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ABSTRACT. In this paper, we give a uniform characterization for the reducing
subspaces for T}, with the symbol ¢(z) = 2* + 2! (k,l € Z2) on the Bergman
spaces over the bidisk, including the known cases that (21, 22) = 282! and
©(21,22) = 20V + 2z with N,M € Z,. Meanwhile, the reducing subspaces
for T,nzm (N,M € Z,) on the Bergman space over the unit disk are also
described. Finally, we state these results in terms of the commutant algebra

V*(¢).

1. INTRODUCTION

Let D be the unit disk in the complex plane C, and let D¢ be the Cartesian
product of d copies of D. Let Z denote the set of all integers, let Z, denote the

set of all nonnegative integers, let Z¢ denote the set of all & = (ay, ..., ay) with
o; € Z, and let Zi denote the set of all a € Z¢ with a; € Z, for 1 < i < d. If
z=(z1,22,...,2,) € D* and a € Z%, then we write

2% =225 20

The Bergman space L2(D%) is a Hilbert space consisting of all holomorphic
functions over D¢, which are square-integrable with respect to the normalized
volume measure dA(z) = dA(z) dA(zs) - -+ dA(2q). The inner product in L2(D%)
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is denoted by (f,g) = [y« fGdA(2). Given an essentially bounded measurable
function ¢ on the polydisk, the Toeplitz operator with symbol ¢ is defined by

Tpf = P(¢f), Vfe Ly(DY),

where P is the orthogonal projection from L?(ID?) onto L2(ID?).

Let S be a bounded linear operator on a Hilbert space H. A closed subspace
M is said to be a reducing subspace for S if SM C M and SM*+ C M*. Or
equivalently, M is a reducing subspace for S if and only if SPy; = P\.S, where
Py is the orthogonal projection from H onto M. In addition, M is called minimal
if there is no nonzero reducing subspace N which is contained in M properly. The
operator S is said to be completely reducible if its lattice of reducing subspaces
has no nonzero minimal elements (see [9]).

For every ¢ € L>(D?), denote by W*(¢) the von Neumann algebra generated
by Ty, and let V*(¢) = W*(¢) be the commutant algebra. As is given in [3], V*(¢)
is a von Neumann algebra and is the norm-closed linear span of its projections. On
the other side, the range of projections in V*(¢) and the reducing subspaces for
T, are in one-to-one correspondence. Therefore, in some sense, determining the
structure of the reducing subspaces for Ty is equivalent to studying the structure
of the commutant algebra V*(¢).

The study of the commutant began in earlier research on analytic Toeplitz
operators on the Hardy space of the unit disk, especially work in the 1970s by
Deddens and Wong [4], Thomson [22]-[24], and Cowen [2]. In particular, one
of their main results is that if the inner factor of f — f(c) is a finite Blaschke
product for some c in the disk, then there is a Blaschke product B such that
{T¢} = {Tp} . This result is usually referred to as the Cowen-Thomson theorem.
Furthermore, it also holds on the Bergman space, and a detailed proof is given by
Guo and Huang [12]. These indicate that the Toeplitz operators induced by finite
Blaschke products play an important role in studying the structure of reducing
subspaces for the analytic Toeplitz operators. In recent years, a lot of nice and
deep work on the structures of reducing subspaces for Toeplitz operators with
finite Blaschke products symbols has been done on the Bergman space over the
unit disk in [6], [7], [11], [13], [19], [21], [20], [26].

For higher-dimensional domains, studies on reducing-subspace problems began
with some special monomial symbols. The second author and Zhou [16] completely
characterized the structure of the reducing subspaces for Tor.p on the weighted

Bergman space over D?. The second author and the third author [18] found all the
minimal reducing subspaces for T, (k # 1,1 # j) on L2(D?, dAq(z1) - - - dAa(z4)),

where dA,(z;) = (1 4+ a)(1 — |2]?)*dA(z) for 2 = (21,...,24) € D? and a > —1,
and showed that the unweighted case & = 0 has more minimal reducing subspaces
than the weighted case o # 0. Guo and Huang [12] generalized these results to
T.« with a € Zi on multi-dimensional separable Hilbert spaces by a different
approach and gave the structure of V*(2%). Furthermore, Gu [10] characterized
the reducing subspaces of weighted shifts with operator weights as wandering
invariant subspaces of the shifts with additional structures, and pointed out that
the operators T,x and T,x,y on L2(ID? dA,(21) dAa(22)) are unitarily equivalent
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to weighted shifts with invertible diagonal operator weights. For analytic poly-
nomial ¢(z) = azf + [z, the reducing subspaces for T, and the structure of
V*(p) are investigated on L?(D?) in [8] and [25]. Additionally, on the weighted
Dirichlet space over the bidisk, Lin, Hu, and the second author [15] obtained
partial results about the reducing subspaces for analytic Toeplitz operators with
monomial symbols.

Recall that the study of the reducing-subspace problems of the nonanalytic
Toeplitz operators over the bidisk began with Albaseer, the second author, and
the third author in [1], in which the structure of the reducing subspaces for T x
on L2(ID?) was solved. Stimulated by [8] and [25], we have considered the structure
of V*(azf + Bz') with a8 # 0 in [5]. It is proved that L,y (a,b € Z,, a < k—1,
and b < [ — 1) are exactly all the minimal reducing subspaces for Ty gz,
where L,; = span{z{ "™ 25" |n,m € Z,}. Furthermore, V*(¢p) is *-isomorphic
to @, C, and then V*(i) is Abelian.

In this paper, we keep on considering the reducing subspaces for T, with p(z) =
2k +7! (k,1 € Z2) over the bidisk. Since T, = T,x +T7;, then a common reducing
subspace for T» and T, is clearly a reducing subspace for T,,. We will show that
there are no other reducing subspaces other than the common reducing subspaces
for the case k # [. Meanwhile, we also describe the reducing subspaces on the
unit disk. The main conclusions imply the related results in [5], [16], [18], and
[19].

This article is organized as follows. In Section 2, some preliminaries are pre-
sented. In Section 3, under the assumptions k # [ and k? + 12 # 0 (i = 1,2), we
determine all the minimal reducing subspaces for 7.k, on the Bergman space
over the bidisk. Moreover, we show that T, s« is completely reducible on L2(ID%)
(d € Z4). In Section 4, we describe the reducing subspaces for T,z with non-
negative integers k, [ on the unit disk. Along with this result, the structure of
reducing subspaces for T »; (1 = 1,2) over the bidisk is also characterized. In

Section 5, using the conclusion in Guo and Huang [12], we obtain the structure
of V*(zF + z!) on LZ(D?) for d = 1, 2.
2. PRELIMINARIES

Denote the partial order > in Zi as: a = b if a; > by and ay > by. Otherwise,
we write a % b. Let ¢(z) = 2% + z! with k,1 € Z2. Put

T=T:T,—T,T".
Let
O ={neZ2:ntkntl} Qo ={ne€Z:n=knitl}
Qs ={n€Z2:n¥tkn=l} QU={nez:n=kn=I}
Note that if I = k (or k = [), then Q3 (or Q) makes no sense. Write

1
(T +d1)(1 + i)’

7= |12 = VieZ2.
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By an easy computation, we get

T o {Z"*ka nitl,

Zn+k+77—n2n_l, n = 1.

Similarly, we have

Zn+l+’y_nzn—k n > k.

. n Pl n it k,
17z :{

Vn—k
Furthermore,
T2" = w,2",
where
(11 nikﬂﬂ -1T nn+z+-1w n € {1,
H?:l n:-t/:i&-l - H?:l n::l-;:-l&-l - H?:l mr;—ljflﬂ7 ne QQ’
“n = H?ﬂ #Ijlﬂ - H?:I nn+;ri1 + 1T nn_lﬁrl’ n € (s, (2.1)
H?:l nj—ll—:i—l - H?:l nni;r}d
x +Hf:1’”,;—fi1“—H?:1 n,;—]ifl, n € Q.

