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Algebraic Logic Perspective on Prucnal’s Substitution

Alex Citkin

Abstract A term td.p; q; r/ is called a ternary deductive (TD) term for
a variety of algebras V if the identity td.p; p; r/ � r holds in V and
.c; d/ 2 �.a; b/ yields td.a; b; c/ � td.a; b; d/ for any A 2 V and any principal
congruence � on A. A connective f .p1; : : : ; pn/ is called td-distributive if
td.p; q; f .r1; : : : ; rn// � f .td.p; q; r1/; : : : ; td.p; q; rn//. If L is a proposi-
tional logic and V is a corresponding variety (algebraic semantic) that has a
TD term td, then any admissible in L rule, the premises of which contain only
td-distributive operations, is derivable, and the substitution r 7! td.p; q; r/ is
a projective L-unifier for any formula containing only td-distributive connec-
tives. The above substitution is a generalization of the substitution introduced
by T. Prucnal to prove structural completeness of the implication fragment of
intuitionistic propositional logic.

1 Introduction

In this paper, we study admissibility of structural inference rules in algebraizable
(propositional) logics. A (structural inference) rule is an expression of the form
A1; : : : ; An=B , where A1; : : : ; An are (propositional) formulas called premises (of
the rule) and B is a formula called the conclusion (of the rule). We recall that given
a (propositional) logic L, a rule A1; : : : ; An=B is admissible in L if the logic L is
closed under this rule; that is, for any substitution � (of formulas for propositional
variables), formula �.B/ is valid in L as long as all formulas �.A1/; : : : ; �.An/ are
valid in L. A substitution that simultaneously makes all formulas A1; : : : ; An valid in
L is known as an L-unifier of formulas A1; : : : ; An. An L-unifier of a single formula
is a substitution that makes this formula valid in L. Thus, a rule is admissible in a
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given logic L if every L-unifier of its premises is an L-unifier of its conclusion. So,
studying the admissibility of the rules in a logic L is, in a way, studying L-unifiers.

Let us also recall that a logic L has an algebraic semantic if there is a variety
V.L/ of algebras in the same signature as formulas of L and there is a transla-
tion � which for each formula A gives a finite set of identities �.A/ in such a way
that A is valid in L if and only if all identities from �.A/ hold in V.L/. Thus,
using � we can translate a rule A1; : : : ; An=B into a finite set of quasi-identities:
�.A1/; : : : ; �.An/ ) iI i 2 �.B/.

In 1971, Pogorzelski [27] introduced a notion of a structurally complete logic,
which is a logic where every admissible rule is derivable. In the same paper he noted
that Prucnal had observed that even though intuitionistic propositional logic (IPL) is
not structurally complete (e.g., the rule :p ! .q _ r/=.:p ! q/ _ .:p ! r/

is admissible but not derivable in IPL; see Harrop [19]), all admissible in IPL rules
containing formulas with implication as the only connective are derivable. In 1976,
Mints [25, Theorems 1, 2] published the proof that any admissible in IPL (structural)
rule that does not have occurrences of ! or _ is derivable. Then in 1973, Prucnal
extended his result about implications fragments of IPL to five different classes of
logics (see [28]) and proved that implicational fragments of theses logics are struc-
turally complete. To prove the claim, Prucnal used a substitution of the formulas of
some special form. It turned out that this kind of substitution can be used for different
classes of logics and nowadays it is called Prucnal’s substitution or Prucnal’s trick1

(see Prucnal [28], [29], Slaney and Meyer [33], Olson, Raftery, and van Alten [26],
Wojtylak [36], Dzik [13], Cintula and Metcalfe [9] to name a few).

In many cases, the variety V that is an algebraic semantic for a logic L has a
ternary deductive (TD) term introduced in Blok and Pigozzi [5], that is, a term
td.p; q; r/ such that for any algebra A 2 V

td.a; a; b/ D b;

td.a; b; c/ D td.a; b; d/ if .c; d/ 2 �.a; b/

for any a; b; c; d from A. The distributive connectives (td-distributive for short) rel-
ative to the TD term td, that is, the td-distributive connectives for which

td
�
p; q; f .r1; : : : ; rn/

�
� f

�
td.p; q; r1/; : : : ; td.p; q; rn/

�
holds, play a special role. In this paper we show that any admissible in L rule, the
premises of which contain only connectives distributive relative to the TD term, is
derivable. To prove this, we are generalizing the idea used by Prucnal and we are
using the following substitutions:

� W r 7! td.p; q; r/:

For many types of logics, Dzik obtained the results about structural completeness
by using Prucnal’s substitution in algebraic context. These results were presented at
some conferences, but unfortunately they were never published. Dzik had informed
the author about the handwritten manuscript by Wroński [37] that was circulating
among logicians.

Generally speaking, there are two approaches to determine whether a logic L is
structurally complete:

(a) algebraic: to show that a quasivariety generated by a Lindenbaum–Tarski
algebra of L forms a variety;
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(b) using the unifiers: to show that each formula A has a projective unifier;2 that
is, for each A there is a substitution � such that A `L p $ �.p/.

We consider both approaches. First, we show that Prucnal’s substitution is related
to projectivity of reducts of algebras and this leads to admissibility of the rules of
certain form. Second, we show that Prucnal’s substitution is a projective unifier for
formulas containing only td-distributive connectives (in [14], Dzik is using, for a
similar purpose, a discriminator term which coincides with a TD term in the case of
semisimple congruence permutable varieties).

2 Basic Definitions

2.1 Deductive systems and logics We consider a (propositional) language consisting
of a set of (propositional) formulas Fm constructed in a regular way of (propositional)
variables P , where P is a countable set, and connectives C D ¹f1; : : : ; fkº. Fm can
be regarded as an absolutely free algebra. We will call the elements of Fm formulas
or terms interchangeably. If C 0 � C , we will say that a formula A is C 0-formula if A

contains connectives only from C 0.
A substitution is a mapping � W P 7! Fm that can be extended by �.A.p1; : : : ;

pn// D A.�.p1/; : : : ; �.pn// to any formula A. Since Fm can be viewed as an
absolutely free algebra, every substitution � is an endomorphism of Fm, which we
will also denote by � . If � is a set of formulas, then �.�/ WD ¹�.A/I A 2 �º.

