given any normal contraction D such that p(D) = 0n for some
p ∈ C[z] with deg(p) ≤ r, we have that there are integer r′ ≤ r, r′ complex
numbers α1, . . . , αr′ ∈ D2, and r′ pairwise orthogonal projections P1, . . . , Pr′ such
that p(αj) = 0,

∑
j Pj = 1n, and D =

∑
j αjPj.

Lemma 3.6. Given a unitary W and a collection of normal contractions
D1, . . . , Dm in Mn for n ≥ 2, if each Dk =

∑rk
j=1 αk,jPk,j is diagonal for

2 ≤ rk ∈ Z and {αk,j} ⊆ D2, each set {Pk,j} is a diagonal OPU in Mn, and
αk,j 6= αk,l whenever l 6= j, then there is a unitary matrix Z ∈ Mn and a con-
stant C depending on m, r1, . . . , rm and the spectra σ(D1), . . . , σ(Dm) such that
[Z,Dk] = 0 for each 1 ≤ k ≤ m, and ‖1n−WZ‖ ≤ Cmax1≤k≤m ‖WDkW

∗−Dk‖.

Proof. We can apply Lemma 3.5 toW and each Dk to obtain for each k a unitary
matrix Zk that satisfies the conditions{

[Zk, Dk] = 0n,

‖1n −WZ‖ ≤ Ck‖WDW ∗ −D‖,
(3.26)

where Ck is a constant that depends on r and σ(Dk). By (3.26), we have, for each
Pk,j,

‖WPk,jW
∗ − Pk,j‖ = ‖WPk,j − Pk,jW‖

≤ ‖WPk,j − ZkPk,j‖+ ‖Pk,jZk − Pk,jW‖
≤ 2‖W − Zk‖
≤ 2Ck‖WDkW

∗ −Dk‖. (3.27)

Let us consider a fixed but arbitrary element P in the projective refinement
R({P1,j1}, . . . , {Pm,jm}). We have P = P1,j′1

, . . . , Pm,j′m with Pk,j′k
∈ {Pk,jk} for

each 1 ≤ k ≤ m. This implies that

‖WPW ∗ − P‖ = ‖WP1,j′1
· · ·Pm,j′mW

∗ − P1,j′1
· · ·Pm,j′m‖

≤
m∑
k=1

‖WPk,j′k
W ∗ − Pk,j′k

‖. (3.28)

Combining (3.27) and (3.28), we obtain the following estimate:

‖WPW ∗ − P‖ ≤ 2m max
1≤k≤m

Ck max
1≤k≤m

‖WDkW
∗ −Dk‖. (3.29)

Let us set ν = max1≤k≤m ‖WDkW
∗ −Dk‖. If ν < 1/(2mmax1≤k≤mCk), then by

[12, Lemma 2.5.1] it holds that (3.29) implies that, for each P in the projective
refinement R({P1,j1}, . . . , {Pm,jm}), there is a unitary WP ∈Mn such that
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WPW ∗ = W ∗

PPWP ,

‖1n −WP‖ ≤
√
2‖WPW ∗ − P‖.

(3.30)

Now the matrix ZP = WPW ∈ Mn is a unitary satisfying the following com-
mutation relation.

ZPP = PZP . (3.31)

Let us list R({P1,j1}, . . . , {Pm,jm}) in the form

R
(
{P1,j1}, . . . , {Pm,jm}

)
= {P1, . . . , PN}.

By (3.30) and (3.29), we have that, for each Pj ∈ R({P1,j1}, . . . , {Pm,jm}), there
is a unitary Zj = WPj

W ∈Mn such that{
ZjPj = PjZj,

‖W − Zj‖ = ‖1n −WPj
‖ ≤

√
2‖WPjW

∗ − Pj‖.
(3.32)

As a consequence of (3.32) and Corollary 3.1, it can be easily verified that Ẑ =∑N
j=1 ZjPj is unitary. Moreover, by (3.29) we obtain the following estimate:

‖W − Ẑ‖ =
∥∥∥(W − Ẑ)

( N∑
j=1

Pj

)∥∥∥
=

∥∥∥ N∑
j=1

(WPj − ZjPj)
∥∥∥

≤
N∑
j=1

∥∥(1n −WPj
)WPj

∥∥
≤

N∑
j=1

‖1n −WPj
‖

≤ 2
√
2mN max

1≤k≤m
Ckν. (3.33)

Let us set

C = 2
√
2mN max

1≤k≤m
Ck

= 6
√
2mN

max1≤k≤m rk(rk − 1)

min1≤k≤m min1≤j,l≤rk,j 6=l |αk,j − αk,l|
(3.34)

and

Z = Ẑ∗. (3.35)

Since, by Lemma 3.2, it holds that each Dk ∈ span{P1, . . . , PN}, we then have
that ZDk = DkZ for 1 ≤ k ≤ m, and

‖1n − ZW‖ = ‖Ẑ −W‖ ≤ C max
1≤k≤m

‖WDkW
∗ −Dk‖.

This completes the proof. �
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The following result was proved in [13].

Lemma 3.7 (Existence of isospectral approximants). Given ε > 0, there is
δ > 0 such that, for any 2 families of m pairwise commuting normal matri-
ces X1, . . . , Xm and Y1, . . . , Ym which satisfy the constraints ‖Xj − Yj‖ ≤ δ for
each 1 ≤ j ≤ N , there is a constant Km and a unitary W ∈ U(n) such that the
inner ∗-homomorphism Ψ = Ad[W ] satisfies the conditions: σ(Ψ(Xj)) = σ(Xj),
[Ψ(Xj), Yj] = 0, and max{‖Ψ(Xj) − Yj‖, ‖Ψ(Xj) − Xj‖} ≤ Kmδ for every 1 ≤
j ≤ N .

Remark 3.2. The constant Km in the statement of Lemma 3.7 depends only on
m.

