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Abstract. We establish the short exact sequences associated with the alge-
bras generated by dual truncated Toeplitz operators on the orthogonal comple-
ment of the model space K2

u, and discuss spectral properties of dual truncated
Toeplitz operators.

1. Introduction

As a result of the seminal paper of Sarason [22], much work in the study
of truncated Toeplitz operators has been done over the past ten years (see [2],
[3], [15]). In particular, the algebra of truncated Toeplitz operators is an active
area of research (see [6], [23]). In [12], the first and third authors introduced
the dual truncated Toeplitz operators for the first time, which are defined on a
Hilbert space of harmonic functions that are closely related to truncated Toeplitz
operators. The present article aims to study the algebras associated with dual
truncated Toeplitz operators. The structure of these algebras can provide us with
more tools for studying the invertibility, Fredholmness, and spectral theory of
dual truncated Toeplitz operators.

Let H2 be the classical Hardy space of open unit disk D = {z ∈ C : |z| < 1},
and let L2 = L2(T) be the usual Lebesgue space on the unit circle T = {z ∈
C : |z| = 1}. The space L∞ is the collection of all essentially bounded Lebesgue
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measurable functions on T, and the space H∞ consists of all the functions that
are analytic and bounded on D. To each nonconstant inner function u, we denote
the model space

K2
u := H2 	 uH2.

Letting Mu and Mū denote the multiplication operators on L2 induced by u and
ū, P is the orthogonal projection from L2 onto H2, and Pu = P −MuPMū is the
orthogonal projection of L2 onto K2

u. For f in L2, the truncated Toeplitz operator
Af with the symbol f is densely defined on K2

u, given by

Afx = Pu(fx), x ∈ K2
u ∩H∞.

Then we define the dual truncated Toeplitz operator Df on the orthogonal com-
plement of K2

u as

Dfy = (I − Pu)(fy), y ∈ [K2
u]

⊥ ∩ L∞.

Note that [K2
u]

⊥ = uH2 ⊕ zH2, and Df is an operator defined on a Hilbert space
of harmonic functions.

Recall that, for f and g in L∞, the Toeplitz operator Tf with symbol f and dual
Toeplitz operator Sg with symbol g are defined on H2 and [H2]⊥, respectively, as
follows:

Tfx = P (fx), x ∈ H2,

Sgy = (I − P )(gy), y ∈ [H2]⊥.

In our situation, writing B([K2
u]

⊥) for the set of all bounded linear operators
on [K2

u]
⊥, let X be a closed self-adjoint subalgebra of L∞, and let

DX = clos
{ n∑
i=1

m∏
j=1

Dφij : φij ∈ X
}

be the smallest norm-closed subalgebra of B([K2
u]

⊥) containing {Dφ, φ ∈ X}.
Hence DX is a C∗-algebra generated by {Dφ, φ ∈ X}. Let us call the closed ideal
of DX, generated by all semicommutators

[Dφ, Dψ)
def
= DφDψ −Dφψ, φ, ψ ∈ X,

the semicommutator ideal SDX; the commutator ideal CDX of DX is the closed
ideal generated by elements of the form

[Dφ, Dψ]
def
= DφDψ −DψDφ, φ, ψ ∈ X.

In this article, we consider two kinds of closed subalgebras of B([K2
u]

⊥): the
algebra generated by all bounded dual truncated Toeplitz operators, and the
algebra generated by dual truncated Toeplitz operators with continuous symbol.

In the late 1960s, Coburn [7], [8] studied the C∗-algebra generated by Tz on
the Hardy space. For truncated Toeplitz operators, Garcia, Ross, and Wogen [16]
obtained an analogue of Coburn’s work. Here the symbol map on the Toeplitz
algebra in the Hardy space is an important tool for studying the structure of
Toeplitz algebras (see [1], [4], [13], [14]). Analogous to the symbol map in the
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classical Hardy space setting, in Lemma 2.3 we construct a symbol map on the
dual truncated Toeplitz algebra.

On the other hand, in the case of harmonic function spaces, Guo and Zheng
[17] investigated the C∗-algebra generated by Toeplitz operators on the harmonic
Bergman space with continuous symbols and showed that the Toeplitz operators
with monomial symbols are invertible. We found that the C∗-algebra generated by
dual truncated Toeplitz operators on [K2

u]
⊥ with continuous symbols is similar to

the case of harmonic Bergman space. The invertibility of dual truncated Toeplitz
operators with monomial symbols is complicated; for example, if u(0) 6= 0, Dz is
invertible, if u(0) = 0, Dz is not invertible (see Example 4.4).

