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Deciding Unifiability and Computing Local Unifiers in
the Description Logic EL without Top Constructor
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Stefan Borgwardt, and Barbara Morawska

Abstract Unification in description logics has been proposed as a novel infer-
ence service that can, for example, be used to detect redundancies in ontologies.
The inexpressive description logic EL is of particular interest in this context
since, on the one hand, several large biomedical ontologies are defined using
EL. On the other hand, unification in EL has been shown to be NP-complete
and, thus, of considerably lower complexity than unification in other description
logics of similarly restricted expressive power.

However, EL allows the use of the top concept (>), which represents the
whole interpretation domain, whereas the large medical ontology SNOMED CT
makes no use of this feature. Surprisingly, removing the top concept from EL

makes the unification problem considerably harder. More precisely, we will show
that unification in EL without the top concept is PSpace-complete. In addition
to the decision problem, we also consider the problem of actually computing
EL�>-unifiers.

1 Introduction

Description logics (DLs) are a well-investigated family of logic-based knowledge
representation formalisms (see Baader, Calvanese, McGuinness, et al. [8]). They
can be used to represent the relevant concepts of an application domain using con-
cept terms, which are built from concept names and role names using certain concept
constructors. The DL EL offers the constructors conjunction (u), existential restric-
tion (9r:C ), and the top concept (>). From a semantic point of view, concept names
and concept terms represent sets of individuals, whereas roles represent binary rela-
tions between individuals. The top concept is interpreted as the set of all individuals.
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For example, by using the concept names Male, Female, Person and the role names
child, job, the concept of persons having a son, a daughter, and a job can be repre-
sented by the EL-concept term

Person u 9child:Male u 9child:Female u 9job:>:

In this example, the availability of the top concept in EL allows us to state that
the person has some job, without specifying any further to which concept this job
belongs.

Knowledge representation systems based on DLs provide their users with various
inference services that allow them to deduce implicit knowledge from the explicitly
represented knowledge. For instance, the subsumption algorithm allows one to deter-
mine subconcept–superconcept relationships. For example, the concept term 9job:>

subsumes (i.e., is a superconcept of ) the concept term 9job:Boring since anyone that
has a boring job at least has some job. Two concept terms are called equivalent if
they subsume each other, that is, if they are always interpreted as the same set of
individuals.

The DL EL has recently drawn considerable attention since, on the one hand,
important inference problems such as the subsumption problem are polynomial in
EL (see Baader [1], Baader, Brandt, and Lutz [7]). On the other hand, though quite
inexpressive, EL is used to define biomedical ontologies. For example, the large
medical ontology SNOMED CT1 can be expressed in EL. Actually, if one takes a
closer look at the concept definitions in SNOMED CT, then one sees that they do not
contain the top concept.

Unification in DLs has been proposed in Baader and Narendran [13] as a novel
inference service that can, for instance, be used to detect redundancies in ontologies.
For example, assume that one knowledge engineer defines the concept of female
professors as

Person u Female u 9job:Professor;

whereas another knowledge engineer represents this notion in a somewhat different
way, for example, by using the concept term

Woman u 9job:.Teacher u Researcher/:

While these two concept terms are not equivalent, they are nevertheless meant to rep-
resent the same concept. They can obviously be made equivalent by substituting the
concept name Professor by the concept term Teacher u Researcher and the concept
name Woman by the concept term Person u Female.

In general, unification is the problem of making two concept terms equivalent by
allowing some of the concept names, which are designated variables, to be replaced
by other concept terms. We call a substitution that makes two concept terms equiv-
alent a unifier of the two terms. Such a unifier proposes definitions for the concept
names that are used as variables. In our example, we know that if we define Woman
as Person u Female and Professor as Teacher u Researcher, then the two concept
terms from above are equivalent with respect to these definitions.

In [13] it was shown that, for the DL FL0, which differs from EL by offering
value restrictions (8r:C ) in place of existential restrictions, deciding unifiability is
an ExpTime-complete problem. In Baader and Morawska [10], we were able to
show that unification in EL is of considerably lower complexity: the decision prob-
lem is only NP-complete. The original unification algorithm for EL introduced in
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[10] was a brutal “guess and then test” NP-algorithm, but we have since then also de-
veloped more practical algorithms. On the one hand, in Baader and Morawska [12]
we describe a goal-oriented unification algorithm for EL, in which nondeterministic
decisions are only made if they are triggered by “unsolved parts” of the unification
problem. On the other hand, in Baader and Morawska [11], we present an algorithm
that is based on a reduction to satisfiability in propositional logic (SAT) and, thus,
allows us to employ highly optimized state-of-the-art SAT solvers for implementing
an EL-unification algorithm.

One can additionally allow background knowledge of the application domain to
be encoded using so-called general concept inclusions (GCIs), which restrict one
concept to be a subconcept of another concept. For instance, we can use the GCI
Woman v Female to express the fact that every woman is female. Since equiva-
lence of concept terms is evaluated with respect to this background knowledge, this
changes the unification problem considerably. We were able to show that unifica-
tion remains in NP if the GCIs satisfy a certain cycle restriction. For example, the
cyclic GCI 9child:Human v Human satisfies this restriction, whereas the cyclic
GCI Human v 9parent:Human does not. We again developed three algorithms that
generalize the ones for EL without GCIs (see Baader, Borgwardt, and Morawska
[4]–[6]). These algorithms even decide unification in the extension ELH RC of EL

that allows one to specify additional domain knowledge in the form of a role hierar-
chy (H ) and transitive roles (RC).

In contrast to the above works, we here consider a DL that is even less expressive
than EL. The motivation for this is that, as mentioned above, SNOMED CT is not
formulated in EL, but rather in its sublogic EL�>, which differs from EL in that the
use of the top concept is disallowed. We also do not consider GCIs since the knowl-
edge in SNOMED CT is expressed by so-called acyclic concept definitions, which
can be expressed in the unification problem itself (see [12]), thereby eliminating the
need to take into account any background knowledge. If we employ EL-unification
to detect redundancies in (extensions of ) SNOMED CT, then a unifier may introduce
concept terms that contain the top concept and, thus, propose definitions for concept
names that are of a form that is not used in SNOMED CT.

Apart from this practical motivation for investigating unification in EL�>, we
also found it interesting to see how such a small change in the syntax of the
logic influences the unification problem. It turned out that the complexity of
the problem increases considerably (from NP to PSpace). In addition, compared
to EL-unification, quite different methods had to be developed to actually solve
EL�>-unification problems. In particular, we will show that—similar to the case
of FL0-unification—EL�>-unification can be reduced to solving certain language
equations. In contrast to the case of FL0-unification, these language equations can
be solved in PSpace rather than ExpTime, which we show by a reduction to the
emptiness problem for alternating automata on finite words.

This article extends the original conference paper Baader, Binh, Borgwardt, et al.
[3] by providing detailed proofs of all results and describing their relevance for the
fields of unification modulo equational theories and unification in modal logics. It
also incorporates additional results on the complexity of actually computing unifiers
in EL�> originally published in the workshop paper Baader, Binh, Borgwardt, et
al. [2]. To determine unifiability in EL, it is enough to consider local unifiers since
every solvable EL-unification problem has a local unifier. Although local unifiers
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may be of size exponential in the input unification problem, they can be represented
by an acyclic TBox (i.e., an acyclic collection of concept definitions) of polynomial
size (see [10]). For EL�>, we have to extend the definition of local unifiers in order
to ensure that every solvable unification problem has a local unifier. We will show
that, with respect to this new notion of locality, we can effectively compute local
unifiers for solvable unification problems, but these unifiers may be of exponential
size even if we use acyclic TBoxes to represent them.

2 The DLs EL and EL�>

DLs are logic-based formalisms used to represent the knowledge of an application
domain in a structured way (see [8]). Concepts of the domain are described through
concept terms that are built from atomic concepts (basically, unary predicates) and
roles (binary relations) using concept constructors. In this article, we are concerned
with the DL EL, which uses the constructors conjunction (u), existential restriction
(9r for every role r), and top concept (>), and its fragment EL�>, in which the top
concept is disallowed.

More formally, let NC and NR be two disjoint sets of concept names and role
names, respectively. The set of EL-concept terms is the smallest set containing NC
such that:

� > is an EL-concept term;
� if C and D are EL-concept terms, then so is C u D; and
� if C is an EL-concept term and r 2 NR, then 9r:C is an EL-concept term.

The set of EL�>-concept terms is defined in the same way, but using only the latter
two rules. Since EL�>-concept terms are special EL-concept terms, many defini-
tions and results transfer from EL to EL�>, and thus we only formulate them for EL.
We will explicitly mention it if this is not the case.

The semantics of concept terms is defined using interpretations I D .DI; �I/,
which consist of a nonempty domain DI and an interpretation function �I that assigns
subsets of DI to every concept name and binary relations over DI to every role
name. This function is extended to EL-concept terms as shown in the semantics
column of Table 1. The concept term C is subsumed by the concept term D (written
C v D) if and only if C I � DI holds for all interpretations I; and C is equivalent
to D (C � D) if and only if C I D DI for every interpretation I.

A concept definition is an expression of the form A � C , where A is a concept
name and C is an arbitrary EL�>-concept term. An acyclic TBox T is a set of
concept definitions such that (i) every concept name occurs at most once on the

Table 1 Syntax and semantics of EL and EL�>.

Name Syntax Semantics EL EL�>

concept name A AI � DI x x

role name r rI � DI � DI x x

top-concept > >I D DI x

conjunction C u D .C u D/I D C I \ DI x x

existential restriction 9r:C .9r:C /I D ¹x j 9y W .x; y/ 2 rI ^ y 2 C Iº x x

subsumption C v D C I � DI x x

equivalence C � D C I D DI x x
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left-hand side of a concept definition in T , and (ii) no concept name is defined in
terms of itself, that is, a concept name A does not occur in its own definition (either
directly or indirectly through other definitions). The unfolding of an EL�>-concept
term C with respect to an acyclic TBox T (denoted by C T ) is the EL�>-concept
term resulting from exhaustively replacing all defined concept names occurring in C

by their definitions from T .

2.1 Atoms For unification in EL, it suffices to look at unifiers that substitute vari-
ables by conjunctions of so-called flat atoms that occur in the unification problem.
A concept term is called an atom if and only if it is a concept name A 2 NC or an
existential restriction 9r:D. Concept names and existential restrictions 9r:D, where
D is a concept name or >, are called flat atoms. The set At.C / of atoms of a concept
term C is defined as follows.

� If C D >, then At.C / WD ;.
� If C is a concept name, then At.C / WD ¹C º.
� If C D 9r:D, then At.C / WD ¹C º [ At.D/.
� If C D C1 u C2, then At.C / WD At.C1/ [ At.C2/.