For every n € 73, let

2

2
\) = _
@A) Hni—i—k’z‘—Fl—{—)\(k‘i—l—li) Hni—Fli—l—l—i—)\(in—Fli)

=1 i=1

= ni—l,-+1—|—)\(k:i—|—li)_ﬁni—k’i—l—lJr)\(kﬂrli)

(2.2)

defined on Z, . Clearly, limy_, o Qn(A) = 0.

Let V*(p) denote the commutant algebra of the von Neumann algebra gener-
ated by T, and A € V*(¢). Denote by Hj = span{z™ : m # 3+ p(k +1),p €
Z,8+pk+1)=(0,0)}. Because AT = TA,

Az = Z cpz?  with wg = w,, Yo € Z2.
BeZ

To determine the expression of Az, we provide some useful lemmas. In the
following, denote by N the set of all the positive integers.

Lemma 2.1. Let o, f € Z2, let a ¥ k+1, and let A€ V*(p). If Ay ={pe€Zy:
(Aze | ZPPEHDY oL 0} s not empty and finite, then Warth(k+l) = Wa+(po+h)(k+l) for
every h € Z.,, where pg = max Aj.
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Proof. Since A is finite and py = max{p : p € A1}, we may set
Az = ¢ 2P0 g (2) + hy(2),

where ¢; € C, ¢; # 0, p1(z) € spanf{ 2P P*+D < po, B+ p(k +1) = (0,0)} and
hi(z) € Hj. Together with AT;T,2* = T}T,Az*, we obtain

A(ZOH"“‘H + Mza + ciza) = Pt )(k+D) Py(2) + Hy(2),
Vo Ya—1

where the constant ¢ = 1 for a = I; ¢ = 0 for a # I; P(z) € span{ztr*+)

p<po+1,B8+p(k+1)=(0,0)}; Hi(z) € H}. By the maximality of py, we have

(Aze 2P+t )(HDY = 0. So max{p € Z, : <Az°‘+k“ Bap(ktDy £ 0} = po + 1. Tt

follows that wq i = WE (po+1)(k+1)-

Given that N € N, suppose that max{p € Z, : (Azetik+0) f+pk+Dy £ o) =
po + i for every i < N. Set AzetNE+D — 2Bt @orNIEH) 1y (2) + hy(2),
where cy # 0, pn(2) € span{z?P¢++) . p < po + N, B+ p(k +1) = (0,0)}, and
hy(z) € Hj. As above, AT T,z Nk — T2 Az TN+ implies that

A(Za+(N+1)(k+l) + Azt N (k+D) +Mza+(zv—1)(k+z))
= ey 2P TPANHDGH) L py(2) + Hy(2),

where \, 1 > 0, Py(z) € span{2#P¢+D . p < po+ N+1, B+p(k+1) = (0,0)}, and
Hy(z) € Hj. Therefore, here max{p € Z, : (AzetWHDGFD) A5plhl)) o 0} =
po+ N +1 and Wat (N4+1)(k+1) = Wa+(po+N+1)(k+1)- By induction, we get the desired
result. O

Lemma 2.2. Let o, € Z2, let o F k+ 1, and let A € V*(¢). If Qa(\) #
0 and Ay = {p € Zy : (Az®, 2PPF0Y £ 0} s finite, then Card{p € Z, :
(Aze, 2PFPDy £ 0} < 1.

Proof. Without loss of generality, we may assume that 5 % k + [ and that Ay is
not empty. Since Qn(A) #Z 0, Qa(A) = ¢ (¢ € R) has finite roots. It follows that
the set

{h S/ <A2a+h(k+l)a Zﬂ+p(k+l)> # 0} Cl{heZ: Wath(k+l) = Wﬁ+p(k+l)}
is a finite set for every p € Z,. Thus,

Ay = | {h ey (Axethlsh oenlaty o o}

0<p<po

is finite, where py = max A;. Obviously, Ay # & since 0 € A,.
Let hg = max{h : h € Ay}. We will prove that

Wart(ho+h) (k+1) = W+ (poth) (ks Vh € Loy, (2.3)
Since hg + 1 ¢ Ay, set

Azt ot D) — g B+t DD L p (2) 4 gy (2),
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where f; € span{z "¢+ py +2 < h < py+ ho + 1} and g, € Hj. Thus,
AT;T¢ZQ+(hO+1)(k+l) _ T;TwAza+(ho+1)(k+l) giVGS

Az o+ 2) (kD) +(ho+1) (k+1) actho(k-+))

+nz” + pz

_ d17ﬁ+(130+1)(k+l) zﬁ-i—po(k-i—l) —l—Fl(Z) +G1(Z), (24)
VB+po(k+1)

where 1, p > 0, F; € span{z®t"+0 - po+1 < h < py+ ho +2}, and G, € Hg.
Since hg + 1, ho + 2 ¢ Ay, we have

p{ Az thok ) o Btpothty — g sty ot -

By the definition of hg, there exists some p € [0,po] such that <Az"‘+h°(k+l),
2P+P(HDY =L (. Therefore, (2.4) shows that d; # 0. This means that min{p € Z, :
<A2a+(ho+1)(k+l) SB+p(k+1) > # 0} = po + 1. Moreover, there is

<Aza+ hOJrh)(kJrz)7 ZBero(kJrl)) —0, VheN.
Assume that N € Z, . For : = N, suppose that
min{p € Zy : (Azothotit(k+) | Btplktl)y 0} =po+i+1, (2.5)

and that
<Aza+(ho+i+h)(k+l)7 Z,B+(po+z')(k+l)> =0, VheN. (2.6)

We may set
Azt (hotitl+h)(k+l) _ di+1+hzﬁ+(po+i+1)(k+l) + fi+1+h(z) +gi+1+h(2),

where fii14n, € span{z®thH0 po i +2 < h < pg+ ho+i+ 1+ h} and
Jit1+h € Hg. Since AT}T, =TT, A, a direct computation gives

A<2a+(ho+i+2+h)(k+l) +n/2a+(ho+z’+1+h)(k+l) +p/za+(ho+i+h)(k+l))

YB+(po-+i+1)(k-+1) B+ (po+i) (k+1)
VB+(po+i) (k+1)

= dit1+4n + Fiv14n(2) + Gigagn(2),
where 1/, p' > 0, Fyy14, € span{zE+0 cpo i+ 1< h<py+ho+i+h+2},
and G 14p € Hg. Note that (2.6) shows that d; 1,5, = 0 for h € N. In particular,
for h = 1, let Azot(hoti+2)(k+) — g B+poti+2)(k+D) 4 f(2) 4 g(z), where we have
f espan{Atht+) . py +i+3<h<py+ho+i+2}andge HB. Then

A( a+(ho+i+3)(k+1) +7]// a+(ho+i+2)(k+1) +p// a+(ho+z+1)(k+l)>

_ g B0t (kD) Bt (potit1) (k) F(2) + G(2),
YB+(po+i+1)(k+1)

where F € span{zfT"++D - po+i +2 < h<py+hy+i+3}and G € Hj. Now,
by equation (2.5), we have that d # 0. That is, the equalities (2.5) and (2.6) also
hold for = N + 1. By induction, we get

mm{p € Zy : (Azothoth)(ktl) - Btp(ktl)y 4 0} =po+h, VYheEZ,. (2.7)
Therefore, equation (2.3) holds.
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Together with the equality waqn(k+1) = Wa+(po-+h)(k+1), Which comes from Lem-
ma 2.1, we have
Wa+th(k+1) = Wat(h+ho)(k+1) ) Vh € Z,.
If ho € N, then wWang(k+t) = Watnho(k+) = 1My o0 Watn(k+) = 0, which contra-

dicts the assumption that Q,(A\) Z 0. So hg = 0, and the equation (2.7) implies
that min{p € Z, : (Az®, 257PE+0) £ 0} = pg = max{p € Z, : (Az®, ZP+ph+l)) £
0}. Hence, Card{p € Z, : (Az®, 2A+P+D) £ 0} < 1. O

For COHVGHleIlCG we set
A £ (lg—kg)(a1+1>+(l1—kl)(ag—f—l), VQGZE_.