Lemma 3.8. Given any ε ≥ 0 and m nonconstant polynomials p1(x), . . . , pm(x)
over C, there is δ ≥ 0 such that, for any integer n ≥ 1 and any 2m-tuples
(X1, . . . , Xm), (Y1, . . . , Ym) in Imn which satisfy the relations{

pj(Xj) = pj(Yj) = 0n, 1 ≤ j ≤ m

ð((X1, . . . , Xm), (Y1, . . . , Ym)) ≤ δ,

there is a path {Ψt}t∈[0,1] ∗-homomorphisms Ψt :Mn →Mn such that the extended

maps Ψ̆t :M
m
n →Mm

n satisfy the following relations,{
Ψ̆0(Y1, . . . , Ym) = (X1, . . . , Xm),

Ψ̆1(Y1, . . . , Ym) = (Y1, . . . , Ym),

together with the constraint

ð
(
Ψ̆t(Y1, . . . , Ym), (Y1, . . . , Ym)

)
≤ ε,

for each 0 ≤ t ≤ 1.

Proof. By changing basis if necessary, we can assume that Y1, . . . , Ym are diagonal
matrices. By Lemma 3.1, the result is clear when n = 1 or |σ(Xj)| = |σ(Yj)| =
deg(pj) = 1, for each 1 ≤ j ≤ m. Without loss of generality, let us assume
that max1≤j≤m deg(pj) ≥ 2, max1≤j≤m |σ(Xj)| ≥ 2, max1≤j≤m |σ(Yj)| ≥ 2, and
n ≥ 2. Then let us set K :=

∏m
j=1 deg(pj) and L := max1≤j≤m deg(pj), and let us

consider the sets Z(pj) = {z ∈ D2 | pj(z) = 0}, 1 ≤ j ≤ m.

By Lemma 3.7 there are a constant Km, a unitary Ŵ ∈ Mn, and an inner
∗-homomorphism Ψ = Ad[Ŵ ] : Mn → Mn such that [Ψ(Xj), Yj] = 0 and
‖Ψ(Xj) − Yj‖ ≤ Kmδ. Let ε > 0 be given. It is enough to consider the case
ε < 4 sin(1/8) < 1/2. Since max{‖Xj‖, ‖Yj‖} ≤ 1 for each 1 ≤ j ≤ m, for the
rest of the proof we consider only the sets Z(pj) ∩ [−1, 1], 1 ≤ j ≤ r. Let hp > 0
be a number chosen so that

hp ≤
1

3Km

min
1≤j≤N

{
min

x,y∈Z(pj)∩[−1,1]

{
|x− y|

∣∣ x 6= y
}}

;

since Z(pj) ∩ [−1, 1] ⊂ [−1, 1] for each 1 ≤ j ≤ r, it holds that hp ≤ 2. We have
that there is δ > 0 that can be chosen so that
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δ ≤ 2hp arcsin(ε/4)

3π
√
2mKmKL(L− 1)

<
hpε

2
≤ min

{
ε,

1

3Km

min
1≤j≤N

{
min

x,y∈Z(pj)∩[−1,1]

{
|x− y|

∣∣ x 6= y
}}}

. (3.36)

Since δ < 1
3Km

min1≤j≤N{minx,y∈Z(pj)∩[−1,1]{|x − y| diag x 6= y}} and also since

pj(Xj) = pj(Ψ(Xj)) = pj(Yj) = 0n, we have Yj = ŴXjŴ
∗ = Ψ(Xj), since

otherwise we get a contradiction.
By Remark 3.1, for each 1 ≤ j ≤ m there is an OPU {Pj,kj} such that Yj ∈

span{Pj,k}, and by Corollary 3.1 we have that the projective refinement P :=
R({P1,k1}, . . . , {Pm,km}) = {P1, . . . , PK′} is an OPU with |P| ≤ K ′ ≤ K such
that Yj ∈ spanP for each 1 ≤ j ≤ m.

By (3.34), (3.36), and Lemma 3.6, there is a unitary Z that satisfies the

constraint ‖Z − Ŵ‖ ≤ 4
π
arcsin(ε/4), together with the relations [Z,Ψ(Xj)] =

[Z, Yj] = 0, 1 ≤ j ≤ N . If we set W := Ŵ ∗Z, then

WYjW
∗ = Ŵ ∗YjŴ = Ψ−1(Yj) = Xj (3.37)

for each 1 ≤ j ≤ m. Moreover, as a consequence of the proof of [4, Theorem 5.2],
there is a skew Hermitian matrix K ∈Mn that satisfies the relations.{

eK = W,

‖K‖ ≤ π
2
‖1n −W‖ = π

2
‖Z − Ŵ‖ ≤ π

2
4
π
arcsin(ε/2) = 2 arcsin(ε/4).

(3.38)

For any t ∈ [0, 1], we get

|1− eit| = 2 sin
( t
2

)
. (3.39)

As a consequence of (3.38) and (3.39), if we set W (t) = etK with 0 ≤ t ≤ 1, then
W (t) ∈ U(n) for each t ∈ [0, 1], W (0) = 1n, W (1) = W , and we can obtain the
estimate∥∥1n −W (t)

∥∥ ≤ 2 sin
(t‖K‖

2

)
≤ 2 sin

(‖K‖
2

)
≤ 2 sin

(
arcsin(ε/4)

)
≤ ε

2
(3.40)

for each t ∈ [0, 1].
Let us set Φt = Ad[W (t)]; we then have Φ0 = idMn , and by (3.37) we have

Φ1(Yj) = Ψ−1(Yj) = Xj (3.41)

for each 1 ≤ j ≤ m. Furthermore, as a consequence of (3.38) and (3.40), we have∥∥Φt(Yj)− Yj
∥∥ =

∥∥W (t)YjW (t)∗ − Yj
∥∥

=
∥∥W (t)Yj − YjW (t)

∥∥
≤

∥∥W (t)Yj − Yj
∥∥+

∥∥Yj − YjW (t)
∥∥

≤ 2
∥∥1n −W (t)

∥∥ ≤ ε (3.42)

for each 0 ≤ t ≤ 1. If we set Ψt = Φ1−t, then each path {Ψt(Yj)}t∈[0,1] is differen-
tiable with respect to t and satisfies the relation
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Ψ0(Yj) = Xj,