For example, the concept term C D A u 9r:.B u 9r:>/ has the set of atoms
At.C / D ¹A; 9r:.B u 9r:>/; B; 9r:>º.

Obviously, any concept term C is a conjunction of atoms C D C1u� � �uCn, where
the empty conjunction is > and all conjuncts > are removed from this conjunction if
it is nonempty. We call C1; : : : ; Cn the top-level atoms of C . The concept term C is
called flat if all its top-level atoms are flat.

The following lemma gives a recursive characterization of subsumption in EL and
EL�>and turned out to be very useful for solving unification in these DLs (see [12]).

Lemma 1 Consider two concept terms C D A1 u� � �uAk u9r1:C1 u� � �u9rm:Cm

and D D B1 u � � � u Bl u 9s1:D1 u � � � u 9sn:Dn, where A1; : : : ; Ak ; B1; : : : ; Bl are
concept names. Then C v D if and only if ¹B1; : : : ; Blº � ¹A1; : : : ; Akº and for
every j 2 ¹1; : : : ; nº there exists an i 2 ¹1; : : : ; mº such that ri D sj and Ci v Dj .

This means that we can check a subsumption C v D by testing whether for every
top-level atom D0 of D there is a top-level atom C 0 of C with C 0 v D0. A subsump-
tion C v D between two atoms C; D is then evaluated structurally; that is, either
(i) these atoms are the same concept name or (ii) they are of the form C D 9r:C 0,
D D 9r:D0 for some role name r and C 0 v D0 holds.

2.2 Particles For unification in EL�>, building unifiers from the flat atoms of a uni-
fication problem is not enough. It will turn out that one may need to add so-called
particles to make sure that a variable is not substituted by the empty conjunction of
atoms, which is >.

Modulo equivalence, the subsumption relation is a partial order on concept terms.
In EL, the top concept > is the greatest element with respect to this order. If we
disallow >, then there are many incomparable maximal concept terms. We will see
below that these are exactly the EL�>-concept terms of the form 9r1:9r2: � � � 9rn:A

for n � 0 role names r1; : : : ; rn and a concept name A. We call such concept terms
particles. The set Part.C / of particles of an EL�>-concept term C is defined as
follows.

� If C is a concept name, then Part.C / WD ¹C º.
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� If C D 9r:D, then Part.C / WD ¹9r:M j M 2 Part.D/º.
� If C D C1 u C2, then Part.C / WD Part.C1/ [ Part.C2/.

For example, the particles of the concept Au9r:.B u9r:A/, where A; B 2 NC and
r 2 NR, are A, 9r:B , and 9r:9r:A. The next lemma states that particles are indeed the
maximal concept terms with respect to subsumption in EL�>, and that the particles
subsuming an EL�>-concept term C are exactly the particles of C .

Lemma 2 Let C be an EL�>-concept term, and let B be a particle.
1. If B v C , then B � C .
2. B 2 Part.C / if and only if C v B .

Proof We show both claims by induction on the length of B , that is, the number
of existential restrictions it contains.

1. If B is a concept name and B v C , then Lemma 1 yields that B is the only
possible top-level atom of C , which implies that B � C .

Otherwise, B D 9r:B 0 for a particle B 0. Then every top-level atom of C

must be of the form 9r:C 0 with B 0 v C 0. Since the particle B 0 is shorter
than B , induction yields B 0 � C 0 for every top-level atom 9r:C 0 of C , which
implies B � C by Lemma 1.

2. If B is a concept name, then B 2 Part.C / is equivalent to the fact that B is a
top-level atom of C , which in turn is equivalent to C v B by Lemma 1.

Otherwise, B D 9r:B 0 for a particle B 0. By definition, B 2 Part.C / if
and only if there exists a top-level atom 9r:C 0 of C with B 0 2 Part.C 0/. By
induction, this is equivalent to the existence of a top-level atom 9r:C 0 of C

with C 0 v B 0. By Lemma 1, this is equivalent to C v B .

3 Unification in EL and EL�>

To define unification in EL and EL�> simultaneously, let L 2 ¹EL; EL�>
º. When

defining unification in L, we assume that the set of concept names is partitioned into
a set Nv of concept variables (which may be replaced by substitutions) and a set Nc of
concept constants (which must not be replaced by substitutions). An L-substitution
� is a mapping from Nv into the set of all L-concept terms. This mapping is extended
to concept terms in the usual way, that is, by replacing all occurrences of variables
in the term by their � -images. An L-concept term is called ground if it contains no
variables, and an L-substitution � is called ground if the concept terms �.X/ are
ground for all X 2 Nv.

Unification tries to make concept terms equivalent by applying a substitution.

Definition 3 An L-unification problem is of the form � D ¹C1 �‹ D1; : : : ;

Cn �‹ Dnº, where C1; D1; : : : ; Cn; Dn are L-concept terms. The L-substitution �

is an L-unifier of � if and only if it solves all the equations Ci �‹ Di in � , that is,
if and only if �.Ci / � �.Di / for i D 1; : : : ; n. In this case, � is called L-unifiable.

We will often use the subsumption C v‹ D as an abbreviation for the equation
C u D �‹ C . Obviously, � solves this equation if and only if �.C / v �.D/.

Clearly, every EL�>-unification problem � is also an EL-unification problem.
Whether � is L-unifiable or not may depend, however, on whether L D EL or
L D EL�>. As an example, consider the problem � WD ¹A v‹ X; B v‹ Xº,
where A; B are distinct concept constants and X is a concept variable. Obviously,
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the substitution that replaces X by > is an EL-unifier of � . However, � does not
have an EL�>-unifier. In fact, for such a unifier � , the EL�>-concept term �.X/

would need to satisfy A v �.X/ and B v �.X/. Since A and B are particles,
Lemma 2 would imply that A � �.X/ � B and thus A � B , which is not the case.

We may without loss of generality restrict our attention to flat L-unification prob-
lems, that is, L-unification problems in which the right- and left-hand sides of the
equations are flat L-concept terms. Nonflat L-concept terms can be flattened by
introducing new variables as abbreviations for subterms (see [12]). Given a flat uni-
fication problem � , we denote by At.�/ the set of all atoms of � , that is, the union
of all sets of atoms of the concept terms occurring in � . By Var.�/ we denote the
variables that occur in � and by NV.�/ WD At.�/nVar.�/ the set of all nonvariable
atoms of � .

Although arbitrary L-substitutions � are used in the definition of an L-unifier,
it is actually sufficient to consider ground L-substitutions � such that all L-concept
descriptions �.X/ in the range of � contain only concept and role names occurring
in � . It is an easy consequence of well-known results from unification theory (see
Baader and Snyder [14]) that an L-unification problem � has an L-unifier if and
only if it has such a ground L-unifier. Thus, for simplicity we will assume in the
following that NR is the set of role names occurring in � and that Nc is the set of
concept constants occurring in � . Since we are only interested in the substitution of
variables occurring in � , we will also assume that Nv D Var.�/.

3.1 Connection to other unification problems Unification was originally not in-
troduced for DLs, but for equational theories (see [14]). In Sofronie-Stokkermans
[26] and [12] it was shown that equivalence and unification in EL are the same as
the word problem and unification, respectively, in the equational theory bSLmO of
bounded (meet-)semilattices with monotone operators. The signature †bSLmO of this
equational theory consists of a binary function symbol ^, a constant symbol 1, and
finitely many unary function symbols f1; : : : ; fn. Terms can be built by using these
symbols and additional variable symbols and free constant symbols. The signature
†SLmO is obtained from †bSLmO by dropping the constant 1.

Definition 4 The equational theory of bounded semilattices with monotone oper-
ators is defined by the following identities:

bSLmO WD
®
x ^ .y ^ z/ D .x ^ y/ ^ z; x ^ y D y ^ x; x ^ x D x; x ^ 1 D x

¯
[

®
fi .x ^ y/ ^ fi .y/ D fi .x ^ y/

ˇ̌
1 � i � n

¯
:

The equational theory SLmO of semilattices with monotone operators is obtained
from the above definition by dropping the identity x ^ 1 D x.

Any EL-concept description C using only the roles r1; : : : ; rn can be translated into
a term tC over the signature †bSLmO by replacing each concept constant A by a free
constant a, each concept variable X by a variable x, > by 1, u by ^, and 9ri by
fi . For example, the EL-concept description C D A u 9r1:> u 9r3:.X u B/ is
translated into tC D a^f1.1/^f3.x ^b/. Conversely, any term t over the signature
†bSLmO can be translated back into an EL-concept description Ct . The same holds
for EL�>-concept descriptions and terms over †SLmO. As shown in [26], the word
problem in the theory SLmO is the same as the equivalence problem for EL-concept
descriptions. Again, a similar result holds for EL�>.
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Lemma 5 Let C; D be EL-concept descriptions using only the roles r1; : : : ; rn.
Then C � D holds if and only if tC DbSLmO tD . If C; D are EL�>-concept descrip-
tions, then this is also equivalent to tC DSLmO tD .

As an immediate consequence of this lemma, every EL- or EL�>-unification prob-
lem can be translated into a unification problem modulo the corresponding equa-
tional theory that, apart from the translation between concept descriptions and terms,
has the same unifiers.

Thus, previous results for unification in EL imply that unification modulo bSLmO
is NP-complete, even if a certain restricted form of ground equations is added to the
equational theory (see [6], [12] for details). Correspondingly, the results we present
in this article show that unification modulo SLmO is PSpace-complete.

There is also a strong connection between DLs and modal logics and, therefore,
between unification in these formalisms. In the basic multimodal logic Km, formulae
are built from a set of propositional variables using the propositional connectives >,
?, ^, _, :, !, $, and two unary connectives �ri

and Þri
for each relation symbol

ri from a fixed set ¹r1; : : : ; rnº (see Blackburn, van Benthem, and Wolter [16]).
These formulae are interpreted over so-called Kripke models, which consist of a

set of worlds that are connected by binary relations corresponding to the symbols
r1; : : : ; rn. The validity of a formula ' in a world w of such a model is defined
inductively on the structure of ', where the validity of the atomic propositions in
a world is fixed by the given model. The definition of validity is extended to the
propositional connectives in the usual way. A formula of the form �ri

' is said to
be valid in a given world w if ' is valid in all worlds connected to w via the binary
relation associated to ri . Dually, Þri

' is valid in w if ' is valid in at least one world
connected to w by ri .