Let C(T) denote the set of continuous complex-valued functions on T. The set
of all compact operators on [K2

u]
⊥ will be denoted by K.

This article is organized in the following way. In Sections 2 and 3, we discuss
the structures of the dual truncated Toeplitz algebras DL∞ and DC(T) and obtain
two short exact sequences

0 −→SDL∞ −→ DL∞ −→ L∞ −→ 0

and

0 −→K −→ DC(T) −→ C(T) −→ 0.

We give a necessary and sufficient condition for the semicommutator of two dual
truncated Toeplitz operators to be a compact or finite rank operator. In the final
section, we discuss spectral properties of dual Toeplitz operators and prove a spec-
tral inclusion theorem analogous to the spectral inclusion of Toeplitz operators on
Hardy space. Moreover, we obtain the spectrum and essential spectrum of dual
truncated Toeplitz operators with symbols in K2

zu ∩H∞ and QC, respectively.

2. Dual truncated Toeplitz algebra DL∞

For f ∈ L2, define an operator V on L2 by

V f(w) = wf(w).

It is easy to check that V is antiunitary. The operator V satisfies the following
properties:

V = V −1, V Tf = Sf̄V. (2.1)

The Hankel operator Hf with symbol f is densely defined by

Hfx = (I − P )(fx), for x ∈ H∞,

and H∗
f is densely defined by

H∗
fy = P (f̄y), for y ∈ [H2]⊥ ∩ L∞.

Write Mf for the multiplication operator defined on L2 by Mfφ = fφ. If Mf is
expressed as an operator matrix with respect to the decomposition L2 = H2 ⊕
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zH2, then the result is of the form

Mf =

(
Tf H∗

f̄

Hf Sf

)
.

Define the unitary operator

U : L2 = H2 ⊕ zH2 −→ [K2
u]

⊥ = uH2 ⊕ zH2

by

U =

(
Mu 0
0 IzH2

)
,

where IzH2 is the identity on zH2, and Mu is a unitary operator:

Mu : H
2 −→ uH2

f 7−→ uf.

Clearly, U∗ maps [K2
u]

⊥ to L2 and equals

U∗ =

(
Mū 0
0 IzH2

)
.

The next lemma shows that Dφ is unitarily equivalent to an operator on L2 and
gives a matrix representation of Dφ. The representation is useful in this article
and shows that the dual truncated Toeplitz operators on [K2

u]
⊥ are closely related

to the Toeplitz operators and Hankel operators on H2.

Lemma 2.1 ([21, Lemma 2.2]). On L2(T) = H2 ⊕ zH2,

U∗DφU =

(
Tφ H∗

uφ̄

Huφ Sφ

)
. (2.2)

In the following, for T ∈ B([K2
u]

⊥), define

T̃ = U∗TU.

Since T̃ and T are unitarily equivalent, ‖T‖[K2
u]

⊥ = ‖T̃‖L2 . Thus, we will fre-
quently omit all norm subscripts when the contextual meaning is clear. As the
first application of Lemma 2.1, we have the following lemma.

Lemma 2.2 ([12, Property 2.1]). Let f ∈ L2. Then Df is bounded on [K2
u]

⊥ if
and only if f ∈ L∞. If Df is bounded, then ‖Df‖ = ‖f‖∞.

Proof. By the definition of Df , we have

‖Df‖ =
∥∥(I − Pu)f

∥∥ ≤ ‖f‖∞.

Using (2.2),

‖Df‖ = ‖D̃f‖ ≥
∥∥∥∥(Tf 0

0 0

)∥∥∥∥ = ‖Tf‖ = ‖f‖∞. �
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Let kz denote the normalized reproducing kernel√
1− |z|2
1− wz̄

of H2 at the point z ∈ D. Given f ∈ L2, the harmonic extension of f is given by

f̃(rξ) =

∫ 2π

0

f(eiθ)
∣∣krξ(eiθ)∣∣2 dθ

2π

= 〈fkrξ, krξ〉,

where |krξ|2 is the Poisson kernel for rξ ∈ D. Then f̃ is harmonic on D. By Fatou’s
theorem,

lim
r→1−

f̃(rξ) = f(ξ)

for almost all ξ ∈ T.
For every operator L in B([K2

u]
⊥), define

L̂r(ξ) = 〈Luk rξ, ukrξ〉.

If limr→1− L̂r(ξ) exists for almost all ξ ∈ T, let

L̂(ξ) = lim
r→1−

L̂r(ξ),

as |〈Luk rξ, ukrξ〉| ≤ ‖L‖, and L̂ is a bounded function a.e. on T.

