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Abstract. In this paper, we give a uniform characterization for the reducing
subspaces for Tϕ with the symbol ϕ(z) = zk + z̄l (k, l ∈ Z2

+) on the Bergman

spaces over the bidisk, including the known cases that ϕ(z1, z2) = zN1 zM2 and
ϕ(z1, z2) = zN1 + zM2 with N,M ∈ Z+. Meanwhile, the reducing subspaces
for TzN+zM (N,M ∈ Z+) on the Bergman space over the unit disk are also
described. Finally, we state these results in terms of the commutant algebra
V∗(ϕ).

1. Introduction

Let D be the unit disk in the complex plane C, and let Dd be the Cartesian
product of d copies of D. Let Z denote the set of all integers, let Z+ denote the
set of all nonnegative integers, let Zd denote the set of all α = (α1, . . . , αd) with
αi ∈ Z, and let Zd

+ denote the set of all α ∈ Zd with αi ∈ Z+ for 1 ≤ i ≤ d. If
z = (z1, z2, . . . , zn) ∈ Dd and α ∈ Zd

+, then we write

zα = zα1
1 zα2

2 · · · zαd
d .

The Bergman space L2
a(Dd) is a Hilbert space consisting of all holomorphic

functions over Dd, which are square-integrable with respect to the normalized
volume measure dA(z) = dA(z1) dA(z2) · · · dA(zd). The inner product in L2

a(Dd)
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is denoted by 〈f, g〉 =
∫
Dd fg dA(z). Given an essentially bounded measurable

function φ on the polydisk, the Toeplitz operator with symbol φ is defined by

Tφf = P (φf), ∀f ∈ L2
a(Dd),

where P is the orthogonal projection from L2(D2) onto L2
a(D2).

Let S be a bounded linear operator on a Hilbert space H. A closed subspace
M is said to be a reducing subspace for S if SM ⊆ M and SM⊥ ⊆ M⊥. Or
equivalently, M is a reducing subspace for S if and only if SPM = PMS, where
PM is the orthogonal projection fromH ontoM. In addition,M is calledminimal
if there is no nonzero reducing subspace N which is contained in M properly. The
operator S is said to be completely reducible if its lattice of reducing subspaces
has no nonzero minimal elements (see [9]).

For every φ ∈ L∞(Dd), denote by W∗(φ) the von Neumann algebra generated
by Tφ, and let V∗(φ) = W∗(φ)′ be the commutant algebra. As is given in [3],V∗(φ)
is a von Neumann algebra and is the norm-closed linear span of its projections. On
the other side, the range of projections in V∗(φ) and the reducing subspaces for
Tφ are in one-to-one correspondence. Therefore, in some sense, determining the
structure of the reducing subspaces for Tφ is equivalent to studying the structure
of the commutant algebra V∗(φ).

The study of the commutant began in earlier research on analytic Toeplitz
operators on the Hardy space of the unit disk, especially work in the 1970s by
Deddens and Wong [4], Thomson [22]–[24], and Cowen [2]. In particular, one
of their main results is that if the inner factor of f − f(c) is a finite Blaschke
product for some c in the disk, then there is a Blaschke product B such that
{Tf}′ = {TB}′. This result is usually referred to as the Cowen–Thomson theorem.
Furthermore, it also holds on the Bergman space, and a detailed proof is given by
Guo and Huang [12]. These indicate that the Toeplitz operators induced by finite
Blaschke products play an important role in studying the structure of reducing
subspaces for the analytic Toeplitz operators. In recent years, a lot of nice and
deep work on the structures of reducing subspaces for Toeplitz operators with
finite Blaschke products symbols has been done on the Bergman space over the
unit disk in [6], [7], [11], [13], [19], [21], [20], [26].

For higher-dimensional domains, studies on reducing-subspace problems began
with some special monomial symbols. The second author and Zhou [16] completely
characterized the structure of the reducing subspaces for Tzk1 z

k
2
on the weighted

Bergman space over D2. The second author and the third author [18] found all the
minimal reducing subspaces for Tzki z

l
j
(k 6= l, i 6= j) on L2

a(Dd, dAα(z1) · · · dAα(zd)),

where dAα(zi) = (1 + α)(1− |zi|2)α dA(zi) for z = (z1, . . . , zd) ∈ Dd and α > −1,
and showed that the unweighted case α = 0 has more minimal reducing subspaces
than the weighted case α 6= 0. Guo and Huang [12] generalized these results to
Tza with a ∈ Zd

+ on multi-dimensional separable Hilbert spaces by a different
approach and gave the structure of V∗(za). Furthermore, Gu [10] characterized
the reducing subspaces of weighted shifts with operator weights as wandering
invariant subspaces of the shifts with additional structures, and pointed out that
the operators TzN1

and TzN1 zM2
on L2

a(D2, dAα(z1) dAα(z2)) are unitarily equivalent
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to weighted shifts with invertible diagonal operator weights. For analytic poly-
nomial ϕ(z) = αzk1 + βzl2, the reducing subspaces for Tϕ and the structure of
V∗(ϕ) are investigated on L2

a(D2) in [8] and [25]. Additionally, on the weighted
Dirichlet space over the bidisk, Lin, Hu, and the second author [15] obtained
partial results about the reducing subspaces for analytic Toeplitz operators with
monomial symbols.

Recall that the study of the reducing-subspace problems of the nonanalytic
Toeplitz operators over the bidisk began with Albaseer, the second author, and
the third author in [1], in which the structure of the reducing subspaces for Tzk1 z̄

l
2

on L2
a(D2) was solved. Stimulated by [8] and [25], we have considered the structure

of V∗(αzk1 + βz2
1) with αβ 6= 0 in [5]. It is proved that La,b (a, b ∈ Z+, a ≤ k− 1,

and b ≤ l − 1) are exactly all the minimal reducing subspaces for Tαzk1+βz21 ,
where La,b = span{za+nk

1 zb+ml
2 |n,m ∈ Z+}. Furthermore, V∗(ϕ) is ∗-isomorphic

to
⊕kl

i=1 C, and then V∗(ϕ) is Abelian.
In this paper, we keep on considering the reducing subspaces for Tϕ with ϕ(z) =

zk + zl (k, l ∈ Z2
+) over the bidisk. Since Tϕ = Tzk +T ∗

zl
, then a common reducing

subspace for Tzk and Tzl is clearly a reducing subspace for Tϕ. We will show that
there are no other reducing subspaces other than the common reducing subspaces
for the case k 6= l. Meanwhile, we also describe the reducing subspaces on the
unit disk. The main conclusions imply the related results in [5], [16], [18], and
[19].

This article is organized as follows. In Section 2, some preliminaries are pre-
sented. In Section 3, under the assumptions k 6= l and k2

i + l2i 6= 0 (i = 1, 2), we
determine all the minimal reducing subspaces for Tzk+z̄l on the Bergman space
over the bidisk. Moreover, we show that Tzk+z̄k is completely reducible on L2

a(Dd)
(d ∈ Z+). In Section 4, we describe the reducing subspaces for Tzk+z̄l with non-
negative integers k, l on the unit disk. Along with this result, the structure of
reducing subspaces for T

z
ki
i +z̄

li
i
(i = 1, 2) over the bidisk is also characterized. In

Section 5, using the conclusion in Guo and Huang [12], we obtain the structure
of V∗(zk + z̄l) on L2

a(Dd) for d = 1, 2.

2. Preliminaries

Denote the partial order � in Z2
+ as: a � b if a1 ≥ b1 and a2 ≥ b2. Otherwise,

we write a � b. Let ϕ(z) = zk + z̄l with k, l ∈ Z2
+. Put

T = T ∗
ϕTϕ − TϕT

∗
ϕ.

Let

Ω1 = {n ∈ Z2
+ : n � k, n � l}, Ω2 = {n ∈ Z2

+ : n � k, n � l},
Ω3 = {n ∈ Z2

+ : n � k, n � l}, Ω4 = {n ∈ Z2
+ : n � k, n � l}.

Note that if l � k (or k � l), then Ω3 (or Ω2) makes no sense. Write

γi = ‖zi‖2 = 1

(1 + i1)(1 + i2)
, ∀i ∈ Z2

+.
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By an easy computation, we get

Tϕz
n =

{
zn+k, n � l,

zn+k + γn
γn−l

zn−l, n � l.

Similarly, we have

T ∗
ϕz

n =

{
zn+l, n � k,

zn+l + γn
γn−k

zn−k, n � k.

Furthermore,

Tzn = ωnz
n,

where

ωn =



∏2
i=1

ni+1
ni+ki+1

−
∏2

i=1
ni+1

ni+li+1
, n ∈ Ω1,∏2

i=1
ni+1

ni+ki+1
−

∏2
i=1

ni+1
ni+li+1

−
∏2

i=1
ni−ki+1
ni+1

, n ∈ Ω2,∏2
i=1

ni+1
ni+ki+1

−
∏2

i=1
ni+1

ni+li+1
+
∏2

i=1
ni−li+1
ni+1

, n ∈ Ω3,∏2
i=1

ni+1
ni+ki+1

−
∏2

i=1
ni+1

ni+li+1

+
∏2

i=1
ni−li+1
ni+1

−
∏2

i=1
ni−ki+1
ni+1

, n ∈ Ω4.