It was first observed in Schild [25] that Km is a notational variant of the DL ALC .
There is a bijective translation of formulae of Km into ALC -concept descriptions,
and Kripke models can be characterized as DL interpretations. In this setting, the DL
EL corresponds to the syntactic fragment of Km that is restricted to the connectives
>, ^, and Þri

. Every EL-concept description C can be translated into a modal
formula 'C by replacing every concept name by a propositional variable, u by ^,
and 9ri by Þri

. On the other hand, every modal formula ' in this fragment of Km
can be translated back into an EL-concept description C' by applying the inverse
transformation. In the same way, EL�> corresponds to the ^-Þri

-fragment of Km.
It is an easy consequence of the results of [25] that two EL-concept descriptions

C and D are equivalent if their translations 'C and 'D are valid in the same Kripke
models. In Km, this is usually expressed as the validity of 'C $ 'D in every Kripke
model. Note, however, that in the sub-Boolean fragments of Km corresponding to
EL and EL�> this bi-implication cannot be expressed. In particular, in EL there
are no constructors directly corresponding to negation, disjunction, implication, or
bi-implication.

Traditionally, unification in modal logics is the problem of finding, for a given
modal formula ', a substitution � of the propositional variables by modal formulae
such that �.'/ becomes valid in all Kripke models (see Baader and Ghilardi [9],
[16]). A famous open problem is the decidability of unification in K, the unimodal
version of Km with only one relation symbol. Unification in several extensions of



Deciding Unifiability and Computing Unifiers in EL without Top 451

K has been shown to be undecidable in Wolter and Zakharyaschev [28]. For an
overview of known results about unification in modal logics, see [9].

Following the translations between concepts and modal formulae described above,
the unifiability of a set ¹C1 �‹ D1; : : : ; Cm �‹ Dmº of equations over concept
descriptions in some DL is equivalent to the unifiability of 'C1

$ 'D1
^� � �^'Cm

$

'Dm
in the corresponding modal logic (see [9]). Note that some of the propositional

variables in the translated formula have to be viewed as constants, which are not
allowed to be replaced by substitutions. Again, for EL and EL�> this results in a
formula which in general cannot be expressed in the fragments of Km mentioned
above. To the best of our knowledge, unification in such sub-Boolean modal logics
has not been considered in the modal logic literature.

On the other hand, a modal formula ' is unifiable if ¹C' �‹ >º is unifiable in the
corresponding DL. Consider now the >-^-Þri

-fragment of Km, which corresponds
to EL. According to Lemma 1, we know that ' is unifiable if and only if it is
a conjunction of variables or >: if ' is of this form, then it can be made valid
by substituting every variable by >; otherwise, for any substitution � the concept
description �.C'/ must contain at least one atom, which cannot be contained in >.
Thus, unification in the >-^-Þri

-fragment of Km is trivial. In the ^-Þri
-fragment

of Km, unification is even more absurd since �.C'/ must always contain at least one
atom, regardless of the form of '. This means that this modal logic does not have
unifiable formulae.

This shows that in the above fragments of Km it does not make sense to con-
sider unification in the modal logic sense. If we consider instead the equational
variant of modal unification that corresponds to Definition 3, then unification in the
>-^-Þri

-fragment of Km is NP-complete (see [12]), and it is PSpace-complete in
the ^-Þri

-fragment, as we show in this article.

3.2 Locality of EL-unification The NP-algorithm for unification in EL introduced
in [10] is based on the fact that every unifiable EL-unification problem � has a
so-called local EL-unifier, which we define in the following.

Given an EL-unification problem � , an assignment is a function S mapping each
variable X 2 Var.�/ to a set S.X/ � NV.�/. Such an assignment S induces the
relation >S , which is the transitive closure of the depends on relation®

.X; Y / 2 Var.�/ � Var.�/
ˇ̌

Y occurs in an element of S.X/
¯
:

We call the assignment S acyclic if >S is irreflexive (and thus a strict partial order).
Any acyclic assignment S induces a unique substitution S , which can be defined by
induction along >S .

� If X is a minimal element of Var.�/ with respect to >S , then S .X/ is the
conjunction of the elements of S.X/, where the empty conjunction is >.

� Assume that S .Y / is defined for all Y <S X . If S.X/ D ¹D1; : : : ; Dnº,
then S .X/ WD S .D1/ u � � � u S .Dn/.

A unifier  of � is called a local EL-unifier of � if it is of the above form, that is, if
there is an acyclic assignment S such that  D S (see Example 6).

In [10] it was shown that every unifiable EL-unification problem � has a local
EL-unifier. This gives rise to a simple NP-algorithm for deciding unification in EL:
first, guess an assignment S in polynomial time, and then check whether S is acyclic
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and whether the induced substitution S solves the unification problem. The former
property can clearly be tested in polynomial time in the size of S .

However, the substitution S may be exponential in the size of S , which is basi-
cally due to the fact that subterms are copied if variables occur several times in a set
S.X/. In [12], this problem was solved by representing S by the acyclic TBox

T S
WD

®
X � D1 u � � � u Dn

ˇ̌
X 2 Var.�/; S.X/ D ¹D1; : : : ; Dnº

¯
;

which has the same size as S . It is easy to see that S .X/ D XT S ; that is, the
substitution of a variable X 2 Var.�/ under S is simply the unfolding of X with
respect to T S . Thus, to check whether S solves an equation C �‹ D from � ,
we have to decide whether C T S is equivalent to DT S . It has been shown that this
problem can be solved in polynomial time for any acyclic TBox in EL (see [1]).
This shows that the second test, that is, whether S solves � , can also be done in
polynomial time, which yields an NP-algorithm for deciding unification in EL.

3.3 Why this does not work for EL�> The EL-unifiers returned by the algorithm
sketched above need not be EL�>-unifiers since some of the sets S.X/ in the guessed
assignment may be empty, in which case S .X/ D >. This suggests the following
simple modification of the above algorithm: require that the guessed assignment is
such that all sets S.X/ are nonempty. If such an assignment S is acyclic, then the
induced substitution S is actually an EL�>-substitution, and thus, the substitutions
returned by the modified algorithm are indeed EL�>-unifiers. However, this mod-
ified algorithm does not always detect EL�>-unifiability; that is, it may return no
substitution although the input problem is EL�>-unifiable.

Example 6 Consider the flat EL-unification problem � that contains the three
equations

X �
‹ Y u A; Y u 9r:X �

‹
9r:X; Z u 9r:X �

‹
9r:X:

The substitutions

�0 WD ¹X 7! A; Y 7! >; Z 7! >º;

�1 WD ¹X 7! A; Y 7! >; Z 7! 9r:Aº

are the only local EL-unifiers of � . In fact, we have NV.�/ D ¹A; 9r:Xº, and
thus, the only possible image for X in a local unifier � is A (since having 9r:X in
S.X/ would make the assignment S acyclic). Since the first equation implies that
A D �.X/ v �.Y /, we know that �.Y / can only be > or A. However, the second
equation prevents the second possibility. Finally, the third equation ensures that �.Z/

is > or 9r:A.
Note that � can also be seen as an EL�>-unification problem, but �0 and �1

both contain > and, thus, are not EL�>-unifiers. This shows that � does not have
an EL�>-unifier that is a local EL-unifier. Nevertheless, � has EL�>-unifiers. For
example, the substitution 1 WD ¹X 7! A u 9r:A; Y 7! 9r:A; Z 7! 9r:9r:Aº is such
a unifier.

In this example, the top-level atoms of 1.X/, 1.Y /, 1.Z/ that are not of the form
.D/ for some D 2 NV.�/ are all particles of .D/ for some D 2 NV.�/. This
motivates the following modified definition of locality for EL�>.
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Definition 7 The EL�>-unifier  of � is a local EL�>-unifier of � if, for every
variable X , each top-level atom of .X/ is

� of the form .D/ for some D 2 NV.�/ or
� a particle of .D/ for some D 2 NV.�/.

Note that this definition becomes equivalent to locality in EL if the second option
is left out. Since there are at most polynomially many assignments S for a given
EL-unification problem, there can only be polynomially many local EL-unifiers. In
EL�>, however, it is possible that there exist infinitely many local unifiers, as the
next example illustrates.

Example 8 Consider the unification problem � from Example 6 and the following
EL�>-substitutions n:

n.X/ WD A u 9r:A u � � � u 9rn:A;

n.Y / WD 9r:A u � � � u 9rn:A;

n.Z/ WD 9rnC1:A;

where 9rn:A is short for the concept term 9r: � � � 9r:A with n nested existential re-
strictions.

It is easy to verify that each n is an EL�>-unifier of � . Furthermore, every
top-level atom of n.X/, n.Y /, and n.Z/ is either A or a particle of n.9r:X/.
Note that both A and 9r:X are nonvariable atoms of � . Thus, � has infinitely many
local EL�>-unifiers.

These unifiers are even incomparable with respect to the subsumption order on
unifiers; that is, for no two n; m 2 N with n ¤ m does it hold that n.W / v m.W /

for all variables W . This is the case since the particles n.Z/ D 9rnC1:A are in-
comparable.

In Section 4, we consider two problems: how to decide unifiability in EL�> and
how to actually compute an EL�>-unifier. It will turn out that, similarly to EL, it
actually suffices to search for local EL�>-unifiers. We will present an algorithm that
decides EL�>-unification in PSpace and can be used to compute local EL�>-unifiers
of at most exponential size. The main idea underlying the algorithm is that one
starts with an EL-unifier, and then conjoins “appropriate” particles to the images of
the variables that are replaced by > by this unifier. It is, however, not so easy to
decide which particles can be added this way without turning the EL-unifier into an
EL�>-substitution that no longer solves the unification problem.

In Section 5, we will then provide corresponding hardness results. First, we
show that deciding EL�>-unification is PSpace-hard and then present a series of
EL�>-unification problems whose local unifiers are always of exponential size.

4 Our EL�>-Unification Algorithm

For the remainder of this section, let � be a flat EL�>-unification problem. We
assume without loss of generality that � is a set of flat subsumptions of the
form C1 u � � � u Cn v‹ D, where C1; : : : ; Cn; D are flat atoms. Every equa-
tion C1 u � � � u Cn �‹ D1 u � � � u Dm in � can equivalently be expressed by n C m

such subsumptions.
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4.1 Step 1: Guessing an EL-unifier The first step of the algorithm is to guess
an EL-unifier that is the starting point for constructing an EL�>-unifier. Recall
that if S is an acyclic assignment, then D 2 S.X/ implies that the subsumption
S .X/ v S .D/ holds for the substitution S induced by S . Thus, guessing the
sets S.X/ can be seen as guessing subsumptions between variables and nonvariable
atoms of � . In addition to guessing these subsumptions, our EL�>-unification
algorithm also guesses subsumptions between all other atoms of � . To be more
precise, it guesses a mapping � W At.�/2 ! ¹0; 1º, which specifies which subsump-
tions between atoms of � should hold for the EL�>-unifier that it tries to generate:
if �.D1; D2/ D 1 for D1; D2 2 At.�/, then this means that the search for a
unifier is restricted (in this branch of the search tree) to substitutions  satisfying
.D1/ v .D2/. Any such mapping � also yields an assignment

S � .X/ WD
®
D 2 NV.�/

ˇ̌
�.X; D/ D 1

¯
;

and we require that this assignment is acyclic and induces an EL-unifier of � .