A deductive system is a couple S D hFmI `i, where ` is a binary (consequence)
relation defined on finite sets of formulas and formulas, and ` satisfies the following
conditions: for any finite sets of formulas �; � and any formula A

(R) A ` A;
(M) if � ` A, then � [ � ` A;
(T) if � ` A and � ` B for every B 2 � , then � ` A;
(S) if � ` A, then �.�/ ` �.A/.

(Above and later we use the notation � ` A instead of h�I ¹Aºi 2 `.)
If S D hFmI `i is a deductive system by Th.S/ (or by Th.`S//, we denote a set

of theorems
Th.`/ WD ¹AI ` A; A 2 Fmº

(where ` A means ; ` A). If S1 D hFmI `1i and S2 D hFmI `2i are deductive
systems and `1 � `2 (i.e., � `1 A yields � `2 A), we will say that S2 is an
extension of S1.

If S is a deductive system, then the set of its theorems Th.S/ will be called logic
defined by S.

A structural inference rule (rule for short) is an expression of type �=A, where �

is a finite set of formulas and A is a formula. A rule �=A is called admissible in a
logic L D Th.S/ if �.�/ � L yields �.A/ 2 L for every substitution � .

A deductive system S is said to be structurally complete (see, e.g., [27], Rybakov
[32]) if any proper extension of S contains theorems not belonging to Th.S/; that
is, S is a maximal deductive system among the deductive systems defining the same
logic. By adding to a given deductive system S all admissible in Th.S/ rules, S
can be extended to a structurally complete deductive system with the same logic—
admissible closure of S (see Rybakov [32, p. 89]) or structural completion of S (see
Humberstone [21, p. 1440]; see also Bergman [2, Proposition 1.2]).
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If S D hFmI `i is a deductive system and r D �=A is a rule, then the rule r is
called derivable in S if � ` A. It is not hard to see that a deductive system S is
structurally complete if and only if every admissible in S rule is derivable in S.

A logic L D Th.S/ is structurally complete if any admissible in L rule is valid in
any model where all the theorems of S are valid. (We will make this statement more
precise in the following section.) Note that structural completeness of a deductive
system is a property of a consequence relation, while structural completeness of a
logic is a property of the set of theorems. For example, as it is well known (see,
e.g., [32]), the IPL defined by a set of axiom schemata and a single inference rule
modus ponens (see, e.g., Kleene [23]) is not structurally complete. But if we extend
this deductive system by adding to it all of Visser’s rules (see Iemhoff [22]), we get a
structurally complete version of IPL (which cannot be achieved by adding any finite
sets of rules; see Rybakov [31]). Thus, IPL as logic is not structurally complete,
although it has a structurally complete deductive system defining it.

The structural completeness of a logic L means that the deductive system induced
by all (algebraic) models of L is structurally complete. Very often it is a deductive
system that admits some version of deduction theorem (see, e.g., the notion of a
general deduction theorem in [32, Definition 5.1.3], the notion of a uniform deduc-
tion theorem scheme in Czelakowski [12, p. 371], or the notion of a TD term in [5,
p. 568]). In this paper, we will be using TD terms (see the definition in the next
section).

From this point forward, we will be concerned only with structural completeness
of logics.

Let C 0 � C be a subset of connectives, and let L D Th.S/ be a logic. We will
say that a logic L is C 0-structurally complete if every admissible in L rule containing
only C 0-formulas is derivable. A logic L is C 0-structurally complete if and only if
any admissible in L rule containing only C 0-formulas is valid in any model of L (see
[25]).

It is worth noting that the definition of C 0-structural completeness does not impose
any restrictions on substitutions. For instance, we did not require that only the
theorems that are C 0-formulas be considered. Thus, C 0-structural completeness of
a logic and structural completeness of its C 0-fragment are not the same. Indeed,
C 0-structural completeness of a logic L simply means that any admissible in L rule
of certain form is derivable in L. On the other hand, structural completeness of
a C 0-fragment of L is concerned with admissibility and derivability in a different
logic, namely, in the logic that arises from L if we consider only C 0-formulas. In
other words, the C 0-structural completeness is a restriction on the set of rules, while
completeness of C 0-fragment is a completeness in a different logic (see [21]). For
example (see [21, Digression, p. 56]), the rule r WD ::p=p is not admissible
in IPL, but it is admissible in the ¹^; :º-fragment of IPL. The reason is simple:
in IPL the set of available substitutions is richer and, for instance, we can sub-
stitute p with ::p ! p and show that r is not admissible in IPL. Another ex-
ample is that IPL is ¹!; :º-structurally complete (see [25]; see also [32, Para-
graph 5.5]) while its ¹!; :º-fragment is not (see Cintula and Metcalfe [10]): the rule
.p ! :q/; ..::p ! p/ ! r/; ..::q ! q/ ! r/=r is admissible but not deriv-
able in the ¹!; :º-fragment of IPL. (It is clear that the above rule is not derivable
either in IPL or in its ¹!; :º-fragment, but in IPL this rule is not admissible because
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the substitution q 7! .:p ^ q/; r 7! ..::p ! p/ _ .::.:p ^ q/ ! .:p ^ q///

makes all premises valid in IPL while the conclusion is not.)
A logic L D Th.S/ is said to be hereditarily structurally complete (see Citkin

[11], Rybakov [32]) or deductive (see [2]) if L and all its extensions are structurally
complete. Accordingly, a logic L is hereditarily C 0-structurally complete if L and all
its extensions are C 0-structurally complete.

