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Abstract. We present solutions to local connectivity problems in matrix rep-
resentations of the form C([−1, 1]N ) → C∗(uε, vε), with Cε(T2) � C∗(uε, vε)
for any ε ∈ [0, 2] and any integer n ≥ 1, where C∗(uε, vε) ⊆ Mn is an arbitrary
matrix representation of the universal C∗-algebra Cε(T2) that denotes the soft
torus. We solve the connectivity problems by introducing the so-called toroidal
matrix links, which can be interpreted as normal contractive matrix analogies
of free homotopies in differential algebraic topology.

To deal with the locality constraints, we have combined some techniques
introduced in this article with some techniques from matrix geometry, combina-
torial optimization, and classification and representation theory of C∗-algebras.

1. Introduction

In this article, we study the solvability of some local connectivity problems via
constrained normal matrix homotopies in C∗-representations of the form

C(TN) −→ Mn (1.1)

for a fixed but arbitrary integer N ≥ 1 and any integer n ≥ 1. In particular,
we study local normal matrix homotopies which preserve commutativity and also
satisfy some additional constraints, like being rectifiable or piecewise analytic.

We build on some homotopic techniques introduced initially by Bratteli, Elliott,
Evans, and Kishimoto in [3] and generalized by Lin in [19] and [20]. We combine
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homotopic techniques with some first introduced here and various other tech-
niques from matrix geometry and noncommutative topology developed by Loring
[21], Loring and Shulman [23], Bhatia [2], Chu [7], Brockett [4], Choi [5], Choi and
Effros [6], Eilers and Exel [10], Elsner [12], Pryde [27], and McIntosh, Pryde, and
Ricker [26] to construct the so-called toroidal matrix links, which we use to obtain
the main theorems presented in Section 4, and which consist of local connectivity
results in matrix representations of the form (1.1) and also of the form

C
(
[−1, 1]N

)
−→ Mn. (1.2)

Toroidal matrix links can be interpreted as noncommutative analogies of free
homotopies in algebraic topology and topological deformation theory. We intro-
duce them in Section 3 together with a number of other matrix and geometric
objects.

In Section 4.3, we present a connectivity technique which provides us with
information on the local uniform connectivity in matrix representations of the
form C(T2) → Mn.

Given δ > 0, a function ε : R → R+
0 , and two matrices x, y in a set S ⊆ Mn

such that ‖x − y‖ ≤ δ, by an ε(δ)-local matrix homotopy between x and y, we
mean a matrix path X ∈ C([0, 1],Mn) such that X0 = x, X1 = y, Xt ∈ S, and
‖Xt − y‖ ≤ ε(δ) for each t ∈ [0, 1]. We write x ε,S y to denote that there is an
ε-local matrix homotopy between x and y relative to S.

The motivation and inspiration to study local normal matrix homotopies which
preserve commutativity in C∗-representations of the form (1.1) and (1.2) came
from mathematical physics (see [14, Section 3]) and matrix approximation theory
(see [1], [8], [13]). In particular, by the results presented in [8] we can think of local
matrix homotopies as continuous analogies of spectral refinements (in the sense
of [1]) of Jacobi-type matrix flows that can be interpreted as continuous analogies
of Jacobi-type simultaneous block diagonalization algorithms in the sense of [25].

From this point forward, we will write Cε(T2) to denote the soft torus (whose
definition is restated in Section 2) and N (n)(D2) to denote the set of (n × n)–
normal matrix contractions with complex entries. In this article, we begin our
study of the relation between the soft tori and numerical algorithms for approx-
imate joint diagonalization of normal matrices by considering the soft torus as
an environment algebra for some particular types of local matrix homotopies.
More specifically, we prove that, given ε > 0, any n ∈ Z+, any N ∈ Z+, and
any two N -tuples of pairwise commuting normal contractions X1, . . . , XN and
Y1, . . . , YN such that ‖Xj − Yj‖ ≤ δ, one can find/construct a unitary/normal
contraction uε, a unitary vε in Mn, and a family of piecewise analytic matrix
paths Zj ∈ C([0, 1],N (n)(D2)) that connect Xj to Yj for each 1 ≤ j ≤ N , such

that Cε(T2) � C∗(uε, vε), Z
j
t ∈ C∗(uε, vε), and [Zj

t , (Z
j
t )

∗] = [Zi
t , Z

j
t ] for each

1 ≤ i, j ≤ N and each 0 ≤ t ≤ 1.
This study was motivated by inverse spectral problems from mathematical

physics, which consist of finding—for a certain set of matrices X1, . . . , XN that
approximately satisfy a set of polynomial constraints R(x1, . . . , xN) on N non-
commutative variables—a set of nearby matrices X̃1, . . . , X̃N that approximate
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X1, . . . , XN and exactly satisfy the constraints R(x1, . . . , xN). To be more pre-
cise, let us consider for instance a pair of pairwise commuting diagonal (or easily
diagonalizable) Hermitian matrices X and Y with prescribed eigenvalues. Let
us consider the problem of finding a pair of commuting Hermitian matrices X̃
and Ỹ that are close (in the metric induced by the operator norm) to X and Y ,
respectively, have the same (or approximately the same) eigenvalues, need not
commute with X and Y in general, and that also satisfy some additional alge-
braic constraints. It can be seen that the solution of problems of this type has a
natural connection with inverse eigenvalue problems.

The problems from matrix approximation theory that we considered here con-
sist of all those that can be reduced to the study of the solvability conditions
for approximate and exact joint diagonalization problems for N -tuples of normal
matrix contractions. In particular, these types of problems have applications in
multivariate statistical signal processing, more specifically in blind source separa-
tion in the sense of [17] and [29].

The problems motivating the research in this article are topological in nature
and involve the study of the local piecewise analytic connectivity of matrix
representations of the form C([−1, 1]N) → C∗(uε, vε) ⊆ Mn, with Cε(TN) �
C∗(uε, vε) ⊆ Mn. Here and in what follows, the expression C∗(uε, vε) ⊆ Mn, with
uε unitary/normal contraction and vε unitary inMn, is used to denote an arbitrary
matrix representation of the universal C∗-algebra Cε(T2) that is defined in Sec-
tion 3.3. Sometimes we obtain the C∗-representation Cε(T2) � C∗(uε, vε) ⊆ Mn

by factoring with Cε(J×T1)� C∗(uε, vε) ⊆ Mn, where Cε(J×T1) is the univer-
sal C∗-algebra that we use to denote the soft cylinder in the sense of [23] and is
defined in Section 3.3 as well. We investigated several variations of problems of
the following form.

Problem 1 (Lifted connectivity problem). Given ε > 0, is there δ > 0 such that
the following conditions hold? For any integer n ≥ 1, some prescribed sequence
of linear compressions κn : Mmn → Mn for some m ≥ 1, and any two families
of N pairwise commuting normal contractions X1, . . . , XN and Y1, . . . , YN in Mn

which satisfy the constraints ‖Xj − Yj‖ ≤ δ, 1 ≤ j ≤ N , there are two families of

N pairwise commuting normal contractions X̃1, . . . , X̃N and Ỹ1, . . . , ỸN in Mmn

which satisfy the relations κn(X̃j) = Xj, κn(Ỹj) = Yj and ‖X̃j − Ỹj‖ ≤ ε, 1 ≤
j ≤ N . Moreover, there are N piecewise analytic ε-local homotopies of normal
contractions X1, . . . ,XN ∈ C([0, 1],Mmn) between the corresponding pairs X̃j,

Ỹj in Mmn which satisfy the relations Xj
tX

k
t = Xk

tX
j
t , for each 1 ≤ j, k ≤ N and

each 0 ≤ t ≤ 1.

By solving Problem 1, we learned about the local connectivity of arbitrary
δ-close N -tuples of pairwise commuting normal contractions X1, . . . , XN and
Y1, . . . , YN in Mn, which was the main motivation for this research. We also
obtained some results concerning the geometric structure of the joint spectra
(in the sense of [26]) of the N -tuples.

