Selective and Ramsey Ultrafilters on G-spaces

Oleksandr Petrenko and Igor Protasov

Abstract Let *G* be a group, and let *X* be an infinite transitive *G*-space. A free ultrafilter \mathcal{U} on *X* is called *G*-selective if, for any *G*-invariant partition \mathcal{P} of *X*, either one cell of \mathcal{P} is a member of \mathcal{U} , or there is a member of \mathcal{U} which meets each cell of \mathcal{P} in at most one point. We show that in ZFC with no additional settheoretical assumptions there exists a *G*-selective ultrafilter on *X*. We describe all *G*-spaces *X* such that each free ultrafilter on *X* is *G*-selective, and we prove that a free ultrafilter \mathcal{U} on ω is selective if and only if \mathcal{U} is *G*-selective with respect to the action of any countable group *G* of permutations of ω .

A free ultrafilter \mathcal{U} on X is called *G*-*Ramsey* if, for any *G*-invariant coloring $\chi : [X]^2 \to \{0, 1\}$, there is $U \in \mathcal{U}$ such that $[U]^2$ is χ -monochromatic. We show that each *G*-Ramsey ultrafilter on X is *G*-selective. Additional theorems give a lot of examples of ultrafilters on \mathbb{Z} that are \mathbb{Z} -selective but not \mathbb{Z} -Ramsey.

0 Introduction

A free ultrafilter \mathcal{U} on an infinite set X is said to be *selective* if, for any partition \mathcal{P} of X, either one cell of \mathcal{P} is a member of \mathcal{U} , or some member of \mathcal{U} meets each cell of \mathcal{P} in at most one point. The selective ultrafilters on $\omega = \{0, 1, ...\}$ are also known under the name *Ramsey ultrafilters* (see, e.g., [1]), because \mathcal{U} is selective if and only if, for each coloring $\chi : [\omega]^2 \to \{0, 1\}$ of 2-element subsets of ω , there exists $U \in \mathcal{U}$ such that the restriction $\chi|_{[\mathcal{U}]^2} \equiv \text{const.}$

Let *G* be a group, and let *X* be a *G*-space with the action $G \times X \to X$, $(g, x) \mapsto gx$. All *G*-spaces under consideration are supposed to be *transitive*: for any $x, y \in X$, there exists $g \in G$ such that gx = y. The nontransitive case needs some extra investigation. If G = X and gx is the product of g and x in G, then X is called a *regular G*-space. A partition \mathcal{P} of a *G*-space X is *G*-invariant if $gP \in \mathcal{P}$ for all $g \in G$, $P \in \mathcal{P}$.

Received June 27, 2012; accepted August 27, 2014 First published online April 19, 2017

2010 Mathematics Subject Classification: Primary X001, 05D10; Secondary 54H15 Keywords: *G*-space, *G*-selective and *G*-Ramsey ultrafilters, Stone–Čech compactification

© 2017 by University of Notre Dame 10.1215/00294527-3839090

Now let X be an infinite G-space. We say that a free ultrafilter \mathcal{U} on X is G-selective if, for any G-invariant partition \mathcal{P} of X, either some cell of \mathcal{P} is a member of \mathcal{U} , or there exists $U \in \mathcal{U}$ such that $|P \cap U| \leq 1$ for each $P \in \mathcal{P}$. Clearly, each selective ultrafilter on X is G-selective.

Selective ultrafilters on ω exist under some set-theoretical assumptions additional to ZFC (say, the continuum hypothesis CH), but there are models of ZFC with no selective ultrafilters (see [1]). In contrast to these facts, we show (Theorem 1.1) that a *G*-selective ultrafilter exists on any infinite *G*-space *X*. Then we characterize (Theorem 1.2) all *G*-spaces *X* such that each free ultrafilter on *X* is *G*-selective, and we show (Theorem 1.3) that a free ultrafilter \mathcal{U} on ω is *G*-selective for any transitive group *G* of permutations on ω if and only if \mathcal{U} is selective.