2.2 Algebraic semantic In this paper, we consider only deductive systems that have
an algebraic semantic (see Blok and Pigozzi [4]); that is, we assume that with each
deductive system S D hFmI `i we can associate a quasivariety of algebras Q.S/

(in signature C ) by associating with each formula A 2 Fm a finite set of identities
�.A/ D ¹�1.A/ � ı1.A/; : : : ; �m.A/ � ım.A/º in such a way that A1; : : : ; An ` A

if and only if all quasi-identities �.A1/; : : : ; �.An/ ) �.A/ hold in Q.S/. (Here and
later, in order to simplify notation, if �1; : : : ; �n; � are the finite sets of identities by
�1; : : : ; �n ) �, we denote the set of quasi-identities ¹�1; : : : ; �n ) iI i 2 �º.) We
will say that Q.S/ is a corresponding quasivariety of S and that � is a translation.

As usual, if an identity i holds in some algebra A, we will denote this by A � i.
And if � is a set of identities by A � �, we will denote that all the identities from � are
valid in A. If K is a class of algebras, by V.K/ and Q.K/ we denote, respectively,
a variety and a quasivariety generated by algebras of K . If K consists of a single
algebra A, we will write V.A/ and Q.A/ instead of V.¹Aº/ and Q.¹Aº/.

Using the translation from formulas into identities with any logic L D Th.S/ that
has an algebraic semantic, we can associate a variety

V.L/ D
®
AI A � �.A/; A 2 L

¯
I

that is, V.L/ is a variety of all algebras in which all the identities corresponding to
the theorems from L hold. By V.S/ we denote the variety corresponding to its logic;
that is, V.S/ D V.Th.S//. It is clear that V.S/ � Q.S/. We will say that V.L/ is a
corresponding variety of L or of a deductive system S for that matter.

Let us observe that, from an algebraic semantic standpoint, a deductive system S
is structurally complete if Q.S/ D V.L/ (Example 1 shows that the converse is not
true). Using the terminology from [2], we say that a quasivariety Q is structurally
complete if it is a variety. On the other hand, a logic L is structurally complete if there
is a unique quasivariety Q for which V.Q/ D V.L/. Recall that every quasivariety
contains free algebras; hence, a logic is structurally complete if V.L/ D Q.F!/,
where F! is free in V.L/ (or in Q.L/ for that matter) algebra of countable rank (see
[2]). So, we will say that a variety V is structurally complete if V D Q.F!/. We
will also say that a quasi-identity q is admissible in a variety V (or V -admissible) if
it is valid in F! , and we will say that q is derivable in V (or V -derivable) if q is valid
in every algebra of V . Thus, a variety V is structurally complete if and only if every
admissible in V quasi-identity is derivable. Accordingly, we will say that a variety
V is hereditarily structurally complete (or primitive in [17] or deductive in [20]) if V

and all subvarieties of V are structurally complete; that is, all subquasivarieties of V

are varieties. Thus, a logic L is hereditarily structurally complete if the corresponding
variety is primitive (see [26, Corollary 7.15]).

Let p be a list of variables p1; : : : ; pn. Strings of distinct variables are indicated
by p; q; : : : , and if a term t contains variables only from the list p D p1; : : : ; pn, we
express this fact by the notation t .p/ or t .p1; : : : ; pn/. Accordingly, if a1; : : : ; an are
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elements of an algebra, sometimes we will write t . a / instead of t .a1; : : : ; an/.
By jpj, we denote the length of p, that is, the number of elements in p: if
p WD p1; : : : ; pn, then jpj D n.

Example 1 For IPL in the signature ¹!; ^; _; 0º, the corresponding variety
is the variety of Heyting algebras, and if A.p/ is a formula, then �.A/ consists
of a single identity; namely, A.p/ � 1, where 1 is an abbreviation for 0 ! 0.
If r WD A1; : : : ; Am=B is a rule, then �.r/ consists of a single quasi-identity
A1.p/ � 1; : : : ; Am.p/ � 1 ) B.p/ � 1. Let us note that if we use a different
translation, say, �.A/ WD A ! 0 D 0, then, by Glivenko’s theorem, the same
variety becomes a corresponding variety for classical propositional logic (CPL).
Thus, depending on the translation, the same variety can be an algebraic semantic
for different logics, and, as we will see, one of the logics can be structurally complete
and another not.

Let C 0 � C be a subset of connectives (or operations—we will use the terms connec-
tive and operation interchangeably). Then algebra hAI C 0i is said to be a reduct of an
algebra hAI Ci. We can extend our definition of structural completeness to reducts
in the following way. We will say that a variety V is C 0-structurally complete if any
admissible in V quasi-identity containing operations only from C 0 is derivable in V .
In other words, a variety V is C 0-structurally complete if every valid in F! quasi-
identity containing operations only from C 0 is derivable. Clearly, if the translation
contains only C 0-terms, a logic L is C 0-structurally complete if the corresponding
variety V.L/ is C 0-structurally complete.

Example 2 Even though IPL and, hence, a variety H of Heyting algebras are not
structurally complete, they are ¹!; ^º-structurally complete (see [25]).

Now we will be focusing on studying the links between structural completeness of
varieties and TD terms.

2.3 Retracts of algebras In this section, we give a definition of C 0-retract of an alge-
bra, and we study some properties of C 0-retracts that are used later in the paper.

If A and B are algebras and C 0 � C is a subset of principal operations, we say (cf.
Grätzer [18]) that B is a C 0-retract of A if there is a monomorphism � W B ! A of
C 0-reduct of B into C 0-subreduct of A and an epimorphism ' W A ! B such that
' ı � W B ! B is the identity. If � is a congruence on an algebra A and quotient
algebra A=� is a C 0-retract of A, we say that � is C 0-retractable.

We will need the following rather simple property of C 0-reducts.

Proposition 2.1 Let B be a C 0-retract of A, and let

q WD

m̂

iD1

ti . x / � t 0
i . x / ) t . x / � t 0. x /

be a quasi-identity such that B ² q and terms ti ; t 0
i I i D 1; : : : ; m contain operations

only from C 0. Then A ² q.