For a given δ > 0, the study of the solvability conditions of problems such
as those described in Problem 1 provided us with geometric information about
local deformations of particular representations of the form C(TN) → A0 :=
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C∗(U1, . . . , UN) ⊆ Mn and C(TN) → A1 := C∗(V1, . . . , VN) ⊆ Mn, where U1, . . . ,
UN , V1, . . . , VN ∈ U(n) are pairwise commuting unitary matrices such that ‖Uj −
Vj‖ ≤ δ. By local deformations, we mean a family {At}t∈[0,1] ⊆ Mn of Abelian
C∗-algebras, with At := C∗(X1

t , . . . ,X
N
t ) and where X1

t , . . . ,X
N
t ∈ C([0, 1],U(n))

are ε(δ)-local matrix homotopies between U1, . . . , UN and V1, . . . , VN for some
function ε : R → R+

0 .
The main results are presented in Section 4. In Section 4.2, we use toroidal

matrix links to obtain some local piecewise analytic connectivity results which
are nonuniform in dimension. In Section 4.2.1, we derive a uniform approximate
connectivity technique via matrix homotopy lifting, and in Section 4.4 we present
a connectivity lemma that can be used to derive various uniform connectivity
results between matrix representations of finite sets of universal algebraic con-
tractions. We will provide further details of these constructions in forthcoming
work.

2. Preliminaries and notation

2.1. Matrix sets and operations. Given two elements x, y in a C∗-algebra A,
we will write [x, y] and Ad[x](y) to denote the operations [x, y] := xy − yx and
Ad[x](y) := xyx∗, respectively.

Given any C∗-algebra A and any element x inMn(A), we will denote by diagn[x]
the operation defined by the expression

Mn(A) → Mn(A),

x 7→ diagn[x],
x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xn1 xn2 · · · xnn

 7→


x11 0 · · · 0
0 x22 · · · 0
...

...
. . .

...
0 0 · · · xnn

 .

Given a C∗-algebra A, we will writeN (A),H(A), and U(A) to denote the sets of
normal, Hermitian, and unitary elements in A, respectively. We will write N (n),
H(n), and U(n) instead of N (Mn), H(Mn), and U(Mn). A normal element u in a
C∗-algebra A is called a partial unitary if the element uu∗ = p is an orthogonal
projection in A, that is, p satisfies the relations p = p∗ = p2. We denote by PU(A)
the set of partial unitaries in A, and we write PU(n) instead of PU(Mn).

We will write I, J, T1, and D2 to denote the sets I := [0, 1], J = [−1, 1],
T1 := {z ∈ C | |z| = 1}, and D2 := {z ∈ C | |z| ≤ 1}. For some arbitrary matrix
set S ⊆ Mn and some arbitrary compact set X ⊂ C, we will write S(X) to denote
the subset of elements in S described by the expression

S(X) :=
{
x ∈ S

∣∣ σ(x) ⊆ X
}
.

For instance, as mentioned in Section 1, we can write N (n)(D2) to denote the set
of normal contractions. We will denote by M∞ the C∗-algebra described by

M∞ :=
⋃

n∈Z+

Mn

‖·‖
.
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In this article, we will write 1n and 0n to denote the identity and zero matrix
in Mn, respectively. The symbol Nn will be used to denote the diagonal matrices

Nn := diag[n, n− 1, . . . , 2, 1]

We will write Ωn and Σn to denote the unitary matrices defined by

Ωn := e
2πi
n

Nn = diag[1, e
2πi(n−1)

n , . . . , e
4πi
n , e

2πi
n ]

and

Σn :=

(
0 1n−1

1 0

)
.

Remark 2.1. The unitary matrices Ωn and Σn are related by the equation

Ωn = F ∗
nΣnFn,

where FN := ( 1√
N
e

2πi(j−1)(k−1)
N )1≤j,k≤N is the discrete Fourier transform unitary

matrix.

Given an abstract object (group or C∗-algebra) A, we will write A∗N to denote
the operation consisting of taking the free product of N copies of A.

Definition 2.1 (Local preservers). Given a linear mapping K : MN → Mn with
n ≤ N and a set S ⊆ Mn, we say that K locally preserves S with respect to some
set T ⊆ MN if we have that K(T ) ⊆ S (omitting the explicit reference to T when
it is clear from the context). If in particular K(T ) ⊆ N (n), we say that K locally
preserves normality.

Example 2.1. The linear compression κ : M2n → Mn defined by

κ :

(
x11 x12

x21 x22

)
7→ x11

locally preserves normality with respect to the set T := {X ∈ M2n | x11 ∈ N (n)}.

Example 2.2. The linear map φ : Mn → Mn, x 7→ Dx with n ≥ 1 and D =
1
n
diag[1, . . . , n] locally preserves commutativity with respect to the set C∗(D).

2.2. Joint spectral variation.

2.2.1. Clifford operators. Using the same notation used by Pryde [27], let R(N)

denote the Clifford algebra over R with generators e1, . . . , eN and relations eiej =
−ejei for i 6= j and e2i = −1. Then R(N) is an associative algebra of dimension
2N . Let S(N) denote the set P({1, . . . , N}). Then the elements eS = es1 · · · esk
form a basis when S = {s1, . . . , sk} and 1 ≤ s1 < · · · < sk ≤ N . Elements
of R(N) are denoted by λ =

∑
S λSeS, where λS ∈ R. Under the inner product

〈λ, µ〉 =
∑

S λSµS, R(N) becomes a Hilbert space with orthonormal basis {eS}.
The Clifford operator of N elements X1, . . . , XN ∈ Mn is the operator defined

in Mn ⊗ R(N) by

Cliff(X1, . . . , XN) :=
√
−1

N∑
j=1

Xj ⊗ ej.
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Each element T =
∑

S TS ⊗ eS ∈ Mn ⊗ R(N) acts on elements x =
∑

S xS ⊗
eS ∈ Cn ⊗ R(N) by T (x) :=

∑
S,S′ Ts(xS′) ⊗ eSeS′ . So Cliff(X1, . . . , XN) ∈ Mn ⊗

R(N) ⊆ L(Cn ⊗ R(N)). By ‖Cliff(X1, . . . , XN)‖ we will mean the operator norm
of Cliff(X1, . . . , XN) as an element of L(Cn ⊗ R(N)). As observed by Elsner in
[12, (5.2)], we have that

∥∥Cliff(X1, . . . , XN)
∥∥ ≤

N∑
j=1

‖Xj‖. (2.1)

2.2.2. Joint spectral matchings. It is often convenient to have N -tuples (or 2N -
tuples) of matrices with real spectra. For this purpose, we use the following con-
struction initiated in [26]. If X = (X1, . . . , XN) is an N -tuple of (n×n)-matrices,
then we can always decompose Xj in the form Xj = X1j + iX2j where the Xkj

all have real spectra. We write π(X) := (X11, . . . , X1N , X21, . . . , X2N) and call
π(X) a partition of X. If the Xkj’s all commute, then we say that π(X) is a
commuting partition, and if the Xkj’s are simultaneously triangularizable, then
we say that π(X) is a triangularizable partition. If the Xkj’s are all semisimple
(diagonalizable), then π(X) is called a semisimple partition.

We say that N normal matrices X1, . . . , XN ∈ Mn are simultaneously diagonal-
izable if there is a unitary matrix Q ∈ Mn such that Q∗XjQ is diagonal for each
j = 1, . . . , N . In this case, for 1 ≤ k ≤ n, let Λ(k)(Xj) := (Q∗XjQ)kk be the (k, k)
element of Q∗XjQ, and set Λ(k)(X1, . . . , XN) := (Λ(k)(X1), . . . ,Λ

(k)(XN)) ∈ CN .
The set

Λ(X1, . . . , XN) :=
{
Λ(k)(X1, . . . , XN)

}
1≤k≤N

is called the joint spectrum of X1, . . . , XN . We will write Λ(Xj) to denote the
j-component of Λ(X1, . . . , XN). In other words, we will have that

Λ(Xj) = diag
[
Λ(1)(Xj), . . . ,Λ

(n)(Xj)
]
.