For a *G*-space X and $n \ge 2$, a coloring $\chi : [X]^n \to \{0, 1\}$ is said to be *G*-invariant if, for any $\{x_1, \ldots, x_n\} \in [X]^n$ and $g \in G$, $\chi(\{x_1, \ldots, x_n\}) = \chi(\{gx_1, \ldots, gx_n\})$. We say that a free ultrafilter \mathcal{U} on X is (G, n)-Ramsey if, for every *G*-invariant coloring $\chi : [X]^n \to \{0, 1\}$, there exists $U \in \mathcal{U}$ such that $\chi|_{[U]^n} \equiv \text{const.}$ In the case in which n = 2, we write "*G*-Ramsey" instead of "(G, 2)-Ramsey."

We show (Theorem 2.1) that every *G*-Ramsey ultrafilter is *G*-selective, but the converse statement is very far from the truth. Theorems 2.2 and 2.6 give us plenty of ultrafilters on \mathbb{Z} that are \mathbb{Z} -selective but not \mathbb{Z} -Ramsey. Moreover, we conjecture that each \mathbb{Z} -Ramsey ultrafilter on \mathbb{Z} is selective. By Corollary 2.8, each (\mathbb{Z} , 4)-Ramsey ultrafilter is selective.

A *B*-Ramsey ultrafilter on the countable Boolean group $B = \bigoplus_{\omega} \mathbb{Z}_2$ needs not be selective, but a *B*-Ramsey ultrafilter cannot be constructed in ZFC without additional assumptions.

1 Selective Ultrafilters

Let *X* be a *G*-space, and let $x_0 \in X$. We put $St(x_0) = \{g \in G : gx_0 = x_0\}$ and identify *X* with the left coset space $G/St(x_0)$ of *G* by $St(x_0)$. If \mathcal{P} is a *G*-invariant partition of X = G/S, $S = St(x_0)$, we take $P_0 \in \mathcal{P}$ such that $S \in P_0$, put $H = \{g \in G : gS \in P_0\}$, and note that the subgroup *H* completely determines that $\mathcal{P}: xS, yS \in G/S$ are in the same cell of \mathcal{P} if and only if $y^{-1}x \in H$. Thus, $\mathcal{P} = \{x(H/S) : x \in L\}$, where *L* is a set of representatives of the left cosets of *G* by *H*.

Theorem 1.1 For every infinite G-space X, there exists a G-selective ultrafilter \mathcal{U} on X.

Proof We take $x_0 \in X$, put $S = St(x_0)$, and identify X with G/S. We choose a maximal filter \mathcal{F} on G/S having a base consisting of subsets of the form A/S, where A is a subgroup of G such that $S \subset A$ and $|A : S| = \infty$. Then we take an arbitrary ultrafilter \mathcal{U} on G/S such that $\mathcal{F} \subseteq \mathcal{U}$. To show that \mathcal{U} is G-selective, we take an arbitrary subgroup H of G such that $S \subseteq H$ and consider a partition \mathcal{P}_H of G/S determined by H.

If $|H \cap A : S| = \infty$ for each subgroup A of G such that $A/S \in \mathcal{F}$, then by the maximality of \mathcal{F} we have $H/S \in \mathcal{F}$. Hence, $H/S \in \mathcal{U}$. Otherwise, there exists a subgroup A of G such that $A/S \in \mathcal{F}$ and $|H \cap A : S|$ is finite, $|H \cap A : S| = n$. We take an arbitrary $g \in G$ and denote $gH \cap A = T_g$. If $a \in T_g$, then $a^{-1}T_g \subseteq A$ and $a^{-1}T_g \subseteq H$. Hence, $a^{-1}T_g/S \subseteq A \cap H/S$ so $|T_g/S| \leq n$. If x and y determine the same coset by H, then they determine the same set T. Then we choose $U \in \mathcal{U}$

such that $|U \cap x(H \cap A/S)| \le 1$ for each $x \in G$. Thus, $|U \cap P| \le 1$ for each cell P of the partition \mathcal{P}_H .

Theorem 1.2 Let G be a group, let S be a subgroup of G such that $|G : S| = \infty$, and let X = G/S. Each free ultrafilter on X is G-selective if and only if, for each subgroup T of G such that $S \subset T \subset G$, either |T : S| is finite or |G : T| is finite.