Proof Let ' and � be the mappings from the definition of C 0-retract. If B ² q,
there are such elements of B that

ti . b / D t 0
i . b /I i D 1; : : : ; n while t . b / ¤ t 0. b /:
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Letting a D �. b /, let us check that
ti . a / D t 0

i . a /I i D 1; : : : ; n and t . a / ¤ t 0. a /:

Indeed, since � is a monomorphism of C 0-retract and all terms ti ; t 0
i contain oper-

ations only from C 0, we can conclude that
ti . a / D t 0

i . a /I i D 1; : : : ; n;

because for computation of values of these terms we use only the operations from C 0.
On the other hand,

'
�
t . a /

�
D t

�
'. a /

�
D t

�
'

�
�. b /

��
D t . b / ¤ t 0. b /

D t 0
�
'

�
�. b /

��
D t 0

�
'. a /

�
D '

�
t 0. a /

�
:

Recall that ' is a homomorphism; therefore '.t. a // ¤ '.t 0. a // yields
t . a / ¤ t 0. a /.

2.4 Ternary deductive term The notion of TD term was introduced in [5]. All the
definitions and statements of this section regarding TD term can be found in [5].

If A is an algebra, a 2 A is an element, and � is a congruence, by Œa�� we
will denote a congruence class containing element a; that is, Œa�� D ¹b 2 AI a �

b mod.�/º. If A is an algebra and a; b 2 A, by �.a; b/ we denote a principal
congruence (see [18]) induced by elements a; b; that is, � is the smallest congru-
ence such that a � b mod.�/. A congruence � on an algebra A is called com-
pact in [18] (or finitely generated in Burris and Sankappanavar [8]) if � is a finite
join of principal congruences. This means that there is a finite set of pairs of ele-
ments .ai ; bi /I i D 1; : : : ; m and that � is the smallest congruence on A such that
ai � bi mod.�/ for all i D 1; : : : ; m. If a and b are, respectively, the lists of elements
a1; : : : ; am and b1; : : : ; bm, by �. a; b / we will denote the compact congruence gen-
erated by pairs .a1; b1/; : : : ; .ambm/; that is, �. a; b / D

W
�.ai ; bi /I i D 1; : : : ; m.

Let us observe the following property of compact congruences.

Proposition 2.2 If a quasi-identity q is refutable in some quotient algebra A=� of
an algebra A, then there is a compact congruence � 0 on A such that q is refutable in
A=� 0.

Proof Let q WD
Vm

iD1 ti . x / � t 0
i . x / ) t . x / � t 0. x /, and let A=� ² q. Then

for some elements a1; : : : ; an 2 A, for all i D 1; : : : ; m,
ti . a / � t 0

i . a / mod.�/ and t . a / 6� t 0. a / mod.�/:

That is, �
ti . a /; t 0

i . a /
�

2 � while
�
t . a /; t 0. a /

�
… �:

Let � 0 be a compact congruence generated by pairs .ti . a /; t 0
i . a //I i D 1; : : : ; m. By

the definition of compact congruence, we have � 0 � � ; hence
t . a / 6� t 0. a / mod.� 0/:

On the other hand, �
ti . a /; t 0

i . a /
�

2 � 0 for all i D 1; : : : ; mI

therefore, the quasi-identity q is refutable in A=� 0.

The following definition introduces the notion of a TD term that is central for this
paper.
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Definition 2.1 ([5, p. 568]) A TD term for an algebra A is a ternary term
td.p; q; r/ such that, for any a; b; c; d 2 A

td.a; a; b/ D b;

td.a; b; c/ D td.a; b; d/ if .c; d/ 2 �.a; b/:
(1)

If K is a class of similar algebras, td.p; q; r/ is a TD term for K if td.p; q; r/ is a
TD term for every algebra from K .

Let us note that, for a given variety, a TD term is not uniquely defined: the same
variety may have different deduction terms.

Example 3 ([5, p. 548]) The variety of Heyting algebras has two different TD
terms:

td!.p; q; r/ WD .p ! q/ !
�
.q ! p/ ! r

�
;

td^.p; q; r/ WD .p ! q/ ^ .q ! p/ ^ r:
(2)

Any variety having a TD term has equationally definable principal congruences:

.c; d/ 2 �.a; b/ iff td.a; b; c/ D td.a; b; d/: (3)

Thus, a TD term gives us a uniform way to define the principal congruences.
By iterating the TD term, a (3)-like characterization of principal congruences can
be extended to the compact congruences (see [5, Theorem 2.6]): if a; b are lists of
elements of an algebra A, then

.c; d/ 2 �. a; b / iff td. a; b; c/ D td. a; b; d/; (4)

where td. a; b; c/ WD td.a1; b1; td.a2; b2; : : : ; td.am; bm; c// : : : /.
It is easily seen that, by the definition of TD term,

td. a; a; c/ D c:

Let us also recall from [5, Theorem 2.3] that if f is an n-ary operation (connec-
tive) from C , then

td
�
a; b; f .c1; : : : ; cn/

�
D td

�
a; b; f

�
td.a; b; c1/; : : : ; td.a; b; cn/

��
: (5)

As we will see, structural completeness of a variety V is related to a stronger version
of the above property: if td.p; q; r/ is a TD term for V and f 2 C , we will say that
f is td-distributive if the following identity holds in V :

td
�
p; q; f .r1; : : : ; rn/

�
� f

�
td.p; q; r1/; : : : ; td.p; q; rn/

�
: (6)

If td is a TD term of an algebra A in signature C , by C.td/ we denote the subset of
all td-distributive operations from C .

Taking into account that td.p; q; r/ is just an iteration of td.p; q; r/, by using a
simple induction one can prove the following.

Proposition 2.3 Given a variety V with a TD term td, if f .r1; : : : ; rn/ is a
td-distributive operation in V and p; q are lists of variables of the same length, then

td
�
p; q; f .r1; : : : ; rn/

�
� f

�
td.p; q; r1/; : : : ; td.p; q; rn/

�
(7)

holds in V .
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Recall from Blok and Pigozzi [6, Corollary 2.4(2-1)] that for each TD term
td.p; q; r/ and each term C.r1; : : : ; rm/, the following identity holds:

td
�
p; q; C.r1; : : : ; rm/

�
� td

�
p; q; C

�
td.p; q; r1/; : : : ; td.p; q; rm/

��
:

So, if we take C WD r , we get that the identity

td.p; q; r/ � td
�
p; q; td.p; q; r/

�
(8)

holds for every TD term.
In the following section (see Theorem 3.6), we will demonstrate that the

td-distributive connectives are closely related to hereditary structural complete-
ness.