Definition 9 The mapping � W At.�/2 ! ¹0; 1º is called a subsumption mapping
for � if it satisfies the following three conditions.

1. It respects the properties of subsumption in EL.
(a) �.D; D/ D 1 for each D 2 At.�/.
(b) �.A1; A2/ D 0 for distinct concept constants A1; A2 2 At.�/.
(c) �.9r:C1; 9s:C2/ D 0 for distinct r; s 2 NR with 9r:C1; 9s:C2 2 At.�/.
(d) �.A; 9r:C / D �.9r:C; A/ D 0 for each constant A 2 At.�/, role name

r , and variable or constant C with 9r:C 2 At.�/.
(e) If 9r:C1; 9r:C2 2 At.�/, then �.9r:C1; 9r:C2/ D �.C1; C2/.
(f) For all atoms D1; D2; D3 2 At.�/, if �.D1; D2/ D �.D2; D3/ D 1,

then �.D1; D3/ D 1.
2. It induces an EL-substitution; that is, the assignment S � is acyclic and thus

induces a substitution S� , which we will simply denote by  � .
3. It represents a unifier of �; that is, it satisfies the following conditions for

each subsumption C1 u � � � u Cn v‹ D in � .
(a) If D is a nonvariable atom, then there is at least one Ci such that

�.Ci ; D/ D 1.
(b) If D is a variable and �.D; C / D 1 for a nonvariable atom C 2 NV.�/,

then there is at least one Ci with �.Ci ; C / D 1.

Though it is not necessary for the proof of the correctness of our EL�>-unification
algorithm, it can be shown that the substitution  � induced by a subsumption map-
ping � for � is indeed an EL-unifier of � .2 It should be noted that  � need not be
an EL�>-unifier of � . In addition,  � need not agree with � on every subsump-
tion between atoms of � . The reason for this is that � specifies subsumptions which
should hold in the EL�>-unifier of � to be constructed. To turn  � into such an
EL�>-unifier, we may have to add certain particles, and these additions may inval-
idate subsumptions that hold for  � . However, we will ensure that no subsumption
claimed by � is invalidated. It is clear that guessing � and checking the above condi-
tions can be done in NP.

4.2 Step 2: Simplifying the unification problem In this step, we use the guessed sub-
sumption mapping � to turn � into a unification problem that has only variables on
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the right-hand sides of subsumptions. More precisely, we define ��;� WD �� [ �� ,
where

�� WD ¹C1 u � � � u Cn v
‹ X 2 � j X is a variable of �º;

�� WD
®
C v

‹ X
ˇ̌

X is a variable and C is an atom of � with �.C; X/ D 1
¯
:

Before we can formulate the connection between the EL�>-unifiability of � and
of ��;� , we need to introduce some notation and show an auxiliary result. For an
arbitrary EL�>-substitution � , we will in the following write S � � S� if

S � .X/ � S� .X/ WD
®
D 2 NV.�/

ˇ̌
�.X/ v �.D/

¯
holds for every variable X . We now show that under some conditions on the
EL�>-substitution � (most importantly S � � S� ), we can infer �.C / v �.D/ from
�.C; D/ D 1 for C 2 At.�/ and D 2 NV.�/.

Lemma 10 Let � be a subsumption mapping for � , and let � be an EL�>-
substitution with S � � S� . For all atoms C 2 At.�/ and D 2 NV.�/, the
following statements hold.

1. If D is ground, then �.C; D/ D 1 implies �.C / v �.D/.
2. If D D 9r:Y for a variable Y and � satisfies all subsumptions of the form

C 0 v‹ Y in �� , then �.C; D/ D 1 implies �.C / v �.D/.

Proof If C is a variable, then �.C; D/ D 1 implies D 2 S � .C / � S� .C /, and
thus �.C / v �.D/ by the definition of S� , regardless of the form of D. Otherwise,
we consider the structure of D.

1. If D is a constant, then conditions 1(b) and 1(d) of Definition 9 yield C D D,
and the subsumption is clearly satisfied.

If D is of the form 9r:D0 for a constant D0, then by conditions 1(c)–1(e)
of Definition 9, C must be of the form 9r:C 0 and �.C 0; D0/ D 1. It remains
to show that �.C 0/ v �.D0/ holds. Since D0 is a constant, we know that
either C 0 D D0, in which case we immediately have �.C 0/ v �.D0/, or C 0 is
a variable and D0 2 S � .C 0/ � S� .C 0/. In the latter case, the claim follows
from the definition of S� .

2. If D D 9r:Y for a variable Y , then again C must be of the form 9r:C 0 and
�.C 0; Y / D 1. But then C 0 v Y is a subsumption in �� , and we have
�.C 0/ v �.Y /. Thus, �.C / v �.D/, by assumption.

We can now show the following connection between the two unification problems �

and ��;� .

Lemma 11 The following statements are equivalent.
� � is EL�>-unifiable.
� There is a subsumption mapping � for � such that ��;� has an EL�>-unifier

� with S � � S� .

Proof If � has a ground EL�>-unifier � , then we can define � as �.D1; D2/ D 1

if and only if �.D1/ v �.D2/ holds for D1; D2 2 At.�/. It is easy to see that � sat-
isfies all the subsumptions in ��;� , and S � � S� . Additionally, � is a subsumption
mapping.

� Conditions 1(a)–1(f ) of Definition 9 are obviously satisfied by the subsump-
tion relation.
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� Conditions 3(a) and 3(b) of Definition 9 are satisfied, since � is a unifier of
� and Lemma 1 holds.

� To show that condition 2 of Definition 9 holds, assume that there is a
sequence X1; : : : ; Xn (n > 1) of variables such that X1 D Xn and
�.Xi / v �.9ri :XiC1/ for each i 2 ¹1; : : : ; n � 1º. By the properties of
subsumption, this would imply �.X1/ v �.9r1: � � � 9rn�1:X1/ D 9r1: � � �

9rn�1:�.X1/, which is impossible. Thus, condition 2 of Definition 9 is also
satisfied.

Conversely, let � W At.�/2 ! ¹0; 1º be a subsumption mapping for � , and let �

be an EL�>-unifier of ��;� with S � � S� . We have to show that � also satisfies
all discarded subsumptions of the form C1 u � � � u Cn v‹ D 2 � , where D is a
nonvariable atom of � .

By condition 3(a) of Definition 9, there is an index i 2 ¹1; : : : ; nº with
�.Ci ; D/ D 1. Since � satisfies all the subsumptions in �� , we can apply Lemma 10
and get �.Ci / v �.D/. Thus, � satisfies all subsumptions of � .

For the problem of actually computing local EL�>-unifiers of � , we also need to
consider the locality of the unifiers of ��;� . Fortunately, it can easily be seen from
the second part of the proof of Lemma 11 that any local EL�>-unifier � of ��;� with
S � � S� is also a local EL�>-unifier of � since every nonvariable atom in ��;�

must also occur in � .

Lemma 12 Let � be a subsumption mapping for � , and let � be a local
EL�>-unifier of ��;� with S � � S� . Then � is also a local EL�>-unifier of � .

The converse of this lemma does not hold. However, our aim is not to construct local
EL�>-unifiers of ��;� from local EL�>-unifiers of � , but only to do the other way
around. Thus, in the following we need to solve the problem of computing local
EL�>-unifiers � of ��;� that satisfy the additional condition S � � S� . For the
following steps, we fix a subsumption mapping � for � .

4.3 Step 3: Translating to linear language inclusions In this step, we characterize
which particles can be added in order to turn  � into an EL�>-unifier � of ��;�

satisfying S � � S� . Recall that particles are of the form 9r1: � � � 9rn:A for n � 0

role names r1; : : : ; rn and a concept name A. We write such a particle as 9w:A,
where w D r1 � � � rn is viewed as a word over the alphabet NR of all role names, that
is, an element of N�

R. If n D 0, then w is the empty word " and 9":A is just A.
Admissible words (particles) are determined by solutions of a system of linear

language inclusions.

Definition 13 Let ¹X1; : : : ; Xnº be a finite set of indeterminates. A linear lan-
guage inclusion over these indeterminates is an expression of the form

Xi � L0 [ L1X1 [ � � � [ LnXn; (1)

where i 2 ¹1; : : : ; nº and each Lj (j 2 ¹0; : : : ; nº) is a subset of NR[¹"º. A solution
� of such an inclusion assigns sets of words �.Xi / � N�

R to the indeterminates Xi

such that �.Xi / � L0 [ L1�.X1/ [ � � � [ Ln�.Xn/.
We will often use the abbreviations �.Li Xi / WD Li �.Xi / and �.L0/ WD L0.
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The unification problem ��;� induces a finite system I�;� of such inclusions. The
indeterminates of I�;� are of the form XA, where X 2 Nv and A 2 Nc. For each
constant A 2 Nc and each subsumption s of the form C1 u � � � u Cn v‹ X in ��;� ,
we add the following linear inclusion IA.s/ to I�;� :

XA � fA.C1/ [ � � � [ fA.Cn/; where

fA.C / WD

8̂̂̂<̂
ˆ̂:

¹rºfA.C 0/ if C D 9r:C 0,
YA if C D Y 2 Nv,
¹"º if C D A,
; if C 2 Nc n ¹Aº:

All the inclusions IA.s/ for s 2 ��;� are linear language inclusions since ��;�

only contains flat atoms. For example, the subsumption

9s:A u B u 9r:X u Y u A v
‹ X

for constants A; B , role names r; s, and variables X; Y is translated into the two
inclusions

XA � ¹"; sº [ ¹rºXA [ YA and
XB � ¹"º [ ¹rºXB [ YB

if A and B are the only constants that occur in � .
We call a solution � of I�;� admissible if, for every variable X 2 Nv, there is a

constant A 2 Nc such that �.XA/ is nonempty. This condition will ensure that we
can add enough particles to turn  � into an EL�>-substitution. In order to obtain a
substitution at all, only finitely many particles can be added. Thus, we are interested
in finite solutions of I�;� , that is, solutions � such that all the sets �.XA/ are finite.

Theorem 14 We have that ��;� has an EL�>-unifier � with S � � S� if and only
if I�;� has a finite, admissible solution.
We prove the two directions of this equivalence separately.

Lemma 15 If ��;� has an EL�>-unifier � with S � � S� , then I�;� has a finite,
admissible solution.
Proof Let � be a ground EL�>-unifier of ��;� with S � � S� . We define a solu-
tion � of I�;� as follows: for each variable X and constant A, we set

�.XA/ WD
®
w 2 N�

R

ˇ̌
9w:A 2 Part

�
�.X/

�¯
:

To check that � is a solution of I�;� , consider the inclusion IA.s/ for some s

of the form C1 u � � � u Cn v‹ X in ��;� and a word w 2 �.XA/. By Lemma 2,
we have �.X/ v 9w:A, and thus, Lemma 1 implies that there is a Ci such that
�.Ci / v 9w:A. Hence, 9w:A is a particle of �.Ci /. We show that this implies that
w 2 �.fA.Ci // by considering the structure of Ci .