Proof We suppose that there exists a subgroup *T* of *G* such that $S \subset T \subset G$ and $|T : S| = \infty$, $|G : T| = \infty$. We pick a family $\{g_n T : n \in \omega\}$ of distinct cosets of *G* by *T* and, using the Zorn lemma, choose a maximal family \mathcal{U} of subsets of *G*/*S* such that, for each $U \in \mathcal{U}$,

$${n \in \omega : U \cap g_n(T/S) \text{ is infinite}}$$

is infinite. Clearly, \mathcal{U} is an ultrafilter, and by the construction, each $U \in \mathcal{U}$ meets infinitely many members of the *G*-invariant partition \mathcal{P} determined by *T* in infinitely many points, so \mathcal{U} is not *G*-selective.

On the other hand, if $|T : S| < \infty$, then the *G*-invariant partition \mathcal{P} determined by *T* consists of finite sets of cardinality |T : S|. If $|G : T| < \infty$, then \mathcal{P} is a finite partition. Therefore, each free ultrafilter of G/S is *G*-selective.

Let *G* be an infinite abelian group such that, for each subgroup *S* of *G*, either *S* is finite or *G*/*S* is finite. If *G* has an element of infinite order, then *G* is isomorphic to $\mathbb{Z} \times F$, where *F* is finite. If *G* is a torsion group, then *G* is isomorphic to $\mathbb{Z}_{p^{\infty}} \times F$, where $\mathbb{Z}_{p^{\infty}}$ is the Prüfer *p*-group (see [3, Section 3]) and *F* is finite. This is an elementary exercise on abelian groups. Thus, the class of abelian groups *G* such that each ultrafilter on *G* is *G*-selective is very narrow.

Theorem 1.3 If a free ultrafilter \mathcal{U} on ω is G-selective with respect to the action of any transitive group G of permutations of ω , then \mathcal{U} is selective.

Proof Let \mathcal{P} be a partition of ω such that each member of \mathcal{P} is not a member of \mathcal{U} .

Claim. The partition \mathcal{P} can be partitioned $\mathcal{P} = \bigcup_{n \in \omega} \mathcal{P}_n$ so that, for each $n \in \omega$, $\bigcup \mathcal{P}_n$ is infinite and is not a member of \mathcal{U} . If the set \mathcal{P}' of all finite blocks of \mathcal{P} is finite, then we take an arbitrary infinite block P_0 , put $\mathcal{P}_0 = \{\mathcal{P}', \{P_0\}\}$, and enumerate all remaining infinite blocks of \mathcal{P} as $\mathcal{P}_1, \mathcal{P}_2, \ldots$. If \mathcal{P}' is infinite, then we partition $\mathcal{P}' = \mathcal{P}'_0 \cup \mathcal{P}'_1$ such that \mathcal{P}'_0 and \mathcal{P}'_1 are infinite. We take $i \in \{0, 1\}$ (say, i = 0) such that $\bigcup \mathcal{P}'_0 \notin \mathcal{U}$. Then we repeat this procedure for \mathcal{P}'_1 and so on. After ω steps, we get a desired partition of \mathcal{P}' . Such partition of \mathcal{P}' together with $\mathcal{P} \setminus \mathcal{P}'$ gives us the desired partition of \mathcal{P} .

For each $n \in \omega$, we put $Q_n = \bigcup \mathcal{P}_n$, take an arbitrary countable group $G = \{g_n : n \in \omega\}$, and identify ω with $G \times G$, so that $Q_n = \{g_n\} \times G$, $n \in \omega$. We consider $G \times G$ as a regular $(G \times G)$ -space and note that the partition $\{Q_n : n \in \omega\}$ of $G \times G$ is $(G \times G)$ -invariant. Since \mathcal{U} is $(G \times G)$ -selective, there exists $U \in \mathcal{U}$ such that $|U \cap Q_n| \leq 1$ for each $n \in \omega$. By the construction of Q_n , $|U \cap P| \leq 1$ for each $P \in \mathcal{P}$. Hence, \mathcal{U} is selective.

2 Ramsey Ultrafilters

Theorem 2.1 For a G-space X, each G-Ramsey ultrafilter on X is G-selective.