The following theorem was proved by McIntosh, Pryde, and Ricker [26].

Theorem 2.1 ([26, pp. 56–57]). Let X = (X1, . . . , XN) and Y = (Y1, . . . , YN) be
N-tuples of commuting (n×n)-normal matrices. Then there exists a permutation
τ of the index set {1, . . . , n} such that∥∥Λ(k)(X1, . . . , XN)− Λ(τ(k))(Y1, . . . , YN)

∥∥
≤ eN,0

∥∥Cliff(X1 − Y1, . . . , XN − YN)
∥∥ (2.2)

for all k ∈ {1, . . . , n}.

In this theorem, eN,0 is an explicit constant depending only on N as defined in
[26, (2.4)].

2.3. Amenable C∗-algebras and Bott elements. The following lemma was
proved by Lin in [18].

Lemma 2.1 ([18, Lemma 2.6.11]). For any ε > 0 and d > 0, there exists δ > 0
satisfying the following. Suppose that A is a unital C∗-algebra and that u ∈ A is
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a unitary such that T1\σ(u) contains an arc of length d. Suppose that a ∈ A with
‖a‖ ≤ 1 such that

‖ua− au‖ < δ.

Then there is a self-adjoint element h ∈ A such that u = eih,

‖ha− ah‖ < ε and ‖eitha− aeith‖ < ε

for all t ∈ I. If, furthermore, a = p is a projection, then we have∥∥∥pup− p+
∞∑
n=1

(iphp)n

n!

∥∥∥ < ε.

The following lemma was proved by Lin in [20] by using Lemma 2.1, since for
any integer n ≥ 1 and any u ∈ U(n), we will have that T1\σ(u) contains an arc
of length at least 2π/n.

Lemma 2.2 ([20, Lemma 3.3]). Let ε > 0, let n ≥ 1 be an integer, and let
M > 0. There exists δ > 0 satisfying the following. For any finite set F ⊂ Mn

with ‖a‖ ≤ M for all a ∈ F , and a unitary u ∈ Mn such that

‖ua− au‖ < δ for all a ∈ F ,

there exists a continuous path of unitaries {u(t)}t∈I ⊂ Mn with u(0) = u and
u(1) = 1n such that ∥∥u(t)a− au(t)

∥∥ < ε for all a ∈ F .

Furthermore,

Length
({

u(t)
})

≤ 2π.

Definition 2.2 (The obstruction Bott(u, v)). Given two unitaries in a K1-simple
real rank zero C∗-algebra A that almost commute, the obstruction Bott(u, v) is
the Bott element associated to the two unitaries as defined by Loring in [21]. It is
defined whenever ‖uv − vu‖ ≤ ν0, where ν0 is a universal constant. It is defined
as the K0-class

Bott(u, v) =
[
χ[1/2,∞)

(
e(u, v)

)]
−

[(
1 0
0 0

)]
,

where e(u, v) is a self-adjoint element of M2(A) of the form

e(u, v) =

(
f(v) h(v)u+ g(v)

h(v)u∗ + g(v) 1− f(v)

)
,

where f , g, h are universal real-valued continuous functions on T1 defined as
follows:

f(e2π
√
−1θ) =

{
1− 2θ if 0 ≤ θ ≤ 1/2,

−1 + 2θ if 1/2 ≤ θ ≤ 1,

g = χ[0,1/2]

√
f − f 2,

h = χ[1/2,1]

√
f − f 2,

where χX denotes the characteristic function of the set X.
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For details on the subject of K-theory for C∗-algebras, we refer the reader to
[28]. As observed by Bratteli, Elliott, Evans, and Kishimoto in [3], given a pair
u, v ∈ U(A) we have that the obstruction Bott(u, v) needs to vanish to be able
to solve the problem uvu∗  ε(δ),U(n) v by deforming u ∈ U0(A) to 1 continuously
in U(A), when ‖uv − vu‖ ≤ δ.

3. Matrix varieties and toroidal matrix links

Let us denote byH a universal separable Hilbert space, by B(H) the C∗-algebra
of bounded operators on H, and, for any given S ⊆ B(H), let us denote by Br(S)
the closed r-ball in S defined by Br(S) := {x ∈ S | ‖x‖ ≤ r}.

Given N ∈ Z+ and a set R(S) = R(y1, . . . , yN) of normed polynomial relations
on the N -set S := {y1, . . . , yN} of noncommutative variables, we will call the set
Z[R] described by

Z[R] :=
{
x1, . . . , xN

∣∣ R(x1, . . . , xN)
}

(3.1)

with x1, . . . , xN ∈ B1(B(H)), a noncommutative semialgebraic set.

Example 3.1. As an example of normed noncommutative polynomial relations, we
can consider the set R(x, y) := {‖x4− 1‖ ≤ 10−10, ‖y7− 1‖ ≤ 10−10, ‖xy− yx‖ ≤
1
8
, xx∗ = x∗x = 1, yy∗ = y∗y = 1}.
Given a noncommutative semialgebraic set Z[R], we will use the symbol EZ[R]

to denote the universal C∗-algebra

EZ[R] := C∗〈x1, . . . , xN

∣∣ R(x1, . . . , xN)
〉
, (3.2)

which we call the environment C∗-algebra of Z[R]. (For details on universal
C∗-algebras described in terms of generators and relations, we refer the reader to
[22].)

Definition 3.1 (Semialgebraic matrix varieties). Given J ∈ Z+, a system of J
polynomials p1, . . . , pJ ∈ Π〈N〉 = C〈x1, . . . , xN〉 in N noncommutative variables,
and J real numbers εj ≥ 0, 1 ≤ j ≤ J , a matrix representation of the noncom-
mutative semialgebraic set Zn(p1, . . . , pJ) described by

Zn(p1, . . . , pJ) :=
{
X1, . . . , XN ∈ Mn

∣∣ ∥∥pj(X1, . . . , XN)
∥∥ ≤ εj, 1 ≤ j ≤ J

}
will be called an n-semialgebraic matrix variety. If each εj = 0, we will refer to
the set as a matrix variety, and we may replace the normed polynomial relations
by polynomial relations.

Example 3.2. As a first example, we have that the matrix set

Zn :=

{
(X1, . . . , XN) ∈ MN

n

∣∣∣∣ XjXk −XkXj = 0n,
X∗

jXj = XjX
∗
j = 1n,

1 ≤ j, k ≤ N

}
is a matrix variety. If for some δ > 0, we now set

Zn,δ :=

(X1, . . . , XN) ∈ MN
n

∣∣∣∣∣ ‖XjXk −XkXj‖ ≤ δ,
‖X∗

jXj −XjX
∗
j ‖ = 0,

‖Xj‖ ≤ 1
1 ≤ j, k ≤ N

 ,

where the set Zn,δ is a matrix semialgebraic variety.
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Example 3.3. Another example of a matrix semialgebraic variety which has proved
useful in understanding the geometric nature of the problems solved in this article
is described by the matrix set Isoδ(x, y), defined for some given δ ≥ 0 and any
two normal contractions x and y in Mn by the expression

Isoδ(x, y) :=

(z, w) ∈ N (n)(D2)× U(n)

∣∣∣∣∣ ‖xw − wz‖ = 0,
‖[z, y]‖ = 0,
‖z − y‖ ≤ δ

 .

3.1. Toroidal matrix links.

3.1.1. Finsler manifolds, matrix paths, and toroidal matrix links.

Definition 3.2 (Finsler manifold). A Finsler manifold is a pair (M,F ), where M
is a manifold and F : TM → [0,∞) is a function (called a Finsler norm) such
that

• F is smooth on TM\{0} =
⋃

x∈M{TxM\{0}},
• F (v) ≥ 0 with equality if and only if v = 0,
• F (λv) = λF (v) for all λ ≥ 0,
• F (v + w) ≤ F (v) + F (w) for all w on the same tangent space with v.