(2.1)

For every n ∈ Z2
+, let

Qn(λ) =
2∏

i=1

ni + 1 + λ(ki + li)

ni + ki + 1 + λ(ki + li)
−

2∏
i=1

ni + 1 + λ(ki + li)

ni + li + 1 + λ(ki + li)

+
2∏

i=1

ni − li + 1 + λ(ki + li)

ni + 1 + λ(ki + li)
−

2∏
i=1

ni − ki + 1 + λ(ki + li)

ni + 1 + λ(ki + li)
(2.2)

defined on Z+. Clearly, limλ→+∞ Qn(λ) = 0.
Let V∗(ϕ) denote the commutant algebra of the von Neumann algebra gener-

ated by Tϕ and A ∈ V∗(ϕ). Denote by H0
β = span{zm : m 6= β + p(k + l), p ∈

Z, β + p(k + l) � (0, 0)}. Because AT = TA,

Azα =
∑
β∈Z2

+

cβz
β with ωβ = ωα,∀α ∈ Z2

+.

To determine the expression of Azα, we provide some useful lemmas. In the
following, denote by N the set of all the positive integers.

Lemma 2.1. Let α, β ∈ Z2
+, let α � k+ l, and let A ∈ V∗(ϕ). If ∆1 = {p ∈ Z+ :

〈Azα, zβ+p(k+l)〉 6= 0} is not empty and finite, then ωα+h(k+l) = ωβ+(p0+h)(k+l) for
every h ∈ Z+, where p0 = max∆1.
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Proof. Since ∆1 is finite and p0 = max{p : p ∈ ∆1}, we may set

Azα = c1z
β+p0(k+l) + p1(z) + h1(z),

where c1 ∈ C, c1 6= 0, p1(z) ∈ span{zβ+p(k+l) : p < p0, β + p(k + l) � (0, 0)} and
h1(z) ∈ H0

β. Together with AT ∗
ϕTϕz

α = T ∗
ϕTϕAz

α, we obtain

A
(
zα+k+l +

γα+k

γα
zα + c

γα
γα−l

zα
)
= c1z

β+(p0+1)(k+l) + P1(z) +H1(z),

where the constant c = 1 for α � l; c = 0 for α � l; P1(z) ∈ span{zβ+p(k+l) :
p < p0 + 1, β + p(k + l) � (0, 0)}; H1(z) ∈ H0

β. By the maximality of p0, we have

〈Azα, zβ+(p0+1)(k+l)〉 = 0. So max{p ∈ Z+ : 〈Azα+k+l, zβ+p(k+l)〉 6= 0} = p0 + 1. It
follows that ωα+k+l = ωβ+(p0+1)(k+l).

Given that N ∈ N, suppose that max{p ∈ Z+ : 〈Azα+i(k+l), zβ+p(k+l)〉 6= 0} =
p0 + i for every i ≤ N . Set Azα+N(k+l) = cNz

β+(p0+N)(k+l) + pN(z) + hN(z),
where cN 6= 0, pN(z) ∈ span{zβ+p(k+l) : p < p0 + N, β + p(k + l) � (0, 0)}, and
hN(z) ∈ H0

β. As above, AT
∗
ϕTϕz

α+N(k+l) = T ∗
ϕTϕAz

α+N(k+l) implies that

A(zα+(N+1)(k+l) + λzα+N(k+l) + µzα+(N−1)(k+l))

= cNz
β+(p0+N+1)(k+l) + PN(z) +HN(z),

where λ, µ > 0, PN(z) ∈ span{zβ+p(k+l) : p < p0+N+1, β+p(k+l) � (0, 0)}, and
HN(z) ∈ H0

β. Therefore, here max{p ∈ Z+ : 〈Azα+(N+1)(k+l), zβ+p(k+l)〉 6= 0} =
p0+N +1 and ωα+(N+1)(k+l) = ωβ+(p0+N+1)(k+l). By induction, we get the desired
result. �

Lemma 2.2. Let α, β ∈ Z2
+, let α � k + l, and let A ∈ V∗(ϕ). If Qα(λ) 6≡

0 and ∆1 = {p ∈ Z+ : 〈Azα, zβ+p(k+l)〉 6= 0} is finite, then Card{p ∈ Z+ :
〈Azα, zβ+p(k+l)〉 6= 0} ≤ 1.

Proof. Without loss of generality, we may assume that β � k + l and that ∆1 is
not empty. Since Qα(λ) 6≡ 0, Qα(λ) = c (c ∈ R) has finite roots. It follows that
the set{

h ∈ Z+ : 〈Azα+h(k+l), zβ+p(k+l)〉 6= 0
}
⊆ {h ∈ Z+ : ωα+h(k+l) = ωβ+p(k+l)}

is a finite set for every p ∈ Z+. Thus,

∆2 =
⋃

0≤p≤p0

{
h ∈ Z+ : 〈Azα+h(k+l), zβ+p(k+l)〉 6= 0

}
is finite, where p0 = max∆1. Obviously, ∆2 6= ∅ since 0 ∈ ∆2.

Let h0 = max{h : h ∈ ∆2}. We will prove that

ωα+(h0+h)(k+l) = ωβ+(p0+h)(k+l), ∀h ∈ Z+. (2.3)

Since h0 + 1 /∈ ∆2, set

Azα+(h0+1)(k+l) = d1z
β+(p0+1)(k+l) + f1(z) + g1(z),
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where f1 ∈ span{zβ+h(k+l) : p0 + 2 ≤ h ≤ p0 + h0 + 1} and g1 ∈ H0
β. Thus,

AT ∗
ϕTϕz

α+(h0+1)(k+l) = T ∗
ϕTϕAz

α+(h0+1)(k+l) gives

A(zα+(h0+2)(k+l) + ηzα+(h0+1)(k+l) + ρzα+h0(k+l))

= d1
γβ+(p0+1)(k+l)

γβ+p0(k+l)

zβ+p0(k+l) + F1(z) +G1(z), (2.4)

where η, ρ > 0, F1 ∈ span{zβ+h(k+l) : p0 + 1 ≤ h ≤ p0 + h0 + 2}, and G1 ∈ H0
β.

Since h0 + 1, h0 + 2 /∈ ∆2, we have

ρ〈Azα+h0(k+l), zβ+p0(k+l)〉 = d1γβ+(p0+1)(k+l).

By the definition of h0, there exists some p ∈ [0, p0] such that 〈Azα+h0(k+l),
zβ+p(k+l)〉 6= 0. Therefore, (2.4) shows that d1 6= 0. This means that min{p ∈ Z+ :
〈Azα+(h0+1)(k+l), zβ+p(k+l)〉 6= 0} = p0 + 1. Moreover, there is

〈Azα+(h0+h)(k+l), zβ+p0(k+l)〉 = 0, ∀h ∈ N.

Assume that N ∈ Z+. For i = N , suppose that

min
{
p ∈ Z+ : 〈Azα+(h0+i+1)(k+l), zβ+p(k+l)〉 6= 0

}
= p0 + i+ 1, (2.5)

and that

〈Azα+(h0+i+h)(k+l), zβ+(p0+i)(k+l)〉 = 0, ∀h ∈ N. (2.6)

We may set

Azα+(h0+i+1+h)(k+l) = di+1+hz
β+(p0+i+1)(k+l) + fi+1+h(z) + gi+1+h(z),

where fi+1+h ∈ span{zβ+h(k+l) : p0 + i + 2 ≤ h ≤ p0 + h0 + i + 1 + h} and
gi+1+h ∈ H0

β. Since AT ∗
ϕTϕ = T ∗

ϕTϕA, a direct computation gives

A(zα+(h0+i+2+h)(k+l) + η′zα+(h0+i+1+h)(k+l) + ρ′zα+(h0+i+h)(k+l))

= di+1+h

γβ+(p0+i+1)(k+l)

γβ+(p0+i)(k+l)

zβ+(p0+i)(k+l) + Fi+1+h(z) +Gi+1+h(z),

where η′, ρ′ > 0, Fi+1+h ∈ span{zβ+h(k+l) : p0 + i+ 1 ≤ h ≤ p0 + h0 + i+ h+ 2},
and Gi+1+h ∈ H0

β. Note that (2.6) shows that di+1+h = 0 for h ∈ N. In particular,

for h = 1, let Azα+(h0+i+2)(k+l) = dzβ+(p0+i+2)(k+l) + f(z) + g(z), where we have
f ∈ span{zβ+h(k+l) : p0 + i+ 3 ≤ h ≤ p0 + h0 + i+ 2} and g ∈ H0

β. Then

A(zα+(h0+i+3)(k+l) + η′′zα+(h0+i+2)(k+l) + ρ′′zα+(h0+i+1)(k+l))

= d
γβ+(p0+i+2)(k+l)

γβ+(p0+i+1)(k+l)

zβ+(p0+i+1)(k+l) + F (z) +G(z),

where F ∈ span{zβ+h(k+l) : p0 + i+ 2 ≤ h ≤ p0 + h0 + i+ 3} and G ∈ H0
β. Now,

by equation (2.5), we have that d 6= 0. That is, the equalities (2.5) and (2.6) also
hold for i = N + 1. By induction, we get

min
{
p ∈ Z+ : 〈Azα+(h0+h)(k+l), zβ+p(k+l)〉 6= 0

}
= p0 + h, ∀h ∈ Z+. (2.7)

Therefore, equation (2.3) holds.
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Together with the equality ωα+h(k+l) = ωβ+(p0+h)(k+l), which comes from Lem-
ma 2.1, we have

ωα+h(k+l) = ωα+(h+h0)(k+l), ∀h ∈ Z+.