Lemma 2.3. Let o € Zi and let k # 1. Then Qo (X) = 0 if and only if l1ly = kiks
and A, =0

Proof. By the definition of Q,()), one can easily see that Q,(A\) = 0 if and only if

2

TT (i + Aki + ) + 1) [(2X + 1) (1ile — kiks) + Ad]

=1
2
EH (i + Ak + 1) + ki + 1) (e + MEs + 1) + 1, + 1)

X [(2)\ — 1) (lily — kiko) + A (2.8)

By direct calculations, the coefficient of \> is zero, and the coefficient of A\* is
2(l4ly—Fkyky) (k1 411)? (ko +12)2. If Qo (N) = 0, then I1ly = kyko. Furthermore, we get
2 2
[0 +1)°A0 = [ (0 + ki + 1) (e + i + 1) Aa,
i=1 i=1
which indicates that A, = 0. On the other side, by (2.8), l;ly = kijky and A, =0
imply immediately that Q,(\) = 0. O

Lemma 2.4. Let k # 1 and let A € V*(¢). If a € Qy such that Q(\) # 0, then
(A2%,2P) = 0 for every B € Q4.

Proof. Suppose that there exists 3 € Q4 such that (Az% ) # 0. Then w, =
wg. We claim that Qg(A) # 0. In fact, if we assume the contrary, that is, that
Qp(A) = 0, then Lemma 2.3 shows that l1ly = kiks. From (2.1) and (2.2), we
have
W = W = Qﬁ(O) =0.

So (a1+k‘1+1)(a2+k‘2+1) = (a1+l1+1)(a2+l2—|—1), that iS, Aa = kle—lllg = 0.
By Lemma 2.3 again, we get Q,(\) = 0, which is a contradiction. Therefore, we
have that {p € Z, : (Az® #TPE+HD) =L 0} is a finite set, which contains 0.
Lemma 2.2 implies that {p € Z, : (Az®, 25+P¢+0) £ 0} = {0} That is, pp = 0.

If l1ly = kiks, then we claim that A = 0. In fact, Lemma 2.1 shows that
Wath(k+1) = WB+h(k+1); Vh € Z+ Therefore Qa( ) Qg()\) ThUS,

wa = wp = Qp(0) = Qa(0).
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Since a € Qy, we have (a; —l1 + 1) (e — o+ 1) = (ag — k1 + 1) (g — ko + 1); that
is, Aq = lily — k1k2 = 0. So Q,(A) = 0, which is a contradiction.
If Iyl # kyks, then Lemma 2.3 shows that @, ()) # 0 for any n € Z2. Set
Az = cp2” + qu(2),

where cg # 0 and ¢1(2) € Hj. Further, A € V*(¢) gives

A0tk = T,Az" = cﬂzﬁ““ + 05%7;54 + q2(2),
where q(2) L {2°%F 2%~} Because Quix(A) #Z 0 and {p € Z, : (Az*F
2Py £ 0} = {0,1}, again by Lemma 2.2, we get a contradiction. Thus
we finish the proof. O
Lemma 2.5. Let k # | and let k7 +17 #0 (i = 1,2). Given that o, f € Z%, a # 3
such that Qa(N) = Qp(N). Then if Qu+1(N) = Qpri(N), we have Qati(N) Z 0, with
Qa(A) # 0.
Proof. 1f kiky # l1ls, then Q,(\) #£ 0, ¥n € Z,. Therefore, we obtain the desired
result.

If ki1ky = l1l5, without loss of generality, we assume that 0 < k; < [; and that
0 <ly < ky. Given m,n € Zi, m # n. Let

A éU{mz—i‘l m,—i—kl—I—l ml—l—lz—l-l}

At T o TR T ¥
A N {nz—i-l nz—|—]€1+1 nz+l1+1}
N VL kL kvl T
Clearly,
. m1+1 m2+1 .
Anin 2 mln{ , } = min A,,,
ki+1" ko+1s
A m1+l1—{—1 m2+k‘2+1
Amax = max{ , } = max A,,,
ki + 1 ko + 1y
. Amin{nl—’_l n2+1}—minA
,umm k1+l17k2+l2 noy

ni+hL+1 ng+ky+1
ki+1L 7 ket
First, we claim that, if Q,,(\) = Q,(\) and Q,,(\) Z 0, then fimax = Amax and
Amin = fmin- 10 fact, l1ls = kiko and @Q,,(A) = @, (N) imply that
2

i=1

>

[hmax = max{ } = max A,,.

X [H(mz + Ak + 1) + 1)2 — H(mz + Mk + 1)+ ki + 1)

i=1 =1

x@m+A%ﬁJQ+Q+U}
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Ay

o

(mi + Mk + L) + 1) (my + Mk + L) + ki + 1)

I
MR

7

X (m + Mk + 1) +1; + 1)
2 2
X[an—l—)\k—l—l 1)* — T (ni+ Ak + 1) + ki + 1)
i=1 i=1
X (ng+ Alhi + 1) + 1+ 1) . (2.9)

Since Q,,(A) # 0, there are A,, # 0 and A,, # 0. Put A = —\,.x into (2.9), and
then we have

2
H (TLZ — )\max(ki + lz> + 1) (nZ — /\max<ki —+ lz) + l{?z + 1) (nz — /\max(ki + lz) + lz + 1) = 0
i=1
This gives Apax € Ay, and then Ay < fimax. Similarly, putting A = — ., into
(2.9), we have fimax < Amax. Therefore, fimax = Amax- By the same method, it is

easy to get Amin = [bmin-
If Qa()\) = 0, then lllg = klkg, Aa = Aﬁ = 0, and

(L1 — k1) (B2 — o) + (Io — ko) (B — o) = 0. (2.10)

Thus Apti = Agy = (b — k1)(k2 — l3) # 0. This indicates that Q,4(A\) #Z 0 and
Qp+1(A) # 0. Moreover, oy = f; if and only if ap = B2. Without loss of generality,
we may assume that a; < ;. Then as # f5. The claim implies that

Botlo+1 in{a1+l1+1 a2+l2+1}

ko + 1y ki+1l 7 ke+ly
and that
042+l2+/€2+1 {B1+ll+k1+1 ﬂ2+12+k2+1}
= max , )
]{32—'—[2 k1+ll k2+l2
It follows that
Botlo+1 ar+0L+1 aytlot+hke+1 Bi+lh+k+1
ko + 1o ki +1 7 ko + 1o ki + 1 '

Therefore, (k; 4 11)(82 — a2) + (k2 + l2) (1 — an) = 0. Together with (2.10), we
obtain that kily = koly. However, this is a contradiction to kiky = [l and k # [.
Hence, Q. () # 0.

If we suppose that Q. (A) = 0, then we similarly have Q,(\) # 0 and
Qp(N) # 0. Using the same method as above, we still get the contradiction. There-

fore, Qa+1(A) Z 0. O

Remark 2.6. Because k and [ are symmetric, we also have that if Q,x(A) =

Q6+k(>\)7 then QaJrk()‘) 7_é 07 Qa()‘> §é 0.