Proof Let \mathcal{P} be a *G*-invariant partition of *X*. We define a coloring $\chi : [X]^2 \to \{0, 1\}$ by the following rule: $\chi(\{x, y\}) = 0$ if and only if *x*, *y* are in the same cell of the partition \mathcal{P} . Since \mathcal{P} is *G*-invariant, χ is also *G*-invariant. We take $U \in \mathcal{U}$ such that $\chi|_{[U]^2} \equiv i$ for some $i \in \{0, 1\}$. If i = 0 and $x \in U$, then *U* is contained in the block *P* of \mathcal{P} such that $x \in P$. If i = 1, then *U* meets each block of \mathcal{P} in at most one point. Hence, \mathcal{U} is *G*-selective.

Let *G* be a group with the identity *e*. Each *G*-invariant 2-coloring of the regular *G*-space can be described as follows. We say that a coloring $\chi' : G \setminus \{e\} \to \{0, 1\}$ is *symmetric* if $\chi'(x) = \chi'(x^{-1})$ for each $x \in G \setminus \{e\}$. Then we put $\chi(\{x, y\}) = \chi'(x^{-1}y)$ and note that $\chi(\{gx, gy\}) = \chi(\{x, y\})$ for all $\{x, y\} \in [G]^2$ and $g \in G$. On the other hand, if a coloring $\chi : [G]^2 \to \{0, 1\}$ is *G*-invariant, then the coloring $\chi' : G \setminus \{e\} \to \{0, 1\}, \chi'(x) = \chi(\{e, x\})$ is symmetric and uniquely determines χ .

We fix an arbitrary linear ordering \leq of *G* and, for each subset *U* of *G*, put $D(U) = \{x^{-1}y : x, y \in U, x < y\}$. For an ultrafilter *U* on *G*, we define a family D(U) of subsets of *G* by

$$V \in D(\mathcal{U}) \Leftrightarrow \exists U \in \mathcal{U} : D(U) \subseteq V.$$

We also use the product \mathcal{VU} of ultrafilters on G defined as follows (see [4, Chapter 4]). We take an arbitrary $V \in \mathcal{V}$ and, for each $g \in V$, pick $U_g \in \mathcal{U}$. Then $\bigcup_{g \in V} gU_g$ is a member of \mathcal{VU} , and each member of the ultrafilter \mathcal{VU} contains a subset of this form. We denote $\mathcal{U}^{-1} = \{U^{-1} : U \in \mathcal{U}\}, U^{-1} = \{g^{-1} : g \in U\}$.

Theorem 2.2 Let \leq be the natural linear ordering of \mathbb{Z} , let $\mathbb{Z}^+ = \{z \in \mathbb{Z} : z > 0\}$, and let \mathcal{U} be a free ultrafilter on \mathbb{Z} such that $\mathbb{Z}^+ \in \mathcal{U}$. Then the following statements hold:

- (i) $D(\mathcal{U}) \subseteq (-\mathcal{U}) + \mathcal{U};$
- (ii) \mathcal{U} is \mathbb{Z} -Ramsey if and only if $D(\mathcal{U}) = (-\mathcal{U}) + \mathcal{U}$ and if and only if $D(\mathcal{U})$ is an ultrafilter.

Proof (i) We take an arbitrary $U \in \mathcal{U}$ such that $U \subseteq \mathbb{Z}^+$. For each $z \in U$, put $U(z) = \{x \in U : x > z\}$. Then $D(U) = \bigcup_{z \in U} (-z + U(z))$. Since $U(z) \in \mathcal{U}$, by the definitions of $-\mathcal{U}$ and $(-\mathcal{U}) + \mathcal{U}$, we have $D(\mathcal{U}) \subseteq (-\mathcal{U}) + \mathcal{U}$.