Ψ1(Yj) = Yj,
(3.43)

together with the constraint ∥∥Ψt(Yj)− Yj
∥∥ ≤ ε (3.44)

for each 1 ≤ j ≤ m and each t ∈ [0, 1]. By (3.43) and (3.44), we have{
Ψ̆0(Y1, . . . , Ym) = (Ψ0(Y1), . . . ,Ψ0(Ym)) = (X1, . . . , Xm),

Ψ̆1(Y1, . . . , Ym) = (Ψ1(Y1), . . . ,Ψ1(Ym)) = (Y1, . . . , Ym),

and

ð
(
Ψ̆t(Y1, . . . , Ym), (Y1, . . . , Ym)

)
= max

1≤j≤m

∥∥Ψt(Yj)− Yj
∥∥ ≤ ε

for each 0 ≤ t ≤ 1. This completes the proof. �

Theorem 3.1. Given any ε ≥ 0 and r nonconstant polynomials p1(x1, . . . , xm),
. . . , pr(x1, . . . , xm) of m complex variables, with coefficients over C, and with finite
zero set Z(p1, . . . , pr) ⊂ [−1, 1]m, there is δ > 0 such that, for any integer n ≥ 1
and any 2 m-tuples (X1, . . . , Xm), (Y1, . . . , Ym) in Imn which satisfy the relations{

pj(X1, . . . , Xm) = pj(Y1, . . . , Ym) = 0n, 1 ≤ j ≤ r,

ð((X1, . . . , Xm), (Y1, . . . , Ym)) ≤ δ,

there is a path ϕ = (ϕ1, . . . , ϕm) ∈ C([0, 1], Imn ) that satisfies the relations{
ϕ(0) = (X1, . . . , Xm),

ϕ(1) = (Y1, . . . , Ym),
(3.45)

together with the constraints{
pj(ϕ(t)) = 0n, 1 ≤ j ≤ r,

ð(ϕ(t), (Y1, . . . , Ym)) ≤ ε,
(3.46)

for each 0 ≤ t ≤ 1.

Proof. Let r polynomials p1(x1, . . . , xm), . . . , pr(x1, . . . , xm) of m complex vari-
ables, with coefficients over C be given, as in the statement of this theorem. Let
us set L = |Z(p1, . . . , pr)| <∞. Then Z(p1, . . . , pr) can be listed in the form

Z(p1, . . . , pr) =
{
(xj,1, . . . , xj,m)

∣∣ 1 ≤ j ≤ L
}
. (3.47)

For each 1 ≤ k ≤ m, let us set Zk = {xj,k | 1 ≤ j ≤ L}, and let us write
Žk to denote the set consisting of all distinct numbers in Zk counted without
multiplicity. We then have Žk ⊆ Zk and, for each x ∈ Zk, there is y ∈ Žk such
that x = y for each 1 ≤ k ≤ m. Let us set

p̂k(xk) =
∏
y∈Žk

(xk − y), (3.48)
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for each 1 ≤ k ≤ m. We have that each p̂k(xk) is a polynomial over C such
that 1 ≤ deg(p̂k) = |Žk| ≤ |Zk|, and that p̂k(x) = 0 for every x ∈ Zk and each
1 ≤ k ≤ m.

Given any two (X1, . . . , Xm), (Y1, . . . , Ym) in Imn as in the statement of this
theorem, as a direct application of multivariate functional calculus for commuting
matrices, we have, for each 1 ≤ j ≤ r and each 1 ≤ k ≤ n,{

pj(Λ
(k)(X1, . . . , Xm)) = pj(Λ

(k)(X1), . . . ,Λ
(k)(Xm)) = 0,

pj(Λ
(k)(Y1, . . . , Ym)) = pj(Λ

(k)(Y1), . . . ,Λ
(k)(Ym)) = 0.

(3.49)

By (3.49), Λ(X1, . . . , Xm),Λ(Y1, . . . , Ym) ⊆ Z(p1, . . . , pr), and this implies that

p̂j(Xj) = p̂j
(
Λ(Xj)

)
= 0n = p̂j

(
Λ(Yj)

)
= p̂j(Yj) (3.50)

for each 1 ≤ j ≤ m.
Given ε > 0, by Lemma 3.8 applied to p̂1, . . . , p̂m and also to any 2 m-tuples

(X1, . . . , Xm), (Y1, . . . , Ym) ∈ Imn as in the statement of this theorem, there are
δ > 0 and a family of ∗-homomorphisms Ψt :Mn →Mn such that{

Ψ̆0(Y1, . . . , Ym) = (X1, . . . , Xm),

Ψ̆1(Y1, . . . , Ym) = (Y1, . . . , Ym),
(3.51)

and

ð
(
Ψ̆t(Y1, . . . , Ym), (Y1, . . . , Ym)

)
≤ ε (3.52)

for each 0 ≤ t ≤ 1, whenever ð((X1, . . . , Xm), (Y1, . . . , Ym)) ≤ δ. Let us set
ϕ(t) = (ϕ1(t), . . . , ϕm(t)), with ϕj(t) = Ψt(Yj) for 1 ≤ j ≤ m and 0 ≤ t ≤ 1; then
by (3.51) and (3.52), we have

ϕ(0) = (X1, . . . , Xm),

ϕ(1) = (Y1, . . . , Ym),

ð(ϕ(t), (Y1, . . . , Ym)) ≤ ε.