� If Ci is a constant, then it must be A, since 9w:A is one of its particles. Then
w D ", and thus, w 2 fA.Ci / D ¹"º D �.fA.Ci //.

� If Ci D Y is a variable, then w 2 �.YA/ D �.fA.Ci // by definition.
� If Ci is of the form 9r:C 0 for a role name r and a constant or variable C 0,

then w must be of the form rw0 for w0 2 N�
R and 9w0:A must be a particle

of �.C 0/. Applying the considerations from cases (i) and (ii) to C 0 and w0

yields w0 2 �.fA.C 0//, and thus, w D rw0 2 ¹rº�.fA.C 0// D �.fA.Ci //.
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In all of the above cases, we have w 2 �.fA.Ci //, which implies that � sat-
isfies IA.s/ since w was an arbitrary element of �.XA/. Furthermore, � is fi-
nite, since �.X/ can have only finitely many particles. Additionally, since � is
a ground EL�>-substitution, for every variable X there is at least one particle
9w:A 2 Part.�.X// for some constant A and word w, and thus, �.XA/ is nonempty.
This shows that � is also admissible.

It remains to show the other direction of Theorem 14, that is, how to construct an
EL�>-unifier of ��;� from a solution of I�;� . Recall that we want to compute local
EL�>-unifiers of ��;� . For this reason, we will prove a stronger result, which uses a
corresponding notion of locality for solutions of I�;� .

Definition 16 Let I be a finite set of linear language inclusions over the indeter-
minates X1; : : : ; Xn. A solution � of I is called local if for all i 2 ¹1; : : : ; nº and all
words w 2 �.Xi / n ¹"º there is an inclusion Y � L0 [ L1X1 [ � � � [ LnXn in I such
that w 2 L0 or w 2 .Lj n ¹"º/�.Xj / for some j 2 ¹1; : : : ; nº.

Note that in a solution � of I any word w that violates this condition can safely be
removed from � . Thus, whenever I has a finite, admissible solution, it also has a
local one.

Lemma 17 If I�;� has a finite, local, admissible solution, then ��;� has a local
EL�>-unifier � with S � � S� .
Proof Let � be a finite, local, admissible solution of I�;� . We now define an
EL�>-substitution � by induction on the dependency order > WD >S� induced by
S � (see Sections 3.2 and 4.1). Let X be a variable, and assume that �.Y / has already
been defined for all variables Y with X > Y . We set

�.X/ WD

l

D2S� .X/

�.D/ u

l

A2Nc

l

w2�.XA/

9w:A:

Since � is finite and admissible, � is actually an EL�>-substitution. The property
S � � S� follows from the fact that, for each D 2 S � .X/, the atom �.D/ is a
top-level atom of �.X/, and thus �.X/ v �.D/ holds. It remains to show that � is
a local EL�>-unifier of ��;� .

We first show that � satisfies all subsumptions in ��;� by using induction on the
strict partial order > on the variables. Let X be a variable, and let � satisfy all
subsumptions D1 u � � � u Dm v‹ Y in ��;� for all variables Y with X > Y . We
consider an arbitrary subsumption s of the form C1 u� � �uCn v‹ X in ��;� . This of
course includes the subsumptions from �� , but in that case we always have n D 1.
We have to show that every top-level atom of �.X/ subsumes some �.Ci /. Recall
that there are two kinds of top-level atoms of �.X/.

If D 2 S � .X/, then �.X; D/ D 1 and �.D/ is a top-level atom of �.X/.
If s 2 �� , then condition 3(b) of Definition 9 implies that there is a Ci with
�.Ci ; D/ D 1. But also in the case in which s 2 �� , we know that s is of the form
C1 v X and �.C1; X/ D 1 holds. By condition 1(f ), we deduce that �.Ci ; D/ D 1

holds for i D 1. By the definition of the order >, the nonvariable atom D can
only contain a variable Y with X > Y . By the induction hypothesis, � satisfies
all subsumptions from �� having variables smaller than X with respect to > on the
right-hand side. Thus, we can apply Lemma 10 to conclude that �.Ci / v �.D/

holds.
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The other top-level atoms of �.X/ that we have to consider are of the form 9w:A

for A 2 Nc and w 2 �.XA/. Since � is a solution of I�;� , it satisfies the inclusion
IA.s/, which implies that there is a Ci such that w 2 �.fA.Ci //. We consider the
following cases.

1. If Ci is a concept constant, then it must be A since otherwise we would have
w 2 �.;/ D ;. Thus, we have w 2 �.¹"º/ D ¹"º, that is, w D ", which
implies �.Ci / D A D 9w:A.

2. In the case in which Ci D Y is a variable, we have w 2 �.YA/. Thus, 9w:A

is a top-level atom of �.Y / D �.Ci /, which implies �.Ci / v 9w:A.
3. In the remaining case in which Ci D 9r:C 0 for a role name r and a vari-

able or constant C 0, we have w 2 �.¹rºfA.C 0//. Thus, w is of the form
rw0 for w0 2 �.fA.C 0//. Applying the considerations from cases 1 and
2 to C 0 and w0 yields the subsumption �.C 0/ v 9w0:A, which implies
�.Ci / D 9r:�.C 0/ v 9r:9w0:A D 9w:A.

Finally, to show that � is a local EL�>-unifier, we again consider all top-level
atoms of �.X/ for each variable X . For the top-level atoms of the form �.D/ for
D 2 S � .X/, we immediately have D 2 NV.�/ since S � .X/ � NV.�/. Now
consider a top-level particle 9w:A of �.X/. If w D ", then A is a nonvariable atom of
� since we assumed that all elements of Nc occur in � . Otherwise, w 2 �.XA/n¹"º,
and by the locality of � , there are subsumption of the form C1 u � � � u Cn v‹ X

in ��;� and an index i 2 ¹1; : : : ; nº such that w 2 �.fA.Ci // and Ci is neither a
variable nor a constant.

Thus, Ci is of the form 9r:C 0, where C 0 is either the constant A or a variable. Con-
sequently, either w 2 ¹rº or w 2 ¹rº�.C 0

A/. In the former case, 9w:A D 9r:A D Ci

is a ground atom of � . In the latter case, we have w D rw0 for some w0 2 �.C 0
A/.

By the definition of � , this implies �.C 0/ v 9w0:A, which yields �.Ci / v 9w:A.
By Lemma 2, 9w:A is a particle of �.Ci /. Since Ci 2 NV.�/, the particle 9w:A

fulfills the condition for the locality of � .

This concludes the proof of Theorem 14, which shows that the solvability of ��;�

with a unifier � that satisfies S � � S� can be reduced to the solvability of I�;� with
a finite, admissible solution � . However, we are also interested in the size of the
computed unifier � in terms of the size of the solution � . We will denote the size of
something by k�k, which is basically the number of symbols it takes to write it down,
where we assume that every role name r 2 NR is of size 1 and auxiliary symbols like
., º, and 9 are of size 0.

For a solution � of I�;� , we define

k�k WD

X
A2Nc

X
X2Nv

X
w2�.XA/

�
jwj C 1

�
;

where jwj is the length of a word w 2 N�
R. Similarly, we measure the size kC k

of an EL�>-concept term C by the number of distinct occurrences of concept and
role names in C , and the size of a set of concept terms is the sum of the sizes of its
elements. The size of � D ¹C1 v‹ D1; : : : ; Cn v‹ Dnº is the sum of the sizes of
C1; D1; : : : ; Cn; Dn. Finally, the size k�k of a substitution � is the sum of the sizes
of �.X/ for all X 2 Nv.

To analyze the size of the unifier constructed in Lemma 17, we need another
auxiliary definition. For a variable X 2 Var.�/, we consider all sequences
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X D Xn > � � � > X1 where X1 is minimal with respect to > WD >S� . The
length of such a sequence is the number of variables it contains, that is, n. The
height of X is defined as the maximal length of all these sequences. This means that
the height of a minimal variable is 1, and the height is bounded by j Var.�/j since
S � is acyclic.

Lemma 18 Let � be a finite, local, admissible solution of I�;� , and let � be the
local EL�>-unifier constructed from � as described in Lemma 17. Then for every
X 2 Nv of height n, we have�.X/

 � nk�k
n

C k�k

�n�1X
iD0

k�k
i
�
:

Proof We prove the claim by induction on >. Let X be a minimal variable with
respect to >. Since all nonvariable atoms in S � .X/ are ground and occur in � , the
size of �.X/ is bounded by kS � .X/k C k�k � k�k C k�k.

If X is a variable of height n > 1, then the height of all variables Y < X must
be smaller than n. Since all nonvariable atoms D 2 S � .X/ contain only variables
smaller than X with respect to >, by induction we can bound the size of each �.D/

for D 2 S � .X/ by

nk�k
n�1

C k�k

�n�2X
iD0

k�k
i
�
;

where the additional k�kn�1 is a very loose bound for the additional role name in the
case of D D 9r:Y , assuming without loss of generality that � is nonempty. Since
there are at most k�k elements in S � .X/, the size of �.X/ is thus bounded by

k�k

�
nk�k

n�1
C k�k

�n�2X
iD0

k�k
i
��

C k�k D nk�k
n

C k�k

�n�1X
iD0

k�k
i
�
;

which concludes the proof.

Since the height of any variable is bounded by j�j, this lemma bounds the overall
size of � by

k�k
k�kC1

C k�k

�k�k�1X
iD0

k�k
i
�

�
�
k�k C 1

�
k�k

k�kC1:

The goal of the next step is to construct a solution � of size exponential in the size
of � , which then yields an exponential upper bound on the size of the constructed
unifier.

4.4 Step 4: Constructing local solutions In this step, we show how to test whether
the system I�;� of linear language inclusions has a finite, admissible solution or not,
and construct a local one if it does. The main idea is to consider the greatest solution
of I�;� .

To be more precise, given a system of linear language inclusions I, we can order
the solutions of I by defining �1 � �2 if and only if �1.X/ � �2.X/ for all indeter-
minates X of I. Since �;, which assigns the empty set to each indeterminate of I,
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is a solution of I and solutions are closed under argumentwise union, the following
clearly defines the (unique) greatest solution �� of I with respect to this order:

��.X/ WD

[
� solution of I

�.X/:

Lemma 19 Let X be an indeterminate in I, and let �� be the maximal solution
of I. If ��.X/ is nonempty, then there is a finite solution � of I such that �.X/ is
nonempty.