Given a Finsler manifold (M,F ), the length of any rectifiable curve γ : [a, b] →
M is given by the length functional

L[γ] =

∫ b

a

F
(
γ(t), ∂tγ(t)

)
dt,

where F (x, ·) is the Finsler norm on each tangent space TxM .
The pair (N , ‖ · ‖) is a Finsler manifold, where N denotes the set of normal

matrices N (of any size) and ‖ · ‖ denotes the operator norm.

Definition 3.3 (Matrix path curvature). Given a piecewise C2-matrix path γ :
[0, 1] → N such that ‖∂tγ(t)‖ > 0, we define its curvature κ[γ] to be

κ[γ] :=
1

‖∂tγ(t)‖

∥∥∥∂t( ∂tγ(t)

‖∂tγ(t)‖

)∥∥∥.
Definition 3.4 (Matrix flows). Given n ≥ 1, a mapping φ : R+

0 × Mn → Mn,
(t, x) 7→ xt will be called a matrix flow. If we have in addition that σ(xt) = σ(xs)
for every t, s ≥ 0, we say that the matrix flow is isospectral.

Definition 3.5 (Interpolating path). Given two matrices x and y in Mn and a
matrix flow φ : I × Mn → Mn such that φ0(x) = x and φ1(x) = y, we say
that the corresponding path {xt}t∈I := {φt(x)}t∈I ⊆ Mn is a solvent path for the
interpolation problem x y.

Definition 3.6 (~ operation). Given two matrix paths X,Y ∈ C([0, 1],Mn), we
write X ~ Y to denote the concatenation of X and Y , which is the matrix path
defined in terms of X and Y by the expression

X ~ Y s :=

{
X2s, 0 ≤ s ≤ 1

2
,

Y2s−1,
1
2
≤ s ≤ 1.
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Definition 3.7. (`‖·‖). Given a matrix path {xt}t∈I in Mn, we will write `‖·‖(xt) to
denote the length of {xt}t∈I with respect to the operator norm which is defined
by the expression

`‖·‖(xt) := sup
m−1∑
k=0

‖xtk+1
− xtk‖,

where the supremum is taken over all partitions of I as 0 = t0 < · · · < tm = b. If
the function x ∈ C(I,Mn) is a piecewise C1-function, then

`‖·‖(xt) =

∫
I
‖∂txt‖ dt.

Definition 3.8. (‖·‖-flatness). A set S ofMn is said to be ‖·‖-flat if any two points
x, y ∈ S can be connected by a path {xt}t∈I ⊆ S such that `‖·‖(xt) = ‖x− y‖.

Definition 3.9 (Toroidal matrix link). Given any two normal contractions x, y in
Mn, a toroidal matrix link is any piecewise analytic normal path xt := K[Tt(l(x))]
induced by a locally normal piecewise analytic matrix flow T : I × MN → MN

with N ≥ n, together with a locally normal compression K : MN → Mn

with relative lifting map l : Mn → MN , which satisfy the interpolating con-
ditions K[T0(l(x))] = x and K[T1(l(x))] = y together with the constraints
‖K[Tt(l(x))]‖ ≤ 1 for each t ∈ I.

Remark 3.1. In the particular case where [K(Tt(l(x))),K(Tt(l(y)))] = 0 for each
t ∈ I, whenever [x, y] = 0, we call T a toral matrix link.

Remark 3.2. The curved nature of the matrix varieties (as Finsler submanifolds
of N ), whose local connectivity we study in this article, induces an obstruction to
local connectivity via entirely flat toroidal matrix links in general. The toroidal
matrix links T ⊂ C([0, 1],N ) we have used to solve the connectivity problems
which motivated this study satisfy the constraint

0 ≤ κ[T ] ≤ 2

`‖·‖(T )
, ∀T ∈ T.

3.2. Embedded matrix flows in solid tori. Given some fixed but arbitrary
W ∈ U(n), using the operation diagn : Mn → Mn one can define the mapping
D : U(n)×Mn → D2 determined by the following expression:

U(n)×Mn → D2, (3.3)

(W,x) 7→ DT[W ](x), (3.4)

(W,x) 7→
{(

diagn[WxW ∗]
)
k,k

}
1≤k≤n

. (3.5)

It can be seen that, for any (W,x) ∈ U(n) × Mn, the map D induced by the
operation

DT[W ](x) := {x1, . . . , xn} ⊆ D2

takes values in the set of finite sequences with n elements in D2, where each
{x1, . . . , xn} consists of the diagonal entries ofWxW ∗ counted with multiplicity. It
is clear that diag[DT[W ](x)] = diagn[WxW ∗] and that diag[DT[1n](x)] = diagn[x].
Because of this, when W = 1n we will write D(x) instead of DT[1n](x).



LOCAL MATRIX HOMOTOPIES 177

Given a matrix flow I×N (n)(D2) → N (n)(D2), (t, x) 7→ Xt(x), one can identify
X with the set of flow lines in D2 × T1 determined by {(D(Xt(x)), e

2πit)}t∈I.
The geometric picture determined by the mapping cylinder N (n)(D2) × I →
D2 × T1, (x, t) 7→ (D(Xt(x)), e

2πit) will be called the embedded matrix mapping
cylinder relative to the flow X. We can think of the embedded matrix mapping
cylinder in topological terms as a deformation described by the expression DX,Z2 ,
which is defined as

DX,Z2 [Z1 × I] :=
(Z1 × I) t Z2

Z1 × {1} X1 Z2

,

where Z1 and Z2 are some prescribed (matrix) point sets in a matrix variety Z
such that X1(x) ∈ Z2 for each x ∈ Z1.

Example 3.4 (Graphical example in M3). Let us set û3 := e
2πi
3

f(N3), where f ∈
C(I, I). Given W3 ∈ U(3), we can obtain a graphical example of a particular
geometric picture of the computation of the embedded matrix mapping cylinder
relative to the interpolating flow U, which solves the problem û3  W3û3W

∗
3

relative to the matrix variety Z3 := {z ∈ Mn | zz∗ = z∗z = 13} = U(3).
Let us set

Z1 :=
{
z ∈ U(3)

∣∣ [û3, z] = 0
}
,

Z2 :=
{
z ∈ U(3)

∣∣ [W3û3W
∗
3 , z] = 0

}
.

Using projective methods, we can trace specific flow lines along the matrix
flows corresponding to the dynamical deformation DU,Z2 [Z1× I], which solves the
interpolation problem û3  W3û3W

∗
3 .

A particular (approximate) geometric picture of the matrix deformation indu-
ced by the toral matrix link {Ut}t∈I in M3, projected in D2 × T1 for each t ∈ I
via DT(Ut), is presented in Figures 1–3.

Alternative methods for tracing particular flow lines on mapping cylinders can
be obtained using matrix homotopies, which can be done using similar methods
to the ones implemented in [7].

Figure 1. Projected matrix mapping cylinder corresponding to
the path U[0, 1

2
](û3) in M3.

Figure 2. Projected matrix mapping cylinder corresponding to
the path UI(û3) in M3.
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Figure 3. Embedded matrix mapping cylinder corresponding to
the path UI(û3) in M3.

3.3. Environment algebras.

Definition 3.10 (Environment algebra (of a matrix algebra)). Given a matrix
algebra A ⊆ Mn, a universal C∗-algebra EA := C∗

1〈x1, . . . , xm | R(x1, . . . , xm)〉 for
which there is a matrix representation EA � EA ⊆ Mn such that A ⊆ EA, will
be called an environment algebra for A.

Let us consider the universal C∗-algebras C(J), C(T1), C(T1)∗CC(T1), Cδ(T2),
Cδ(J×T1), and C∗

ε 〈Z/2×Z〉 defined in terms of generators and relations by the
expressions

C(J) := C∗
1

〈
h
∣∣ h∗ = h, ‖h‖ ≤ 1

〉
,

C(T1) := C∗
1〈u

∣∣ uu∗ = u∗u = 1〉,

C(T1) ∗C C(T1) := C∗
1

〈
u, v

∣∣∣∣ uu∗ = u∗u = 1,
vv∗ = v∗v = 1

〉
,

Cδ(T2) := C∗
1

〈
u, v

∣∣∣∣∣ uu
∗ = u∗u = 1,

vv∗ = v∗v = 1,
‖uv − vu‖ ≤ δ

〉
,

Cδ(J× T1) := C∗
1

〈
h, u

∣∣∣∣∣ h
∗ = h, ‖h‖ ≤ 1

uu∗ = u∗u = 1,
‖hu− uh‖ ≤ δ

〉
,

C∗
ε 〈Z/2× Z〉 := C∗

1

〈
u, v

∣∣∣∣∣ uu
∗ = u∗u = u2 = 1,

vv∗ = v∗v = 1,
‖uv − vu‖ ≤ ε

〉
.