Lemma 2.3. Let f, f1, f2, . . . , fn ∈ L∞.

(1) The radial limit

lim
r→1−

〈Df1 · · ·Dfnukrξ, ukrξ〉 = f1(ξ) · · · fn(ξ)

for almost all ξ ∈ T.
(2) Assume that Tn, T ∈ B([K2

u]
⊥), n ∈ Z+,

lim
n−→∞

‖Tn − T‖ = 0,

and that limr→1− (T̂n)r(ξ) exists for almost all ξ ∈ T. Then

lim
r→1−

T̂r(ξ) = lim
n→∞

T̂n(ξ).

(3) We have Df1Df2 · · ·Dfn −Df1f2···fn ∈ SDL∞.
(4) If A ∈ SDL∞, then

lim
r→1−

〈Auk rξ, ukrξ〉 = 0.

(5) The uniform limit of a dual truncated Toeplitz operator is also a dual
truncated Toeplitz operator.
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Proof. (1) We will prove this lemma by induction on n. For n = 1, we have

lim
r→1−

〈Df1ukrξ, ukrξ〉 = lim
r→1−

〈f1ukrξ, ukrξ〉

= lim
r→1−

〈f1krξ, krξ〉

= lim
r→1−

∫ 2π

0

f1(e
iθ)

∣∣krξ(eiθ)∣∣2 dθ
2π

= f1(ξ)

for almost all ξ ∈ T. Let n ≥ 2. Assume that the result is true up to m − 1.
Observe that

〈Df1 · · ·Dfm−1Dfmukrξ, ukrξ〉 = 〈Df1 · · ·Dfm−1Dfm−fm(ξ)ukrξ, ukrξ〉
+ fm(ξ)〈Df1 · · ·Dfm−1ukrξ, ukrξ〉.

Also ∣∣〈Df1 · · ·Dfm−1Dfm−fm(ξ)ukrξ, ukrξ〉
∣∣

≤ ‖Df1 · · ·Dfm−1‖‖Dfm−fm(ξ)ukrξ‖
≤ ‖Df1 · · ·Dfm−1‖

∥∥(fm − fm(ξ)
)
krξ

∥∥
= ‖Df1 · · ·Dfm−1‖

(∫ 2π

0

∣∣fm(eiθ)− fm(ξ)
∣∣2∣∣krξ(eiθ)∣∣2 dθ

2π

) 1
2

−→ 0, a.e.
(
|r| → 1

)
.

By induction hypothesis, the result holds.
(2) If Tn is a sequence in B([K2

u]
⊥) that converges uniformly to T , then

lim
n→∞

‖Tn − T‖ = 0 (2.3)

and

lim
r→1−

(T̂n)r(ξ) = T̂n(ξ) (2.4)

for almost all ξ ∈ T. Hence∣∣(T̂n)r(ξ)− (T̂m)r(ξ)
∣∣ = ∣∣〈(Tn − Tm)ukrξ, ukrξ

〉∣∣ ≤ ‖Tn − Tm‖.

Taking limits as r approaches 1− yields∣∣T̂n(ξ)− T̂m(ξ)
∣∣ ≤ ‖Tn − Tm‖.

Therefore, T̂n(ξ) is a Cauchy sequence. Let

Ê(ξ)
def
= lim

n→∞
T̂n(ξ). (2.5)

For almost all ξ ∈ T, we have∣∣T̂r(ξ)− Ê(ξ)
∣∣ = ∣∣T̂r(ξ)− (T̂n)r(ξ) + (T̂n)r(ξ)− T̂n(ξ) + T̂n(ξ)− Ê(ξ)

∣∣
≤

∣∣T̂r(ξ)− (T̂n)r(ξ)
∣∣+ ∣∣(T̂n)r(ξ)− T̂n(ξ)

∣∣+ ∣∣T̂n(ξ)− Ê(ξ)
∣∣

≤ ‖Tn − T‖+
∣∣(T̂n)r(ξ)− T̂n(ξ)

∣∣+ ∣∣T̂n(ξ)− Ê(ξ)
∣∣.
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According to (2.3), (2.4), and (2.5), it follows that

lim
r→1−1

T̂r(ξ) = lim
n→∞

T̂n(ξ).

(3) For n = 2, we have

Df1Df2 −Df1f2 ∈ SDL∞ .

Let n ≥ 2. Assume that the result is true up to m− 1. Observe that

Df1Df2 · · ·Dfm −Df1f2···fm = Df1Df2 · · ·Dfm −Df1Df2···fm

+Df1Df2···fm −Df1f2···fm

= Df1(Df2 · · ·Dfm −Df2···fm)

+Df1Df2···fm −Df1f2···fm .