Proof Let w 2 ��.X/. We construct the finite solution � of I by keeping only the
words of length at most jwj: for all indeterminates Y occurring in I we define

�.Y / WD
®
u 2 ��.Y /

ˇ̌
juj � jwj

¯
:

By definition, we have w 2 �.X/. To show that � is indeed a solution of I, consider
an arbitrary inclusion Y � L0 [L1X1 [� � �[LnXn in I, and assume that u 2 �.Y /.
We must show that u 2 L0 [L1�.X1/[� � �[Ln�.Xn/. Since u 2 ��.Y / and �� is a
solution of I, we have (i) u 2 L0 or (ii) u 2 Li �

�.Xi / for some i , 1 � i � n. In the
first case, we are done. In the second case, u D ˛u0 for some ˛ 2 Li � NR [¹"º and
u0 2 ��.Xi /. Since ju0j � juj � jwj, we have u0 2 �.Xi /, and thus u 2 Li �.Xi /.

Lemma 20 There is a finite, admissible solution of I�;� if and only if the maximal
solution �� of I�;� is admissible.

Proof If I�;� has a finite, admissible solution � , then the maximal solution of I�;�

contains this solution, and is thus also admissible.
Conversely, if �� is admissible, then (by Lemma 19) for each X 2 Var.�/ there

is a constant A.X/ and a finite solution �X of I�;� such that �X .XA.X// ¤ ;. The
union of these solutions �X for X 2 Var.�/ is the desired finite, admissible solution.

Given this lemma, it remains to show how we can test the admissibility of the max-
imal solution �� of I�;� . For this purpose, it is obviously sufficient to be able to
test, for each indeterminate XA in I�;� , whether ��.XA/ is empty or not. We will
do this by representing the languages ��.XA/ using alternating finite automata with
"-transitions ("-AFAs), which are a special case of two-way alternating finite au-
tomata, and testing these automata for emptiness. As shown in Jiang and Ravikumar
[21], the emptiness problem for two-way alternating finite automata (and thus also
for "-AFAs) is in PSpace.

Alternating finite automata can make two kinds of transitions: nondeterministic
transitions that “guess” the next state of the automaton and “universal” transitions
that force the automaton to explore every possible successor state. One can imag-
ine these universal transitions as the splitting of the automaton into several copies,
each of which goes into one possible successor state and continues the computation
independently.

Definition 21 An alternating finite automaton with "-transitions ("-AFA) is a tu-
ple A D .Q9; Q8; †; q0; ı; F / consisting of

� two finite, disjoint sets Q9; Q8 of (existential/universal) states (we will write
Q for Q9 [ Q8),

� a finite alphabet † of input symbols,
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� an initial state q0 2 Q,
� a transition function ıW Q � .† [ ¹"º/ ! P .Q/, and
� a set F � Q of final states.

A configuration of A is a pair .q; w/, where q 2 Q and w 2 †�. The transi-
tion function ı induces the following transition relation `A between configurations:
.q; w/ `A .q0; w0/ if and only if either

� w D w0 and q0 2 ı.q; "/ ("-transition) or
� w D ˛w0 and q0 2 ı.q; ˛/ for some ˛ 2 † (˛-transition).

Note that the second kind of transition is only possible if w ¤ ", that is, there is still
a part of the input word left to read.

A run of A is a finite, directed, nonempty tree labeled by configurations of A that
satisfies the following conditions.

� If .q; w/ is the label of some node and q 2 Q9, then the node has exactly one
successor labeled by a configuration .q0; w0/ with .q; w/ `A .q0; w0/.

� If .q; w/ is the label of some node and q 2 Q8, then for all configurations
.q0; w0/ with .q; w/ `A .q0; w0/ there is exactly one successor of the node
labeled by .q0; w0/.

An "-path is a path in this tree that consists only of "-transitions. A run is called
successful if and only if for every leaf one of the following conditions holds. If
.q; w/ is the label of the leaf, then either

� q 2 F and w D " or
� q 2 Q8 and there is no configuration .q0; w0/ with .q; w/ ` .q0; w0/.

An input word w 2 †� is accepted by A if and only if there is a successful run of
A with root label .q0; w/. The language recognized by A is denoted by L.A/ and
contains exactly the words accepted by A.

Our goal is to define an "-AFA AX that recognizes exactly ��.X/ for one indeter-
minate X of a set I of linear language inclusions. The automaton checks whether
the word w is an element of ��.X/ by using the following ideas. Starting from the
indeterminate X , the automaton splits into several copies that check the restrictions
imposed by all the inclusions of the form X � L0[L1X1[� � �[LnXn. Each of these
copies nondeterministically guesses which of the sets L0; L1��.X1/; : : : ; Ln��.Xn/

contains w. When a copy guesses w to be in ��.Xi /, this corresponds to an
"-transition and is only possible if Li contains ". We will describe below how we
use counters to detect if a sequence of such "-transitions visits the same variable
twice and why this should not prevent the automaton from accepting a word.

In the following, let I be a finite set of linear language inclusions. We denote by
Ind.I/ the set of all indeterminates occurring in I.

Definition 22 Let X 2 Ind.I/. The "-AFA AX D .Q9; Q8; †; q0; ı; F / is
defined as follows:

� Q9 WD .I � ¹0; : : : ; j Ind.I/jº/ [ ¹f0º,
� Q8 WD .Ind.I/ � ¹0; : : : ; j Ind.I/jº/ [ ¹f1º,
� q0 WD .X; 0/,
� F WD ¹f0º,
� ı.fi ; ˛/ WD ; for every i 2 ¹0; 1º and ˛ 2 † [ ¹"º,
� ı..Y; �/; "/ WD ¹.i; �/ j iW Y � � � � 2 Iº and ı..Y; �/; ˛/ WD ; for all Y 2

Ind.I/, � 2 ¹0; : : : ; j Ind.I/jº, and ˛ 2 †,
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� for all inclusions i of the form Y � L0 [ L1X1 [ � � � [ LnXn in I,
� 2 ¹0; : : : ; j Ind.I/jº, and ˛ 2 †,

ı
�
.i; �/; "

�
WD

®
g.Xi ; �/

ˇ̌
i 2 ¹1; : : : ; nº; " 2 Li

¯
[

´
¹f0º if " 2 L0,
; otherwise,

ı
�
.i; �/; ˛

�
WD

®
.Xi ; 0/

ˇ̌
i 2 ¹1; : : : ; nº; ˛ 2 Li

¯
[

´
¹f0º if ˛ 2 L0,
; otherwise.

The auxiliary function g is defined as follows:

g.Xi ; �/ WD

´
.Xi ; � C 1/ if � < j Ind.I/j,
f1 otherwise.

In the case where there is one inclusion i of the form X � L0 [ L1X1 [ � � � [ LnXn

in I for which there is a symbol ˛ 2 † with " … Li and ˛ … Li for all i 2 ¹0; : : : ; nº,
there is no valid ˛- or "-transition from the (existential) state .i; �/. Thus, AX will
accept no word starting with ˛. This is consistent with the restriction imposed by i
on ��.X/, since ��.X/ can never contain a word starting with ˛.

The second component of the states is used to detect "-cycles. Every time the
automaton makes an "-transition, it increases the counter � in the second component
of its state. This counts the number of consecutive states of the form .X; �/ connected
only by "-transitions. If � grows larger than j Ind.I/j, then some indeterminate must
have occurred twice, that is, there must have been an "-cycle. The automaton then
goes to f1, that is, it accepts everything that follows. Intuitively, if the automaton has
already checked the restrictions imposed on a particular indeterminate, then it does
not need to check them again. Thus, in a successful run everything that lies below
the second occurrence of an indeterminate on the same "-path can be ignored. The
use of this cycle detection mechanism is illustrated in the following example.

Example 23 Let I consist of the three inclusions

i1W X � ¹rº [ ¹"ºY; i2W Y � ¹"ºX; and i3W Y � ¹sº:

Consider Figure 1, which shows the only successful run of AY accepting s 2 ��.Y /.
Intuitively, the automaton starts by asking whether s can be an element of ��.Y /.

From i3 it can derive no contradiction, while from i2 it derives the information that
this is possible only if s is also an element of ��.X/. It then proceeds to the inclu-
sion i1, which again redirects it to Y . In essence, at this point it has the following
information: s can be an element of ��.Y / only if s is an element of ��.Y /. Thus,
the automaton can affirm the question, since �� is the maximal solution and will
certainly contain a word if there is no reason against it.

Since "-AFAs only accept if there is a finite successful run, the restriction on
the length of "-paths is necessary. Otherwise, all runs starting in the configuration
..Y; 0/; s/ would have to be infinite.

In the following, we show that the automata introduced in Definition 22 actually
accept the maximal solution of I.

Theorem 24 Let X 2 Ind.I/, and let �� be the maximal solution of I. Then
L.AX / D ��.X/.

Again, we prove the two directions of this equality separately.
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..Y; 0/; s/

..i3; 0/; s/

.f0; "/

s

"

..i2; 0/; s/

..X; 1/; s/

..i1; 1/; s/

..Y; 2/; s/

..i3; 2/; s/

.f0; "/

s

"

..i2; 2/; s/

.f1; s/

"

"

"

"

"

"

Figure 1 A successful run of the automaton AY .

Lemma 25 Let X 2 Ind.I/, and let �� be the maximal solution of I. Then
��.X/ � L.AX /.

Proof Let w 2 ��.X/. We construct a run of AX on w as follows. For every node
v, we maintain the invariant P.v/ that u 2 ��.Y / holds if the node is labeled by
..Y; : : :/; u/ or ..i; : : :/; u/ for some inclusion i 2 I with Y on the left-hand side.

The root v0 is labeled by ..X; 0/; w/ and satisfies P.v0/ by assumption. Now let
v be a node of the run that already satisfies P.v/.

� If the label of v is ..Y; �/; u/, then P.v/ implies u 2 ��.Y /. For every i 2 I

having Y on the right-hand side, we introduce a successor vi of v that is
labeled by ..i; �/; u/. Obviously, P.vi/ follows directly from P.v/.

� If the label of v is ..i; �/; u/ for an inclusion

iW Y � L0 [ L1X1 [ � � � [ LnXn

in I, then P.v/ yields u 2 ��.Y /. Since �� is a solution of I, either u 2 L0

or u 2 Li �
�.Xi / for some i 2 ¹1; : : : ; nº. In the first case, we introduce a

successor v0 of v that is labeled by .f0; "/. Otherwise, there is ˛ 2 Li such
that u D ˛u0 with u0 2 ��.Xi /. We introduce a single successor v0 of v that
is labeled as follows.

– If ˛ D " and � < j Ind.I/j, then we label v0 by ..Xi ; � C 1/; u0/. Since
u0 2 ��.Xi /, P.v0/ is satisfied.