If h0 ∈ N, then ωα+h0(k+l) = ωα+nh0(k+l) = limn→∞ ωα+n(k+l) = 0, which contra-
dicts the assumption that Qα(λ) 6≡ 0. So h0 = 0, and the equation (2.7) implies
that min{p ∈ Z+ : 〈Azα, zβ+p(k+l)〉 6= 0} = p0 = max{p ∈ Z+ : 〈Azα, zβ+p(k+l)〉 6=
0}. Hence, Card{p ∈ Z+ : 〈Azα, zβ+p(k+l)〉 6= 0} ≤ 1. �

For convenience, we set

Aα , (l2 − k2)(α1 + 1) + (l1 − k1)(α2 + 1), ∀α ∈ Z2
+.

Lemma 2.3. Let α ∈ Z2
+ and let k 6= l. Then Qα(λ) ≡ 0 if and only if l1l2 = k1k2

and Aα = 0.

Proof. By the definition of Qα(λ), one can easily see that Qα(λ) ≡ 0 if and only if

2∏
i=1

(
αi + λ(ki + li) + 1

)2[
(2λ+ 1)(l1l2 − k1k2) + Aα

]
≡

2∏
i=1

(
αi + λ(ki + li) + ki + 1

)(
αi + λ(ki + li) + li + 1

)
×

[
(2λ− 1)(l1l2 − k1k2) + Aα

]
. (2.8)

By direct calculations, the coefficient of λ5 is zero, and the coefficient of λ4 is
2(l1l2−k1k1)(k1+l1)

2(k2+l2)
2. If Qα(λ) ≡ 0, then l1l2 = k1k2. Furthermore, we get

2∏
i=1

(αi + 1)2Aα =
2∏

i=1

(αi + ki + 1)(αi + li + 1)Aα,

which indicates that Aα = 0. On the other side, by (2.8), l1l2 = k1k2 and Aα = 0
imply immediately that Qα(λ) ≡ 0. �

Lemma 2.4. Let k 6= l and let A ∈ V∗(ϕ). If α ∈ Ω1 such that Qα(λ) 6≡ 0, then
〈Azα, zβ〉 = 0 for every β ∈ Ω4.

Proof. Suppose that there exists β ∈ Ω4 such that 〈Azα, zβ〉 6= 0. Then ωα =
ωβ. We claim that Qβ(λ) 6≡ 0. In fact, if we assume the contrary, that is, that
Qβ(λ) ≡ 0, then Lemma 2.3 shows that l1l2 = k1k2. From (2.1) and (2.2), we
have

ωα = ωβ = Qβ(0) = 0.

So (α1+k1+1)(α2+k2+1) = (α1+l1+1)(α2+l2+1); that is, Aα = k1k2−l1l2 = 0.
By Lemma 2.3 again, we get Qα(λ) ≡ 0, which is a contradiction. Therefore, we
have that {p ∈ Z+ : 〈Azα, zβ+p(k+l)〉 6= 0} is a finite set, which contains 0.
Lemma 2.2 implies that {p ∈ Z+ : 〈Azα, zβ+p(k+l)〉 6= 0} = {0}. That is, p0 = 0.

If l1l2 = k1k2, then we claim that Aα = 0. In fact, Lemma 2.1 shows that
ωα+h(k+l) = ωβ+h(k+l), ∀h ∈ Z+. Therefore, Qα(λ) ≡ Qβ(λ). Thus,

ωα = ωβ = Qβ(0) = Qα(0).
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Since α ∈ Ω1, we have (α1− l1+1)(α2− l2+1) = (α1− k1+1)(α2− k2+1); that
is, Aα = l1l2 − k1k2 = 0. So Qα(λ) ≡ 0, which is a contradiction.

If l1l2 6= k1k2, then Lemma 2.3 shows that Qn(λ) 6≡ 0 for any n ∈ Z2
+. Set

Azα = cβz
β + q1(z),

where cβ 6= 0 and q1(z) ∈ H0
β. Further, A ∈ V∗(ϕ) gives

Azα+k = TϕAz
α = cβz

β+k + cβ
γβ
γβ−l

zβ−l + q2(z),

where q2(z) ⊥ {zβ+k, zβ−l}. Because Qα+k(λ) 6≡ 0 and {p ∈ Z+ : 〈Azα+k,
zβ−l+p(k+l)〉 6= 0} = {0, 1}, again by Lemma 2.2, we get a contradiction. Thus
we finish the proof. �

Lemma 2.5. Let k 6= l and let k2
i +l2i 6= 0 (i = 1, 2). Given that α, β ∈ Z2

+, α 6= β
such that Qα(λ) ≡ Qβ(λ). Then if Qα+l(λ) ≡ Qβ+l(λ), we have Qα+l(λ) 6≡ 0, with
Qα(λ) 6≡ 0.

Proof. If k1k2 6= l1l2, then Qn(λ) 6≡ 0, ∀n ∈ Z+. Therefore, we obtain the desired
result.

If k1k2 = l1l2, without loss of generality, we assume that 0 ≤ k1 < l1 and that
0 ≤ l2 < k2. Given m,n ∈ Z2

+, m 6= n. Let

∆m ,
⋃
i=1,2

{mi + 1

ki + li
,
mi + ki + 1

ki + li
,
mi + li + 1

ki + li

}
,

∆n ,
⋃
i=1,2

{ni + 1

ki + li
,
ni + ki + 1

ki + li
,
ni + li + 1

ki + li

}
.

Clearly,

λmin , min
{m1 + 1

k1 + l1
,
m2 + 1

k2 + l2

}
= min∆m,

λmax , max
{m1 + l1 + 1

k1 + l1
,
m2 + k2 + 1

k2 + l2

}
= max∆m,

µmin , min
{n1 + 1

k1 + l1
,
n2 + 1

k2 + l2

}
= min∆n,

µmax , max
{n1 + l1 + 1

k1 + l1
,
n2 + k2 + 1

k2 + l2

}
= max∆n.

First, we claim that, if Qm(λ) ≡ Qn(λ) and Qm(λ) 6≡ 0, then µmax = λmax and
λmin = µmin. In fact, l1l2 = k1k2 and Qm(λ) ≡ Qn(λ) imply that

Am

2∏
i=1

(
ni + λ(ki + li) + 1

)(
ni + λ(ki + li) + ki + 1

)(
ni + λ(ki + li) + li + 1

)
×

[ 2∏
i=1

(
mi + λ(ki + li) + 1

)2 − 2∏
i=1

(
mi + λ(ki + li) + ki + 1

)
×

(
mi + λ(ki + li) + li + 1

)]
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= An

2∏
i=1

(
mi + λ(ki + li) + 1

)(
mi + λ(ki + li) + ki + 1

)
×

(
mi + λ(ki + li) + li + 1

)
×

[ 2∏
i=1

(
ni + λ(ki + li) + 1

)2 − 2∏
i=1

(
ni + λ(ki + li) + ki + 1

)
×

(
ni + λ(ki + li) + li + 1

)]
. (2.9)

Since Qm(λ) 6≡ 0, there are Am 6= 0 and An 6= 0. Put λ = −λmax into (2.9), and
then we have

2∏
i=1

(
ni−λmax(ki+ li)+1

)(
ni−λmax(ki+ li)+ki+1

)(
ni−λmax(ki+ li)+ li+1

)
= 0.

This gives λmax ∈ ∆n, and then λmax ≤ µmax. Similarly, putting λ = −µmax into
(2.9), we have µmax ≤ λmax. Therefore, µmax = λmax. By the same method, it is
easy to get λmin = µmin.

If Qα(λ) ≡ 0, then l1l2 = k1k2, Aα = Aβ = 0, and

(l1 − k1)(β2 − α2) + (l2 − k2)(β1 − α1) = 0. (2.10)

Thus Aα+l = Aβ+l = (l1 − k1)(k2 − l2) 6= 0. This indicates that Qα+l(λ) 6≡ 0 and
Qβ+l(λ) 6≡ 0. Moreover, α1 = β1 if and only if α2 = β2. Without loss of generality,
we may assume that α1 < β1. Then α2 6= β2. The claim implies that

β2 + l2 + 1

k2 + l2
= min

{α1 + l1 + 1

k1 + l1
,
α2 + l2 + 1

k2 + l2

}
and that

α2 + l2 + k2 + 1

k2 + l2
= max

{β1 + l1 + k1 + 1

k1 + l1
,
β2 + l2 + k2 + 1

k2 + l2

}
.

It follows that

β2 + l2 + 1

k2 + l2
=

α1 + l1 + 1

k1 + l1
,

α2 + l2 + k2 + 1

k2 + l2
=

β1 + l1 + k1 + 1

k1 + l1
.

Therefore, (k1 + l1)(β2 − α2) + (k2 + l2)(β1 − α1) = 0. Together with (2.10), we
obtain that k1l2 = k2l1. However, this is a contradiction to k1k2 = l1l2 and k 6= l.
Hence, Qα(λ) 6≡ 0.

If we suppose that Qα+l(λ) ≡ 0, then we similarly have Qα(λ) 6≡ 0 and
Qβ(λ) 6≡ 0. Using the same method as above, we still get the contradiction. There-
fore, Qα+l(λ) 6≡ 0. �

Remark 2.6. Because k and l are symmetric, we also have that if Qα+k(λ) ≡
Qβ+k(λ), then Qα+k(λ) 6≡ 0, Qα(λ) 6≡ 0.