(ii) We assume that \mathcal{U} is \mathbb{Z} -Ramsey and take $U \in \mathcal{U}, U \subseteq \mathbb{Z}^+$. For each $z \in U$, we pick an arbitrary $U_z \in \mathcal{U}$ such that z < x for each $x \in U$. Then we put $W = \bigcup_{z \in U} (-z + U_z)$ and define a symmetric coloring $\chi' : \mathbb{Z} \setminus \{0\} \rightarrow \{0, 1\}$. If $x \in W \cup (-W)$, then we put $\chi'(x) = 0$; otherwise, $\chi'(x) = 1$. We take a coloring $\chi : [\mathbb{Z}]^2 \rightarrow \{0, 1\}$ determined by χ' . Since \mathcal{U} is \mathbb{Z} -Ramsey, there is $V \in \mathcal{U}, V \subseteq U$, such that $\chi|_{[V]^2} \equiv i$ for some $i \in \{0, 1\}$. By the definition of χ' , i = 0 and $D(V) \subseteq W$. Hence, $W \in D(\mathcal{U})$ so $(-\mathcal{U}) + \mathcal{U} \subseteq D(\mathcal{U})$. By part (i), $D(\mathcal{U}) \subseteq (-\mathcal{U}) + \mathcal{U}$ so $D(\mathcal{U}) = (-\mathcal{U}) + \mathcal{U}$.

On the other hand, let $D(\mathcal{U}) = (-\mathcal{U}) + \mathcal{U}$. We consider an arbitrary symmetric coloring $\chi' : \mathbb{Z} \setminus \{0\} \to \{0, 1\}$ and denote by χ the corresponding coloring of $[\mathbb{Z}]^2$. Since $(-\mathcal{U}) + \mathcal{U}$ is an ultrafilter, there is $W \in (-\mathcal{U}) + \mathcal{U}$, $W \subseteq \mathbb{Z}^+$, such that $\chi'|_W \equiv i, i \in \{0, 1\}$. We take $V \in \mathcal{U}$ such that $D(V) \subseteq W$. Then $\chi|_{[V]^2} \equiv i$ so \mathcal{U} is \mathbb{Z} -Ramsey.

Let *G* be a discrete group. The Stone–Čech compactification βG of *G* can be identified with the set of all ultrafilters on *G*, and βG with the above-defined multiplication is a semigroup which has the minimal ideal $K(\beta G)$ (see [4, Chapter 6]).

Corollary 2.3 *Each ultrafilter U from the closure* $\operatorname{cl} K(\beta \mathbb{Z})$ *is not* \mathbb{Z} *-Ramsey.*

Proof On the contrary, we suppose that some ultrafilter $\mathcal{U} \in \operatorname{cl} K(\beta \mathbb{Z})$ is \mathbb{Z} -Ramsey. Since $\mathcal{U} \in \operatorname{cl} K(\beta \mathbb{Z})$, by [2, Corollary 5.0.28], for every $U \in \mathcal{U}$, there exists a finite subset K of \mathbb{Z} such that $\mathbb{Z} = K + U - U$. We note that $U - U = D(U) \cup (-D(U)) \cup \{0\}$. Now we partition $\mathbb{Z}^+ = Z_0 \cup Z_1$,

$$Z_0 = \bigcup_{n \in \omega} [2^{2n}, 2^{2n+1}), \qquad Z_1 = \mathbb{Z}^+ \setminus Z_0,$$

and applying Theorem 2.2(ii), choose $U \in \mathcal{U}$ and $i \in \{0, 1\}$ such that $D(U) \subseteq Z_i$. Clearly, $F + U - U \neq \mathbb{Z}$ for each finite subset F of \mathbb{Z} . Hence, $\mathcal{U} \notin K(\beta \mathbb{Z})$ and we get a contradiction.

We say that a free ultrafilter \mathcal{U} on an abelian group G is a *Schur ultrafilter* if, for any $U \in \mathcal{U}$, there are distinct $x, y \in U$ such that $x + y \in U$. We note that each idempotent of $\beta \mathbb{Z} \setminus \mathbb{Z}$ is a Schur ultrafilter.

Corollary 2.4 *Each Schur ultrafilter* \mathcal{U} *on* \mathbb{Z} *is not* \mathbb{Z} *-Ramsey.*

Proof On the contrary, we suppose that \mathcal{U} is \mathbb{Z} -Ramsey and $\mathbb{Z}^+ \in \mathcal{U}$. Since \mathcal{U} is a Schur ultrafilter, by Theorem 2.2, $D(\mathcal{U}) = \mathcal{U} = -\mathcal{U} + \mathcal{U}$. By [4, Corollary 13.19], $(-\mathcal{U}) + \mathcal{U} \neq \mathcal{U}$ for every free ultrafilter \mathcal{U} on \mathbb{Z} .