By induction hypothesis, the result holds.
(4) By the definition of SDL∞ ,

A = span
{
Df1Df2 · · ·Dfn [Df , Dg)Dg1 · · ·Dgm : g, g1, g2, . . . , gm ∈ L∞}

is a self-adjoint dense (unclosed) subset of SDL∞ . Since

Df1Df2 · · ·Dfn [Df , Dg)Dg1 · · ·Dgm

= Df1Df2 · · ·DfnDfDgDg1 · · ·Dgm

−Df1Df2 · · ·DfnDfgDg1 · · ·Dgm ,

by Lemma 2.3(1), for T ∈ A, we have

lim
r→1−

〈Tuk rξ, ukrξ〉 = 0.

For any A ∈ SDL∞ , there exists {An : n ∈ Z+} ⊂ A such that

lim
n−→∞

‖An − A‖ = 0.

Note that ∣∣〈Auk rξ, ukrξ〉∣∣ = ∣∣〈(A− An + An)ukrξ, ukrξ
〉∣∣

≤
∣∣〈(A− An)ukrξ, ukrξ

〉∣∣+ ∣∣〈Anukrξ, ukrξ〉∣∣
≤ ‖An − A‖+

∣∣〈Anukrξ, ukrξ〉∣∣,
and thus

lim
r→1−

〈Auk rξ, ukrξ〉 = 0.

Furthermore, if T ∈ DL∞ , then the Cauchy–Schwarz inequality yields∣∣〈TAuk rξ, ukrξ〉∣∣ ≤ ‖T‖‖Auk rξ‖

= ‖T‖〈Auk rξ,Auk rξ〉
1
2

= ‖T‖〈A∗Auk rξ, ukrξ〉
1
2
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and ∣∣〈ATuk rξ, ukrξ〉∣∣ = ∣∣〈ukrξ, T ∗A∗ukrξ〉
∣∣

≤ ‖T ∗‖‖A∗ukrξ‖

= ‖T‖〈A∗ukrξ, A
∗ukrξ〉

1
2

= ‖T‖〈AA∗ukrξ, ukrξ〉
1
2 .

Since A∗A and AA∗ are in SDL∞ , it follows that

lim
r→1−

〈TAuk rξ, ukrξ〉 = 0,

lim
r→1−

〈ATuk rξ, ukrξ〉 = 0.

(5) If limn→∞ ‖Dfn − T‖ = 0, then T̃ is a bounded operator on L2. Under the

decomposition L2(T) = H2 ⊕ zH2, write T̃ =
(
A B
H C

)
. We have

‖Dfn − T‖ = ‖D̃fn − T̃‖

≥
∥∥P (D̃fn − T̃ )P

∥∥
= ‖Tfn − A‖.

Since the uniform limit of a Toeplitz operator on H2 is also a Toeplitz operator,
A is a Toeplitz operator on H2, by [25, Theorem 3.2]. Let

A = Tψ,

where ψ = A1− A1(0) + A∗1. By Lemma 2.2, we have

‖Tfn − Tψ‖ = ‖fn − ψ‖∞ = ‖Dfn −Dψ‖.
Hence T = Dψ. �

Remark 2.4 (of Lemma 2.3(2)). Let T ′
n be another sequence in B([K2

u]
⊥) that

converges uniformly to T , and let

lim
r→1−

(T̂ ′
n)r(ξ) = T̂ ′

n(ξ)

for almost all ξ ∈ T. For a positive integer k, there exist Tnk
, T ′

nk
such that

‖Tnk
− T‖ ≤ 1

2k
,

‖T ′
nk

− T‖ ≤ 1

2k
.

Hence

‖Tnk
− T ′

nk
‖ ≤ ‖Tnk

− T‖+ ‖T ′
nk

− T‖ ≤ 1

k
,∣∣T̂ ′

nk
(ξ)− T̂nk

(ξ)
∣∣ ≤ 1

k
.

That means that

lim
k→∞

T̂ ′
nk
(ξ) = lim

k→∞
T̂nk

(ξ)
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and

lim
n→∞

T̂ ′
n(ξ) = lim

n→∞
T̂n(ξ) = Ê(ξ).

Then for any T ∈ DL∞ , there exist

{Tn}n≥0 ⊂
{ n∑
i=1

m∏
j=1

Dφij : φij ∈ L∞
}

such that

lim
n−→∞

‖Tn − T‖ = 0.