(3.53)

Furthermore, for each 1 ≤ i, j ≤ m, 1 ≤ k ≤ r, and each 0 ≤ t ≤ 1, we get

ϕj(t)
∗ =

(
Ψt(Yj)

)∗
= Ψt(Y

∗
j ) = Ψt(Yj) = ϕj(t), (3.54)

ϕj(t)ϕi(t)− ϕi(t)ϕj(t) = Ψt(Yj)Ψt(Yi)−Ψt(Yi)Ψt(Yj)

= Ψt(YjYi − YiYj) = Ψt(0n) = 0n, (3.55)

pk
(
ϕ(t)

)
= pk

(
Ψt(Y1), . . . ,Ψt(Ym)

)
= Ψt

(
pk(Y1, . . . , Ym)

)
= Ψt(0n) = 0n. (3.56)

By the definition of ϕ, and by (3.54) and (3.55), we get ϕ ∈ C1([0, 1], Imn ). And by
(3.53) and (3.56), it holds that the path ϕ ∈ C1([0, 1], Imn ) satisfies the conditions
(3.45) and (3.46). This completes the proof. �

Definition 3.2. We say that a matrix set Sm
n ⊆ Mm

n is uniformly piecewise dif-
ferentiably path-connected with respect to the metric ð if, given ε > 0, there is
δ > 0 such that, for any X ∈ Sm

n and any Y ∈ Sm
n ∩Bð(X, δ), there is a piecewise

C1-path γ ∈ C([0, 1],Sm
n ) such that γ(0) = X, γ(1) = Y and γ(t) ∈ Bð(X, ε) for

each 0 ≤ t ≤ 1.
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Corollary 3.2. Let there be given r nonconstant polynomials p1(x1, . . . , xm), . . . ,
pr(x1, . . . , xm) of m complex variables, with coefficients over C, and with finite
zero set Z(p1, . . . , pr) ⊂ Rm. The algebraic matrix m-cube ZImn (p1, . . . , pr) is uni-
formly piecewise differentiably path-connected with respect to the metric ð.
Proof. Let ε > 0. Let us consider any r nonconstant polynomials p1(x1, . . . , xm),
. . . , pr(x1, . . . , xm) of m complex variables with coefficients over C and with finite
zero set Z(p1, . . . , pr) ⊂ Rm. By Theorem 3.1, there is δ > 0 such that, for
any X ∈ ZImn (p1, . . . , pr) and any Y ∈ ZImn (p1, . . . , pr) ∩ Bð(X, δ), there is a
piecewise C1-path γ ∈ C([0, 1],ZImn (p1, . . . , pr)) such that γ(0) = X, γ(1) = Y
and γ(t) ∈ Bð(X, ε) for each 0 ≤ t ≤ 1. This completes the proof. �

Theorem 3.2. Let there be given r nonconstant polynomials p1(z1, . . . , zm), . . . ,
pr(z1, . . . , zm) of m complex variables with coefficients over C and with finite zero
set Z(p1, . . . , pr) ⊂ Cm. The algebraic matrix m-disk ZDm

n (p1, . . . , pr) is uniformly
piecewise differentiably path-connected with respect to the metric ð.
Proof. Let ε > 0. Let us consider any r nonconstant polynomials p1(x1, . . . , xm),
. . . , pr(x1, . . . , xm) of m complex variables, with coefficients over C and with
finite zero set Z(p1, . . . , pr) ⊂ Cm. By elementary theory of complex valued
functions of several complex variables, we have that there are 2r polynomials
Re(p1), . . . ,Re(pr), Im(p1), . . . , Im(pr) in 2m real variables Re(z1), . . . ,Re(zm),
Im(z1), . . . , Im(zm) with coefficients over R and also such that z = (z1, . . . , zm) ∈
Z(p1, . . . , pr) ⊂ Cm if and only if it holds that(

Re(z), Im(z)
)
∈ Z

(
Re(p1), Im(p1), . . . ,Re(pr), Im(pr)

)
⊂ R2m,

where Re(z) = (Re(z1), . . . ,Re(zm)) and Im(z) = (Im(z1), . . . , Im(zm)).
Let us consider the maps ı : Cm → R2m, z 7→ (Re(z), Im(z)), and κ : R2m →

Cm, x 7→ (x1 + ixm+1, . . . , xm + ix2m). By the arguments in the preceding para-
graph, we have that there is a one-to-one correspondence between Z(p1, . . . , pr)
and Z(Re(p1), Im(p1), . . . ,Re(pr), Im(pr)) induced by ı ◦ κ and κ ◦ ı. This in turn
implies that there is a one-to-one correspondence between ZDm

n (p1, . . . , pr) and
ZI2mn (Re(p1), Im(p1), . . . ,Re(pr), Im(pr)), induced by the maps π̂ ◦ υ and υ ◦ π̂
defined in Section 2.

By the definition of π̂ and υ and by the one-to-one correspondence between
ZDm

n (p1, . . . , pr) and ZI2mn (Re(p1), Im(p1), . . . ,Re(pr), Im(pr)) described in the
previous paragraph, we have the following. Given X,Y ∈ ZDm

n (p1, . . . , pr), on
one hand, we have π̂(X), π̂(Y) ∈ ZI2mn (Re(p1), Im(p1), . . . ,Re(pr), Im(pr)) and
ð(π̂(X), π̂(Y)) ≤ ð(X,Y). On the other hand, for any S,T ∈ ZI2mn (Re(p1),
Im(p1), . . . ,Re(pr), Im(pr)), υ(S), υ(T) ∈ ZDm

n (p1, . . . , pr) and ð(υ(X), υ(X)) ≤
2ð(S,T).

By Theorem 3.1 and by the arguments above, there is δ > 0 such that, for
any X ∈ ZDm

n (p1, . . . , pr) and any Y ∈ ZDm
n (p1, . . . , pr) ∩ Bð(X, δ), there is a

piecewise C1-path γH ∈ C([0, 1],ZI2mn (Re(p1), Im(p1), . . . ,Re(pr), Im(pr))) such
that γH(0) = π̂(X), γH(1) = π̂(Y) and γH(t) ∈ Bð(π̂(X), ε/2) for each 0 ≤ t ≤ 1.
This in turn implies that the path γ = υ ◦ γH ∈ C([0, 1],ZDm

n (p1, . . . , pr)), which
is clearly piecewise C1, satisfies the conditions γ(0) = X, γ(1) = Y and γ(t) ∈
Bð(π̂(X), ε) for each 0 ≤ t ≤ 1. This completes the proof. �
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3.4. Uniform path connectivity of nearly algebraic normal contrac-
tions. In order to extend the applicability of the results presented in Section 3.3,
in this section we solve some connectivity problems on what we call nearly alge-
braic matrix sets.