Lemma 2.7. Let k # 1, let k2 +12 # 0 (i = 1,2), and let A € V*(¢). If a €
such that Qn(\) # 0, then (Az%,2P) = 0 for every B € Qy U Q3.
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Proof. Suppose that here exists 3 € ) such that (Az%, 2°) # 0. By Lemma 2.4,
we may set Az® = cgz” +p(z), where ¢ # 0 and p(z) € Hj. By T;Az* = ATz,
we get

8
Bk

Obviously, E = {p € Z, : (AzoF! B-k+p(tDy £ 0} = {0,1} is a finite set.
And it is easy to see that {p € Z, : (Az* ZATPE+DY £ 0} = {0} is also finite.
Using Lemma 2.1, we have Waii4hktl) = Wotith(k+l) a0 Watn(ktl) = Wath(ktl)
for h € Z,. Therefore, Qu1i(A) = Qpri(N) and Qu(A) = Qs(A). It follows from
Lemma 2.5 that Qa—H( ) # 0, and then Lemma 2.2 leads to Card £ < 1. This is
a contradiction. Therefore, {3 € Q5 : (422, 2°) # 0} = @.

Substituting T} with T;,, we get {8 € Q3 : (A2°, 2Py # 0} = @. So the desired
result follows. O

A2 = cp2Pt 4 g2 2P 4 T7p(2). (2.11)

In the following, we consider the case that Q,(A) =0

Lemma 2.8. Let A € V*(p) and let k #1, k2 +12 #0 (i =1,2). If a € Qy such
that Qu(N) =0, then Ay = {p € Z : (Az*, z5+p (ke+) )Y £0,8 +p(l€ +1) = (0,0)} s
a finite set.

Proof. Without loss of generality, suppose that 3 % k + . Suppose conversely
that A; is an infinite set; then there exist {p; : j € N} C Ay such that p; = +oo
as j — +00. Thus, wa = Waip;(k+1) = M54 00 Watp,kr1) = 0, V7 € N. Equally,
Qs(\) = we = 0. Lemma 2.3 shows that lyly = kiks, Ay = (lo— ko) (a1 + 1)+ (I —
k1)(ag +1) =0, and Ag = (lo — k2)(B1 + 1) + (I1 — k1)(B2 + 1) = 0. Since k # [,
we have ky # [y and ky # l5. It follows that A,y = Agy = (L — k1) (lo — k2) # 0.
Therefore, Qu+i(\) # 0, Quia(\) # 0.

Now set
Az = Z cpzﬁﬂ’(kﬂ) +q(2),
PELy

where ¢, € C and ¢(2) € Hj. Thus, AT}2* = T} Az" shows that

Aza—i-l _ CZ,B—k + Z (Cp + Cpa1 VB+(p+1)(k+1) )Z,3+l+p(k+l) +T;CI(Z>, (212)
o TB—k+(p+1) (k+1)

where ¢ = 0 if 8 € QU Qg5 ¢ = ¢ if B € QU Qy. It is clear that Thq(2) L
span{ 2P+t oy € 7.}, Since Qp()\) # 0, it will therefore now hold that

{peZ,: (At zBHJ’p (k+DYy £ 0} is a finite set. This means that there exists
N € Z, such that

YB+(p+1) (k+1)

Cp + Cp+1
VB—k+(p+1)(k+1)

=0, p>N.

That is,

V6—k 1) (k+1
|Cp+1’ _ |Cp’ B—k~+(p+1)( -‘r)7 p > N. (213)

VB+(p+1) (k+0)
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Next, we prove that if ¢y # 0, then Zpeer o> Va1p(e4ry is divergent. In fact,
if ey # 0, by (2.13), we have that ¢, # 0 as p > N and that

( |Cp|2'76+p(k+l) _ 1) _ pf(p)
|12V o+ 1) (k1) [T, (8 + (p+ 1) (ks + 1)+ 1)(B; + plks + 1) + 1)
where

2 2

i=1 i=1
Because l1ly = kyks, we can prove that f(p) is a quadratic polynomial with respect
to p. Thus,

lim
p——+00 p

( |Cp|2'7,8+p(k+l) B 1) ~0
[Cp 1 PV (k40 '

By Raabe’s convergence test, > ;. || Vg4p(hty 1s divergent, which is a contra-
diction. So Ay = {p € Z, : (Az®, 2P+P+DY £ 0} is a finite set. O

Lemma 2.9. If k#1, Kk} +12#0 (1 =1,2), and A € V*(p), a € Qy such that
Qa(N\) =0, then AzoHhE+D — cpothb+D) for some ¢ € C and Yh € Z,.

Proof. By Lemma 2.8, Ay = {p € Z, : (Az®, 2#Pk+D) £ 0} is a finite set
with 8 % k + 1. If Ay is not empty, let py = maxA;. Lemma 2.1 implies that
Warth(k+l) = Wa(po+h)(k+1) Tor every h € Zy.. So Qa(X) = Qpypo(iti)(A) = 0.

On the other hand, let Az = ¢, 2P0+ 1 g(2) where ¢, # 0 and g(z) L
ZPFPolk+D)  Thus, A € V*(p) shows that

As0t — cpoz,B—l-l-i-po(kH) + gz ktpolktl) 4 T;g(Z),

where a = 0 if pp = 0 and f € Q U Q3. It is easy to see that max{p €
Ly o (AzoH BHHPEADNY = . Because a + 1 % k + [, again by Lemma 2.1,
we have Waiith(ktl) = We+it(po+h)(kri) for every h € Z,. Thereby, Qati(N) =
Qp+14po(k+1)(A). Then, Lemma 2.5 determines that o = 3 + po(k + 1), indicating
that po = 0 and S = «. This means that there exists ¢ € C such that Az® = cz®.
Moreover, AT}T,2* = T;T,Az* implies that Az**"* = cz***+! By induction,
we can get Az T+ = cpathk+l) (¢ € C) for every h € Z,. O

3. REDUCING SUBSPACES FOR T,

In this section, we mainly consider the reducing subspaces for T;, with symbol
o=2F+7 (k#1, k2412 # 0 for i = 1,2). Note that the case k?+1? = 0 for some
i € {1,2} is left to be dealt with in the next section. It is known that T, and T
share the same reducing subspaces. Together with the symmetry of z; and 2z, in
this section, we assume that

(]_) 0< k’l < ll and (2) l1l2 7& 0 if kllg = l{igll.
For m € Z2, let

L, = span{zm+“k+”l :m 4+ uk + vl = (0,0),u,v € Z}.
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Obviously, L,, are common reducing subspaces for T, and T, and surely the
reducing subspaces for T,,. Let

= {m+ik+jl:m+ik+jl = (0,0),i,j € Z},
and

. {(i,j) € Z% :i €0,51),5 €0, ulhs;lbkll)}, kily # koly,
{(i,j) €Z% :i €[0,s1) or j € [0,52)}, kila = kaly, lily # 0,

where

i —kil,  kili =0,

Then Z% = U, ,calm|. We show the details as follows.

Case one: kily # koly. Since k # [, without loss of generality, suppose that
sy # 0. For every (ay,s) € Zi, there is a; = my + ¢s; with 0 < my < s
and q € Z,. Moreover, there are u,v € Z, such that vl; — uk; = s;. Set F =
{(B1,B2) € Z% : Boli — Biky = s1}. By the assumption, there is a minimal
element in F with respect to the partial order > denoted by (u,v). Notice that
lnke—kils| min{|t1k2 — tglzl Dtk — taly = 0} > (0. Then there

is ¢ € Z such that my = ag — q(vly — uks) — NM € [0,”1]‘728;1]“”2'). Thus
(a1, ) = (my,ma) — (qu — qu)k + (qu — qO)I.