A free ultrafilter \mathcal{U} on \mathbb{Z} is called *prime* if \mathcal{U} cannot be represented as a sum of two free ultrafilters.

Corollary 2.5 *Every* \mathbb{Z} *-Ramsey ultrafilter on* \mathbb{Z} *is prime.*

Proof We need two auxiliary claims.

Claim 1. If \mathcal{U}, \mathcal{V} are free ultrafilters and $\mathcal{U} + \mathcal{V}$ is \mathbb{Z} -Ramsey, then $D(\mathcal{U} + \mathcal{V}) = D(\mathcal{U}) = D(\mathcal{V})$; in particular (see Theorem 2.2), \mathcal{U} and \mathcal{V} are \mathbb{Z} -Ramsey.

Let $W = \mathcal{U} + \mathcal{V}$, $U \in \mathcal{U}$, $V_x \in \mathcal{V}$, $x \in U$, and $W = \bigcup_{x \in U} x + V_x$. To see that $D(\mathcal{V}) = D(\mathcal{W})$, we fix $x \in U$ and put $V'_x = \{y \in V : y > x\}$. If $y_1, y_2 \in V_x$ and $y_2 > y_1$, then $y_2 - y_1 = (x + y_2) - (x + y_1)$, so $D(V_x) \subseteq D(\mathcal{W})$ and $D(\mathcal{W}) = D(\mathcal{V})$, because $D(\mathcal{W})$ is an ultrafilter.

To show that $D(\mathcal{U}) = D(\mathcal{W})$, we take $x_1, x_2 \in U$, $x_1 < x_2$, and pick an arbitrary $y \in V_{x_1} \cap V_{x_2}$. Since $x_2 - x_1 = (x_2 + y) - (x_1 + y)$ and $x_1 + y, x_2 + y \in W$, $D(U) \subseteq D(W)$ so $D(\mathcal{W}) = D(\mathcal{U})$.

Claim 2. If W is \mathbb{Z} -Ramsey, then W is a right cancellable element of the semigroup $\beta \mathbb{Z}$.

If not, by [4, Theorem 8.18], $\mathcal{W} = \mathcal{U} + \mathcal{W}$ for some idempotent \mathcal{U} . By Claim 1, \mathcal{U} is \mathbb{Z} -Ramsey, which contradicts Corollary 2.4.

Lastly, suppose that some \mathbb{Z} -Ramsey ultrafilter \mathcal{W} is represented as $\mathcal{W} = \mathcal{U} + \mathcal{V}$. Applying Theorem 2.2 and Claim 1, we get $D(\mathcal{W}) = D(\mathcal{U}) = D(\mathcal{V})$ and

$$D(\mathcal{W}) = (-\mathcal{U}) + (-\mathcal{V}) + \mathcal{U} + \mathcal{V}, \qquad D(\mathcal{V}) = (-\mathcal{V}) + \mathcal{V},$$
$$D(\mathcal{U}) = (-\mathcal{U}) + \mathcal{U}.$$

By Claim 2, $(-\mathcal{U}) + (-\mathcal{V}) + \mathcal{U} = (-\mathcal{V})$. It follows that $\mathbb{Z}^+ \in \mathcal{U}$ if and only if $\mathbb{Z}^+ \notin \mathcal{V}$. On the other hand, $(-\mathcal{U}) + \mathcal{U} = (-\mathcal{V}) + \mathcal{V}$. So, $\mathbb{Z}^+ \in \mathcal{U}$ if and only if $\mathbb{Z}^+ \in \mathcal{V}$. Hence, \mathcal{W} is prime.