– If ˛ D " and � D j Ind.I/j, then we label v0 by .f1; u0/.
– If ˛ 2 †, then we label v0 by ..Xi ; 0/; u0/. Again P.v0/ is satisfied by

the same reason as above.
It is easily verified that all introduced transitions are valid with respect to `AX

.
Furthermore, the label of any leaf is either .f0; "/ or contains a universal state without
possible successors with respect to `AX

, that is, either f1 or a state containing an
indeterminate Y that does not occur on the left-hand side of any inclusion in I.

The constructed tree is finite, since every "-path is terminated by f1 after finitely
many steps. Thus, we have constructed a successful run of AX , which implies
w 2 L.AX /.
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As we want to compute finite, local, admissible solutions of I�;� , we do not simply
prove the other direction of Theorem 24, but a stronger result which also considers
an adequate notion of locality for runs of our "-AFA.

Definition 26 Let A be an "-AFA. A successful run of A is called local if it has
at least one leaf labeled by .q; "/ for some state q of A. We denote by Llocal.A/ the
set of all words accepted by A via local, successful runs.

By definition, in any successful run with a leaf labeled by .q; "/, we know that q is
either a final state or a universal state without "-successors.

Lemma 27 Let A be an "-AFA. Then L.A/ is nonempty if and only if Llocal.A/

is nonempty.

Proof The if-direction is trivial. For the other direction, consider a successful
run R of A that is not local. All leaves of this run are labeled by configurations
.q; w/ with w ¤ ". Thus, the states q have to be universal states without successors.
However, since such states accept any word, it is easy to change R into a local run.
We simply identify the shortest word w that occurs in the label of a leaf. Since R is
a run, w is the shortest word occurring in it and all other words in R must have the
suffix w. Thus, we can remove the suffix w from all configurations in R and obtain a
successful run that accepts a shorter word. This new run is local since it must contain
at least one leaf labeled by .q; "/ for some state q.

This construction also shows that runs accepting minimal words, that is, words for
which no prefix is accepted by A, are always local. This is an important property of
locality in "-AFAs, which will turn out to be useful. We can now proceed to show
(a modified version of ) the remaining direction of Theorem 24.

Lemma 28 If w 2 Llocal.AX /, then there is a finite, local solution � of I such
that w 2 �.X/ and every w0 2 �.Y / for some Y 2 Ind.I/ is a suffix of w.

Proof If w 2 Llocal.AX /, then there is a successful local run R of AX on w. Let
V denote the set of nodes of R. We restrict the set of nodes to a subset V 0 � V

as follows. Intuitively, since we used the restriction on the length of "-paths only to
detect if one indeterminate has occurred twice, we now remove the unnecessary parts
from R, that is, the parts of R below the second occurrence of an indeterminate on
an "-path.

Formally, for every leaf of R labeled by .f1; u/ for some word u 2 †�, there must
be an "-path with nodes labeled by�

.X1; 0/; u
�
;
�
.X2; 1/; u

�
; : : : ;

��
Xj Ind.I/jC1;

ˇ̌
Ind.I/

ˇ̌�
; u

�
; .f1; u/

that ends in this leaf. We consider the smallest j 2 ¹1; : : : ; j Ind.I/j C 1º that marks
the second occurrence of an indeterminate on this path. We remove the node labeled
by ..Xj ; j � 1/; u/ and all nodes below it from V . After we have done this for every
leaf labeled by f1, the set V 0 no longer contains a node with an outgoing edge to f1.

We now define the solution �R by

�R.Y / WD
®
u 2 †�

ˇ̌
9v 2 V 0

W v is labeled by
�
.Y; : : :/; u

�¯
for all Y 2 Ind.I/. To show that this actually defines a solution of I, we consider an
inclusion

iW Y � L0 [ L1X1 [ � � � [ LnXn
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from I and a word u 2 �R.Y /. There is a node v 2 V 0 labeled by ..Y; �/; u/ for
some � 2 ¹0; : : : ; j Ind.I/jº. This node must have a successor v0 2 V 0 labeled by
..i; �/; u/, which in turn has a single successor v00 2 V . We make a case distinction
on the label .q; u0/ of v00.

� If u D u0, then q 2 ı..i; �/; "/. Then either q D f0, which implies
u D " 2 L0 since R is successful, or q D g.Xi ; �/ for some i 2 ¹1; : : : ; nº

with " 2 Li .
In the second case, � < j Ind.I/j by the construction of V 0. If v00 2 V 0,

then q D .Xi ; � C 1/ implies that u 2 �R.Xi / D ¹"º�R.Xi / � Li �R.Xi /.
If v00 … V 0, then there is an ancestor ev 2 V 0 of v00 with label ..Xi ; �0/; u/

and �0 � � since v00 marks the second occurrence of an indeterminate on an
"-path. In this case, we also have u 2 �R.Xi / � Li �R.Xi /.

� If u D ˛u0 for ˛ 2 †, then q 2 ı..i; �/; ˛/. One possibility is that q D f0

and ˛ 2 L0, which implies u0 D ", since R is successful. In this case,
we have u D ˛ 2 L0. The other possibility is that q D .Xi ; 0/ for some
i 2 ¹1; : : : ; nº with ˛ 2 Li . In this case, v00 must be an element of V 0, and
thus u0 2 �R.Xi /, which implies u D ˛u0 2 ¹˛º�R.Xi / � Li �R.Xi /.

In every case, u is also contained in the substitution of the right-hand side of i under
�R. Thus, �R is a solution of I.

Since V 0 is a subset of the finite set of nodes of R, �R is finite. By the definition
of the transition relation of AX , the run R (and thus also �R) contains only suffixes
of w. Furthermore, w 2 �R.X/ since the root node of R is labeled by ..X; 0/; w/

and contained in V 0. It remains to show that �R is local.
Since R is local, there is a leaf of R that is labeled by .q; "/ for some state q of

AX . We now consider the path p leading from the root of R to this leaf. Its root
is labeled by ..X; 0/; w/, while its leaf is labeled by .q; "/. Thus, every suffix of w

must occur along this path. To show locality, it thus suffices to show that every word
occurring along p satisfies the conditions for the locality of �R. We will show this
by backwards induction along p.

We begin the induction at the leaf of p, which is labeled by .q; "/. The word "

vacuously fulfills the conditions for the locality of �R. Let now v0 be a node of p

labeled by .q0; u0/ for a state q0 and a suffix u0 of w that fulfills the conditions for the
locality of �R. If v0 is the root node, then we are done. Otherwise, we show the same
for the predecessor v of v0, which also lies on the path p. Let .q; u/ be the label of
v, and consider the following cases.

� If u D u0, then u fulfills the condition for the locality of �R, since u0 does.
� Otherwise, u D ˛u0 for some ˛ 2 † and q must be of the form .i; �/ for

some inclusion iW Y � L0 [ L1X1 [ � � � [ LnXn in I. Then the label .q0; u0/

of v0 can only have one of the following forms.
– If q0 D f0, then ˛ 2 L0. Since R is successful, we then have u0 D "

and u D ˛ 2 L0.
– Otherwise, q0 D .Xi ; 0/ for some i 2 ¹1; : : : ; nº and ˛ 2 Li . But then

u0 2 �R.Xi / by the definition of �R, and thus

u D ˛u0
2 ¹˛º�R.Xi / �

�
Li n ¹"º

�
�R.Xi /:

Thus, the word u fulfills the condition of locality since it is contained in the
right-hand side of i under �R.
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The proof of this lemma works for any word w accepted by a (possibly nonlocal) run
of AX . The only difference is that the constructed finite solution � of I that contains
w need not be local. Since every finite solution of I is contained in the maximal
solution ��, this, together with Lemma 27, concludes the proof of Theorem 24. We
can now show the main results of this section.

Theorem 29 The problem of deciding unifiability in EL�> is in PSpace.

Proof We show that the problem is in NPSpace, which is equal to PSpace by
Savitch’s theorem [24, Theorem 1].

Let � be a flat EL�>-unification problem. By Lemma 11, Theorem 14, and
Lemma 20, we know that � is EL�>-unifiable if and only if there is a subsumption
mapping � for � such that the maximal solution �� of I�;� is admissible.

Thus, we first guess a mapping � W At.�/2 ! ¹0; 1º and test whether � is a sub-
sumption mapping for � . Guessing � can clearly be done in NPSpace. For a given
mapping � , the test of whether it is a subsumption mapping for � can be done in
polynomial time.

From � we can first construct ��;� and then I�;� in polynomial time. Given I�;� ,
we then construct the (polynomially many) "-AFA AXA

, and test them for emptiness.
Since the emptiness of two-way alternating finite automata (where, in addition to
normal and "-transitions, backwards transitions are also allowed) can be tested in
PSpace (see [21]), this can be achieved within PSpace.

Given the results of these emptiness tests, we can then check in polynomial time
whether, for each concept variable X of � , there is a concept constant A of � such
that ��.XA/ D L.AXA

/ ¤ ;. If this is the case, then �� is admissible, and thus, �

is EL�>-unifiable.

We now modify this decision procedure such that it outputs a local EL�>-unifier for
any solvable EL�>-unification problem. However, since we actually have to output
the unifier, the complexity of the algorithm is higher than for just deciding the exis-
tence of a unifier; more precisely, we need exponential time in the size of the input
unification problem.

The algorithm uses the well-known reduction from any alternating automaton to
an equivalent nondeterministic automaton of exponential size (see Birget [15], Chan-
dra, Kozen, and Stockmeyer [17]). Additionally, it employs a polynomial-time algo-
rithm to find shortest paths in a directed graph, for example, Dijkstra’s algorithm
[18]. This will be used to find a successful run of the nondeterministic automaton.

Theorem 30 Given a solvable EL�>-unification problem � , we can construct a
local EL�>-unifier of � of at most exponential size in exponential time in the size
of � .

Proof We start by enumerating all possible subsumption mappings � . This can be
done in exponential time since the size of � is polynomial in the size of � . Since
� is unifiable in EL�>, we will find one � such that for each variable X there is
a constant A.X/ for which the automaton A.X/ WD AXA.X/

accepts a nonempty
language. As detailed in the proof of Theorem 29, we can find A.X/ and construct
A.X/ in polynomial space—and therefore in exponential time—in the size of � .

For each X , we now construct a nondeterministic automaton B.X/ that is equiv-
alent to A.X/ (see [15]). This automaton has as its state set the powerset of the
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original state set. A set can be reached from another if these sets are compatible with
the reachability in the alternating automaton. This means that, for every universal
state, all successor states must be in the successor state set; for an existential state,
there must be one successor in the set. The final states of B.X/ are those sets that
contain only final states of A.X/ or universal states without successors. The size of
B.X/ is at most exponential in the size of A.X/ and, thus, exponential in the size
of � .