Case two: kily = kaly, l1ly # 0. For every (aq, o) € Z2, if %042 > v, then we
choose my, ¢, u, v as in case one such that a; = m;+g¢s; and o = mo+q(via—uks).
In this way, mg = ag — q(vly — uks) = ag — q(vl; — u/ﬁ)l2 =y — (a1 — ml)l2 >0
since 51 g > aq. If 1a2 < ayp, then we can prove that (g, ) € {m + uk + vl :
m~+uk + vl > (0, 0) u,v € Z} with my € [0, s5) and m; € Z,. If ¢ Lag = ai, then
(o, 0) € {m + uk + vl : m + uk + vl = (0,0),u,v € Z} with mysy = mgs; for
my € [0,81) and mo € [0,82).

Therefore, we have

uky — vly =

L2(D*) = P Ln, (3.2)

meA
First, we prove that L,,(m € A) are minimal reducing subspaces for T,.
Proposition 3.1. Let k # I, let k? + 12 #0 (i = 1,2), let A € V*(¢), and let
m € Qy such that Q,(\) # 0.

(1) If liky # Ioky, then there is ¢ € C such that Azm M+ = comth(k+l) o
any h € Z.

(ii) If lLike = Ik and 1l 7é 0, then Az™ = az™ + bz™ , where a,b € C and
m' = (% (my+1) - 1,1 (m1+1)—1)

Proof. By Lemmas 2.4 and 2.7, we may set

= ZagZ’B,

BeN
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where ag € C. Clearly, {p € Z : (Az™, 28+Pk+)) £ 0} = {0}. So, as in the proof
of Lemmas 2.1 and 2.2, for every h € Z,, we have
max{p € Z, : (AzmHh0H) Bty £ o)
= min{p € Z; : (A" kD Bty o o}
= h.
This means that
if (AzmHhGFD L8P0y £ then h = p. (3.3)
Clearly, T;T,Az™ = AT;T,2™ shows that
A<Zm+kz+l " Mz’”) _ Z aﬁ<zﬁ+k+l n Mzﬁ)
Tm Bem &
If (Az™ 28) # 0, from (3.3), then we get
Ttk _ DBtk (3.4)

TYm VB
and
Apm (kD) — Z aﬁz,8+(k+l).
Bet
Suppose, for some ¢ € Z,, we have
Aymitkrl) _ Z aﬁzﬁﬂ'(kﬂ)_
Be
By T3T,Azm kD = ATT, zm T we get
A<Zm+(i+1)(k:+l) 4 Ak Tmi(k+) Zm-i—(i—l)(k-i—l))
Ym4-(i—1) (k-+1)
=Y ag <2ﬂ+(i+1)(k+l) 4 i) 4 Mzmmka)’ (3.5)
Be VB4 (i—1)(k+1)
where A\, > 0. So (3.3) implies that
A ienl) — §7 g D ()

BEM
By induction, we have
AzmtplktD) — Z agZP PR p e 7, (3.6)
BE
Moreover, (Az™, 27) # 0 shows ag # 0. It follows from (3.5) that
Ym4i(k+1) VB+i(k+1)

= , VieN.
YmA4-(i—1) (k+1) VB+(i—1)(k+1)

Letting i — 400, we have 2= = ImHiltth o ] That is,
VB VB+i(k+1)

Vmti(k+l) = VB+i(k+1) (3.7)
for allv € Z,..
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(i) Case liky # laki. BY Vi = v8 and Vg (k) = Vo+(kt), (3.4) shows that
Ymtk = Va+k- These give ki(mg — fBa) + kao(my — B1) = 0 and (k1 + 1) (me — B2) +
(ko +13)(my— B1) = 0, which imply that m = 8 as l1ky # loky. Then (3.6) implies
the desired result.

(i) Case l1ky = ok and 1l # 0. From (3.7),

(ma 4+ 14 (k1 +1)z) (mo + 1+ (ko + 12)2)
— (B 1+ (ki +10)z) (B + 1+ (ke +15)2) =0
is a quadratic equation with respect to variable z with infinite roots. Then we get
(m1+ 14 (ki +1)z) (ma + 1+ (ks + 15)2)
= (Bi4+ 14 (k1 +1)2) (Ba+ 1+ (ks + 12)2)

on C. Through comparing the coefficients of 1, z, and 22, we have 3 = m or
B=(Fmy+1)—1,2(mi+1)—1). O

Proposition 3.2. Let k # 1, and let k? + 12 #£0 (i =1,2). Suppose that M is a
reducing subspace for T, and that M C L., where m € A. Then either 2™ € M
or z™ € M+,

Proof. Let P be the orthogonal projection from LZ(D?) onto M. Since M C L,
and L,, is a reducing subspace for T,,, we have P|;,  : L,, = L,, and P € V*(¢p).
Notice that m € A indicates m € Q. If kyls # ksoly, by combining Proposition 3.1
and Lemma 2.9 we can easily get the desired result. If kils = koly, we can easily
see that (%(mg +1)—1, %(ml +1)—1) € A as m € A. Then, Proposition 3.1
shows that Pz™ = ¢z™, ¢ € C. Thus, the desired conclusion follows. O

Theorem 3.3. Let k # | and let k? +1? # 0 (i = 1,2). Suppose that m € A.
Then Ly, is a minimal reducing subspace for T,,.

Proof. Assume that there is a nonzero reducing subspace M C L,,,. Then L,,&M
is also a reducing subspace. By Proposition 3.2, we may suppose that z™ € M.
To get the desired result, we only need to prove that

Zm—l—uk—i—vl c M (38)

for u,v € Z and m + uk + vl > (0,0).

The proof is divided into two cases: k1ko # 0 and k1ky = 0.

Case one: kiky # 0. Write ¢; = min{c € Z, : m+ck = il},i € Z,. If my < sy,
then m; < k1 < [;. If mi > 81, then mq < s9 and kqly = llk‘g, l1ly 7é 0. By ki < ll,
we know that mo < o < ky. So it is easy to see that ¢; < ¢; 1. Note that

TIz" =2"% e M, je(0,a]NN, (3.9)

and that
T;2" = 2 e M.
Observe that

T01+1zm :Zm+(cl+l)k+ YmA-c1k Zm+clk—l GM
v ’Ym+c1kfl
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Then

T£1+lzm _ T;H—IPMZm _ PMZm+(cl+1)k + Tmcirk PMZm+clk—l c M
Ym+ci1k—1
By the definition of ¢, along with m + ¢1k — 1 % I, m + 1k — | % k, and
m+ (c1 +1)k = k+1, Lemmas 2.4 and 2.9 show that Pyzmtek=l = zmtak=l anq
that Pzt etk — cmt(eitDk Thys we deduce that

gmHertDk ombek—l ¢ Aq (3.10)
By

T;Zm-‘rjk — zm+jk+l + Mzm—&-(j—l)k c M7 j € []_, Cl] NN
Ym+(i—1)k

and (3.9), we see that ™" € M, j € [1,¢;] N N. Furthermore,

* _m~uk+uvl m~uk+(v+1)1 Vm+tuk+ol m~+(u—1)k+vl
Trzmruitel = gm oDl ARt pmt =Dkl ¢ pg (3.11)
YmA4-(u—1)k+vl
shows that (3.8) holds for u,v € Z, 1 <u < ¢, v >0, and u = ¢y, v > —1.
Suppose that the equality (3.8) holds for u,v € Z, 1 < u < ¢, and m+uk+vl =
(0,0). Then, the following statements hold:
(i) ngm“”k_"l = gmtlentilk=nl ¢ M5 € (0,1 — o] NN;
(ii) gmensitk=(n+Dl c A, The proof is similar to that of (3.10) by using
Lemma 2.4, Lemma 2.9, and

_ - Ym+teny1k—nl _
T(pzm+cn+1k nl _ m+(cn+1+1)k nl+ Mm+Cn41R—n Zm+cn+1k (n+1)1 c M,

Ym-cpyrk—(n+1)l

(iii) zmHentDh=vl ¢ M for j € [1,¢041 — o) NN, v € (0,n — 1] NN, since

z

m+(cn+j)k—vl _ T* m+(cn+j)k—(v+1)1 Vm(enti)k—(v+1)1 m+(cn+j—1)k—(v+1)I
Z = (pZ - z .