3 TD Term And Structural Completeness

To study the connections between TD terms and structural C 0-completeness, we will
first establish the connections between td-distributive operations and C.td/-retracts.

3.1 TD term and retraction In this section, we prove the important lemma which is
needed for the proof of the main theorem.

Lemma 3.1 Let A be an algebra that has a TD term td.p; q; r/. Then every com-
pact congruence on A is C.td/-retractable.

Proof Let � be a compact congruence on A. Then for some lists a and b of ele-
ments of A, we have � D �. a; b /. Let us define the mapping

� W Œc�� 7! td. a; b; c/ (9)

and verify that the mapping � W A=� ! A is indeed a C.td/-retraction. So, we need
to show that

(a) � is a monomorphism of C.td/-reduct of A=� into C.td/-subreduct of A;
(b) ' ı �, where ' W A ! A=� is a natural homomorphism, that is, the identity

relation.
First, let us observe that our definition of � is consistent: if d 2 Œc�� , then, by

definition of td and (4), we have td. a; b; c/ D td. a; b; d/; that is, the value of ' does
not depend on the selection of a particular member of a congruence class.

(a) Next, let us check that � is a homomorphism. Indeed, assume that

f .p1; : : : ; pn/ 2 C.td/ and c1; : : : ; cn 2 A:

Then, by the definition of �,

�
�
f

�
Œc1�� ; : : : ; Œcn��

��
D td. a; b; d/;

where d is an element from Œf .c1; : : : ; cn/�� . As we saw, in order to define the value
of �, we can take any element from Œf .c1; : : : ; cn/�� . Recall that � is a congruence
and, hence, if we take

d D f .c1; : : : ; cn/;

then
d 2

�
f .c1; : : : ; cn/

�
�
:

Thus,

�
�
f

�
Œc1�� ; : : : ; Œcn��

��
D td. a; b; d/ D td

�
a; b; f .c1; : : : ; cn/

�
:
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Since f is td-distributive, by (7)
td

�
a; b; f .c1; : : : ; cn/

D f
�
td. a; b; c1/; : : : ; td.a; b; cn/

�
D f

�
�

�
Œc1��

�
; : : : ; �

�
Œcn��

���
:

Therefore,
�

�
f

�
Œc1�� ; : : : ; Œcn��

��
D f

�
�

�
Œc1��

�
; : : : ; �

�
Œcn��

��
:

Hence, � is a homomorphism.
We also need to prove that � is a one-to-one correspondence. Indeed, by (4)

Œc�� D Œd�� if and only if td. a; b; c/ D td. a; b; d/; hence, Œc�� D Œd�� if and only if
�.c/ D �.d/.

(b) Let us verify that ' ı � is the identity relation. Let Œc�� be an element of A=� .
Then

�
�
Œc��

�
D td. a; b; c/ and '

�
�

�
Œc��

��
D

�
td. a; b; c/

�
�
:

Thus, we need to verify that
Œc�� D

�
td. a; b; c/

�
�
: (10)

Recall that � is a congruence defined by td.p; q; r/; that is, by the definition of TD
term, (10) is equivalent to

td. a; b; c/ D td
�
a; b; td. a; b; c/

�
;

and application of (8) completes the proof.

3.2 C 0-structural completeness Now we can prove the main theorem.
Theorem 3.2 Let V be a variety with TD term td. Then every V -admissible quasi-
identity whose premises contain only connectives from C.td/ is V -derivable.
Proof Let F! be a free algebra of V of countable rank. We need to demonstrate
that any quasi-identity whose premises contain operations only from C.td/ and is
valid in F! (i.e., is V -admissible) is valid in any algebra of V (i.e., is V -derivable).

Indeed, assume that q is a quasi-identity that is not V -derivable. Then q is
refutable in some countable algebra A 2 V . Any countable algebra from V is a
homomorphic image of the free algebra F! of countable rank. Therefore, for some
congruence � on F! , we have A Š F!=� ; that is, F!=� ² q. Then, by virtue
of Proposition 2.2, there is a compact congruence � 0 on F! such that F!=� 0 ² q.
In turn, by virtue of Lemma 3.1, F!=� 0 is a C.td/-retract of F! . Now we can
apply Proposition 2.1 and conclude that F! ² q; that is, quasi-identity q is not
V -admissible.

As an immediate consequence, we obtain the following.
Corollary 3.3 Every variety with TD term td is C.td/-structurally complete.
Proof By the definition of C.td/-structural completeness, the premises of quasi-
identities that we are considering contain only td-distributive operations, and we can
apply Theorem 3.2.

Since any TD term for a variety is a TD term for each subvariety, we can repeat the
proof of the theorem by using a free algebra of a subvariety and obtain the following
corollary.
Corollary 3.4 Every variety with TD term td is C.td/-primitive.
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3.3 C 0-structural completeness for logics For logics, Theorem 3.2 can be rephrased
in the following way.

Theorem 3.5 Let L be a logic whose corresponding variety has a TD term td.
Given an admissible in L rule r, if the premises of the translation �.r/ contain only
connectives from C.td/, then r is derivable.

Corollary 3.6 Let L be a logic whose corresponding variety has a TD term td. If
the translations of any formula contain only td-distributive connectives, then logic
L is hereditarily C.td/-structurally complete. Particularly, if all connectives are
td-distributive, then L is hereditarily structurally complete.

As we saw in Example 3, a variety may have more than one TD term. Each of these
terms may have different sets of td-distributive connectives.

Let us look at some applications of Theorem 3.2.
� Let us consider IPL in the signature !; ^; _; 0. It is easy to see that connec-

tives ! and ^ are td!-distributive (where td! is defined in (2)); hence, by
virtue of Theorem 3.2, IPL is hereditarily ¹!; ^º-structurally complete (see
[25]).