Let us now consider a local matrix representation result that we will use later
in the construction of particular representation schemes.

Lemma 3.1. For every integer n ≥ 1, there are s2, un, vn ∈ U(M∞) such that
the diagram

C(T1)∗2

����

// // C∗ 〈(Z/n)∗2〉 // // C∗
n(un, vn)

C∗ 〈Z/n ∗ Z/2〉 // // C∗
n(s2, vn) Mn

commutes, where s2 ∈ H(n), un and vn are unitary elements in Mn.
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Proof. Since we have that C(T1)∗2 ' C∗ 〈F2〉 ' C∗(Z∗2), by universality of the
C∗-representations

C∗(Z∗2) ' C∗
〈
u, v

∣∣∣∣ uu∗ = u∗u = 1,
vv∗ = v∗v = 1

〉
,

C∗((Z/n)∗2) ' C∗

〈
u, v

∣∣∣∣∣ uu
∗ = u∗u = 1,

vv∗ = v∗v = 1,
un = vn = 1

〉
,

C∗(Z/n ∗ Z/2) ' C∗

〈
u, v

∣∣∣∣∣ uu
∗ = u∗u = 1,

vv∗ = v∗v = 1,
un = v2 = 1

〉
,

and by the structural properties of Mn, it is enough to find for any n ∈ Z+, up to
unitary congruence inMn, three unitaries s2, un, vn ∈ U(n) such that C∗(s2, vn) =
Mn = C∗(un, vn) and un

n = vnn = s22 = 1n. This can be done by taking for any
n ∈ Z+ the orthogonal projection p := diag[1, 0, . . . , 0] ∈ H(n) and the matrix
s2 = 1 − 2p ∈ H(n), setting un := Ωn and vn := Σn for n ≥ 2 and u1 = v1 = 1
for n = 1. By functional calculus and direct computations, it is easy to verify
that s2, un, vn ∈ U(n) for every n ∈ Z+ and that s2 = s∗2. It is also easy to verify
that the system of matrix units { ei,j,n }1≤i,j≤n and un can be expressed as words

in C∗(s2, vn) for every n ∈ Z+. It is also clear that p = e1,1,n, and hence, s2
can be written as linear combinations of words in C∗(un, vn). We will then have
that C∗ 〈Z/n ∗ Z/2〉 � C∗(vn, s2) and C∗ 〈Z/n∗2〉 � C∗(un, vn) by the universal
properties of C∗ 〈Z/2 ∗ Z/n〉 and C∗ 〈Z/n∗2〉, respectively, since it can be easily
verified that

un
n = vnn = s22 = 1n.

The result follows from these facts and the universal property of C(T1)∗2 '
C∗ 〈F2〉 ' C∗ 〈Z∗2〉. �

Remark 3.3. It can be seen that for any matrix C∗-subalgebra A ⊆ Mn, there is
δ > 0 such that both C(T1) ∗C C(T1) and Cδ(T2) are environment algebras of A.
It can also be seen that for any Abelian C∗-subalgebra D ⊆ Mn, C(T1) is an
environment algebra of D.

4. Local matrix connectivity

4.1. Topologically controlled linear algebra and soft tori.

Definition 4.1 (Controlled sets of matrix functions). Given δ > 0, a function
ε : R → R+

0 , a finite set of functions F ⊆ C(T1,D2), and two unitary matrices
u, v ∈ Mn such that ‖uv−vu‖ ≤ δ, we say that the set F is δ-controlled by Ad[v]
if ‖f(vuv∗)− f(u)‖ ≤ ε(δ), for each f ∈ F .

Remark 4.1. The C∗-homomorphism Cδ(T2) → C∗(u, v) allows us to see that
the soft torus Cδ(T2) provides an environment algebra for any δ-controlled set of
matrix functions.
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Lemma 4.1 (Existence of isospectral approximants). Given ε > 0, there is δ > 0
such that, for any two families of N pairwise commuting (n×n)–normal matrices
x1, . . . , xN and y1, . . . , yN which satisfy the constraints ‖xj−yj‖ ≤ δ for each 1 ≤
j ≤ N , there is a C∗-homomorphism Ψ : Mn → Mn such that σ(Ψ(xj)) = σ(xj),
[Ψ(xj), yk] = 0n, and max{‖Ψ(xj)−yj‖, ‖Ψ(xj)−xj‖} ≤ ε, for each 1 ≤ j, k ≤ N .

Proof. By changing the basis if necessary, we can assume that y1, . . . , yN are
diagonal matrices. From Theorem 2.1, we will have that there is a permutation
τ of the index set {1, . . . , n} such that for each 1 ≤ k ≤ n, we have that

|Λ(k)(xj)− Λ(τ(k))(yj)| ≤
∥∥Λ(k)(x1, . . . , xN)− Λ(τ(k))(y1, . . . , yN)

∥∥
≤ eN,0

∥∥Cliff(x1 − y1, . . . , xN − yN)
∥∥. (4.1)

Using (2.1), and as a consequence of (4.1), we can find a permutation matrix
T ∈ U(n) such that∥∥T ∗ diag

[
Λ(xj)

]
T − diag

[
Λ(yj)

]∥∥ ≤ eN,0

∥∥Cliff(x1 − y1, . . . , xN − yN)
∥∥

≤ eN,0Nδ, 1 ≤ j ≤ N. (4.2)

Let us set cN := eN,0N . For the matrices x1, . . . , xN , there is a unitary joint
diagonalizer W ∈ Mn such that W diag[Λ(xj)]W

∗ = xj, 1 ≤ j ≤ N , and∥∥W diag
[
Λ(xj)

]
W ∗ − T ∗ diag

[
Λ(xj)

]
T
∥∥ ≤

∥∥W diag
[
Λ(xj)

]
W ∗ − yj

∥∥
+
∥∥yj − T ∗ diag

[
Λ(xj)

]
T
∥∥

≤ (1 + cN)‖xj − yj‖
≤ (1 + cN)δ. (4.3)

If we set V := WT and ε = (1 + cN)δ, we will have that, by (4.2) and (4.3), the
inner C∗-automorphism Ψ := Ad[V ∗] satisfies the constraints in the statement of
this lemma, and we are done. �

Remark 4.2. The C∗-automorphism Ψ from Lemma 4.1 is called an isospectral
approximant for the two N -tuples x1, . . . , xN and y1, . . . , yN . If Ψ := Ad[W ∗]
for some W ∈ U(n), then we will have that its inverse Ψ† will be given by the
expression Ψ† = Ad[W ].

Remark 4.3. The constant cN in the proof of Lemma 4.1 depends only on the
number N of matrices in each family. It does not depend on the matrix size.

4.2. Local piecewise analytic connectivity. In this section, we will present
some piecewise analytic local connectivity results in matrix representations of
the form C(TN) → C∗(uε, vε) and C([−1, 1]N) → C∗(uε, vε), with Cε(T2) �
C∗(uε, vε).

Theorem 4.1 (Local normal toral connectivity). Given ε > 0, any n ∈ Z+, and
N ∈ Z+, there is δ > 0 such that, for any 2N normal contractions x1, . . . , xN

and y1, . . . , yN in Mn which satisfy the relations{
[xj, xk] = [yj, yk] = 0, 1 ≤ j, k ≤ N,

‖xj − yj‖ ≤ δ, 1 ≤ j ≤ N,
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there exist N toral matrix links X1, . . . , XN in Mn, which solve the problems

xj  yj, 1 ≤ j ≤ N,

and satisfy the constraints ∥∥Xj
t (xj)− yj

∥∥ ≤ ε,

for each 1 ≤ j ≤ N and each t ∈ I. Moreover, `‖·‖(X
j
t (xj)) ≤ ε, 1 ≤ j ≤ N .