Lemma 2.7. Let k 6= l, let k2
i + l2i 6= 0 (i = 1, 2), and let A ∈ V∗(ϕ). If α ∈ Ω1

such that Qα(λ) 6≡ 0, then 〈Azα, zβ〉 = 0 for every β ∈ Ω2 ∪ Ω3.
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Proof. Suppose that here exists β ∈ Ω2 such that 〈Azα, zβ〉 6= 0. By Lemma 2.4,
we may set Azα = cβz

β+p(z), where cβ 6= 0 and p(z) ∈ H0
β. By T ∗

ϕAz
α = AT ∗

ϕz
α,

we get

Azα+l = cβz
β+l + cβ

γβ
γβ−k

zβ−k + T ∗
ϕp(z). (2.11)

Obviously, E = {p ∈ Z+ : 〈Azα+l, zβ−k+p(k+l)〉 6= 0} = {0, 1} is a finite set.
And it is easy to see that {p ∈ Z+ : 〈Azα, zβ+p(k+l)〉 6= 0} = {0} is also finite.
Using Lemma 2.1, we have ωα+l+h(k+l) = ωβ+l+h(k+l) and ωα+h(k+l) = ωβ+h(k+l)

for h ∈ Z+. Therefore, Qα+l(λ) ≡ Qβ+l(λ) and Qα(λ) ≡ Qβ(λ). It follows from
Lemma 2.5 that Qα+l(λ) 6≡ 0, and then Lemma 2.2 leads to CardE ≤ 1. This is
a contradiction. Therefore, {β ∈ Ω2 : 〈Azα, zβ〉 6= 0} = ∅.

Substituting T ∗
ϕ with Tϕ, we get {β ∈ Ω3 : 〈Azα, zβ〉 6= 0} = ∅. So the desired

result follows. �

In the following, we consider the case that Qα(λ) ≡ 0

Lemma 2.8. Let A ∈ V∗(ϕ) and let k 6= l, k2
i + l2i 6= 0 (i = 1, 2). If α ∈ Ω1 such

that Qα(λ) ≡ 0, then ∆1 = {p ∈ Z : 〈Azα, zβ+p(k+l)〉 6= 0, β + p(k + l) � (0, 0)} is
a finite set.

Proof. Without loss of generality, suppose that β � k + l. Suppose conversely
that ∆1 is an infinite set; then there exist {pj : j ∈ N} ⊆ ∆1 such that pj → +∞
as j → +∞. Thus, ωα = ωβ+pj(k+l) = limi→+∞ ωβ+pi(k+l) = 0, ∀j ∈ N. Equally,
Qβ(λ) ≡ ωα ≡ 0. Lemma 2.3 shows that l1l2 = k1k2, Aα = (l2−k2)(α1+1)+(l1−
k1)(α2 + 1) = 0, and Aβ = (l2 − k2)(β1 + 1) + (l1 − k1)(β2 + 1) = 0. Since k 6= l,
we have k1 6= l1 and k2 6= l2. It follows that Aα+l = Aβ+l = (l1 − k1)(l2 − k2) 6= 0.
Therefore, Qα+l(λ) 6≡ 0, Qβ+l(λ) 6≡ 0.

Now set

Azα =
∑
p∈Z+

cpz
β+p(k+l) + q(z),

where cp ∈ C and q(z) ∈ H0
β. Thus, AT

∗
ϕz

α = T ∗
ϕAz

α shows that

Azα+l = czβ−k +
∑
p∈Z+

(
cp + cp+1

γβ+(p+1)(k+l)

γβ−k+(p+1)(k+l)

)
zβ+l+p(k+l) + T ∗

ϕq(z), (2.12)

where c = 0 if β ∈ Ω1 ∪ Ω3; c = c0 if β ∈ Ω2 ∪ Ω4. It is clear that T ∗
ϕq(z) ⊥

span{zβ+l+p(k+l) : p ∈ Z+}. Since Qβ+l(λ) 6≡ 0, it will therefore now hold that
{p ∈ Z+ : 〈Azα+l, zβ+l+p(k+l)〉 6= 0} is a finite set. This means that there exists
N ∈ Z+ such that

cp + cp+1

γβ+(p+1)(k+l)

γβ−k+(p+1)(k+l)

= 0, p ≥ N.

That is,

|cp+1| = |cp|
γβ−k+(p+1)(k+l)

γβ+(p+1)(k+l)

, p ≥ N. (2.13)
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Next, we prove that if cN 6= 0, then
∑

p∈Z+
|cp|2γβ+p(k+l) is divergent. In fact,

if cN 6= 0, by (2.13), we have that cp 6= 0 as p ≥ N and that

p
( |cp|2γβ+p(k+l)

|cp+1|2γβ+(p+1)(k+l)

− 1
)
=

pf(p)∏2
i=1(βi + (p+ 1)(ki + li) + 1)(βi + p(ki + li) + 1)

,

where

f(p) =
2∏

i=1

(
βi+p(ki+ li)+ki+1

)2− 2∏
i=1

(
βi+(p+1)(ki+ li)+1

)(
βi+p(ki+ li)+1

)
.

Because l1l2 = k1k2, we can prove that f(p) is a quadratic polynomial with respect
to p. Thus,

lim
p→+∞

p
( |cp|2γβ+p(k+l)

|cp+1|2γβ+(p+1)(k+l)

− 1
)
= 0.

By Raabe’s convergence test,
∑

p∈Z+
|cp|2γβ+p(k+l) is divergent, which is a contra-

diction. So ∆1 = {p ∈ Z+ : 〈Azα, zβ+p(k+l)〉 6= 0} is a finite set. �

Lemma 2.9. If k 6= l, k2
i + l2i 6= 0 (i = 1, 2), and A ∈ V∗(ϕ), α ∈ Ω1 such that

Qα(λ) ≡ 0, then Azα+h(k+l) = czα+h(k+l) for some c ∈ C and ∀h ∈ Z+.

Proof. By Lemma 2.8, ∆1 = {p ∈ Z+ : 〈Azα, zβ+p(k+l)〉 6= 0} is a finite set
with β � k + l. If ∆1 is not empty, let p0 = max∆1. Lemma 2.1 implies that
ωα+h(k+l) = ωβ+(p0+h)(k+l) for every h ∈ Z+. So Qα(λ) ≡ Qβ+p0(k+l)(λ) ≡ 0.

On the other hand, let Azα = cp0z
β+p0(k+l) + g(z), where cp0 6= 0 and g(z) ⊥

zβ+p0(k+l). Thus, A ∈ V∗(ϕ) shows that

Azα+l = cp0z
β+l+p0(k+l) + azβ−k+p0(k+l) + T ∗

ϕg(z),

where a = 0 if p0 = 0 and β ∈ Ω1 ∪ Ω3. It is easy to see that max{p ∈
Z+ : 〈Azα+l, zβ+l+p(k+l)〉} = p0. Because α + l � k + l, again by Lemma 2.1,
we have ωα+l+h(k+l) = ωβ+l+(p0+h)(k+l) for every h ∈ Z+. Thereby, Qα+l(λ) ≡
Qβ+l+p0(k+l)(λ). Then, Lemma 2.5 determines that α = β + p0(k + l), indicating
that p0 = 0 and β = α. This means that there exists c ∈ C such that Azα = czα.
Moreover, AT ∗

ϕTϕz
α = T ∗

ϕTϕAz
α implies that Azα+k+l = czα+k+l. By induction,

we can get Azα+h(k+l) = czα+h(k+l) (c ∈ C) for every h ∈ Z+. �

3. Reducing subspaces for Tϕ

In this section, we mainly consider the reducing subspaces for Tϕ with symbol
ϕ = zk+zl (k 6= l, k2

i + l2i 6= 0 for i = 1, 2). Note that the case k2
i + l2i = 0 for some

i ∈ {1, 2} is left to be dealt with in the next section. It is known that Tϕ and T ∗
ϕ

share the same reducing subspaces. Together with the symmetry of z1 and z2, in
this section, we assume that

(1) 0 ≤ k1 < l1 and (2) l1l2 6= 0 if k1l2 = k2l1.

For m ∈ Z2
+, let

Lm = span
{
zm+uk+vl : m+ uk + vl � (0, 0), u, v ∈ Z

}
.
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Obviously, Lm are common reducing subspaces for Tzk and Tzl and surely the
reducing subspaces for Tϕ. Let

[m] =
{
m+ ik + jl : m+ ik + jl � (0, 0), i, j ∈ Z

}
,

and

∆ =

{
{(i, j) ∈ Z2

+ : i ∈ [0, s1), j ∈ [0, |l1k2−l2k1|
s1

)}, k1l2 6= k2l1,

{(i, j) ∈ Z2
+ : i ∈ [0, s1) or j ∈ [0, s2)}, k1l2 = k2l1, l1l2 6= 0,

where

si =

{
gcd{ki, li}, kili 6= 0,

|li − ki|, kili = 0,
i = 1, 2. (3.1)

Then Z2
+ =

⋃
m∈∆[m]. We show the details as follows.