� Brouwerian semilattices hAI �; !; 1i have the same TD term as Hilbert alge-
bras (see [5]):

td.p; q; r/ WD .p ! q/ !
�
.q ! p/ ! r

�
:

It is easy to see that all three operations are compatible with this TD term;
hence the varieties of Brouwerian semilattices and Hilbert algebras are hered-
itarily structurally complete.

� Recall from [5, Theorem 2.8] that any discriminator3 variety has a TD
term; in fact, the discriminator is also a TD term. Thus, for any set
C 0 of td-distributive operations, discriminator varieties are hereditarily
C 0-structurally complete (see [14]).

Remark 3.1 Let us note that the first example states hereditary ¹^; !º-
completeness of IPL (the structural ¹^; !º-completeness of IPL was first observed
by Mints [25]), while the second example states the hereditary structural complete-
ness of the ¹^; !º-fragment of IPL that was first observed by Prucnal [28].

It is worth noting that, for structural completeness, it is irrelevant whether all the
connectives from TD term are td-distributive, while it is crucial that all the connec-
tives occurring in translation are td-distributive. For instance, in IPL the connectives
^; _; 0 are td^-distributive (where td^ was defined in (2)), but we cannot claim the
hereditary ¹^; _; 0º-structural completeness because the translation �.A/ is A D 1
and the constant 1 is not td^-distributive.

3.4 Application to hoops Hoops were introduced in a manuscript by Büchi and
Owens [7] in the 1970s. Later, hoops were extensively studied by Blok and
Pigozzi [5], Blok and Ferreirim [3], and Ferreirim [15]. Hoops capture a com-
mon ¹^; !º-fragment of many logics including all fuzzy logics. Many of the
familiar logics have enriched hoops as an algebraic semantic. For instance, the
following algebras can be regarded as hoops enriched with additional operations:
modal algebras, cylindric algebras, relation algebras, Heyting algebras, Wajsberg
algebras, De Morgan algebras, and so on.
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Let us consider the deductive system in the signature !; �; 1 and defined by the
following axiom schemata (see Raftery and van Alten [30])

(a) .p ! q/ ! ..r ! p/ ! .r ! q//,
(b) .p ! .q ! r// ! .q ! .p ! r//,
(c) p ! .q ! p/,
(d) p ! .q ! .p � q//,
(e) .p ! .q ! r// ! ..p � q/ ! r/

and the only inference rule modus ponens: (MP) p; p ! q=q. The variety corre-
sponding to this deductive system is a variety of hoops (see [5]) defined by identities

(i) 1 � p � p � 1 � p,
(ii) p � q � q � p,
(iii) p ! p � 1,
(iv) .p ! q/ � p � .q ! p/ � q,
(v) p ! .q ! r/ � .p � q/ ! r .
We will use the following abbreviations defined by induction:

p1
WD p and pn

WD pn�1
� p for each n > 1I

p
1

�! q WD p ! q and

p
n

�! q WD p ! .p
n�1

���! q/ for each n > 1:

Let us note that the following identity holds in every hoop:

p
n

�! q � pn
! q:

An element a of a hoop is called n-potent if anC1 D an. A 1-potent element is
referred to as idempotent. A hoop is said to be n-potent (see, e.g., [3]) if for a given
n it satisfies the following identity:

pnC1
� pn: (11)

The above identity is equivalent to

p
nC1

���! q � p
n

�! q: (12)

Let us recall (see [5]) that the set of all n-potent hoops forms a variety with a TD
term

td.p; q; r/ WD .p ! q/
n

�!
�
.q ! p/

n
�! r

�
:

Theorem 3.7 In each n-potent hoop operations !; � and 1 are td-distributive with
respect to the above TD-term.

Proof Let us start by showing that 1 is td-distributive. Indeed, in each hoop the
following identity holds (see [3]):

p ! 1 � 1:

Hence,

td.p; q; 1/ � .p ! q/
n

�!
�
.q ! p/

n
�! 1

�
� .p ! q/

n
�! 1 D 1;

and, therefore, 1 is td-distributive.
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Now, let us note that

td.p; q; r/ � .p ! q/
n

�!
�
.q ! p/

n
�! r

�
� .p ! q/n

!
�
.q ! p/n

! r
�

�
�
.p ! q/n

� .q ! p/n
�

! r: (13)

Observe that in every n-potent hoop, any element an is an idempotent: by using the
associativity of � and applying n times (11) to an � an, we can obtain an � an D an.
Moreover, it is not hard to see that, since the operation � is commutative, if a and b
are idempotent elements, the element a � b is also idempotent.

Let us recall (see [5], [15], Veroff and Spinks [35]) that for every n-potent hoop
hAI !; �; 1i and any idempotent element e 2 A,

e ! .a ! b/ D .e ! a/ ! .e ! b/ (14)

and
e ! .a � b/ D .e ! a/ � .e ! b/: (15)

Now, using (13), (14), and (15), we get
td.p; q; r1 ! r2/

�
�
.p ! q/n

� .q ! p/n
�

! .r1 ! r2/

�
��

.p ! q/n
� .q ! p/n

�
! r1

�
!

��
.p ! q/n

� .q ! p/n
�

! r2

�
� td.p; q; r1/ ! td.p; q; r2/

and
td.p; q; r1 � r2/

�
�
.p ! q/n

� .q ! p/n
�

! .r1 � r2/

�
��

.p ! q/n
� .q ! p/n

�
! r1

�
�
��

.p ! q/n
� .q ! p/n

�
! r2

�
� td.p; q; r1/ � td.p; q; r2/:

Thus, we can conclude that operations ! and � are td-distributive.

Corollary 3.8 A variety of n-potent hoops with additional operations is C 0-
structurally complete for any set C 0 of td-distributive operations. In particular,
if all the additional operations are td-distributive, the variety is primitive and the
corresponding logic is hereditarily structurally complete.