Proof. By Lemmas 2.1, 2.2, and 4.1, we will have that, given ε > 0, there are
0 < δ ≤ ν ≤ ε/2 and an isospectral approximant Ψ := Ad[W ∗] (with W ∈ U(n))
for x1, . . . , xN and y1, . . . , yN such that max{‖xj−Ψ(xj)‖, ‖yj−Ψ(xj)‖} ≤ ν and
[Ψ(xj), yj] = 0 for each 1 ≤ j ≤ N . We will also have that there is a unitary path
W ∈ C(I,Mn) which is defined by the expression Wt := e−itHW for each t ∈ I,
whereHW ∈ Mn is a Hermitian matrix such that eiHW = W and ‖[HW , xj]‖ ≤ ε/2
for each 1 ≤ j ≤ N , and which is defined by HW := h(W ), for some function
h : Ωα

d,s → [−1, 1], and where σ(W ) ⊂ Ωα
d,s := {ei(πt+α) | −1+s < t < 1−s} ⊂ T1,

with s, α ∈ R chosen in such a way that T1\Ωα
d,s contains an arc of length d

(with d ≥ 2π/n). Moreover, we can choose δ and ν in such a way that the path
W satisfies the inequalities ‖[Wt,Ψ(xj)]‖ ≤ ε/2 for each t ∈ [0, 1] and each
1 ≤ j ≤ N .

It can be seen that the paths X̆j
t := Ad[Wt](xj) will solve the local interpolation

problem xj  ε/2,N (n)(D2) Ψ(xj) for each 1 ≤ j ≤ N . Let us set X̄j
t := (1−t)Ψ(xj)+

tyj. We can now construct N toroidal matrix links of the form Xj := X̆j ~ X̄j

which solve the problems xj  yj, locally preserve normality and commutativity,
and satisfy the ‖ · ‖-distance constraints

‖Xj
t − yj‖ ≤

∥∥Xj
t −Ψ(xj)

∥∥+
∥∥yj −Ψ(xj)

∥∥
≤ ε

2
+ ν

≤ ε

2
+

ε

2
= ε,

together with the ‖ · ‖-length constraints

`‖·‖(X
j
t ) ≤ `‖·‖(X̆

j
t ) +

∥∥Ψ(xj)− yj
∥∥

=

∫
I

∥∥∂t Ad[Wt](xj)
∥∥ dt+ ∥∥Ψ(xj)− yj

∥∥
=

∥∥[HW ,Ψ(xj)
]∥∥+

∥∥Ψ(xj)− yj
∥∥

≤ ε

2
+ ν ≤ ε,

which hold whenever ‖xj − yj‖ ≤ δ, 1 ≤ j ≤ N , and we are done. �

Remark 4.4. We note that the solvent matrix links X1, . . . , XN , whose existence
is stated in Theorem 4.1, are factored in the form Xj = X̆j~ X̄j. We call X̆j and
X̄j the curved and flat factors of Xj, respectively.

We now derive two corollaries from the proof of Theorem 4.1.
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Corollary 4.1 (Local Hermitian toral connectivity). Given ε > 0, any integer
n ≥ 1, and N ∈ Z+, there is δ > 0 such that, for any 2N Hermitian contractions
x1, . . . , xN and y1, . . . , yN in Mn which satisfy the relations{

[xj, xk] = [yj, yk] = 0, 1 ≤ j, k ≤ N,

‖xj − yj‖ ≤ δ, 1 ≤ j ≤ N,

there exist N toral matrix links X1, . . . , XN in Mn, which solve the problems

xj  yj, 1 ≤ j ≤ N,

and satisfy the constraints {
Xj

t (xj) = (Xj
t (xj))

∗,

‖Xj
t (xj)− yj‖ ≤ ε,

for each 1 ≤ j ≤ N and each t ∈ I. Moreover, `‖·‖(X
j
t (xj)) ≤ ε, 1 ≤ j ≤ N .

Proof. Since for any α ∈ R, any pair of Hermitian matrices x, y ∈ H(n), and any
partial unitary z ∈ PU(n), we have that x+ α(y − x) and zxz∗ are also in H(n).
The result follows as a consequence of Lemma 4.1 and Theorem 4.1. �

Corollary 4.2 (Local unitary toral connectivity). Given any ε ≥ 0, any integer
n ≥ 1, and any N ∈ Z+, there is δ ≥ 0 such that, given any 2N unitary matrices
U1, . . . , UN , V1, . . . , VN in Mn which satisfy the relations{

[Uj, Uk] = [Vj, Vk] = 0,

‖Uk − Vk‖ ≤ δ,

for each 1 ≤ j, k ≤ N , there are toral matrix links u1, . . . , uN in Mn which solve
the interpolation problems

Uk  Vk, 1 ≤ k ≤ N,

and also satisfy the relations{
(uj

t)
∗uj

t = uj
t(u

j
t)

∗ = 1n,

‖uj
t − Vj‖ ≤ ε,

for each t ∈ I and each 1 ≤ j ≤ N . Moreover, `‖·‖(u
j
t) ≤ ε, 1 ≤ j ≤ N .

Proof. Since for any C∗-automorphisms Ψ we have that Ψ(U(n)) ⊆ U(n), and
since any two commuting unitaries U and V can be connected by a flat unitary
path, Ūt := Uet ln(U

∗V ), for 0 ≤ t ≤ 1. We will have that the result can be derived
using a similar argument to the one implemented in the proof of Theorem 4.1. �
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4.2.1. Lifted local piecewise analytic connectivity. Let us denote by κ the matrix
compression M2n → Mn defined by the mapping

κ : M2n → Mn,

(
x11 x12

x21 x22

)
7→ x11.

Let us write ı2 : Mn → M2n to denote the C∗-homomorphism defined by the
expression ı2(x) := x⊕ x = 12 ⊗ x.

Definition 4.2 (Standard dilations). Given a C∗-automorphism Ψ := Ad[W ] (with
W ∈ U(n)) in Mn, we will denote by Ψ[s] the C∗-automorphism in M2n defined
by the expression Ψ[s] := Ad[12 ⊗ W ] = Ad[W ⊕ W ]. We call Ψ[s] a standard
dilation of Ψ.

Definition 4.3 (Z/2-dilations). Given a C∗-automorphism Ψ := Ad[W ] (with
W ∈ U(n)) in Mn, we will denote by Ψ[2] the C∗-automorphism in M2n defined
by the expression Ψ[2] := Ad[(Σ2 ⊗ 1n)(W

∗ ⊕W )]. We call Ψ[2] a Z/2-dilation of
Ψ.

Remark 4.5. It can be seen that κ(ı2(x)) = x for any x ∈ M2n. It can also be
seen that κ(Ψ[2](ı2(x))) = κ(Ψ[s](ı2(x))).

Theorem 4.2 (Lifted local toral connectivity). Given ε > 0, there is δ > 0 such
that, for any 2N normal contractions x1, . . . , xN and y1, . . . , yN in Mn which
satisfy the relations {

[xj, xk] = [yj, yk] = 0, 1 ≤ j, k ≤ N,

‖xj − yj‖ ≤ δ, 1 ≤ j ≤ N,

there is a C∗-homomorphism Φ : Mn → M2n and N toral matrix links X1, . . . , XN

in C(I,M2n) which solve the problems

Φ(xj) yj ⊕ yj, 1 ≤ j ≤ N,

and satisfy the constraints 
κ(Φ(xj)) = xj,
‖Φ(xj)− xj ⊕ xj‖ ≤ ε,

‖Xj
t − yj ⊕ yj‖ ≤ ε,

for each 1 ≤ j ≤ N and each t ∈ I. Moreover, `‖·‖(X
j
t ) ≤ ε, 1 ≤ j ≤ N .