Case one: k1l2 6= k2l1. Since k 6= l, without loss of generality, suppose that
s1 6= 0. For every (α1, α2) ∈ Z2

+, there is α1 = m1 + qs1 with 0 ≤ m1 < s1
and q ∈ Z+. Moreover, there are u, v ∈ Z+ such that vl1 − uk1 = s1. Set F =
{(β1, β2) ∈ Z2

+ : β2l1 − β1k1 = s1}. By the assumption, there is a minimal
element in F with respect to the partial order � denoted by (u, v). Notice that

ũk2 − ṽl2 = |l1k2−k1l2|
s1

= min{|t1k2 − t2l2| : t1k1 − t2l1 = 0} > 0. Then there

is q̃ ∈ Z such that m2 = α2 − q(vl2 − uk2) − q̃ |l1k2−k1l2|
s1

∈ [0, |l1k2−k1l2|
s1

). Thus

(α1, α2) = (m1,m2)− (qu− q̃ũ)k + (qv − q̃ṽ)l.
Case two: k1l2 = k2l1, l1l2 6= 0. For every (α1, α2) ∈ Z2

+, if
l1
l2
α2 > α1, then we

choosem1, q, u, v as in case one such that α1 = m1+qs1 and α2 = m2+q(vl2−uk2).
In this way, m2 = α2 − q(vl2 − uk2) = α2 − q(vl1 − uk1)

l2
l1
= α2 − (α1 −m1)

l2
l1
≥ 0

since l1
l2
α2 > α1. If

l1
l2
α2 < α1, then we can prove that (α1, α2) ∈ {m + uk + vl :

m+ uk+ vl � (0, 0), u, v ∈ Z} with m2 ∈ [0, s2) and m1 ∈ Z+. If
l1
l2
α2 = α1, then

(α1, α2) ∈ {m + uk + vl : m + uk + vl � (0, 0), u, v ∈ Z} with m1s2 = m2s1 for
m1 ∈ [0, s1) and m2 ∈ [0, s2).

Therefore, we have

L2
a(D2) =

⊕
m∈∆

Lm. (3.2)

First, we prove that Lm(m ∈ ∆) are minimal reducing subspaces for Tϕ.

Proposition 3.1. Let k 6= l, let k2
i + l2i 6= 0 (i = 1, 2), let A ∈ V∗(ϕ), and let

m ∈ Ω1 such that Qm(λ) 6≡ 0.

(i) If l1k2 6= l2k1, then there is c ∈ C such that Azm+h(k+l) = czm+h(k+l) for
any h ∈ Z+.

(ii) If l1k2 = l2k1 and l1l2 6= 0, then Azm = azm + bzm
′
, where a, b ∈ C and

m′ = ( l1
l2
(m2 + 1)− 1, l2

l1
(m1 + 1)− 1).

Proof. By Lemmas 2.4 and 2.7, we may set

Azm =
∑
β∈Ω1

aβz
β,
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where aβ ∈ C. Clearly, {p ∈ Z+ : 〈Azm, zβ+p(k+l)〉 6= 0} = {0}. So, as in the proof
of Lemmas 2.1 and 2.2, for every h ∈ Z+, we have

max
{
p ∈ Z+ : 〈Azm+h(k+l), zβ+p(k+l)〉 6= 0

}
= min

{
p ∈ Z+ : 〈Azm+h(k+l), zβ+p(k+l)〉 6= 0

}
= h.

This means that

if 〈Azm+h(k+l), zβ+p(k+l)〉 6= 0, then h = p. (3.3)

Clearly, T ∗
ϕTϕAz

m = AT ∗
ϕTϕz

m shows that

A
(
zm+k+l +

γm+k

γm
zm

)
=

∑
β∈Ω1

aβ

(
zβ+k+l +

γβ+k

γβ
zβ
)
.

If 〈Azm, zβ〉 6= 0, from (3.3), then we get
γm+k

γm
=

γβ+k

γβ
, (3.4)

and
Azm+(k+l) =

∑
β∈Ω1

aβz
β+(k+l).

Suppose, for some i ∈ Z+, we have

Azm+i(k+l) =
∑
β∈Ω1

aβz
β+i(k+l).

By T ∗
ϕTϕAz

m+i(k+l) = AT ∗
ϕTϕz

m+i(k+l), we get

A
(
zm+(i+1)(k+l) + λzm+i(k+l) +

γm+i(k+l)

γm+(i−1)(k+l)

zm+(i−1)(k+l)
)

=
∑
β∈Ω1

aβ

(
zβ+(i+1)(k+l) + µzβ+i(k+l) +

γβ+i(k+l)

γβ+(i−1)(k+l)

zβ+(i−1)(k+l)
)
, (3.5)

where λ, µ > 0. So (3.3) implies that

Azm+(i+1)(k+l) =
∑
β∈Ω1

aβz
β+(i+1)(k+l).

By induction, we have

Azm+p(k+l) =
∑
β∈Ω1

aβz
β+p(k+l), ∀p ∈ Z+. (3.6)

Moreover, 〈Azm, zβ〉 6= 0 shows aβ 6= 0. It follows from (3.5) that
γm+i(k+l)

γm+(i−1)(k+l)

=
γβ+i(k+l)

γβ+(i−1)(k+l)

, ∀i ∈ N.

Letting i → +∞, we have γm
γβ

=
γm+i(k+l)

γβ+i(k+l)
→ 1. That is,

γm+i(k+l) = γβ+i(k+l) (3.7)

for all i ∈ Z+.
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(i) Case l1k2 6= l2k1. By γm = γβ and γm+(k+l) = γβ+(k+l), (3.4) shows that
γm+k = γβ+k. These give k1(m2 − β2) + k2(m1 − β1) = 0 and (k1 + l1)(m2 − β2) +
(k2+ l2)(m1−β1) = 0, which imply that m = β as l1k2 6= l2k1. Then (3.6) implies
the desired result.

(ii) Case l1k2 = l2k1 and l1l2 6= 0. From (3.7),(
m1 + 1 + (k1 + l1)z

)(
m2 + 1 + (k2 + l2)z

)
−

(
β1 + 1 + (k1 + l1)z

)(
β2 + 1 + (k2 + l2)z

)
= 0

is a quadratic equation with respect to variable z with infinite roots. Then we get(
m1 + 1 + (k1 + l1)z

)(
m2 + 1 + (k2 + l2)z

)
≡

(
β1 + 1 + (k1 + l1)z

)(
β2 + 1 + (k2 + l2)z

)
on C. Through comparing the coefficients of 1, z, and z2, we have β = m or
β = ( l1

l2
(m2 + 1)− 1, l2

l1
(m1 + 1)− 1). �

Proposition 3.2. Let k 6= l, and let k2
i + l2i 6= 0 (i = 1, 2). Suppose that M is a

reducing subspace for Tϕ and that M ⊆ Lm where m ∈ ∆. Then either zm ∈ M
or zm ∈ M⊥.

Proof. Let P be the orthogonal projection from L2
a(D2) onto M. Since M ⊆ Lm

and Lm is a reducing subspace for Tϕ, we have P |Lm : Lm → Lm and P ∈ V∗(ϕ).
Notice that m ∈ ∆ indicates m ∈ Ω1. If k1l2 6= k2l1, by combining Proposition 3.1
and Lemma 2.9 we can easily get the desired result. If k1l2 = k2l1, we can easily
see that ( l1

l2
(m2 + 1) − 1, l2

l1
(m1 + 1) − 1) ∈ ∆ as m ∈ ∆. Then, Proposition 3.1

shows that Pzm = czm, c ∈ C. Thus, the desired conclusion follows. �

Theorem 3.3. Let k 6= l and let k2
i + l2i 6= 0 (i = 1, 2). Suppose that m ∈ ∆.

Then Lm is a minimal reducing subspace for Tϕ.

Proof. Assume that there is a nonzero reducing subspaceM ⊆ Lm. Then Lm	M
is also a reducing subspace. By Proposition 3.2, we may suppose that zm ∈ M.
To get the desired result, we only need to prove that

zm+uk+vl ∈ M (3.8)

for u, v ∈ Z and m+ uk + vl � (0, 0).
The proof is divided into two cases: k1k2 6= 0 and k1k2 = 0.
Case one: k1k2 6= 0. Write ci = min{c ∈ Z+ : m+ ck � il}, i ∈ Z+. If m1 < s1,

then m1 < k1 < l1. If m1 ≥ s1, then m2 < s2 and k1l2 = l1k2, l1l2 6= 0. By k1 < l1,
we know that m2 < l2 < k2. So it is easy to see that ci < ci+1. Note that

T j
ϕz

m = zm+jk ∈ M, j ∈ (0, c1] ∩ N, (3.9)

and that

T ∗
ϕz

m = zm+l ∈ M.

Observe that

T c1+1
ϕ zm = zm+(c1+1)k +

γm+c1k

γm+c1k−l

zm+c1k−l ∈ M.
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Then

T c1+1
ϕ zm = T c1+1

ϕ PMzm = PMzm+(c1+1)k +
γm+c1k

γm+c1k−l

PMzm+c1k−l ∈ M.

By the definition of c1, along with m + c1k − l � l, m + c1k − l � k, and
m+(c1+1)k � k+ l, Lemmas 2.4 and 2.9 show that PMzm+c1k−l = zm+c1k−l and
that PMzm+(c1+1)k = zm+(c1+1)k. Thus we deduce that

zm+(c1+1)k, zm+c1k−l ∈ M. (3.10)

By

T ∗
ϕz

m+jk = zm+jk+l +
γm+jk

γm+(j−1)k

zm+(j−1)k ∈ M, j ∈ [1, c1] ∩ N

and (3.9), we see that zm+jk+l ∈ M, j ∈ [1, c1] ∩ N. Furthermore,

T ∗
ϕz

m+uk+vl = zm+uk+(v+1)l +
γm+uk+vl

γm+(u−1)k+vl

zm+(u−1)k+vl ∈ M (3.11)

shows that (3.8) holds for u, v ∈ Z, 1 ≤ u < c1, v ≥ 0, and u = c1, v ≥ −1.
Suppose that the equality (3.8) holds for u, v ∈ Z, 1 ≤ u ≤ cn andm+uk+vl �

(0, 0). Then, the following statements hold:

(i) T j
ϕz

m+cnk−nl = zm+(cn+j)k−nl ∈ M, j ∈ (0, cn+1 − cn] ∩ N;
(ii) zm+cn+1k−(n+1)l ∈ M. The proof is similar to that of (3.10) by using

Lemma 2.4, Lemma 2.9, and

Tϕz
m+cn+1k−nl = zm+(cn+1+1)k−nl +

γm+cn+1k−nl

γm+cn+1k−(n+1)l

zm+cn+1k−(n+1)l ∈ M;

(iii) zm+(cn+j)k−vl ∈ M for j ∈ [1, cn+1 − cn] ∩ N, v ∈ (0, n− 1] ∩ N, since

zm+(cn+j)k−vl = T ∗
ϕz

m+(cn+j)k−(v+1)l −
γm+(cn+j)k−(v+1)l

γm+(cn+j−1)k−(v+1)l

zm+(cn+j−1)k−(v+1)l.