3.5 Prucnal’s substitutions in the algebraic setting Let us start with an observation
that in the proof of Lemma 3.1 we were using a mapping

� W Œc�� 7! td.a; b; c/:

As we saw, for n-potent hoops

td.p; q; r/ WD .p ! q/
n

�!
�
.q ! p/

n
�! r

�
is a TD term. Or, taking into account that in the hoops the identity

p ! .q ! r/ � p � q ! r

holds, we can use a different TD term

td0.p; q; r/ WD .p ! q/ � .q ! p/
n

�! r:
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From the fact that td0 is a TD term and that the following identity holds in the hoops

.p ! q/ � .q ! p/ �
�
.p ! q/ � .q ! p/

�
� 1;

we can conclude that in any n-potent hoop, �.a; b/ D �..a ! b/ � .b ! a/; 1/ for
any elements a; b. Thus, every compact congruence is defined by a single element.
Recall that 1 ! p � p and p � 1 � p hold in every hoop. So, we can consider

pr.p; r/ D td0.p; 1; r/ D .p ! 1/ � .1 ! p/
n

�! r D p
n

�! r

and pr.a; b/ D pr.a; c/ if and only if b � c mod.�.a; 1//.
Consequently, if we take a free algebra and regard its elements as formulas (terms)

and if we take a formula A that defined a congruence, we are actually using a mapping

' W p 7! .A
n

�! p/;

which is exactly a substitution invented by Prucnal (see [28], [29]).
Let us now consider a case of the simplest translation, namely, the case when

�.A/ WD .A D 1/. For instance, intermediate and normal modal logics admit such
a translation. If we deal with the logics that have n-potent enriched hoops as their
algebraic semantic and admit the above translation, we can formulate the following
corollary from Theorem 3.2.

Corollary 3.9 (see [29, Theorem 1]) Let L be a logic having n-potent hoops
(enriched with operations C ) as an algebraic semantic, and let the translation be
�.A/ WD .A D 1/. Then

(a) if C 0 � C is a set of pr-distributive operations, then L is hereditarily
C 0-structurally complete;

(b) if all additional operations are pr-distributive, then L is hereditarily struc-
turally complete.

Theorem 2 in [29] immediately follows from the above corollary: all the logics
considered in [29, Theorem 2] have n-potent hoops with additional pr-distributive
operations as their algebraic semantic.

Remark 3.2 One can repeat the arguments used in this section for enriched BCI-
monoids (see Agliano [1]) instead of hoops and obtain the results regarding structural
C.td/-completeness for different many-valued logics.

4 Projectivity and Unification

As we mentioned in the Introduction, the study of structural completeness is closely
related to the study of projective unifiers. In this section, we show that Prucnal’s sub-
stitution is a projective unifier for any pair of formulas containing only td-distributive
connectives.

4.1 Unification Recall from Mal’cev [24] that given a class of algebras K , a finite
set of equalities � , and an equality A � B , an equality A � B is said to be a K

consequence of � (in symbols, � �K A � B) if a quasi-identity � ) A � B holds
in K . In other words, if every valuation in algebras from K makes A � B true every
time, it makes true all the equalities from � . A substitution � is called a K-unifier of
A � B (and we will omit K when no confusion arises) if the equality �.A/ � �.B/
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is valid in every algebra from K; that is, �K �.A/ � �.B/. A K-unifier is called
projective (see Ghilardi [16]) if

A � B �K p � �.p/ (16)

for every variable occurring in A; B . In other words, a unifier � is projective if
A � B ) p � �.p/ holds in K for all variables p occurring in A; B .

Theorem 4.1 Suppose that V is a variety and that td.p; q; r/ is its TD term. Sup-
pose that formulas A.p/; B.p/ contain only td-distributive connectives. Then Pruc-
nal’s substitution

� W r ! td
�
A.p/; B.p/; r

�
is a projective unifier for A.p/ � B.p/.

Proof To prove that � is a projective unifier, we need to prove that
(a) �.A.p// � �.B.p// is valid in every algebra from V ; that is, � is a unifier;
(b) a quasi-identity A.p/ � B.p/ ) r � �.r/ is valid in every algebra from V ;

that is, � is projective.
(a) Let p WD p1; : : : ; pn. Since �.r/ D td.A; B; r/, we have

�
�
A.p/

�
� A

�
�.p/

�
� A

�
td.A; B; p1/; : : : ; td.A; B; pn/

�
:

Recall that all the connectives in A; B are td-distributive. Hence, using a simple
induction on the number of connectives in A and (6), we obtain

A
�
td.A; B; p1/; : : : ; td.A; B; pn/

�
� td

�
A; B; A.p1; : : : ; pn/

�
D td.A; B; A/:

Thus,
�

�
A.p/

�
� td.A; B; A/ and �

�
B.p/

�
� td.A; B; B/:

Because every variety is closed under homomorphisms, we can use the identity

td.p; q; p/ � td.p; q; q/

that holds due to [5, Theorem 2.3(iii)], and we can get

td.A; B; A/ � td.A; B; B/:

Thus, � is a V -unifier.
(b) Assume that A 2 V and a WD a1; : : : ; an, where ai 2 AI i D 1; : : : ; n, are

elements such that A. a / D B. a /. We need to demonstrate that for every a 2 a,

a D td.A; B; a/:

Without losing generality, we can assume that A is a finitely generated algebra;
moreover, we can assume that A is generated by elements a D a1; : : : ; an. Let us
take an algebra Fn 2 V freely generated by elements g1; : : : ; gn and consider a
mapping gi 7! ai I i D 1; : : : ; n. By properties of free algebras, this mapping can
be extended to a homomorphism ' W Fn ! A. Let � be a kernel congruence of ',
and let a0 D A.g/ and b0 D B.g/. Since A. a / D B. a /, that is, '.a0/ D '.b0/,
we have Œa0�� D Œb0�� . Hence, if � 0 D �.a0; b0/, then � 0 � � , and if we show that
Œgi �� 0 D Œ�.gi /�� 0 for all i D 1; : : : ; n, we will be able to complete the proof.