Given ε > 0, any n ∈ Z+, and any r nonconstant polynomials p1(x1, . . . , xm), . . . ,
pr(x1, . . . , xm) of m complex variables with coefficients over R, we write
ZImn,ε(p1, . . . , pr) to denote the subset of Im(n) determined by the expression

ZImn,ε(p1, . . . , pr)
=

{
(X1, . . . , Xm) ∈ Imn

∣∣ ∥∥pj(X1, . . . , Xm)
∥∥ ≤ ε, 1 ≤ j ≤ r

}
. (3.57)

The Hermitian nearly algebraic matrix set ZImn,ε(p1, . . . , pr) is called an ε-nearly
algebraic matrix m-cube in this document.

Given ε > 0, any n ∈ Z+, and any r nonconstant polynomials p1(z1, . . . , zm), . . . ,
pr(z1, . . . , zm) of m complex variables with coefficients over C, we write
ZDm

n,ε(p1, . . . , pr) to denote the subset of Dm
n determined by the expression

ZDm
n,ε(p1, . . . , pr)

=
{
(X1, . . . , Xm) ∈ Dm

n

∣∣ ∥∥pj(X1, . . . , Xm)
∥∥ ≤ ε, 1 ≤ j ≤ r

}
. (3.58)

The normal nearly algebraic matrix set ZDm
n,ε(p1, . . . , pr) is called an ε-nearly

algebraic matrix m-disk in this document.
Given δ > 0 and any collection of simultaneously commuting normal matrix

contractions X1, . . . , Xm ∈ Mn, we prove that there are a collection of simulta-
neously commuting normal matrix contractions X̃1, . . . , X̃m ∈Mn, together with
m-polynomials p1(x1), . . . , pr(xm) with coefficients over C, such that ‖Xj−X̃j‖ ≤
δ, XjX̂k = X̂kXj, and pj(X̃j) = 0n, 1 ≤ j, k ≤ m. Moreover, we have that, for

each 1 ≤ j ≤ m, deg(pj) does not depend on n. The collection X̃1, . . . , X̃m is
called δ-clustered pseudospectral approximants (CPAδ) of X1, . . . , Xm.

In terms of m-tuples in Dm
n , we write CPAδ(X1, . . . , Xm) = (X̃1, . . . , X̃m)

to indicate that the components X̃1, . . . , X̃m of the m-tuple (X̃1, . . . , X̃m) ∈
ZDm

n (p1, . . . , pj) ∩ Bð((X1, . . . , Xm), δ) are δ-clustered pseudospectral approxi-
mants of X1, . . . , Xm. Using this notation, it is enough to prove the following
lemma, in order to solve the matrix approximation problem stated above.

Lemma 3.9. Given any (X1, . . . , Xm) ∈ Dm
n , the problem CPAδ(X1, . . . , Xm) =

(X̃1, . . . , X̃m) is solvable for any δ > 0.

Proof. Let δ > 0. Because of the one-to-one correspondence between Dm
n and

I2mn , induced by π̂ ◦ υ and υ ◦ π̂, together with the constraint ð(X,X′) ≤
2ð(π̂(X), π̂(X′)) that is satisfied for any X,X′ ∈ Dm

n , we have that it is
enough to solve the problem in CPAδ(X1, . . . , Xm) = (X̃1, . . . , X̃m) for any
(X1, . . . , Xm) ∈ Imn .

Let X = (X1, . . . , Xm) ∈ Imn be given. Let us assume for simplicity that 1/δ =
Nδ ∈ Z+. Let us consider the grid Xδ := {xk = −1 + kδ | 0 ≤ k ≤ Nδ − 1} ⊂
[−1, 1]. It can be seen that the set Xδ is δ-dense in [−1, 1]. Moreover, if χ[a,b)

denotes the characteristic function of the interval [a, b), then it is clear that the
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simple function p̂(x) =
∑Nδ−2

j=0 (−1 + (j + 1/2)δ)χ[xj ,xj+1) is a δ-approximation of

the identity function id on L∞([−1, 1]).
By Borel normal (matrix) functional calculus, we have that, if for each 1 ≤ j ≤

m we set X̃j = p̂(Xj), then ‖X̃j−Xj‖ = ‖p̂(Xj)−id(Xj)‖ ≤ ‖p̂−id‖L∞([−1,1]) ≤ δ.

By Borel functional calculus, we also have [X̃j, Xk] = [p̂(Xj), Xk] = 0n for each
1 ≤ j, k ≤ m.

Now let us set p(x) =
∏Nδ−2

j=0 (x − (−1 + (j + 1/2)δ)), and let us write

pj(xj) to denote the minimal polynomial of X̃j for each 1 ≤ j ≤ m. By the

definition of each X̃j, we have that deg(pj) ≤ deg(p) < Nδ does not depend
on n in general, and in particular when Nδ ≥ 1. It can be seen that the
m-tuple (X̃1, . . . , X̃m) ∈ ZImn (p1, . . . , pm) solves the approximation problem
CPAδ(X1, . . . , Xm) = (X̃1, . . . , X̃m). This completes the proof. �

Remark 3.3. Given δ > 0 and any (X1, . . . , Xm) ∈ Dm
n , from the proof of Lemma

3.9 we have that one can find two disjoint finite grids Xδ, X
′
δ ⊂ [−1, 1] such that,

by applying some retraction ρ : [−1, 1]\Xδ → X ′
δ (if necessary) to each compo-

nent X̃j of the solution of the problem CPAδ(X1, . . . , Xm) = (X̃1, . . . , X̃m) deter-

mined by Lemma 3.9, one can obtain a preconditioned m-tuple (X̂1, . . . , X̂m) ∈
ZDn,ε(p1, . . . , pr), where X̂j = ρ(X̃j), for each 1 ≤ j ≤ m, and p1, . . . , pr are
determined by ρ, Xδ, and X

′
δ.

Theorem 3.3. Given any ε ≥ 0 and r nonconstant polynomials p1(x1, . . . , xm),
. . . , pr(x1, . . . , xm) of m complex variables, with coefficients over C, and with finite
zero set Z(p1, . . . , pr) ⊂ [−1, 1]m, there are δ, δ′ > 0 such that for any integer
n ≥ 1 and any 2 m-tuples (X1, . . . , Xm), (Y1, . . . , Ym) in Im(n) which satisfy the
relations 

‖pj(X1, . . . , Xm)‖ ≤ δ′,

‖pj(Y1, . . . , Ym)‖ ≤ δ′,

ð((X1, . . . , Xm), (Y1, . . . , Ym)) ≤ δ.