Therefore, we have proved that (3.8) holds for m+uk+vl � (0, 0), v ∈ Z, u ∈ N.
To end the proof of case one, we only need to prove that (3.8) holds for m +

vl − nk � (0, 0), n ∈ Z+, v ∈ N. Write di = max{d ∈ Z+ : m+ il � dk}, i ∈ Z+.
Since we already have that zm+vl+k ∈ M for v ∈ Z+.

T ∗
ϕz

m+vl+k = zm+(v+1)l+k +
γm+vl+k

γm+vl

zm+vl

implies that zm+vl ∈ M for all v ∈ Z+. From

T ∗
ϕz

m+vl−nk = zm+(v+1)l−nk +
γm+vl−nk

γm+vl−(n+1)k

zm+vl−(n+1)k,

we get that zm+vl−nk ∈ M for all v ∈ N and n ∈ [0, dv] ∩ N. Hence, (3.8) holds
for m+ vl − nk � (0, 0), n ∈ Z+, v ∈ N.

Case two: k1k2 = 0. The proof of this part is trivial.

(1) If k2 = k1 = 0: Here, T ∗i
ϕ zm = zm+il, i ∈ Z+ indicates that zm+vl ∈ M for

all v ∈ Z+.
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(2) If k1 = 0 and k2 6= 0: By the assumption we have l1 6= 0. From

T i
ϕz

m = zm+ik, i ∈ N,

we have zm+uk ∈ M for u ∈ Z+.
(2.1) If l2 > k2: Here

T ∗
ϕz

m+uk+nl = zm+uk+(n+1)l +
γm+uk+nl

γm+(u−1)k+nl

zm+(u−1)k+nl, n ∈ Z+

yields that zm+uk+vl ∈ M for u ∈ N and m+ uk + vl � (0, 0). Using
the same method as in case one, we can prove that (3.8) holds for
m+ vl − nk � (0, 0), n ∈ Z+, v ∈ N.

(2.2) If k2 ≥ l2 and l2 6= 0: Let ci = min{c ∈ Z+ : m + cl � ik}, i ∈ Z+.
Exchanging Tϕ and T ∗

ϕ, k and l in the proof of case one, we get

zm+vl+uk ∈ M for v ∈ N, u ∈ Z and m+ vl + uk � (0, 0).
(2.3) If l2 = 0: Clearly, T ∗i

ϕ zm = zm+il, i ∈ Z+ indicates that zm+vl ∈ M
for all v ∈ Z+.

(3) If k2 = 0 and k1 6= 0: Here, l2 6= 0. Exchanging z1 and z2, we have the
same conclusion as in (2).

Above all, Lm ⊆ M. The theorem is proved. �

In particular, if k1l2 = k2l1, then there exist p, q ∈ Z such that pk + ql = s,
where s = (s1, s2) is defined by (3.1). By the proof in Theorem 3.3, we have the
result as follows.

Corollary 3.4. If k 6= l, k1l2 = k2l1, and l1l2 6= 0, then

Lm = span{zm+hs : h = 0, 1, 2, . . .}, m ∈ ∆

are minimal reducing subspaces for Tzk+z̄l.

Second, we consider unitary equivalence between the reducing subspaces Lm

(see [12]). Two reducing subspacesM1 andM2 of Tϕ are called unitarily equivalent
if there exists an operator U on L2

a(D2) such that U |M1 is unitary from M1 onto
M2, U |M⊥

1
= 0 and U commutes with both Tϕ and T ∗

ϕ.

Proposition 3.5. Let k 6= l. Suppose that m,m′ ∈ ∆. Then the following state-
ments hold:

(i) if k1l2 6= k2l1, then Lm and Lm′ are unitarily equivalent if and only if
m = m′;

(ii) if k1l2 = k2l1, l1l2 6= 0 and if ( l1
l2
(m2+1)−1, l2

l1
(m1+1)−1) ∈ Z2

+, then Lm

and Lm′ are unitarily equivalent if and only if m′ = m or m′ = ( l1
l2
(m2 +

1)−1, l2
l1
(m1+1)−1). Otherwise, if ( l1

l2
(m2+1)−1, l2

l1
(m1+1)−1) /∈ Z2

+,

then Lm and Lm′ are unitarily equivalent if and only if m′ = m.

Proof. It is sufficient to verify the necessity. Suppose that Lm and Lm′ are unitarily
equivalent. Then there is an operator U ∈ V∗(ϕ) satisfying that U |Lm : Lm → Lm′

is unitary.
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(i) Let l1k2 6= k1l2. If Qm(λ) 6≡ 0, then Proposition 3.1 implies that m = m′

and Uzm = zm. On the other hand, if Qm(λ) ≡ 0, then Lemma 2.9 shows the
desired result. Therefore, statement (i) is set up.

(ii) If l1k2 = k1l2 and l1l2 6= 0, then l1l2 6= k1k2 and Qm(λ) 6≡ 0. Proposition 3.1
implies that

Uzm = czm
′+ik+jl, (3.12)

where c ∈ C and one of the following statements holds:

(a) m = m′ + ik + jl;
(b) m′ + ik + jl = ( l1

l2
(m2 + 1) − 1, l2

l1
(m1 + 1) − 1), where l1l2 6= 0 and

( l1
l2
(m2 + 1)− 1, l2

l1
(m1 + 1)− 1) ∈ Z2

+.

Next, we prove that i = j = 0. Suppose on the contrary that (i, j) 6= (0, 0);
then |ikp + jlp| ≥ sp for p = 1, 2. Since k1l2 = k2l1 and l1l2 6= 0, there is
ik1+ jl1 =

l1
l2
(ik2+ jl2). Without loss of generality, suppose that ik1+ jl1 > 0. By

statement (a), we have mp = m′
p+ ikp+ jlp ≥ sp (p = 1, 2), which contradicts the

fact thatm ∈ ∆. By statement (b), we obtain that l1
l2
(m′

2+1) = m1+1−(ik1+jl1)

is clearly an integer and l1
l2
(m′

2 + 1) > 0. It follows that

ik1 + jl1 = m1 + 1− l1
l2
(m′

2 + 1) ≤ m1.

Likewise, we also get

ik2 + jl2 = m2 + 1− l2
l1
(m′

1 + 1) ≤ m2.

Therefore, sp ≤ ikp + jlp ≤ mp for p = 1, 2, which contradicts the fact that
m ∈ ∆. So the proof is completed. �

Corollary 3.6. If k 6= l, k1l2 = k2l1, l1l2 6= 0, and s1 = s2, then Lm and Lm′ are
unitarily equivalent if and only if m′ = m or m′ = (m2,m1).

Theorem 3.7. Let k 6= l, let k1l2 = l1k2, and let l1l2 6= 0. Set

Mm,a,b = span
{
(azm + bzm

′
)zik+jl : i, j ∈ Z, ik + jl +m � (0, 0)

}
,

where m ∈ ∆ and m′ = ( l1
l2
(m2+1)−1, l2

l1
(m1+1)−1) ∈ Z2

+, a, b ∈ C and ab 6= 0.
Then Mm,a,b is a minimal reducing subspace.

Proof. By the assumption, there exist M,N ∈ Z+ such that k = (Ms1,Ms2),
l = (Ns1, Ns2) with gcd{M,N} = 1. We first establish one claim: if m ∈ ∆,
then m + ik + jl � (0, 0) if and only if m′ + ik + jl � (0, 0), where m′ =
( l1
l2
(m2 + 1)− 1, l2

l1
(m1 + 1)− 1) ∈ Z2

+.

Indeed, by the definition of ∆, we have m = (m1,m2) ∈ ∆ if and only if
0 ≤ m1 < s1 or 0 ≤ m2 < s2. Without loss of generality, we will assume that
0 ≤ m1 < s1. Thus, m

′
2 = s2

s1
(m1 + 1) − 1 ≤ s2 − 1 < s2; that is, m′ ∈ ∆.

Since |ikp + jlp| ≥ sp (p = 1, 2) and (ik1 + jl1)(ik2 + jl2) ≥ 0 as k1l2 = l1k2, then
m+ ik+jl � (0, 0) if and only if ik+jl � (0, 0) if and only if m′+ ik+jl � (0, 0),
where i, j ∈ Z.
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To conclude, we only need to prove that Lm andMm,a,b are unitarily equivalent.
Let U be the linear map from Lm onto Mm,a,b defined by

U
( zm+ik+jl

√
γm+ik+jl

)
=

1√
|a|2 + |b|2

(
a

zm
√
γm+ik+jl

+ b
zm

′

√
γm′+ik+jl

)
zik+jl.