Proof. By Lemma 4.1, we will have that, given ε > 0, there are 0 < δ ≤ ν = ε
2π

and an isospectral approximant Ψ := Ad[W ∗] (with W ∈ U(n)) for x1, . . . , xN

and y1, . . . , yN such that max{‖xj −Ψ(xj)‖, ‖yj −Ψ(xj)‖} ≤ ν. By setting Φ :=
(Ψ†)[2] ◦ ı2 ◦Ψ, Definition 4.3, Definition 4.2, and Remark 4.5 show that Φ : Mn →
M2n is a C∗-homomorphism such that ‖Φ(xj)− ı2(xj)‖ = ‖Φ(xj)− xj ⊕ xj‖ ≤ ε,
for each 1 ≤ j ≤ N .

Since (Ψ†)[2] := Ad[Ŵs] with Ŵs := (Σ2 ⊗ 1n)(W
∗ ⊕ W ) and since Ŵs ∈

U(2n) ∩H(2n), we will have that Ŵs can be represented as Ŵs = ei
π
2
(Ŵs−12n) for

any n ≥ 1. If we set X̃j := Ψ[s](ı2(xj)), 1 ≤ j ≤ N , we also have that there
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is a unitary path {Wt}t∈I ⊂ M2n with Wt := ei
π(1−t)

2
(Ŵs−12n), which satisfies the

conditions W0 = Ŵs, W1 = 12n, together with the normed estimates

‖WtX̃j − X̃jWt‖ = | cos(πt/2)|‖ŴsX̃j − X̃jŴs‖
≤ ‖ŴsX̃j − X̃jŴs‖ ≤ ν,

for each 1 ≤ j ≤ N and each 0 ≤ t ≤ 1. Moreover, for each 1 ≤ j ≤ N we have
that the paths X̆j

t := Ad[Wt](X̃j) satisfy the normed estimates

`‖·‖(X̆
j
t ) =

∫
I

∥∥∂t Ad[Wt](X̃j)
∥∥ dt

=
π

2
‖ŴsX̃j − X̃jŴs‖ ≤ ν.

For each 1 ≤ j ≤ N , we can now use the flat paths X̄j
t := (1 − t)X̃j + tı2(yj)

together with the previously described curved paths X̆j to construct the solvent
toral matrix links X1, . . . , XN ∈ C([0, 1],M2n) we are looking for, and which can

be defined by Xj := X̆j ~ X̄j for each 1 ≤ j ≤ N , and we are done. �

Remark 4.6. It can be seen that, by using the technique implemented in the proof
of Theorem 4.2, one can obtain lifted versions of Corollaries 4.2 and 4.1.

Remark 4.7. As a consequence of Theorem 4.2, we can derive simple detection
methods to identify families of pairwise commuting matrices in Mn that can be
connected uniformly via piecewise analytic toral matrix links. The existence of
these detection methods raises some interesting questions for further studies.

Remark 4.8. We can interpret Theorem 4.2 as an existence theorem of solutions
to lifted connectivity problems defined on matrix representations of the form

C∗
ε 〈Z/2× Z〉 // C∗(Ûs, V̂ ) // M2n

��
C∗〈F2〉 //

88

Cδ(T2) // C∗(U, V )

OO

// Mn

with Ûs = (Σ2 ⊗ 1n)(U
∗ ⊕ U) and V̂ = V ⊕ V .

4.2.2. Matrix Klein bottles: Local matrix deformations and special symmetries.
Using Theorem 4.2, we can solve all connectivity problems (together with their
softened versions) in Mn that can be reduced to connectivity problems of the
form x ε x

∗ in N (n)(D2), with x∗ = TxT and T 2 = 1n.

Remark 4.9. For each ε ∈ [0, 2], we can use the previously described symmetries
and DT to interpret

⋃
x∈Mn

{x ε,C∗(x) x
∗} for x ∈ N (n)(D2) as matrix analogies

of the Klein bottle.

By a softened matrix Klein bottle we mean that the symmetries are softened.
In particular, we can consider the connectivity problems x ε x

∗ and y  ε y
∗ in

N (n)(D2) subject to the normed constraints ‖xy − yx‖ ≤ δ, ‖x∗ − TxT‖, ‖xT −
Ty‖ ≤ δ, and T 2 = 1n. The details regarding the solvability of these local con-
nectivity problems will be addressed in future work.
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4.3. C0-uniform local connectivity of pairs of unitaries and piecewise
analytic approximants. The technique presented in this section can be used to
solve local connectivity problems in matrix representations of the form C(T2) →
C∗(uε, vε) ⊆ Mn uniformly via C0-unitary paths.

Suppose that Ut and Vt are unitary matrices in Mn(C) for t = 0 and t = 1,
and suppose that we define

Ut = U0e
t ln(U∗

0U1) (4.4)

and

Vt = V0e
t ln(V ∗

0 V1). (4.5)

For t = 0 or t = 1 the C∗-algebra generated by Ut and Vt is Abelian, so select a
maximal Abelian subalgebra (MASA) Ct

∼= Cn in each case. Let

A(C0, C1) =
{
X ∈ C

(
[0, 1],Mn(C)

) ∣∣ X(0) ∈ C0 and X(1) ∈ C1

}
.

Lemma 4.2. The C∗-algebra A(C0, C1) has stable rank one.

Proof. Starting with X continuous with X(t) in Ct at the endpoints, we can
adjust this by a small amount, leaving the endpoints in Ct, to get X piecewise
linear, with the endpoints of every linear segment having no spectral multiplicity
and being invertible. Using Kato’s theory of analytic paths, we can get a piecewise
continuous unitary Ut and piecewise analytic scalar paths λn(t) so that the new
path Y ≈ X satisfies

Y (t) = Ut

λ1(t)
. . .

λn(t)

U∗
t .

There may be finitely many places where Y (t) is not invertible. These places will
be in the interior of the segment and so in an open interval where Ut is continuous.
A small deformation of some of the λj’s will take the path through invertibles.
We have not moved the endpoints in the second adjustment, so the constructed
element is in A(C0, C1) and close to X. �

Lemma 4.3. The endpoint-restriction map ρ : A(C0, C1) → C0 ⊕ C1 induces an
injection on K0.

Proof. The kernel of ρ is C0((0, 1),Mn(C)) which has trivial K0-group. So this
result follows from the exactness of the usual six-term sequence in K-theory. �

Lemma 4.4. Given unitaries U and V in A(C0, C1), with ‖[U, V ]‖ ≤ ν0 as in
Definition 2.2 (so the Bott index makes sense), Bott(U, V ) is the trivial element
of K0(A(C0, C1)).

Proof. By the previous lemma, we need only calculate Bott(ρ(U), ρ(V )). These
unitaries are in a commutative C∗-algebra, so they have trivial Bott index. �

Theorem 4.3. Given ε > 0, there exists δ > 0 so that for all n, given unitary
matrices U0, U1, V0, V1 in Mn(C) with U0V0 = V0U0, U1V1 = V1U1, ‖U0−U1‖ ≤ δ,
and ‖V0 − V1‖ ≤ δ, then there exist continuous paths Ut and Vt between the given
pairs of unitaries with each Ut and Vt unitary, and with UtVt = VtUt, ‖Ut−U0‖ ≤ ε
and ‖Vt − V0‖ ≤ ε for all t.
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Proof. The paths Ut and Vt defined in (4.4) and (4.5) will be almost commuting
unitary elements of A(C0, C1). By Lemma 4.2, we may apply [11, Theorem 8.1.1]
regarding approximating in A(C0, C1) by commuting unitaries. Lemma 4.4 tells
us there is no invariant to worry about, so we can find At and Bt close to Ut and
Vt that are commuting continuous paths of unitaries with At and Bt in Ct for
t = 0, 1. The unitary elements in the commutative Ct are locally connected, so
we can find a short path from U0 and V0 to A0 and B0, and likewise at the other
end. Concatenating, we get paths of commuting unitary matrices from U0 and V0

to U1 and V1 so that at every point we are close to some pair (Ut, Vt). These then
are all close to U0 and V0. �

By combining Theorem 4.2, Corollary 4.2, and Theorem 4.3, we can add the
following remark.