Ym+t(cn+j—1)k—(v+1)1
Therefore, we have proved that (3.8) holds for m+uk+vl = (0,0), v € Z, u € N.
To end the proof of case one, we only need to prove that (3.8) holds for m +
vl —nk = (0,0),n € Z,, v € N. Write d; = max{d € Z; : m +il = dk}, i € Z,.
Since we already have that 2% ¢ M for v € Z,.

4k
T; Stk me (ot )lk Ym+ol+ Lmtol
Ym+vl

implies that ™% € M for all v € Z, . From

_ — l—nk _
T;Zervl nk _ Zm+(v+1)l nk + TmA4vl—n, Zervl (n+1)k
Fmtvl—(n+1)k

we get that z™+*="% ¢ M for all v € N and n € [0,d,] N N. Hence, (3.8) holds
for m + vl —nk > (0,0),n € Z,, v € N.
Case two: kike = 0. The proof of this part is trivial.
(1) If ky = ky = 0: Here, Tj'2™ = 2™+ i € Z, indicates that 2" € M for
all v € Z+.

Y
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(2) If ky =0 and ky # 0: By the assumption we have l; # 0. From
Tiz™ =z2"""  ieN,

we have 2™t € M for u € Z,..
(21) If Iy > ko: Here

Imtuk+nl -
T;Zm—i—uk:—i-nl — Zm—i—uk—}—(n—‘rl)l + m+uk+n Zm+(u 1)k+nl’ ne Z+
YmA4-(u—1)k+nl

yields that z™+uk+el ¢ M for v € N and m + uk + vl = (0,0). Using
the same method as in case one, we can prove that (3.8) holds for
m ~+ vl —nk = (0,0),n € Zy, v eN.

(2.2) If kg > Iy and Iy # 0: Let ¢; = min{c € Zy : m+ ¢l = ik}, i € Z,.
Exchanging T, and 77, k and [ in the proof of case one, we get
zmtvituk e M for v € N, u € Z and m + vl + uk = (0,0).

(2.3) If Iy = 0: Clearly, T3'2™ = 2™*", i € Z, indicates that ™™ € M
for allv e Z,.

(3) If ky = 0 and k; # 0: Here, Iy # 0. Exchanging z; and 2z, we have the
same conclusion as in (2).

Above all, L,, € M. The theorem is proved. O

In particular, if kily = kolq, then there exist p,q € Z such that pk + ql = s,
where s = (s1, $2) is defined by (3.1). By the proof in Theorem 3.3, we have the
result as follows.

Corollary 3.4. [fk 7£ l, kllg = k’Qll, and l1l2 % 0, then
Ly, =span{z""":h=0,1,2,...}, meA
are minimal reducing subspaces for T,x .

Second, we consider unitary equivalence between the reducing subspaces L,,
(see [12]). Two reducing subspaces M; and M, of T,, are called unitarily equivalent
if there exists an operator U on LZ(D?) such that Uly, is unitary from M; onto
Mo, Ulpp = 0 and U commutes with both T, and T7.

Proposition 3.5. Let k # . Suppose that m,m' € A. Then the following state-
ments hold:

(1) if kilo # koly, then Ly, and L, are unitarily equivalent if and only if
m=m';

(11) kallg = kzll, l1l2 7£ 0 and Zf(%(mg—l—]_) —1, f—f(m1+1)—1) € Za_, then Lm
and L, are unitarily equivalent if and only if m' = m or m’ = (f—;(mg +

1)—1, ﬁ—f(ml +1)—1). Otherwise, if (%(mg +1)—1, ﬁ—f(ml +1)—-1) ¢ Z7,
then L,, and L,, are unitarily equivalent if and only if m' = m.
Proof. 1t is sufficient to verify the necessity. Suppose that L,, and L,, are unitarily

equivalent. Then there is an operator U € V*(y) satistying that U|,, : Ly, — Ly
is unitary.
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(i) Let liks # kils. If Qn(N) # 0, then Proposition 3.1 implies that m = m/
and Uz™ = z™. On the other hand, if @,,(\) = 0, then Lemma 2.9 shows the
desired result. Therefore, statement (i) is set up.

(ii) If l1ko = k1ly and [1ls # 0, then [1ly # kiks and @, (A) # 0. Proposition 3.1
implies that

Uz™ = cz™ kit (3.12)
where ¢ € C and one of the following statements holds:
(a) m =m' + ik + jl;
(b) m' + ik + jl = (%(mg +1) — 1,%(m1 + 1) — 1), where [l # 0 and
(F(ma+1) =1, 2(my+1) —1) € Z2.

Next, we prove that i = j = 0. Suppose on the contrary that (i,7) # (0,0);
then |ik, + jl,| > s, for p = 1,2. Since kil = koly and [;ly # 0, there is
1k + 5l = %(Zkg + jls). Without loss of generality, suppose that ik, + jl; > 0. By
statement (a), we have m, = m, +ik, +jl, > s, (p = 1,2), which contradicts the
fact that m € A. By statement (b), we obtain that %(mé—i—l) =my+1—(ik1+70)
is clearly an integer and %(mg + 1) > 0. It follows that

. . l
zk1+j11:m1+1—l—1(m'2+1)§m1.
2

Likewise, we also get

. . l
zk:2+j12:m2+1—l—2(m’1+1) < Mmes.
1
Therefore, s, < ik, + jl, < m, for p = 1,2, which contradicts the fact that
m € A. So the proof is completed. O

Corollary 3.6. If k # 1, kily = ksly, l1ls # 0, and s; = s, then L, and L,, are
unitarily equivalent if and only if m' = m or m' = (mg, my).
Theorem 3.7. Let k # 1, let kily = l1ko, and let [1l3 # 0. Set
M ap = span{(azm + b2 G e Tik + jl4+m = (0, 0)},

wherem € A and m' = (%(m2+1)—1,%(m1+1)—1) €Z%, a,be C andab#0.
Then M, op s a minimal reducing subspace.
Proof. By the assumption, there exist M, N € Z, such that k = (Msy, Mss),
[ = (Nsy, Nsy) with ged{M, N} = 1. We first establish one claim: if m € A,
then m + ik + jl »= (0,0) if and only if m' + ik + jl = (0,0), where m’ =
(E(ma+1) =1, 8(my +1) = 1) € Z3.

Indeed, by the definition of A, we have m = (my,my) € A if and only if
0 <my < sp0r0 < my < sy. Without loss of generality, we will assume that
0 < my < s;. Thus, mf, = z—f(m1+1)—1 < 89 — 1 < s9; that is, m’ € A.
Since |ik, + jl,| > s, (p = 1,2) and (iky + jl1)(ika + jla) > 0 as kyly = l1k2, then
m+ik+jl = (0,0) if and only if ik+ 51 > (0,0) if and only if m’'+ik+ 351 = (0,0),
where i, 5 € Z.
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To conclude, we only need to prove that L,, and M,,, ,; are unitarily equivalent.
Let U be the linear map from L,, onto M,, ,; defined by

/

U( - ) = ! <a = +b G >Zz’k+jl'
Vmetikejt a2+ [b]2 N Vmtiktit  Vmitiktit

One can easily get Vimiinij = Ymtiksj since kily = liky. Clearly, 2™+t |
2+ whenever m # m' and m+ik+jl, m'+ik+ 35l = (0,0). Fix 4, j,p,q € Z.
Write (7,7) ~ (p,q) if ik + jl = pk + gl and ik + jl, pk + ¢l = (0,0). Let [(p, q)]
denote the set of all (,7) € Z2 satisfying (7,7) ~ (p, q). Thus,

[ 2 (3 )

27J€Z+7m+lk+jlt(070) p q E[ ( .]