We do not know whether every \mathbb{Z} -Ramsey ultrafilter \mathcal{U} is strongly prime, that is, \mathcal{U} does not lie in the closure of the set $\mathbb{Z}^* + \mathbb{Z}^*$. A free ultrafilter \mathcal{U} on a group G is strongly prime if and only if some member of \mathcal{U} is sparse. A subset S of an infinite group G is called *sparse* (see [5]) if, for every infinite subset X of G, there exists a finite subset $F \subset X$ such that $\bigcap_{g \in F} gS$ is finite.

Following [6], we say that a subset A of a group G is k-thin, $k \in \mathbb{N}$, if

 $|gA \cap A| \leq k$

for each $g \in G \setminus \{e\}$. Clearly, each k-thin subset is sparse.

Let \mathcal{U} be a \mathbb{Z} -Ramsey ultrafilter on \mathbb{Z} , $\mathbb{Z}^+ \in \mathcal{U}$. If there exists a Theorem 2.6 1-thin subset A of G such that $A \in \mathcal{U}$, then \mathcal{U} is selective.

Proof We fix an arbitrary coloring $\varphi : [\mathbb{Z}]^2 \to \{0, 1\}$ and define a symmetric coloring $\chi' : \mathbb{Z} \setminus \{0\} \to \{0, 1\}$ as follows. If $g \in \mathbb{Z} \setminus \{0\}$ and there are $a, b \in A$, a < b, such that g = b - a, then we put $\chi'(g) = \chi'(-g) = \varphi(\{a, b\})$. Otherwise, $\chi'(g) = \chi'(-g) = 1$. There is at most one such pair, because A is 1-thin. Then we consider the coloring $\chi : [\mathbb{Z}]^2 \to \{0, 1\}$ determined by χ' . Since \mathcal{U} is \mathbb{Z} -Ramsey, there exists $U \in \mathcal{U}, U \subseteq A$, such that $\chi|_{[U]^2} \equiv \text{const.}$ By the construction of χ , we have $\chi|_{[U]^2} \equiv \varphi|_{[U]^2}$. Thus, $\varphi|_{[U]^2} \equiv \text{const}$ and \mathcal{U} is selective.

We recall that a free ultrafilter \mathcal{U} on \mathbb{Z} is a *Q*-point if, for every partition \mathcal{P} of \mathbb{Z} into finite cells, there is a member of \mathcal{P} which meets each cell in at most one point.

Corollary 2.7 If a free ultrafilter \mathcal{U} on \mathbb{Z} is \mathbb{Z} -Ramsey and a Q-point, then \mathcal{U} is selective.

Proof To apply Theorem 2.6, it suffices to show that every Q-point \mathcal{U} has a 1-thin set. We suppose that $\mathbb{Z}^+ \in \mathcal{U}$, use the partition $\mathbb{Z}^+ = Z_0 \cup Z_1$ from Corollary 2.3, and take $i \in \{1, 2\}$ and $U \in \mathcal{U}$ such that U meets each cell $[2^m, 2^{m+1})$ of Z_i in at most one point. Clearly, U is 1-thin.

We do not know if each P-point in \mathbb{Z}^* is \mathbb{Z} -Ramsey. Recall that \mathcal{U} is a P-point if, for every partition \mathcal{P} of \mathbb{Z} , either some cell of \mathcal{P} is a member of \mathcal{U} , or there exists $U \in \mathcal{U}$ such that $U \cap P$ is finite for each $P \in \mathcal{P}$.

In the proof of the next corollary, we use the following observation: if \mathcal{U} is (\mathbb{Z}, n) -Ramsey and m < n, then \mathcal{U} is (\mathbb{Z}, m) -Ramsey. Indeed, every \mathbb{Z} -invariant coloring $\chi : [\mathbb{Z}]^m \to \{0, 1\}$ defines a \mathbb{Z} -invariant coloring $\chi' : [\mathbb{Z}]^n \to \{0, 1\}$ by the following rule: $\chi'(\{x_1, ..., x_n\}) = \chi(\{x_1, ..., x_m\}).$

Each $(\mathbb{Z}, 4)$ -Ramsey ultrafilter \mathcal{U} on \mathbb{Z} is selective. Corollary 2.8

Since \mathcal{U} is $(\mathbb{Z}, 2)$ -Ramsey, to apply Theorem 2.6, it suffices to find a 1-thin Proof member of \mathcal{U} .