We define the mapping

ρ : DL∞ −→ L∞,

T 7−→ ρ(T ),

where

ρ(T )(ξ) = lim
r→1−

〈Tuk rξ, ukrξ〉 = lim
n→∞

T̂n(ξ)

for almost all ξ ∈ T. We call ρ the symbol map on the dual truncated Toeplitz alge-
bra DL∞ . We have the following analogue of the result by Stroethoff and Zheng
[26, Theorem 8.4] of the dual Toeplitz algebra on the orthogonal complement of
the Bergman space.

Theorem 2.5. The sequence

0 −→ SDL∞ −→ DL∞ −→ L∞ −→ 0

is a short exact sequence; that is, the quotient algebra DL∞/SDL∞ is *-isometri-
cally isomorphic to L∞.

Proof. By the definition of ρ, we have∥∥ρ(T )∥∥∞ ≤ ‖T‖. (2.6)

Furthermore,

ρ(T ∗)(ξ) = lim
r→1−1

〈T ∗ukrξ, ukrξ〉

= lim
r→1−1

〈ukrξ,Tuk rξ〉

= ρ(T )(ξ).

Since linear combinations of operators of the form Df1Df2 · · ·Dfn span a dense
subset of DL∞ ,

n∏
j=1

Dfj = D∏n
j=1 fj

+
n∏
j=1

Dfj −D∏n
j=1 fj

,

and by Lemma 2.3(3), it follows that operators of the form

D = Dφ + A, φ ∈ L∞, A ∈ SDL∞ (2.7)

form a dense subset of DL∞ . If Dg ∈ SDL∞ , then by Lemma 2.3(1), (4), we have
that g = 0 a.e. on T. According to Lemma 2.3(5), since SDL∞ is closed, every



284 Y. SANG, Y. QIN, and X. DING

operator in DL∞ is of the form (2.7). In fact, the mapping ρ has a more precise
form

ρ : Dφ + A 7−→ φ.

Its kernel is precisely the semicommutator idealSDL∞ ofDL∞ . By Lemma 2.3(4),
we have ‖ρ(Dφ + A)‖ = ‖φ‖∞. For any Dφ + SDL∞ ∈ DL∞/SDL∞ , we define
the mapping

ρ̃ : DL∞/SDL∞ −→ L∞,

Dφ +SDL∞ 7−→ φ.

Then ρ̃ is a bijection. For every ϕ ∈ L∞, we define the mapping

σ : L∞ −→ DL∞ ,

ϕ 7−→ Dϕ.

The mapping σ is obviously linear and contractive. Observe that for f, g ∈ L∞(T),
we have

σ(f)σ(g)− σ(fg) = DfDg −Dfg ∈ SDL∞ .

So ρ̃ is homomorphism. �

3. Dual truncated Toeplitz algebra DC(T)

Let C(T) denote the set of continuous complex-valued functions on T.

Lemma 3.1 ([20, Theorem 5.5]). Let f ∈ L∞. The Hankel operator Hf is compact
if and only if f ∈ H∞ + C(T).

Since MfMg =Mfg, we have

Tfg = TfTg +H∗
f̄Hg, (3.1)

Hfg = HfTg + SfHg. (3.2)

We consider the compact semicommutator of the dual truncated Toeplitz opera-
tor. By the matrix representation (2.2), we have

U∗DfDgU =

(
TfTg +H∗

uf̄
Hgu TfH

∗
uḡ +H∗

uf̄
Sg

HfuTg + SfHgu HfuH
∗
ḡu + SfSg

)
and

U∗DfgU =

(
Tfg H∗

ufg

Hufg Sfg

)
.
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Using (3.1) and (3.2), we have

TfTg +H∗
uf̄Hgu − Tfg = TfTg + Tūfgu − TūfTgu − Tfg

= TfTg − TūfTgu ,

HfuH
∗
ḡu + SfSg − Sfg = V (H∗

fuHḡu + Tf̄Tḡ − Tfg)V

= V (Tf̄ ūḡu − Tf̄ ūTḡu + Tf̄Tḡ − Tfg)V

= V (Tf̄Tḡ − Tf̄ ūTḡu)V,

HfuTg + SfHgu −Hufg = HfuTg −HfTug ,

and

(TfH
∗
uḡ +H∗

uf̄Sg −H∗
ufg

)∗ = HuḡTf̄ + SḡHuf̄ −Hufg

= HuḡTf̄ −HḡTuf̄ .

Hence, we have the following theorem.

Theorem 3.2. If f, g ∈ L∞, then DfDg − Dfg is compact (finite rank) if and
only if TfTg − TūfTgu , Tf̄Tḡ − Tf̄ ūTḡu, HufTg −HfTug , and HuḡTf̄ −HḡTuf̄ are all
compact (finite rank).