For each 1 ≤ j ≤ r there is a path ϕ ∈ C1([0, 1], Imn ) that satisfies the relations{
ϕ(0) = (X1, . . . , Xm),

ϕ(1) = (Y1, . . . , Ym),
(3.59)

together with the constraints{
‖pj(ϕ(t))‖ < δ′, 1 ≤ j ≤ r,

ð(ϕ(t), (Y1, . . . , Ym)) ≤ ε
(3.60)

for each 0 ≤ t ≤ 1.

Proof. Let ε > 0 be given, and without loss of generality let us assume that
ε < 4 sin(1/8) < 1/2. Given any polynomials p1, . . . , pr as in the statement of
this theorem, let us assume that |Z(p1, . . . , pr)| ≥ 2, as the following argument
can be easily modified when |Z(p1, . . . , pr)| = 1. Since Z(p1, . . . , pr) is finite, if we
set
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δ1 =
1

3
min

x,y∈Z(p1,...,pr)

{
‖x− y‖2

∣∣ x 6= y
}
> 0, (3.61)

then for any (x1, . . . , xm), (x
′
1, . . . , x

′
m) ∈ Z(p1, . . . , pr) we then have that

B((x1, . . . , xm), δ1/2) ∩B((x′1, . . . , x
′
m), δ1/2) = ∅.

By continuity of each pj(x1, . . . , xm), we have that, for any δ′ > 0 chosen
so that δ′ ≤ min{δ1, ε/2}, there is δ2 > 0 such that, for each (x1, . . . , xm) ∈
Z(p1, . . . , pr) and any (y1, . . . , ym) ∈ B((x1, . . . , xm), δ2/2), we have that the
inequality |pj(y1, . . . , ym)| < δ′ is satisfied for each 1 ≤ j ≤ r.

Let us set δ3 = min{δ1, δ2}. Given ν > 0, let us write Zν(p1, . . . , pr) to denote
the set determined by the following expression.

Zν(p1, . . . , pr) =
⋃

x∈Z(p1,...,pr)

B(x, ν). (3.62)

Since |Z(p1, . . . , pr)| ≥ 2, given x̃ and ỹ in the approximate zero set Zδ3/2(p1, . . .
, pr), such that x̃ ∈ B(x, δ3/2) and ỹ ∈ B(y, δ3/2) for some x,y ∈ Z(p1, . . . , pr),
by (3.61) and (3.62) we have that ‖x̃ − ỹ‖2 > δ2. This implies that for any
x̃, x̃′ ∈ Zδ3/2(p1, . . . , p3) such that ‖x̃ − x̃′‖ < δ3, there is x ∈ Z(p1, . . . , pr)
such that x̃, x̃′ ∈ B(x, δ3/2). This implies that, for any x,y ∈ Rm that satisfy
the inequality ‖x − x‖2 < δ3, together with the constraints |pj(x)| < δ′ and
|pj(y)| < δ′ for each 1 ≤ j ≤ r, we have that x,y ∈ Zδ3/2(p1, . . . , pr), otherwise
we get a contradiction.

As a consequence of the preceding arguments, we then have that for any
two X = (X1, . . . , Xm) and X′ = (X ′

1, . . . , X
′
m) in Imn that satisfy the inequal-

ity ð(X,X′) < δ3, together with the constraints ‖pj(Xj, . . . , Xm)‖ < δ′ and
‖pj(X ′

j, . . . , X
′
m)‖ < δ′ for each 1 ≤ j ≤ r, we have that Λ(X1, . . . , Xm),

Λ(X ′
1, . . . , X

′
m) ∈ Zδ3/2(p1, . . . , pr).

Given any two m-tuples H = (H1, . . . , Hm), H
′ = (H ′

1, . . . , H
′
m) in Imn such

that Λ(H1, . . . , Hm), Λ(H
′
1, . . . , H

′
m) ∈ Zδ3/2(p1, . . . , pr), let us consider a basis in

which Λ(H ′
j) = diag[Λ(1)(Hj), . . . ,Λ

(n)(Hj)] = H ′
j for each 1 ≤ j ≤ m. By Lemma

3.7, we have that there is a ∗-homomorphism Φ : Mn → Mn that satisfies the
conditions Λ(Φ(Hj)) = Φ(Hj) and Φ(Hj)Λ(H

′
k) = Λ(H ′

k)Φ(Hj), together with
the constraints∥∥Λ(Φ(Hj)

)
− Λ(H ′

j)
∥∥ ≤

∥∥Φ(Hj)−Hj

∥∥+ ‖Hj −H ′
j‖

≤ (Km + 1)ð
(
(H1, . . . , Hm), (H

′
1, . . . , H

′
m)

)
(3.63)

for each 1 ≤ j, k ≤ m. By (3.63), we have∥∥Λ(k)
(
Φ̆(H)

)
− Λ(k)(H′)

∥∥
2
≤

√
m max

1≤j≤m

∣∣Λ(k)
(
Φ(Hj)

)
− Λ(k)(H ′

j)
∣∣

≤
√
m max

1≤j≤m
max
1≤k≤n

∣∣Λ(k)
(
Φ(Hj)

)
− Λ(k)(H ′

j)
∣∣

≤
√
m max

1≤j≤m

∥∥Λ(Φ(Hj)
)
− Λ(H ′

j)
∥∥

≤
√
m(Km + 1)ð(H,H′) (3.64)

for each 1 ≤ k ≤ n. Let us set δ4 = δ3/(
√
m(Km + 1)). By (3.64) and by the

previous arguments, we have that if, in addition,
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ð
(
(H1, . . . , Hm), (H

′
1, . . . , H

′
m)

)
< δ4, (3.65)

then there is ĥk = (ĥk,1, . . . , ĥk,m) ∈ Z(p1, . . . , pr) such that{
‖ĥk − Λ(k)(Φ̆(H))‖2 < δ4/2,