Remark 4.10 (Piecewise analytic approximants of C0-interpolants). Given ε > 0,
there exists δ > 0 so that for all n, given unitary matrices U0, U1, V0, V1 in
Mn(C) with U0V0 = V0U0, U1V1 = V1U1, ‖U0−U1‖ ≤ δ, and ‖V0−V1‖ ≤ δ, there
exist continuous (interpolant) paths Ut and Vt in M2n which solve the problems
U0 ⊕U0  U1 ⊕U1 and V0 ⊕ V0  V1 ⊕ V1 with each Ut and Vt unitary, and with
UtVt = VtUt, ‖Ut − U0 ⊕ U0‖ ≤ ε and ‖Vt − V0 ⊕ V0‖ ≤ ε for all t. There is also a
C∗-homomorphism Ψ : Mn → M2n such that

max
{∥∥Ψ(U0)− U1 ⊕ U1

∥∥,∥∥Ψ(U0)− U0 ⊕ U0

∥∥,∥∥Ψ(V0)− V1 ⊕ V1

∥∥,∥∥Ψ(V0)− V0 ⊕ V0

∥∥} ≤ ε,

and there exist two piecewise analytic unitary pairwise commuting paths Û , V̂ ∈
C([0, 1],M2n) which solve the problems Ψ(U0) U1 ⊕U1, Ψ(V0) V1 ⊕ V1 with

max{‖Ût − Ut‖, ‖V̂t − Vt‖} ≤ ε for each 0 ≤ t ≤ 1. Moreover, `‖·‖(Ût) ≤ ε and

`‖·‖(V̂t) ≤ ε.

4.4. Jointly compressible matrix sets. Given 0 < δ ≤ ε, we can now consider
an alternative approach to the local connectivity problem involving two N -sets
of pairwise commuting normal matrix contractions X1, . . . , XN and Y1, . . . , YN

such that ‖Xj − Yj‖ ≤ δ for each 1 ≤ j ≤ N . The approach that we take in this

section consists of considering the existence of a normal contraction X̂ such that
X1, . . . , XN ∈ C∗(X̂), and which also satisfies the constraint ‖X̂ − Xj‖ ≤ ε for

some 1 ≤ j ≤ N . A matrix X̂ which satisfies the previous conditions will be called
a nearby generator for X1, . . . , XN . It can be seen that for any δ ≤ ν ≤ ε, one
can find a flat analytic path X̄ ∈ C([0, 1],M∞) that performs the deformation

Xj  ν,N (n)(D2) X̂, where X̂ is a nearby generator for X1, . . . , XN .
Given any joint isospectral approximant (JIA) Ψ with respect to the families

of normal contractions described in the previous paragraph, along the lines of the
program that we have used to derive the connectivity results Theorem 4.1 and
Theorem 4.2, we can use Lemma 4.1 to find a C∗-automorphism which solves the
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extension problem described by the diagram

C∗(X̂)

Ψ̂
��

C∗(X1, . . . , XN)
( �

55

Ψ
// C∗(Y1, . . . , YN)

′

(4.6)

and satisfies the relations Ψ(Xj) = Ψ̂(Xj) for each 1 ≤ j ≤ N together with the
normed constraints

max
{∥∥Ψ̂(X̂)− X̂

∥∥,max
j

{∥∥Ψ̂(Xj)−Xj

∥∥,∥∥Ψ̂(Xj)− Yj

∥∥}} ≤ ε.

We refer to the C∗-automorphism Ψ̂ in (4.6) as a compression of Ψ or a com-
pressive joint isospectral approximant (CJIA) for the N -sets of normal contrac-
tions. Let us now consider a special type of inner C∗-automorphism that can be
described as follows.

Definition 4.4 (Uniformly compressible JIA). Given 0 < δ ≤ ε and two N -sets
of pairwise commuting normal contractions X1, . . . , XN and Y1, . . . , YN in M∞
such that ‖Xj − Yj‖ ≤ δ, 1 ≤ j ≤ N , a joint isospectral approximant Ψ of the

N -sets is said to be uniformly compressible if there are a nearby generator X̂ for
X1, . . . , XN , a compression Ψ̂ := Ad[W ] (with W ∈ U(M∞)) of Ψ, and a unitary

Ŵ ∈ Ψ̂(C∗(X̂))′ such that ‖W−Ŵ‖ ≤ ε. We refer to the 2N normal contractions
X1, . . . , XN and Y1, . . . , YN for which there exists a uniformly compressible JIA
(UCJIA) as uniformly jointly compressible (UJC).

Lemma 4.5 (Local connectivity of UJC matrix sets). Given ε > 0, there is δ > 0
such that for any two N-sets of UJC pairwise commuting normal contractions
X1, . . . , XN and Y1, . . . , YN in M∞ such that ‖Xj − Yj‖ ≤ δ for each 1 ≤ j ≤ N ,
we will have that there are N toral matrix links X1, . . . ,XN ∈ C([0, 1],M∞) that
solve the interpolation problem Xj  ε,N (n)(D2) Yj, for each 1 ≤ j ≤ N .

Proof. Since the N -sets of pairwise commuting normal contractions X1, . . . , XN

and Y1, . . . , YN are UJC, we have that, given 0 < δ ≤ ν ≤ ε/2 < 1, there are

a normal contraction X̂ ∈ M∞ which commutes with each Xj together with a

UCJIA Ψ̂ = Ad[W ] for some W ∈ U(M∞) and a unitary Ŵ ∈ Ψ̂(C∗(X̂))′ such
that

‖1− Ŵ ∗W‖ = ‖W − Ŵ‖ ≤ ν < 1. (4.7)

Let us set Z := Ŵ ∗W . As a consequence of (4.7), we will have that there is a
Hermitian matrix −1 ≤ HZ ≤ 1 in M∞ such that eπiHZ = Z. By using (4.7)

again, we see that we can now use the curved paths X̆j := Ad[eπitHZ ](Xj) to solve

the problems Xj  ε/2,N (M∞)(D2) Ψ̂(Xj), and then we can solve the problems

Ψ̂(Xj)  ν,N (M∞)(D2) Yj by using the flat paths X̄j := (1 − t)Ψ̂(Xj) + tYj. We

can construct the solvent toral matrix links by setting Xj := X̆j ~ X̄j for each
1 ≤ j ≤ N . This completes the proof. �
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5. Hints and future directions

The detection matrix representations of universal C∗-algebras that can be con-
nected uniformly via piecewise analytic paths induce interesting problems which
are topological/K-theoretical and computational in nature. Motivated by the
C0-connectivity technique, we are interested in the application of Theorem 4.2,
Corollary 4.2, and Lemma 4.5 to the study of the question: Is C∗〈F2 × F2〉 resid-
ually finite-dimensional? (This is equivalent to Connes’s embedding problem.)

A better understanding of the geometric and approximate combinatorial nature
of toroidal matrix links would provide a mutually beneficial interaction between
matrix flows in the sense of Brockett [4] and Chu [8], topologically controlled linear
algebra in the sense of Freedman and Press [13], and spectral refinement in the
sense of [1]. These connections seem promising for the development and analysis
of novel generic numerical methods to study and compute approximate solutions
to systems of polynomial equations (in the sense of [9]) that involve large scale
matrices. Using a similar approach, we plan to use Theorem 4.2 and Lemma 4.5
to answer some questions in topologically controlled linear algebra in the sense
of [13], raised by Freedman. The connections between toroidal matrix links and
refinement subroutines (in the sense of [1]) for approximate joint diagonalization
algorithms (in the sense of [17], [25], and [29]) will be further studied in future
work.

Some generalizations of Theorem 4.2 and particular applications of Lemma 4.5
to the study of matrix equations on words (in the sense of [15] and [16]) will also
be the subject of future study. In particular, the combination of toroidal matrix
links with some matrix lifting techniques along the same lines of the proof of
Theorem 4.2 combined with Lemma 4.5 also seems promising with regard to the
solvability of some conjectures studied numerically in [24].
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