Remark 3.3. We can find that the conditions of TfTg − TūfTgu , Tf̄Tḡ − Tf̄ ūTḡu,
HufTg −HfTug , and HuḡTf̄ −HḡTuf̄ are finite rank in [11, Theorem 3.4] and [10,
Theorem 4.2].

Corollary 3.4. If f ∈ L∞ and g ∈ QC = [H∞ + C(T)] ∩ [H∞ + C(T)], then
DfDg −Dfg is compact.

Proof. By Lemma 3.1 and the fact that H∞+C(T) is a closed subalgebra of L∞,
we have g, gu, ḡ, and ḡu ∈ H∞+C(T); hence Hg, Hgu , Hḡ, and Hḡu are compact.
Due to (3.1) and (3.2), it follows that

TfTg − TūfTgu = TfTg − Tfg + Tfg − TūfTgu

= TfTg − Tfg + Tūfgu − TūfTgu

= −H∗
f̄Hg +H∗

uf̄Hug ,

Tf̄Tḡ − Tf̄ ūTḡu = Tf̄Tḡ − Tf̄ ḡ + Tf̄ ḡ − Tf̄ ūTḡu

= Tf̄Tḡ − Tf̄ ḡ + Tūf̄ ḡu − Tf̄ ūTḡu

= −H∗
fHḡ +H∗

ufHuḡ,

HfuTg −HfTug = HfuTg −Hufg + SfHgu

= SfuHg + SfHgu .

According to Theorem 3.2, DfDg −Dfg is compact. �

Next, we investigate the dual truncated Toeplitz operators with continuous
symbol.

Lemma 3.5. Let ϕ be in C(T). Then

‖Dϕ‖e = ‖ϕ‖∞.
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Proof. Since ϕ is in C(T), uϕ and uϕ are inH∞+C(T). It follows from Lemma 3.1
that both H∗

uϕ̄ and Huϕ are compact. From the matrix representation (2.2), we
have that

‖Dϕ‖e = ‖D̃ϕ‖e = inf

{∥∥∥∥( Tϕ H∗
uϕ̄

Huϕ Sϕ

)
+K

∥∥∥∥ , K is a compact operator

}
= inf

{∥∥∥∥(Tϕ 0
0 Sϕ

)
+K

∥∥∥∥ , K is a compact operator

}
=

∥∥∥∥(Tϕ 0
0 Sϕ

)∥∥∥∥
e

=

∥∥∥∥(Tϕ 0
0 Sϕ

)∗(
Tϕ 0
0 Sϕ

)∥∥∥∥1/2

e

=

∥∥∥∥(T ∗
ϕTϕ 0
0 (Sϕ)

∗Sϕ

)∥∥∥∥1/2

e

=

[
re

(
T ∗
ϕTϕ 0
0 (Sϕ)

∗Sϕ

)]1/2
(re is essential spectral radius)

= max
{
re(T

∗
ϕTϕ), re

(
(Sϕ)

∗Sϕ
)}1/2

= max
{
‖Tϕ‖e, ‖Sϕ‖e

}
= max

{
‖Tϕ‖e, ‖V Tϕ̄V ‖e

}
= ‖ϕ‖∞.

The last equality follows from the fact that ‖Tϕ‖e = ‖ϕ‖∞ (see [19, Corol-
lary 4.5.3]). �

Lemma 3.6. We have that DC(T) is an irreducible C∗-algebra.

Proof. Suppose that DC(T) is reducible. Then there exists a nontrivial orthogonal
projection P0 which commutes with each Dϕ for all ϕ ∈ C(T). We have that

P̃0 = U∗P0U is an orthogonal projection on L2. Under the decomposition L2(T) =
H2 ⊕ zH2, write

P̃0 =

(
P1 0
0 P2

)
, (3.3)

where P1 is an orthogonal projection on H2, and P2 is an orthogonal projection
on zH2. For each integer n, zn ∈ C(T),

D̃znP̃0 = P̃0D̃zn .

By the matrix representation (2.2), we have

D̃zP̃0 =

(
TzP1 H∗

uz̄P2

0 V Tz̄V P2

)
and

P̃0D̃z =

(
P1Tz P1H

∗
uz̄

0 P2V Tz̄V

)
.



DUAL TRUNCATED TOEPLITZ C∗-ALGEBRAS 287

Thus

TzP1 = P1Tz, VT z̄VP2 = P2VT z̄V.