(S (3 )|

4,€ L1 ;m+ik+31=(0,0) (p,)€[(4.5)]

2
m+ik+jl
E : qu>z

1,§€Z4 ;m~+ik+351=(0,0)  (p,q)€[(4,5)]

‘ Z ( Z qu> mtik-+jl

1,§ €24 ;m~+ik+;51=(0,0) (p,q)€[(4,5)]

where f,, € C. That is, U is unitary. Since T is self-adjoint, then it remains to
show that UT, = T,,U. Before continuing, we observe that m + ¢k + jl = [ if and
only if m’ + ik + jl = [ by the claim. Hence, a direct computation leads to the
fact that UT, = T,U. O

Next, we give a complete description of the reducing subspaces for T, and we
show there is no other reducing subspaces for T, other than the common reducing
subspaces for T.x and 1.

Theorem 3.8. Let k # I, let K} + 12 # 0 (i = 1,2), and let M be a reducing
subspace for T,,. Then M is the orthogonal sum of some minimal reducing sub-
spaces. Moreover, M is a minimal reducing subspace for T,, if and only if M has
the form as follows.
(i) If lyky # kily, then M = L,, for some m € A.
(ii) If l1ke = k1ly and l1ly # 0, then there exist m € A and a,b € C such that
M = M, o0 where My, o are defined by

M ap = spﬁ{(azm + bzm/)zikﬂ'l 21,7 € Zyik + jl+m = (0, 0)}

with m' = (%(mg +1)—-1,2 2(my +1) = 1). In particular, if m' ¢ 77, then
b=0.

Proof. Notice that if Py (2™) = 0, then L,, L M. By (3.2), there is m € A such
that Puy(2™) # 0. If [1ky # kilp, then Py(2™) = ¢2™ # 0. Therefore, 2™ € M
and L,, € M. If l1ky = k1l and 11y # 0, then there are a,b € C and m’ defined
as in condition (ii) such that Py(z™) = az™ + b2™ € M by Proposition 3.1.
Since az™ + bz € M, ap, Which is a minimal reducing subspace for T,,, then
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Mppap € M and M S M,, . is also a reducing subspace for T,,. So we get the
desired results. O

If &y = ks = 0, then we have the following corollary, which includes the results
of Tin.ar (see [18, Theorem 2.4] for the weighted case; see [16, Theorem 2.5] for

the unweighted case).

Corollary 3.9. Let M be a reducing subspace for T with | = (Iy,1y) € N%. Then
there exist m = (my,my) € Z2 satisfying mq < l; or mg < ly, and a,b € C such
that

Spﬁ{(azm + b2 e Z+} C M,
where m' = (%(mg +1)—1, %(ml +1)—1). Moreover, M is minimal if and only
if

M = span{(az" + b2 g € Z}.
In particular, if m' ¢ 77, then b= 0.

However, the case of k = [ is sharply different from that of k£ # [.

Theorem 3.10. Let k € Z%, and let d € N. Then T, is completely reducible
on L2(D?).

Proof. By the spectral theorem of normal operators, a normal operator is com-
pletely reducible if and only if it has no eigenvalues. Thus, we only need to show
that Tk, s has no eigenvalues on L2(ID%). Recall that v is a pluriharmonic func-
tion on D¢ if and only if %u =0foralli,j=0,1,...,d. Thus, f(z) = 2F+ zF
is surely a bounded real pluriharmonic function on D¢ and continuous on D<.
McDonald and Sundberg [17] proved that if u is bounded real harmonic function
on D, then T, has no (nonzero) eigenvectors. Next, we will prove a similar result
over the polydisk. Suppose that u is a bounded real pluriharmonic function on
D? which is continuous on D?. If T, f = 0 for some f € L2(D?), then we have
uf € (L2(DY))*L. Therefore,

0= (uf. fg)
- / ulfPgdA)
]D)d

— [ ulsgaac
]D)‘i

- / ul f2g dA(=),
]D)d

for any g € H>(D?). It follows that

| ulf Rel) daz) o

By replacing Re(g) with u, we have
[l aa) <o,
D4
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which shows that «f = 0 almost everywhere on D% Let N (u) = {z € D? : u(z) =
0}. If u(z) is not equal to zero identically, we must have f(z) = 0 on the nonempty
open set E = N (u)¢NDY, forcing f = 0 on D?. Notice that T.« s is self-adjoint,
hence (1,1, 5+) C R. By the analysis above, T« s has no eigenvalues. Therefore,
T, s is completely reducible on L2(D?). O

Now, we give two examples.

Ezample 3.11. Let k = (2,4), | = (4,2). It is easy to see that kily # kaly. Then
= (2,2) and
A={(i,j) ez :i€0,2),j€0,6)}.
Then, from Theorem 3.8, L,, = span{z™+tuCH+v®2) «m 4 4(2,4) + v(4,2) =
(0,0),u,v € Z}, m € A, are all the minimal reducing subspaces for 7', ,

z z2+z1z2
Ezample 3.12. Let k = (2,4), | = (3,6). Obviously, kilo = ksl;. Then s = (1,2)
and
A={(i,j)eZi:ie0,1)orje[0,2)}.

Corollary 3.4 indicates that L,, = span{z™*"1:2 : h € Z,}, m € A, are minimal

reducing subspaces for T, , 7. But they are not all the minimal reducmg sub-
172 172
spaces for T, , —5—s. For instance, by Theorem 3.8, let m = (0,3), m" = (1,1), we
172 T#1%2 R
have M, = spanf (azj + bz 29)2* i 2 i j € Z,ik + jl+ (0,3) = (0,0)}, a,b € C,

is also minimal for T 2.4
+le2

4. SOME RESULTS ON THE UNIT DISK

Analogous to the proofs in Section 2 and Section 3, we can determine the
reducing subspaces for T.r - on the unit disk D. If k¥ = [, then Theorem 3.10
indicates that .k, is completely reducible on L2(D). If k # I, then we have the
following results.

Theorem 4.1. Let p(z) = 28 + 2, 2 € D with k,l € Z, and k # 1. Let s =
ged{k,1} for kl #0; s = |k —1| for kl = 0. Then L, = span{z*t"* : n € Z,}
(0 < a < s) are all the minimal reducing subspaces for T, and each reducing
subspace is an orthogonal sum of some minimal reducing subspaces.

Proof. Since k # [, we might as well assume that 0 < k < [. Denote by T =
15T, — 1,17 Then, T2" = wy2", where

nt+l — n4l
ntk+l 10 0<n<k,
— n+1 _ n—k+1 _ n+1
Wn = ntke n+l nlt1° E<n<l, (4.1)
n+l _ n—k4+1 _ _ni4l n—Il+1
n+k+1 n+1 n+l4+1 + n+l n 2z L.

Clearly, the following statements hold:
(1) W, # Wiy for 0 < my,my < k and my # mo, since f(z) = 25 — 2= is
strictly increasing on [0, k);
(2) Wiy # Wiy, for k < my,mg <l and my # mag, since h(zx) = & — =8 — 2
is strictly decreasing on [k, [);
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(3) Wiy # Wiy, for my,me > 1 and my # meg, since g(x) = —=
is a strictly decreasing function on [I, +00);

(4) wy < 0 for n > 1, since gn(x) = A5 — =L4l s strictly increasing on
[, 1]

Note that L, is a reducing subspace for 7,,. We only need to prove the following
statements:

(1') L, is minimal,
(2") each nonzero reducing subspace contains L,, for some 0 < gy < s.