One can easily get γm+ik+jl = γm′+ik+jl since k1l2 = l1k2. Clearly, z
m+ik+jl ⊥

zm
′+ik+jl whenever m 6= m′ and m+ik+jl,m′+ik+jl � (0, 0). Fix i, j, p, q ∈ Z+.

Write (i, j) ∼ (p, q) if ik + jl = pk + ql and ik + jl, pk + ql � (0, 0). Let [(p, q)]
denote the set of all (i, j) ∈ Z2

+ satisfying (i, j) ∼ (p, q). Thus,∥∥∥U( ∑
i,j∈Z+,m+ik+jl�(0,0)

( ∑
(p,q)∈[(i,j)]

fpq

)
zm+ik+jl

)∥∥∥2

=
∥∥∥ 1√

|a|2 + |b|2
( ∑
i,j∈Z+,m+ik+jl�(0,0)

( ∑
(p,q)∈[(i,j)]

fpq

)
(azm + bzm

′
)zik+jl

)∥∥∥2

=
∑

i,j∈Z+,m+ik+jl�(0,0)

∥∥∥( ∑
(p,q)∈[(i,j)]

fpq

)
zm+ik+jl

∥∥∥2

=
∥∥∥ ∑
i,j∈Z+,m+ik+jl�(0,0)

( ∑
(p,q)∈[(i,j)]

fpq

)
zm+ik+jl

∥∥∥2

,

where fpq ∈ C. That is, U is unitary. Since T is self-adjoint, then it remains to
show that UTϕ = TϕU . Before continuing, we observe that m+ ik+ jl � l if and
only if m′ + ik + jl � l by the claim. Hence, a direct computation leads to the
fact that UTϕ = TϕU . �

Next, we give a complete description of the reducing subspaces for Tϕ and we
show there is no other reducing subspaces for Tϕ other than the common reducing
subspaces for Tzk and Tzl .

Theorem 3.8. Let k 6= l, let k2
i + l2i 6= 0 (i = 1, 2), and let M be a reducing

subspace for Tϕ. Then M is the orthogonal sum of some minimal reducing sub-
spaces. Moreover, M is a minimal reducing subspace for Tϕ if and only if M has
the form as follows.

(i) If l1k2 6= k1l2, then M = Lm for some m ∈ ∆.
(ii) If l1k2 = k1l2 and l1l2 6= 0, then there exist m ∈ ∆ and a, b ∈ C such that

M = Mm,a,b where Mm,a,b are defined by

Mm,a,b = span
{
(azm + bzm

′
)zik+jl : i, j ∈ Z, ik + jl +m � (0, 0)

}
with m′ = ( l1

l2
(m2 +1)− 1, l2

l1
(m1 +1)− 1). In particular, if m′ /∈ Z2

+, then
b = 0.

Proof. Notice that if PM(zm) = 0, then Lm⊥M. By (3.2), there is m ∈ ∆ such
that PM(zm) 6= 0. If l1k2 6= k1l2, then PM(zm) = czm 6= 0. Therefore, zm ∈ M
and Lm ⊆ M. If l1k2 = k1l2 and l1l2 6= 0, then there are a, b ∈ C and m′ defined
as in condition (ii) such that PM(zm) = azm + bzm

′ ∈ M by Proposition 3.1.
Since azm + bzm

′ ∈ Mm,a,b, which is a minimal reducing subspace for Tϕ, then
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Mm,a,b ⊆ M and M	Mm,a,b is also a reducing subspace for Tϕ. So we get the
desired results. �

If k1 = k2 = 0, then we have the following corollary, which includes the results
of TzN1 zM2

(see [18, Theorem 2.4] for the weighted case; see [16, Theorem 2.5] for

the unweighted case).

Corollary 3.9. Let M be a reducing subspace for Tzl with l = (l1, l2) ∈ N2. Then
there exist m = (m1,m2) ∈ Z2

+ satisfying m1 < l1 or m2 < l2, and a, b ∈ C such
that

span
{
(azm + bzm

′
)zjl : j ∈ Z+

}
⊆ M,

where m′ = ( l1
l2
(m2+1)− 1, l2

l1
(m1+1)− 1). Moreover, M is minimal if and only

if

M = span
{
(azm + bzm

′
)zjl : j ∈ Z+

}
.

In particular, if m′ /∈ Z2
+, then b = 0.

However, the case of k = l is sharply different from that of k 6= l.

Theorem 3.10. Let k ∈ Zd
+, and let d ∈ N. Then Tzk+z̄k is completely reducible

on L2
a(Dd).

Proof. By the spectral theorem of normal operators, a normal operator is com-
pletely reducible if and only if it has no eigenvalues. Thus, we only need to show
that Tzk+z̄k has no eigenvalues on L2

a(Dd). Recall that u is a pluriharmonic func-

tion on Dd if and only if ∂2

∂ziz̄j
u ≡ 0 for all i, j = 0, 1, . . . , d. Thus, f(z) = zk + z̄k

is surely a bounded real pluriharmonic function on Dd and continuous on Dd.
McDonald and Sundberg [17] proved that if u is bounded real harmonic function
on D, then Tu has no (nonzero) eigenvectors. Next, we will prove a similar result
over the polydisk. Suppose that u is a bounded real pluriharmonic function on
Dd which is continuous on Dd. If Tuf = 0 for some f ∈ L2

a(Dd), then we have
uf ∈ (L2

a(Dd))⊥. Therefore,

0 = 〈uf, fg〉

=

∫
Dd

u|f |2ḡ dA(z)

=

∫
Dd

u|f |2ḡ dA(z)

=

∫
Dd

u|f |2g dA(z),

for any g ∈ H∞(Dd). It follows that∫
Dd

u|f |2Re(g) dA(z) = 0.

By replacing Re(g) with u, we have∫
Dd

u2|f |2 dA(z) = 0,
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which shows that uf = 0 almost everywhere on Dd. Let N (u) = {z ∈ Dd : u(z) =
0}. If u(z) is not equal to zero identically, we must have f(z) = 0 on the nonempty
open set E = N (u)c ∩Dd, forcing f ≡ 0 on Dd. Notice that Tzk+z̄k is self-adjoint,
hence σ(Tzk+z̄k) ⊆ R. By the analysis above, Tzk+z̄k has no eigenvalues. Therefore,
Tzk+z̄k is completely reducible on L2

a(Dd). �

Now, we give two examples.

Example 3.11. Let k = (2, 4), l = (4, 2). It is easy to see that k1l2 6= k2l1. Then
s = (2, 2) and

∆ =
{
(i, j) ∈ Z2

+ : i ∈ [0, 2), j ∈ [0, 6)
}
.

Then, from Theorem 3.8, Lm = span{zm+u(2,4)+v(4,2) : m + u(2, 4) + v(4, 2) �
(0, 0), u, v ∈ Z}, m ∈ ∆, are all the minimal reducing subspaces for T

z21z
4
2+z41z

2
2
.

Example 3.12. Let k = (2, 4), l = (3, 6). Obviously, k1l2 = k2l1. Then s = (1, 2)
and

∆ =
{
(i, j) ∈ Z2

+ : i ∈ [0, 1) or j ∈ [0, 2)
}
.

Corollary 3.4 indicates that Lm = span{zm+h(1,2) : h ∈ Z+}, m ∈ ∆, are minimal
reducing subspaces for T

z21z
4
2+z31z

6
2
. But they are not all the minimal reducing sub-

spaces for T
z21z

4
2+z31z

6
2
. For instance, by Theorem 3.8, let m = (0, 3), m′ = (1, 1), we

have Mab = span{(az32 + bz1z2)z
ik+jl : i, j ∈ Z, ik + jl+ (0, 3) � (0, 0)}, a, b ∈ C,

is also minimal for T
z21z

4
2+z31z

6
2
.

4. Some results on the unit disk

Analogous to the proofs in Section 2 and Section 3, we can determine the
reducing subspaces for Tzk+z̄l on the unit disk D. If k = l, then Theorem 3.10
indicates that Tzk+z̄l is completely reducible on L2

a(D). If k 6= l, then we have the
following results.

Theorem 4.1. Let ϕ(z) = zk + z̄l, z ∈ D with k, l ∈ Z+ and k 6= l. Let s =
gcd{k, l} for kl 6= 0; s = |k − l| for kl = 0. Then La = span{za+ns : n ∈ Z+}
(0 ≤ a < s) are all the minimal reducing subspaces for Tϕ and each reducing
subspace is an orthogonal sum of some minimal reducing subspaces.

Proof. Since k 6= l, we might as well assume that 0 ≤ k < l. Denote by T =
T ∗
ϕTϕ − TϕT

∗
ϕ. Then, Tz

n = ωnz
n, where

ωn =


n+1

n+k+1
− n+1

n+l+1
, 0 ≤ n < k,

n+1
n+k+1

− n−k+1
n+1

− n+1
n+l+1

, k ≤ n < l,

n+1
n+k+1

− n−k+1
n+1

− n+1
n+l+1

+ n−l+1
n+1

, n ≥ l.

(4.1)

Clearly, the following statements hold:

(1) ωm1 6= ωm2 for 0 ≤ m1,m2 < k and m1 6= m2, since f(x) = x
x+k

− x
x+l

is
strictly increasing on [0, k);

(2) ωm1 6= ωm2 for k ≤ m1,m2 < l and m1 6= m2, since h(x) =
x

x+k
− x−k

x
− x

x+l

is strictly decreasing on [k, l);
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(3) ωm1 6= ωm2 form1,m2 ≥ l andm1 6= m2, since g(x) =
x

x+k
− x−k

x
− x

x+l
+ x−l

x

is a strictly decreasing function on [l,+∞);
(4) ωn < 0 for n ≥ l, since gn(x) = n+1

n+x+1
− n−x+1

n+1
is strictly increasing on

[k, l].