By [18, Problem 147], P1 is an analytic Toeplitz operator, and VP2V is a coana-
lytic Toeplitz operator. Since P 2

1 = P1, P
2
2 = P2 and the only idempotent Toeplitz

operators are 0 and 1 (see [5, Corollary 6]), it follows that P1 is 0 or 1 and P2 is
0 or 1. Thus, we distinguish four cases.

Case 1. P̃0 = I;

Case 2. P̃0 = O;
Case 3.

P̃0 =

(
I 0
0 0

)
;

Case 4.

P̃0 =

(
0 0
0 I

)
.

Cases 1 and 2 contradict the assumption of P0. Case 3 is very similar to Case 4.
We only need to consider Case 3. In Case 3, where H2 is the reducing subspace

for D̃zn and n is positive, we have

D̃zn =

(
Tzn H∗

uz̄n

0 V Tz̄nV

)
.

According to [9, Proposition 3.7], we have H∗
uz̄n = 0. Thus uz̄n ∈ H2,

u ∈
∞⋂
n=1

znH2 = {0}.

This leads to a contradiction. �

Lemma 3.7 ([21, Theorem 2.5]). Let f, g ∈ L∞. Assume that DfDg = DgDf .
Then either

(1) both f and g are analytic; or
(2) both f and g are coanalytic; or
(3) a nontrivial linear combination of f and g is constant.

Lemma 3.8. The set of all compact operators on [K2
u]

⊥ will be denoted by K.
Then

(1) K ⊂ DC(T),
(2) SDC(T) = CDC(T) = K.

Proof. (1) If f and g are in C(T), note that

DfDg −DgDf = DfDg −Dfg +Dfg −DgDf .

By Corollary 3.4, we have that DfDg −DgDf is compact. Using Lemma 3.7 and
z, z̄ ∈ C(T), we have that DzDz̄ −Dz̄Dz is a nonzero compact operator. A theo-
rem in [13, Theorem 5.39] states that the commutator ideal of every irreducible
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algebra contains the ideal of compact operators if it contains a nontrivial compact
operator. By Lemma 3.6, we have that DC(T) is irreducible; therefore, K ⊂ DC(T).

(2) By Corollary 3.4, if f and g are in C(T), then both [Df , Dg) and [Df , Dg]
are in DC(T). Since CDC(T) and SDC(T) are closed two-sided *-ideals of DC(T) and
K contains no proper closed ideal, it follows that SDC(T) = CDC(T) = K. �

Theorem 3.9. The sequence

0 −→ K −→ DC(T) −→ C(T) −→ 0

is a short exact sequence; that is, the quotient algebra DC(T)/K is *-isometrically
isomorphic to C(T).

Proof. By (2.7) and Lemma 3.8, we have

DC(T) =
{
Dφ +K : φ ∈ C(T), K ∈ K

}
.

Let us define the symbol map π given by

π(Dϕ +K) → ϕ.

By Lemma 3.5, π is well defined. Thus π is *-isometrically isomorphic from
DC(T)/K to C(T). �

Recall that the Toeplitz algebra TC(T) is the smallest closed subalgebra of
B(H2) containing {Tφ : φ ∈ C(T)}. Using [13, Theorem 7.23], we have the
following corollary.

Corollary 3.10. There exists a *-homomorphism ζ from DC(T)/K onto
TC(T)/KB(H2). Hence, if f ∈ C(T), then σe(Df ) = σe(Tf ).

Corollary 3.11. There exists a *-homomorphism ζ from the quotient algebra
DL∞/K onto L∞ such that the diagram

DL∞
π //

ρ ""

DL∞/K

ζzz
L∞

commutes. If ϕ ∈ L∞ and Dϕ is a Fredholm operator, then ϕ is invertible in L∞.

4. Spectrum

Theorem 4.1. If ϕ ∈ L∞, then

R(ϕ) ⊂ σe(Dϕ) ⊂ σ(Dϕ) ⊂ h
(
R(ϕ)

)
,

where R(ϕ) is the essential range of ϕ and h(R(ϕ)) is the closed convex hull of
R(ϕ).

Proof. Let λ /∈ h(R(ϕ)). Since h(R(ϕ)) is a compact subset of the complex plane,
there is disk B = B(a, r) such that R(ϕ) ⊂ B and λ /∈ B. Thus

|λ− a| > ess sup
T

|ϕ− a| = ‖ϕ− a‖∞ = ‖Dϕ−a‖.
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We deduce that λI − Dϕ = (λ − a)I − Dϕ−a is invertible, so λ /∈ σ(Dϕ). Using
Corollary 3.11 and Dϕ−λ = Dϕ − λ, we have R(ϕ) ⊂ σe(Dϕ). �

Example 4.2. Using Theorem 4.1, we have σ(Dzn+zn) = R(zn + zn) = [−2, 2],
where n ∈ Z+.