We define a coloring $\chi_1 : [\mathbb{Z}]^4 \to \{0, 1\}$ by the following rule: $\chi_1(F) = 0$ if and only if there is a numeration $F = \{x, y, z, t\}$ such that x + y = z + t. Since χ_1 is \mathbb{Z} -invariant, there is $Y \in \mathcal{U}$ such that $\chi_1|_{[Y]^4} \equiv i$. Since A is infinite, i = 1.

Then we define a coloring $\chi_2 : [\mathbb{Z}]^3 \to \{0, 1\}$ by the following rule: $\chi_2(F) = 0$ if and only if F is an arithmetic progression. Since χ_2 is Z-invariant and U is $(\mathbb{Z}, 3)$ -Ramsey, there is $Z \in \mathcal{U}$ such that $Z \subset Y$ and $\chi_2|_{[Z]^3} \equiv i$. Clearly, i = 1.

Lastly, $\chi_1|_{[Z]^4} \equiv 1$ and $\chi_2|_{[Z]^3} \equiv 1$ imply that Z is 1-thin.

A free ultrafilter \mathcal{U} on an abelian group G is said to be a PS-ultrafilter if, for any coloring $\chi : G \to \{0, 1\}$, there exists $U \in \mathcal{U}$ such that the set PS(U) is χ -monochromatic, where $PS(U) = \{a + b : a, b \in U, a \neq b\}$. Clearly, each selective ultrafilter on G is a PS-ultrafilter. We denote by $PS(\mathcal{U})$ a filter with the base $\{PS(U) : U \in \mathcal{U}\}$. The following statements were proven in [6] (see also [2, Chapter 10]). If there exists a PS-ultrafilter on some countable abelian group, then there is a P-point in ω^* . If G has no elements of order 2, then each PS-ultrafilter on G is selective. A strongly summable ultrafilter on the countable Boolean group B is a PS-ultrafilter but not selective. It is easy to see that an ultrafilter \mathcal{U} on a countable Boolean group B is a PS-ultrafilter if and only if \mathcal{U} is B-Ramsey. Thus, a B-Ramsey ultrafilter need not be selective, but these ultrafilters cannot be constructed in ZFC without additional assumptions.

References

- [1] Comfort, W. W., "Ultrafilters: Some old and some new results," *Bulletin of the American Mathematical Society*, vol. 83 (1977), pp. 417–55. Zbl 0355.54005. MR 0454893. DOI 10.1090/S0002-9904-1977-14316-4. 453, 454
- [2] Filali, M., and I. V. Protasov, Ultrafilters and Topologies on Groups, vol. 13 of Mathematical Studies Monograph Series, VNTL Publishers, L'viv, 2011. Zbl 1316.54002. 457, 459
- [3] Fuchs, L., Infinite Abelian Groups, 1, vol. 36 of Pure and Applied Mathematics, Academic Press, New York, 1970. Zbl 0209.05503. MR 0255673. 455
- [4] Hindman, N., and D. Strauss, Algebra in the Stone-Čech Compactification: Theory and Applications, vol. 27 of de Gruyter Expositions in Mathematics, de Gruyter, Berlin, 1998. Zbl 0918.22001. MR 1642231. DOI 10.1515/9783110809220. 456, 457
- [5] Lutsenko, I., and I. V. Protasov, "Sparse, thin and other subsets of groups," *International Journal of Algebra and Computation*, vol. 19 (2009), pp. 491–510. Zbl 1186.20024. MR 2536188. DOI 10.1142/S0218196709005135. 458
- [6] Protasov, I. V., "Ultrafilters and partitions of abelian groups," Ukrains' kii Matematichnii Zhurnal, vol. 53 (2001), pp. 85–93; English translation in Ukrainian Mathematical Journal, vol. 53 (2001), pp. 99–107. MR 1834643. DOI 10.1023/A:1010445018738. 458, 459

Petrenko Department of Cybernetics Kyiv National University Kyiv 01033 Ukraine opetrenko72@gmail.com

Protasov Department of Cybernetics Kyiv National University Kyiv 01033 Ukraine i.v.protasov@gmail.com