‖ĥk − Λ(k)(H′)‖2 < δ4/2,
(3.66)

for each 1 ≤ k ≤ n. Let us set

Ĥ ′
j = diag[ĥ1,j, . . . , ĥn,j] (3.67)

for each 1 ≤ j ≤ m. We have that the m-tuples Ĥ′ = (Ĥ ′
1, . . . , Ĥ

′
m), Ĥ =

(Ĥ1, . . . , Ĥm) in Imn , with Ĥj = Φ−1(Ĥ ′
j) for 1 ≤ j ≤ m, satisfy the relations,

[Ĥj, Ĥk] = [Ĥ ′
j, Ĥ

′
k] = 0n,

Λ(Φ(Ĥj)) = Λ(Ĥ ′
j),

pk(Ĥ1, . . . , Ĥm) = pk(Ĥ
′
1, . . . , Ĥ

′
m) = 0n,

ð(H, Ĥ) < δ3/2,

ð(H′, Ĥ′) < δ3/2,

(3.68)

for each 1 ≤ j ≤ m and each 1 ≤ k ≤ r. It can be seen that Ĥ′ = Φ̆(Ĥ), and by
(3.68), we have

ð
(
Ĥ,Φ(Ĥ)

)
≤ ð(Ĥ,H) + ð(H,H′) + ð(H′, Ĥ′)

< δ3/2 + δ4 + δ3/2 ≤ 2δ3. (3.69)

Let us consider X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) in Imn that satisfy
the inequality ð(X,Y) < δ4 together with the constraints ‖pj(X1, . . . , Xm)‖ < δ′

and ‖pj(Y1, . . . , Ym)‖ < δ′, for each 1 ≤ j ≤ r. By the preceding arguments,

together with (3.68) and (3.69), we have that there exist X̂ = (X̂1, . . . , X̂m) and

Ŷ = (Ŷ1, . . . , Ŷm) in ZImn (p1, . . . , pr) such that ð(X, X̂) < δ3/2, ð(Y, Ŷ) < δ3/2

and ð(X̂, Ŷ) < 2δ3.
By Theorem 3.1, by continuity of p1, . . . , pr, and by (3.36), we have that

there are a number δ > 0 that can be chosen so that δ < min{δ′, ε/2} and
a piecewise C1-path φ ∈ C([0, 1],ZImn (p1, . . . , pr)) such that, if ð((X1, . . . , Xm),

(Y1, . . . , Ym)) ≤ δ3 < δ, then φ(0) = X̂, φ(1) = Ŷ and ð(φ(t), Ŷ) < ε/2 for each
t ∈ [0, 1].

As a consequence of Lemma 3.1, we have that there are piecewise C1-paths
φx, φy ∈ C([0, 1], Imn ) such that φx(0) = X, φx(1) = X̂, φy(0) = Ŷ, φy(1) = Y,

and in addition max{ð(φx(t), X̂),ð(φy(t),Y)} ≤ δ3/2 < δ/2. By definition of δ′

and by continuity of each pj for 1 ≤ j ≤ r, we then have that max{‖pj(φx(t))‖,
‖pj(φy(t))‖} ≤ δ′ for each t ∈ [0, 1].

Let us set ϕ = (φx~φ)~φy. We have that the path ϕ ∈ C([0, 1], Imn ) is piecewise
C1. By the preceding arguments, we have that ‖pj(ϕ(t))‖ < δ′ for each 1 ≤ j ≤ r
and each t ∈ [0, 1]. Moreover, we have that the path ϕ satisfies the estimates,
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ð
(
ϕ(t),Y

)
< δ3/2 + max{ε/2, δ4}+ δ3/2 ≤ ε/2 + ε/2 = ε (3.70)

for each 0 ≤ t ≤ 1. This completes the proof. �

Corollary 3.3. Let there be given r nonconstant polynomials p1(x1, . . . , xm), . . . ,
pr(x1, . . . , xm) of m complex variables, with coefficients over C, and with finite
zero set Z(p1, . . . , pr) ⊂ Rm. There is ε > 0 such that, for each 0 < ε′ ≤ ε, the
ε′-nearly algebraic matrix m-cube ZImn,ε′(p1, . . . , pr) is uniformly piecewise differ-
entiably path connected with respect to the metric ð.
Proof. Let ε > 0. Let us consider any r nonconstant polynomials p1(x1, . . . , xm),
. . . , pr(x1, . . . , xm) of m complex variables, with coefficients over C, and with
finite zero set Z(p1, . . . , pr) ⊂ Rm. By Theorem 3.3, we then have that there
are ε, δ > 0 such that, for any ε′ ≤ ε, any X ∈ ZImn,ε′(p1, . . . , pr), and

any Y ∈ ZImn,ε′(p1, . . . , pr) ∩ Bð(X, δ), there is a piecewise C1-path γ ∈
C([0, 1],ZImn,ε′(p1, . . . , pr)) such that γ(0) = X, γ(1) = Y and γ(t) ∈ Bð(X, ε) for
each 0 ≤ t ≤ 1. �

Theorem 3.4. Let there be given r nonconstant polynomials p1(x1, . . . , xm), . . . ,
pr(x1, . . . , xm) of m complex variables, with coefficients over C, and with finite
zero set Z(p1, . . . , pr) ⊂ Cm. There is ε > 0 such that, for each 0 < ε′ ≤ ε, the
ε′-nearly algebraic matrix m-disk ZDm

n,ε′(p1, . . . , pr) is uniformly piecewise differ-
entiably path connected with respect to the metric ð.
Proof. Let ε > 0. Let us consider any r nonconstant polynomials p1(x1, . . . , xm),
. . . , pr(x1, . . . , xm) of m complex variables, with coefficients over C, and with
finite zero set Z(p1, . . . , pr) ⊂ Cm. By elementary theory of complex valued
functions of several complex variables, we have that there are 2r polynomials
Re(p1), . . . ,Re(pr), Im(p1), . . . , Im(pr) in 2m real variables Re(z1), . . . ,Re(zm),
Im(z1), . . . , Im(zm), with coefficients over R such that z = (z1, . . . , zm) ∈
Z(p1, . . . , pr) ⊂ Cm if and only if (Re(z), Im(z)) ∈ Z(Re(p1), Im(p1), . . . ,Re(pr),
Im(pr)) ⊂ R2m, where Re(z) = (Re(z1), . . . ,Re(zm)) and Im(z) = (Im(z1), . . . ,
Im(zm)).