By definition of TD term, since � 0 is a principal congruence, we have

Œa�� 0 D Œb�� 0 iff td.a0; b0; a/ D td.a0; b0; b/:
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Therefore,

Œgi �� 0 D
�
td.a0; b0; b/

�
� 0 iff td.a0; b0; gi / D td

�
a0; b0; td.a0; b0; gi /

�
:

Let us recall from [5, Corollary 2.4(2-1)] that for each TD term and each term
C.r1; : : : ; rm/, the following identity holds:

td
�
p; q; C.r1; : : : ; rm/

�
� td

�
p; q; C

�
td.p; q; r1/; : : : ; td.p; q; rm/

��
:

So, if we take C WD r , we have

td.p; q; r/ � td
�
p; q; td.p; q; r/

�
;

and hence
td.a0; b0; gi / D td

�
a0; b0; td.a0; b0; gi /

�
holds for all i D 1; : : : ; n. Therefore, for all i D 1; : : : ; n,

Œgi �� 0 D
�
�.gi /

�
� 0 ;

and this completes the proof of the theorem.

Let us note that Corollary 3.3 immediately follows from the above theorem.

5 Final Remarks

5.1 Compatible connectives Recall from [5] and [1] that a connective (operation) f

is called compatible (in an algebra A) if an algebra A0 obtained from A by adding
f to its signature has the same set of congruences. Given a variety V , a connective
is called compatible in V if it is compatible in each algebra from V . Thus if V is
a variety of algebras in the signature C with TD term td and td-distributive con-
nectives td.C/, adding the compatible connectives to C preserves the TD term and
td.C/-hereditary completeness.

Note that if V 0 is a variety obtained from V by adding compatible connectives to
the signature, the variety V 0 will be hereditarily C 0-structurally complete as long as
the variety V is hereditarily C 0-structurally complete. That is, any axiomatic exten-
sion of a hereditarily C 0-structurally complete variety is hereditarily C 0-structurally
complete.

For example, we can take a variety V of Brouwerian semilattices (idempotent
hoops) in the signature ^; !; 1, extend the signature by adding two new connectives
_; : and the new axioms that will define a variety of Heyting algebras V 0, and, since
V is hereditarily ¹^; !; 1º-structurally complete, we can conclude that the variety
of Heyting algebras is also hereditarily ¹^; !; 1º-structurally complete.

5.2 Derivative connectives From the definition of td-distributivity, it immediately
follows that any superposition of any td-distributive connectives is td-distributive.
Thus, if C is a signature, we can extend the signature C by adding a new con-
nective f that is expressed via connectives from C.td/ and obtain a new vari-
ety that will be hereditarily C.td/ [ ¹f º-structurally complete. For example,
in the variety H of Heyting algebras in the signature ^; _; !; :, the connec-
tives !; ^ are td!-distributive. If we add new connectives 1 WD .p ! p/ and
p $ q WD .p ! q/ ^ .q ! p/, we can conclude that the obtained variety is
hereditarily ¹^; !; $; 1º-structurally complete. Let us also note that even though
: is not td!-distributive connective, the connective :: is td!-distributive. By the
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Table 1 Examples of td-distributive connectives.

Variety Signature td-term td-distributive
Hilbert algebras !; 1 (a) !; 1
Brouwerian semilattices ^; !; 1 (a) ^; !; 1
Heyting algebras ^; _; !; : (a) ^; !; >; Ï; ::

Heyting algebras ^; _; !; : (b) ^; _; ?

KM algebras ^; _; !; :; � (a) ^; !; >; Ï; ::

KM algebras ^; _; !; : (b) ^; _; ?; �

n-potent hoops �; !; 1 (c) �; !; 1
n-transitive modal algebras ^; _; !; :; � (d) ^; !; >

n-transitive modal algebras ^; _; !; :; � (e) ^; _; �; ?

Interior algebras ^; _; !; :; � (f) ^; !; >

Interior algebras ^; _; !; :; � (g) ^; _; �; ?

BCI monoids ^; !; �; 1 (h) ^; !; �

BCI monoids ^; !; �; 1 (i) ^; !; �

Glivenko theorem, in each Heyting algebra the following hold:
p ! ::q � :.p ^ :q/ � ::.:p _ q/ � ::.p ! q/:

Hence, H is hereditarily ¹^; !; 1; $; ::º-structurally complete or, for instance,
¹$; ::º-structurally complete (see Słomczyńska [34]).

5.3 Examples of td-distributive connectives In Table 1, we provide examples of
some varieties, their TD terms and corresponding td-distributive connectives. We
use p Ï q as an abbreviation for .p ! q/ ^ .q ! p/ or .p ! q/ � .q ! p/, and
we use $ for a principal connective. We also use > and ? as an abbreviation for
.p ! p/ and p ^ :p, while 1 and 0 are used for principal connectives. We define
p On as p

O1 D p ^ 1 and p On D .p ^ 1/ ^ p
On�1.

We will consider the following ternary terms:
(a) td WD .p ! q/ ! ..q ! p/ ! r/,
(b) td WD .p ! q/ ^ .q ! p/ ^ r ,
(c) td WD .p ! q/

n�1
���! ..q ! p/

n�1
���! r/,

(d) td WD .p Ï q/ ^ �.p Ï q/ ^ � � � ^ �n�1.p Ï q/ ! r ,
(e) td WD .p Ï q/ ^ �.p Ï q/ ^ � � � ^ �n�1.p Ï q/ ^ r ,
(f) td WD �.p Ï q/ ! r ,
(g) td WD �.p Ï q/ ^ r ,
(h) td WD .p Ï q/n � r ,
(i) td WD .p Ï q/

n
�! r .

Notes

1. The terms “Prucnal’s trick” and “modified Prucnal’s trick” were introduced by Wroński
in connection with !; ^ and !; ^; : fragments of IPL.

2. As the anonymous referee pointed out, exactness of formulas suffices.

3. In [5], a discriminator is called an “affine discriminator” to distinguish this notion from
the notion of a fixed point discriminator.
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