Note that La is a reducing subspace for Tϕ. We only need to prove the following
statements:

(1′) La is minimal,
(2′′) each nonzero reducing subspace contains La0 for some 0 ≤ a0 < s.

By the definition of s, there exist integers M,N such that k = Ms and l = Ns
with 0 ≤ M < N . Moreover, there exist nonnegative integers u, v such that
|uk − vl| = s. Using the same method in Theorem 3.3, we can demonstrate that
the reducing subspace generated by za equals to La.

Let M be a nonzero reducing subspace and let P be the orthogonal projection
from L2

a(D) onto M. By PT = TP , we have Pza =
∑s−1

b=0

∑
n∈Z+

cnz
b+ns with

ωb+ns = ωa.
If k = 0, then s = l and statements (1) and (4) show that Pza = cza, c ∈ C.
If k 6= 0, then 0 < M < N and gcd{M,N} = 1. The statements (1)–(4) show

that Pza = c0z
a + d0z

a+n0s +
∑s−1

b=0 cbz
b+nbs where ωa+n0s = ωb+nbs = ωa and

M ≤ n0, nb < N for 0 ≤ b ≤ s− 1. By PT ∗
ϕz

a = T ∗
ϕPza, there is

Pza+l = c0z
a+l + d0z

a+n0s+l + d0
γa+n0s

γa+n0s−k

za+n0s−k

+
s−1∑
b=0

(
cbz

b+nbs+l + cb
γb+nbs

γb+nbs−k

zb+nbs−k
)
.

If d0 6= 0, then the fact PT = TP implies that ωa+l = ωa+n0s+l, which contradicts
(3). So d0 = 0. Similarly, we have cb = 0 for 0 ≤ b ≤ s− 1. Therefore, Pza = cza

for some c ∈ C. This means that P (za) 6= 0 if and only if La ⊆ M; P (za) = 0
if and only if La⊥M. Let M ⊆ La; then M equals either {0} or La. Therefore,
La is minimal. Let M be a nonzero reducing subspace. Since L2

a(D) =
⊕s−1

a=0 La,
there exists a0 ∈ [0, s) such that P (za0) 6= 0; that is, La0 ⊆ M. Hence, (1′) and
(2′′) hold and we finish the proof. �

Letting l = 0 in Theorem 4.1, we get the following result, which corresponds
somewhat to results given by Stessin and Zhu in [19].

Corollary 4.2. The Toeplitz operator Tzk on L2
a(D) has 2k−2 nontrivial reducing

subspaces. Moreover, La = span{za+nk : n ∈ Z+} (0 ≤ a < k) are all the minimal
reducing subspaces for Tzk , and each reducing subspace is an orthogonal sum of
some minimal reducing subspaces.

As an application of Theorem 4.1, we can also deal with the case k2
i + l2i = 0

for some i ∈ {1, 2} over the bidisk. Assume k2 = l2 = 0 (or k1 = l1 = 0); it is
easy to prove the following result.
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Corollary 4.3. Let N,M ∈ Z+ with N2 +M2 6= 0, and

s =

{
gcd{N,M}, NM 6= 0,

|N −M |, NM = 0.

Let M be a reducing subspace for TzN+z̄M (z ∈ D) on L2
a(D2). Then M is

minimal if and only if there exist 0 ≤ a < s and f(w) ∈ L2
a(D) such that

M = f(w)span{za+ns : n ∈ Z+} with w ∈ D.

Proof. The sufficiency is obvious. We only show the sketch of proof for necessity.
If M 6= {0}, then there is a nonzero function h(z, w) =

∑∞
k=0 hk(w)z

k ∈ M,
where hk ∈ L2

a(D) and
∑∞

k=0 ‖hk(w)‖2‖zk‖2 < ∞. As in Theorem 4.1, we can
prove that there exists 0 ≤ a < s such that P (ha(w)z

a) = cha(w)z
a 6= 0. Let

f(w) = ha(w). Therefore, M = f(w)span{za+ns : n ∈ Z+}. �

5. The structure of V∗(ϕ)

In this section, we consider the structure of V∗(ϕ) both over the bidisk and
the unit disk, where ϕ = zk + zl. Let A denote a von Neumann algebra. Then
E is an Abelian projection if EAE is an Abelian algebra. We consider A to be
homogeneous if there is a family of pairwise orthogonal Abelian projections that
are mutually equivalent and whose sum is identity. As it is known, Conway [3]
has characterized the structure of homogeneous von Neumann algebras. Recently,
Guo and Huang [12] generalized this to the following.

Proposition 5.1 ([12, Corollary 8.2.6]). Let ε denote the set of all minimal
projections in a von Neumann algebra A, and suppose that∨

E∈ε

E = I.

Then there is a family of {Λi} of subsets of ε such that

(i) each {Λi} consists of pairwisely orthogonal, mutually equivalent projec-
tions in A;

(ii) if E ′, E ′′ lie in different {Λi}, then E ′ is not equivalent to E ′′;
(iii)

∑
i

∑
E∈Λi

= I.

Consequently, the von Neumann algebra A is ∗- isomorphic to⊕
i

Mni
(C),

where ni denotes the cardinality of {Λi}, allowed to be infinite.

It is known that two reducing subspaces M1 and M2 for Tϕ are unitarily equiv-
alent if and only if PM1 and PM2 are equivalent in V∗(ϕ); that is, there is a partial
isometry V in V∗(ϕ) such that

V ∗V = PM1 , V V ∗ = PM2 .

Now, we are ready to give the main results in this section as follows:
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Theorem 5.2. Given that ϕ(z) = zk + z̄l, where k, l ∈ Z2
+, k 6= l and k2

i + l2i 6=
0 (i = 1, 2). Then V∗(ϕ) is a Type I von Neumann algebra. Furthermore, the
following statements hold.

(i) If k1l2 6= k2l1, then V∗(ϕ) is Abelian and is ∗-isomorphic to

j⊕
i=1

C,

where j = |l1k2 − l2k1|.
(ii) If k1l2 = k2l1 and s = (s1, s2) is defined as in (3.1), then V∗(ϕ) = V∗(zs)

and V∗(ϕ) is never Abelian. Moreover, if s1 = s2 = r, then V∗(ϕ) is
∗-isomorphic to

∞⊕
j=1

M2(C)⊕
r⊕

i=1

C;

if s1 6= s2, then V∗(ϕ) is ∗-isomorphic to the direct sum of countably many
M2(C)⊕ C.

Proof. Let Pm denote the orthogonal projection from L2
a(D2) onto Lm. By the

definition of ∆, we have
∑

m∈∆ Pm = I. Kadison and Ringrose [14] gave the fact
that if E is a minimal projection in von Neumann algebraR, then E is an Abelian
projection in R. Thus, every Pm is an Abelian projection. What’s more, V∗(ϕ) is
type I.

Let Λm denote the set of the orthogonal projections which are unitarily equiv-
alent to Pm. If k1l2 6= k2l1, Proposition 3.5(i) shows that Λm = {Pm} for m ∈ ∆
and Card∆ = j.

If k1l2 = k2l1 and s1 = s2 = r, then Corollary 3.6 shows that Lm is unitarily
equivalent to Lm′ if and only if m = m′ whenever m1 = m2. That is, CardΛm = 1
for 0 ≤ m1 = m2 ≤ r, CardΛm = 2 for m ∈ ∆ and m1 6= m2.

If k1l2 = k2l1 and s1 6= s2, by Proposition 3.5(ii), we have CardΛm = 1 for
m′ /∈ Z2

+ and CardΛm = 2 for m′ ∈ Z2
+.

Therefore, by Proposition 5.1, we proved (ii). �

Remark 5.3. If k2 = l1 = 0, the statement (i) in Theorem 5.2 identifies with the
case α = β of the main result in [5].

On the Bergman space over the unit disk, from Theorem 4.1 and Corollary 4.2,
it is interesting to note that V∗(zk+ z̄l) = V∗(zs) for k 6= l. Moreover, in the proof
of Theorem 4.1, we have proved that if U ∈ V∗(zk+ z̄l) satisfying U |La : La → La′

is unitary, then there is c ∈ C depending on U such that Uza = cza. That is, La

and La′ are unitarily equivalent if and only if a = a′. Then we have the following
result.

Theorem 5.4. Given ϕ(z) = zk + z̄l, z ∈ D with k, l ∈ Z+, k 6= l. Let s =
gcd{k, l} for kl 6= 0; s = |k − l| for kl = 0. Then V∗(ϕ) is an Abelian Type I von
Neumann algebra, and it is ∗-isomorphic to

s⊕
i=1

C.
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For the case that k = l, since Tzk+z̄k is normal on L2
a(Dd) (d ∈ N), the von

Neumann algebra W∗(zk+ z̄k) generated by Tzk+z̄k is Abelian. Thus, W∗(zk+ z̄k)
is Type I. One of the main results in [14] asserts that, if R is a von Neu-
mann algebra acting on a Hilbert space H, then the commutant R′ is of type
I (or II, or III) when R has the same property. Therefore, the following result
holds.

Theorem 5.5. V∗(zk + z̄k) on L2
a(Dd) (d ∈ N) is a Type I von Neumann alge-

bra.
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