Let us consider the maps ı : Cm → R2m, z 7→ (Re(z), Im(z)) and κ :
R2m → Cm,x 7→ (x1 + ixm+1, . . . , xm + ix2m). By the preceding arguments,
we have that there is a one-to-one correspondence between Z(p1, . . . , pr) and
Z(Re(p1), Im(p1), . . . ,Re(pr), Im(pr)) induced by ı ◦ κ and κ ◦ ı. This in turn
implies that there is a one-to-one correspondence between ZDm

n (p1, . . . , pr) and
ZImn (Re(p1), Im(p1), . . . ,Re(pr), Im(pr)), induced by the maps π̂ ◦ υ and υ ◦ π̂
defined in Section 2.

By the definition of π̂ and υ and by the one-to-one correspondence between
ZDm

n (p1, . . . , pr) and ZI2mn (Re(p1), Im(p1), . . . ,Re(pr), Im(pr)) described in the
previous paragraph, we have the following. Given any X,Y ∈ ZDm

n (p1, . . . , pr ),
on one hand, we have that π̂(X), π̂(Y) ∈ ZI2mn (Re(p1), Im(p1), . . . ,Re(pr), Im(pr))
and ð(π̂(X), π̂(Y)) ≤ ð(X,Y). On the other hand, for any S,T ∈ ZI2mn (Re(p1),
Im(p1), . . . ,Re(pr), Im(pr)), υ(S), υ(T) ∈ ZDm

n (p1, . . . , pr) and ð(υ(S), υ(T)) ≤
2ð(S,T).

One one hand, given ν > 0 and the continuity of p1, . . . , pr, we have that for any
X = (X1, . . . , Xm) ∈ ZDm

n,ν(p1, . . . , pr), max{‖Re(pj(π̂(X)))‖, ‖Im(pj(π̂(X)))‖} ≤
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(1/2)(‖pj(X1, . . . , Xm)‖ + ‖(pj(X1, . . . , Xm))
∗‖ ) ≤ ‖pj(X1, . . . , Xm))‖ ≤ ν,

1 ≤ j ≤ r. On the other hand, we have that for any H = (H1, . . . , H2m) ∈
ZI2mn,ν/2(Re(p1 ) , Im(p1), . . . , Re(pr), Im(pr)), ‖pj(υ(H))‖ ≤ ‖Re(pj(H))‖ +
‖Im(pj(H))‖ ≤ (2ν/2) = ν, 1 ≤ j ≤ r.

By Theorem 3.3 and by the arguments above, we have that there are
δ, ε > 0 such that, for any ε′ ≤ ε, any X ∈ ZDm

n,ε′(p1, . . . , pr), and any

Y ∈ ZDm
n,ε′(p1, . . . , pr) ∩ Bð(X, δ), there is a piecewise C1-path γH ∈ C([0, 1],

ZI2mn,ε′/2(Re(p1), Im(p1), . . . ,Re(pr), Im(pr))) such that γH(0) = π̂(X), γH(1) =
π̂(Y), and γH(t) ∈ Bð(π̂(X), ε/2) for each 0 ≤ t ≤ 1. This in turn implies that
the path γ = υ ◦ γH ∈ C([0, 1],ZDm

n,ε′(p1, . . . , pr)), which is clearly piecewise C1,
satisfies the conditions γ(0) = X, γ(1) = Y, and γ(t) ∈ Bð(π̂(X), ε) for each
0 ≤ t ≤ 1. This completes the proof. �

4. Hints and future directions

In future work, we will study the potential extension of our techniques to
almost-normal matrices, in particular, to the computation of normal approxi-
mants, normal dilations, and normal compressions, for nearly normal matrices.
We will explore the computability of projective refinements and approximate joint
diagonalizers, together with their impact on the ε-δ relations, studied in Sections
3.3 and 3.4.

We will study the applications of Lemma 3.3 and Theorem 3.2, in model order
reduction for discrete-time control systems, more specifically, in approximate
numerical solution of structured matrix equations of the form

(QX −XQ)P = 0

Q4 = Q2

Q2 = ZQ = (Q2)∗

Q2P = PQ2 = P,

where X,Q, P, Z ∈M2n, and where P and Z are given and satisfy the relations
P = P 2 = P ∗

Z = Z∗

Z2 = 1n,

while Q is to be determined, and X is to be completed, as X is partially known
and has the structure

X =

(
A ×
× ∗

)
,

for some given A ∈Mn, where ∗ and × denote the unknown matrix blocks to be
determined.
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7. Z. Drmač and K. Veselić, Approximate eigenvectors as preconditioner, Linear Alge-
bra Appl. 309 (2000), no. 1–3, 191–215. Zbl 0948.65046. MR1758368. DOI 10.1016/
S0024-3795(00)00046-X. 919

8. A. Edelman, E. Elmroth, and B. K̊agström, A geometric approach to perturbation theory of
matrices and matrix pencils, Part II: A stratification-enhanced staircase algorithm, SIAM J.
Matrix Anal. Appl. 20 (1999), no. 3, 667–699. Zbl 0940.65040. MR1685048. DOI 10.1137/
S0895479896310184. 919

9. T.-M. Huang, W.-W. Lin, and W. Wang, A hybrid Jacobi-Davidson method for interior
cluster eigenvalues with large null-space in three dimensional lossless Drude dispersive
metallic photonic crystals, Comput. Phys. Commun. 207 (2016), 221–231. Zbl 1375.78044.
MR3541636. DOI 10.1016/j.cpc.2016.06.017. 919

10. E. Kokabifar, G. B. Loghmani, and P. J. Psarrakos, On The Distance from a Weakly Nor-
mal Matrix Polynomial to Matrix Polynomials with a Prescribed Multiple Eigenvalue, Elec-
tron. J. Linear Algebra 31 (2016), 71–86. Zbl 1332.15025. MR3484665. DOI 10.13001/
1081-3810.2921. 919
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