By the definition of s, there exist integers M, N such that k = Ms and [ = Ns
with 0 < M < N. Moreover, there exist nonnegative integers u,v such that
|uk — vl| = s. Using the same method in Theorem 3.3, we can demonstrate that
the reducing subspace generated by 2 equals to L,.

Let M be a nonzero reducing subspace and let P be the orthogonal projection
from L2(D) onto M. By PT = TP, we have Pz* = S ;_/ cn 2T with
Whins = Wq-

If £ =0, then s = [ and statements (1) and (4) show that Pz* = ¢z%, ¢ € C.

If £k #0,then 0 < M < N and gcd{M N} = 1. The statements (1)—(4) show
that Pz% = cpz® + dpz@T™os 4 Zb 0 27T where Wyings = Whinys = Wa and
M <ng,ny,<Nfor0<b<s—1. ByPT* “:T;Pz“, there is

nely

P2a+l :Coza+l+d02a+nos+l+d0 Yatnos ZaJrnoS*k

Ya+nos—k
Z Yo+
+ <Cbzb+nbs+l 4+ o _ 1btngs b+nbs k
b—0 Vo+nps—k

If dy # 0, then the fact PT" = T'P implies that w,y; = Watnys+i, Which contradicts
(3). So dy = 0. Similarly, we have ¢, = 0 for 0 < b < s — 1. Therefore, Pz* = ¢z®
for some ¢ € C. This means that P(z*) # 0 if and only if L, C M; P(z*) =0
if and only if L, L M. Let M C L,; then M equals either {0} or L,. Therefore,
L, is minimal. Let M be a nonzero reducing subspace. Since L?(D) = @Z;(l) Lo,
there exists ap € [0, s) such that P(z%) # 0; that is, L,, € M. Hence, (1’) and
(2") hold and we finish the proof. O

Letting [ = 0 in Theorem 4.1, we get the following result, which corresponds
somewhat to results given by Stessin and Zhu in [19].

Corollary 4.2. The Toeplitz operator T, on L2(D) has 2% —2 nontrivial reducing
subspaces. Moreover, L, = span{z*""* :n € Z,} (0 < a < k) are all the minimal
reducing subspaces for T, and each reducing subspace is an orthogonal sum of
some minimal reducing subspaces.

As an application of Theorem 4.1, we can also deal with the case k? + 1 = 0
for some i € {1,2} over the bidisk. Assume ky = ly = 0 (or k; = 1 = 0); it is
easy to prove the following result.
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Corollary 4.3. Let N,M € Z, with N* + M? # 0, and

) ged{N,M}, NM #0,
|IN-M|, NM=0.

Let M be a reducing subspace for Tn s (2 € D) on L2(D?). Then M is
minimal if and only if there exist 0 < a < s and f(w) € L*(D) such that
M = f(w)span{z“"" :n € Z, } with w € D.

Proof. The sufficiency is obvious. We only show the sketch of proof for necessity.
If M # {0}, then there is a nonzero function h(z,w) = > r, hi(w)z" € M,
where hy € LZ(D) and >, [|hr(w)]]?]|2*]|* < oo. As in Theorem 4.1, we can
prove that there exists 0 < a < s such that P(h,(w)z*) = chq(w)z* # 0. Let
f(w) = hq(w). Therefore, M = f(w)span{z*t"* :n € Z,}. O

5. THE STRUCTURE OF V*(y)

In this section, we consider the structure of V*(¢) both over the bidisk and
the unit disk, where ¢ = 2* + Z!. Let A denote a von Neumann algebra. Then
E is an Abelian projection if EAFE is an Abelian algebra. We consider A to be
homogeneous if there is a family of pairwise orthogonal Abelian projections that
are mutually equivalent and whose sum is identity. As it is known, Conway |[3]
has characterized the structure of homogeneous von Neumann algebras. Recently,
Guo and Huang [12] generalized this to the following.

Proposition 5.1 ([12, Corollary 8.2.6]). Let ¢ denote the set of all minimal
projections in a von Neumann algebra A, and suppose that

VE:L
FEece

Then there is a family of {A\;} of subsets of € such that

(i) each {A;} consists of pairwisely orthogonal, mutually equivalent projec-
tions in A;
(i) if E', E" lie in different {\;}, then E’ is not equivalent to E";
(iii) Zz ZEeAi =1

Consequently, the von Neumann algebra A is x- isomorphic to
P M. (C),

where n; denotes the cardinality of {A;}, allowed to be infinite.

It is known that two reducing subspaces M; and M, for T, are unitarily equiv-
alent if and only if Py, and Py, are equivalent in V*(¢); that is, there is a partial
isometry V' in V*(¢p) such that

V*V =Py, VV* =Py,

Now, we are ready to give the main results in this section as follows:
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Theorem 5.2. Given that ¢(z) = 2 + z!, where k,1 € Z2, k # | and kI + [ #
0 (i = 1,2). Then V*(p) is a Type I von Neumann algebra. Furthermore, the
following statements hold.

(1) If kyly # koly, then V*(@) is Abelian and is x-isomorphic to

de
=1

where j = |l1ky — loky].
(ii) If k1ly = koly and s = (s1, s2) is defined as in (3.1), then V*(p) = V*(2*)
and V*(p) is never Abelian. Moreover, if sy = sy = r, then V*(p) is

x-1somorphic to
P10 e PC:
j=1 i=1

if s1 # 8o, then V*(p) is x-isomorphic to the direct sum of countably many

M,(C) & C.

Proof. Let P,, denote the orthogonal projection from L?(D?) onto L,,. By the
definition of A, we have ) . P, = I. Kadison and Ringrose [14] gave the fact
that if £ is a minimal projection in von Neumann algebra R, then FE is an Abelian
projection in R. Thus, every P,, is an Abelian projection. What’s more, V*(y) is
type L.

Let A,, denote the set of the orthogonal projections which are unitarily equiv-
alent to P,,. If kyly # koly, Proposition 3.5(i) shows that A, = {P,,} for m € A
and Card A = j.

If k1l = koly and s; = sy = 7, then Corollary 3.6 shows that L,, is unitarily
equivalent to L,, if and only if m = m’ whenever m; = ms. That is, Card A,, = 1
for 0 < my =my <7, Card A, =2 for m € A and my # ms.

If kily = koly and s; # sg, by Proposition 3.5(ii), we have Card A,, = 1 for
m' ¢ 72 and Card A,,, = 2 for m’ € Z2..

Therefore, by Proposition 5.1, we proved (ii). O

Remark 5.3. If ko = 1 = 0, the statement (i) in Theorem 5.2 identifies with the
case a = [ of the main result in [5].

On the Bergman space over the unit disk, from Theorem 4.1 and Corollary 4.2,
it is interesting to note that V*(2* +z') = V*(2*) for k # I. Moreover, in the proof
of Theorem 4.1, we have proved that if U € V*(2* + 2!) satisfying Ul : Ly — L
is unitary, then there is ¢ € C depending on U such that Uz® = ¢z®. That is, L,
and L, are unitarily equivalent if and only if a = a’. Then we have the following
result.

Theorem 5.4. Given ¢(z) = 2* + 2, 2 € D with k,l € Z,, k # . Let s =
ged{k,l} for kl #0; s = |k — 1| for kl = 0. Then V*(p) is an Abelian Type I von
Neumann algebra, and it is *-isomorphic to

e
=1
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For the case that k = [, since T.x s is normal on L2(D?) (d € N), the von
Neumann algebra W*(z* 4 z¥) generated by T« s is Abelian. Thus, W*(2* + z¥)
is Type I. One of the main results in [14] asserts that, if R is a von Neu-
mann algebra acting on a Hilbert space H, then the commutant R’ is of type

I (or II, or III) when R has the same property. Therefore, the following result
holds.

Theorem 5.5. V*(zF + zF) on L2(DY) (d € N) is a Type I von Neumann alge-
bra.
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