If ϕ ∈ L∞, then write ϕ = ϕ+ + ϕ−, where ϕ+ = Pϕ and ϕ− = (I − P )ϕ.
Assume that ϕ+, ϕ− ∈ K2

zu ∩H∞. Then Huϕ = Huϕ− = 0 and Huϕ̄ = Huϕ+ = 0.
Therefore, Dϕ is unitarily equivalent to a diagonal operator matrix, that is,

U∗DϕU =

(
Tϕ 0
0 V Tϕ̄V

)
.

Since σ(Tϕ) = σ(V Tϕ̄V ), σ(Dϕ) = σ(Tϕ) ∪ σ(V Tϕ̄V ) = σ(Tϕ). By [13, Theo-
rem 7.21], we have Theorem 4.3(1). We provide an alternative proof as follows.

Theorem 4.3. Let ϕ ∈ L∞.

(1) If ϕ ∈ K2
zu ∩ H∞, then σ(Dϕ) = clos(ϕ̃(D)), where ϕ̃ is its harmonic

extension of ϕ to D.
(2) If ϕ ∈ QC, then σe(Dϕ) = R(ϕ).

Proof. (1) Recall that kλ =
√

1−|λ|2
1−wλ̄ denotes the normalized Hardy reproducing

kernel at λ. For λ ∈ D, we have

Dϕ̄ukλ = (uP ū+ I − P )ϕ̄ukλ

= uPϕ̄kλ + 0

= ϕ̃(λ)ukλ;

hence ϕ̃(D) ⊂ σ(Dϕ). For each nonzero constant λ and λ /∈ clos(ϕ̃(D)), we have
λ ⊥ uzH 2. Then ϕ−λ ∈ K2

zu. For some ε > 0, we have |ϕ(z)−λ| ≥ ε, a.e. z ∈ T.
Then 1

ϕ−λ is in L∞. Moreover,

U∗Dϕ−λU =

(
Tϕ−λ 0
0 Sϕ−λ

)
.

Hence Dϕ−λD 1
ϕ−λ

= D 1
ϕ−λ

Dϕ−λ = I, so λ /∈ σ(Dϕ).

(2) By Theorem 4.1, we have R(ϕ) ⊂ σe(Dϕ). If λ /∈ R(ϕ), then for some ε > 0
we have |ϕ(z)− λ| ≥ ε, a.e. z ∈ T. Then g = 1

ϕ−λ is in L∞. By Corollary 3.4,

Dϕ−λDg = I +K1, DgDϕ−λ = I +K2,

where K1 and K2 are compact. We have that Dϕ−λ+K is invertible in the Calkin
algebra, so λ /∈ σe(Dϕ). �

Example 4.4. Let D = {z ∈ C : |z| ≤ 1}. If u(0) = 0, then z ⊥ zuH 2. By
Theorem 4.3(1), we have σ(Dz) = D.

If u(0) 6= 0, note that

D̃z =

(
Tz H∗

uz̄

0 Sz

)
.
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For all zn ∈ L2, we have

D̃z

(
zn

0

)
=

(
Tzz

n

0

)
=

(
zn+1

0

)
, n ≥ 0,

D̃z

(
0

z̄

)
=

(
H∗
uz̄ z̄

0

)
=

(
ū(0)

0

)
,

and

D̃z

(
0

z̄m+2

)
=

(
0

Sz z̄m+2

)
=

(
0

z̄m+1

)
, m ≥ 0.

This implies that, for all integers n,

D̃zz
n = wnz

n+1,

wn =

{
1 if n 6= −1,

ū(0), (0 < |u(0)| < 1) if n = −1.

By [24, Theorem 2(a)], there exists an invertible operator A on L2 such that

AM z = D̃zA, (4.1)

where Mz is the bilateral shift and

Azn = αnz
n,

αn =

{
1 if n ≥ 0,
1

ū(0)
if n ≤ −1.

Under the decomposition L2 = H2 ⊕ zH2,

A =

(
IH2 0
0 1

ū(0)
IzH2

)
, A−1 =

(
IH2 0
0 ū(0)IzH2

)
,

where IH2 is the identity on H2. Due to (4.1), D̃z and Mz are similar. Note
that Mz is the bilateral shift and σ(Mz) = T (see [13, Example 4.25]). Hence

σ(Dz) = σ(D̃z) = T.
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