We now search for a successful run r of B.X/ of minimal length, that is, a shortest
path in the transition graph of B.X/ that starts in the initial state ¹.XA.X/; 0/º and
leads to a final state. Such a path can be found in exponential time using, for example,
Dijkstra’s algorithm [18]. It is clear that r is of size at most exponential in � and it
accepts a word wX that is of length exponential in � .

From the state sets occurring in r , a corresponding tree-shaped run R of A.X/

can be reconstructed by the following procedure. We start with a single root node that
is labeled by ..XA.X/; 0/; wX / and iteratively construct the layers of R of increasing
depth. For each existential state in a state set of r , there must be a successor in the
next state set. Similarly, for every universal state all its successors can be found in
the next state set. Thus, for each configuration occurring in the current tree, we can
find a valid transition of A.X/ and can add the corresponding child nodes to the
tree. Since r is finite, this construction terminates. The result is a successful run
R of A.X/ since r ends in a state set containing only final states or universal states
without successors. Since the accepted word is of minimal length, R is local (see the
proof of Lemma 27).

Thus, for every variable X of � , we can find a word wX 2 Llocal.A.X// which
is of length at most exponential in the size of � . By Lemma 28, we can construct
a finite, local solution �X of I�;� with wX 2 �X .XA.X// that contains only suffixes
of wX . Thus, �X is of size exponential in the size of � since it contains at most
exponentially many words of size at most exponential in the size of � .

The union � of all the solutions �X is still a solution of I�;� . It is finite since it
is a finite union of finite solutions. It is also admissible since for every X the set
�.XA.X// is nonempty, and it is local since all contained words satisfy the conditions
on locality by the locality of the component solutions �X . Finally, � is of size expo-
nential in the size of � since it is the union of the polynomially many solutions �X .
By Lemmas 12, 17, and 18, we can now construct a local EL�>-unifier of � of size
exponential in the size of � .

5 Hardness

In this section, we provide the corresponding hardness results to Theorems 29 and 30.
We first reduce the intersection emptiness problem for deterministic finite automata
(DFAs) to a unification problem in EL�>. The intersection emptiness problem for
DFAs is PSpace-complete (see Garey and Johnson [19], Kozen [22]). Afterwards we
will use this reduction to construct a series of solvable EL�>-unification problems
that only have local EL�>-unifiers of exponential size.

An alternating finite automaton (AFA) A D .Q9; Q8; †; q0; ı; F / is an "-AFA
with a restricted transition function ıW Q � † ! P .Q/ that does not allow
"-transitions. The semantics of these automata is the same as for "-AFAs, except that
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the relation `A is restricted to non-"-transitions. The automaton is called a nondeter-
ministic finite automaton (NFA) if Q8 D ; and is then written as .Q; †; q0; ı; F /. It
is called a deterministic finite automaton (DFA) if it is an NFA and, for each q 2 Q

and ˛ 2 †, the set ı.q; ˛/ has the cardinality 0 or 1. The transition function is then
equivalently expressed as the partial function ı0W Q � † ! Q, where ı0.q; ˛/ D q0

if and only if ı.q; ˛/ D ¹q0º. This definition implies that any DFA has at most one
run on any given word.

First, we define a translation from a given DFA A D .Q; †; q0; ı; F / to a set
of subsumptions �A. In the following, we only consider automata that accept a
nonempty language. For such DFAs we can assume without loss of generality that
there is no state q 2 Q that cannot be reached from q0 or from which F cannot be
reached. In fact, such states can be removed from A without changing the accepted
language.

For every state q 2 Q, we introduce a variable Xq . There is only one constant, A,
and we define NR WD †. The set �A is defined as follows:

�A WD ¹Lq v
‹ Xq j q 2 Q n F º [ ¹A u Lq v

‹ Xq j q 2 F º; where

Lq WD

l

˛2†
ı.q;˛/ is defined

9˛:Xı.q;˛/:

Note that the left-hand sides of the subsumptions in �A are indeed EL�>-concept
terms, that is, the conjunctions on the left-hand sides are nonempty. In fact, every
state q 2 Q is either a final state or a final state is reachable by a nonempty path
from q. In the first case, A occurs in the conjunction, and in the second, there must
be an ˛ 2 † such that ı.q; ˛/ is defined, in which case 9˛:Xı.q;˛/ occurs in the
conjunction.

Lemma 31 Let q 2 Q, let w 2 †�, and let  be a ground EL�>-unifier of �A

with .Xq/ v 9w:A. Then w 2 L.Aq/, where Aq WD .Q; †; q; ı; F / is obtained
from A by making q the initial state.

Proof We prove this by induction on the length of w. If jwj D 0, then .Xq/ v A.
Thus, A must be a top-level conjunct of .Xq/. Since  is a unifier of �A, this can
only be the case if q 2 F . Thus, w D " is accepted by Aq .

Now let w D ˛0w0 with ˛0 2 †, w0 2 †�. Since  is a unifier of �A,
l

˛2†
ı.q;˛/ is defined

9˛:.Xı.q;˛// v 9˛0w0:A:

By Lemma 1, we must have .Xı.q;˛0// v 9w0:A or some state q for which ı.q; ˛0/

is defined. By induction, we know that w0 is accepted by Aı.q;˛0/. Thus, w D ˛0w0

is accepted by Aq .

Together with Lemma 2, this lemma implies that, for every ground EL�>-unifier
 of �A, the language ¹w 2 †� j 9w:A 2 Part..Xq0

//º is contained in L.A/.
Conversely, we will show that for every word w accepted by A we can construct a
unifier w with 9w:A 2 Part.w.Xq0

//.
For the construction of w , we consider every q 2 Q and try to find a word uq

of minimal length that is accepted by Aq . Such a word always exists since we have
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assumed that we can reach F from every state. Taking arbitrary such words is not
sufficient, however. They need to be related in the following sense.

Lemma 32 There exists a mapping from the states q 2 Q to words uq 2 L.Aq/

such that that either q 2 F and uq D " or there is a symbol ˛ 2 † such that ı.q; ˛/

is defined and uq D ˛uı.q;˛/.

Proof We construct the words uq using induction on the length n of a shortest
word accepted by Aq . If n D 0, then q must be a final state. In this case, we set
uq WD ".

Now, let q be a state such that a shortest word wq accepted by Aq has length
n > 0. Then wq D ˛w0 for ˛ 2 † and w0 2 †�, and the transition ı.q; ˛/ D q0 is
defined. The length of a shortest word accepted by Aq0 must be smaller than n, since
w0 is accepted by Aq0 . By induction, uq0 2 L.Aq0/ has already been defined and we
have ˛uq0 2 L.Aq/. Since ˛uq0 cannot be shorter than wq D ˛w0, it must also be
of length n. We now define uq WD ˛uq0 .

We can now proceed with the definition of w for a word w 2 †� that is accepted
by A. The unique successful run of A on w D ˛1 � � � ˛n yields a sequence of states
q0; q1; : : : ; qn with qn 2 F and ı.qi ; ˛iC1/ D qiC1 for every i 2 ¹0; : : : ; n � 1º. We
define the substitution w as follows:

w.Xq/ WD 9uq :A u

l

i2Iq

9˛iC1 � � � ˛n:A;

where Iq WD ¹i 2 ¹0; : : : ; n � 1º j qi D qº. For every q 2 Q, we include at least the
conjunct 9uq :A in w.Xq/, and thus w is in fact an EL�>-substitution.

Lemma 33 If w 2 L.A/, then w is an EL�>-unifier of �A and we have
w.Xq0

/ v 9w:A.

Proof Let the unique successful run of A on w D ˛1 � � � ˛n be given by the
sequence q0q1 � � � qn of states with qn 2 F and ı.qi ; ˛iC1/ D qiC1 for every
i 2 ¹0; : : : ; n � 1º, and let w be defined as above.

We have to show that w satisfies the subsumption constraint introduced for every
state q 2 Q, that is,

l

˛2†
ı.q;˛/ is defined

9˛:w.Xı.q;˛// v w.Xq/

if q … F and
A u

l

˛2†
ı.q;˛/ is defined

9˛:w.Xı.q;˛// v w.Xq/

if q 2 F . To do this, we consider every top-level atom of w.Xq/ and show that it
subsumes the left-hand side of the above subsumption.

� Consider the conjunct 9uq :A. If uq D ", then q 2 F and A occurs on
the left-hand side of the subsumption, which is thus satisfied. Otherwise,
by construction there is a transition ı.q; ˛/ D q0 with uq D ˛uq0 . Since
9u0

q :A is a top-level conjunct of w.Xq0/, we have .Xq0/ v 9uq0 :A, and
thus 9˛:w.Xq0/ v 9uq :A.
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� Let i 2 Iq , that is, qi D q, and consider the conjunct 9˛iC1 � � � ˛n:A. Since
we have ı.qi ; ˛iC1/ D qiC1 and 9˛iC2 � � � ˛n:A is a conjunct of w.XqiC1

/,
we know that 9˛iC1:w.XqiC1

/ v 9˛iC1 � � � ˛n:A.

This shows that w is a ground EL�>-unifier of �A. Furthermore, 0 2 Iq0
implies

that the particle 9˛1 � � � ˛n:A D 9w:A is a top-level conjunct of w.Xq0
/, that is,

w.Xq0
/ v 9w:A.

The intersection emptiness problem considers finitely many DFAs A1; : : : ; Ak , and
asks whether L.A1/ \ � � � \ L.Ak/ ¤ ;. Since this problem is trivially solvable
in polynomial time in the case in which L.Ai / D ; for some i , 1 � i � k, we
can assume that the languages L.Ai / are all nonempty. Thus, we can also assume
without loss of generality that the automata Ai D .Qi ; †; q0;i ; ıi ; Fi / have pairwise
disjoint sets of states Qi and are reduced in the sense introduced above, that is, there
is no state that cannot be reached from the initial state or from which no final state
can be reached.

The flat EL�>-unification problem � is now defined as follows:

� WD

[
i2¹1;:::;kº

�
�Ai

[ ¹Xq0;i
v

‹ Y º
�
;

where Y is a new variable not contained in �Ai
for i D 1; : : : ; k.

Lemma 34 We have that � is unifiable in EL�> if and only if L.A1/ \ � � � \

L.Ak/ ¤ ;.

Proof If � is unifiable in EL�>, then it has a ground EL�>-unifier  . Thus, there
must be a particle 9w:A with w 2 †� and 9w:A 2 Part..Y //. This implies that
.Xq0;i

/ v .Y / v 9w:A, and thus, Lemma 31 yields w 2 L.Ai;q0;i
/ D L.Ai / for

each i 2 ¹1; : : : ; kº. Thus, the intersection of the languages L.Ai / is nonempty.
Conversely, let w 2 L.A1/ \ � � � \ L.Ak/. By Lemma 33, we have for each of

the unification problems �Ai
an EL�>-unifier w;i such that w;i .Xq0;i

/ v 9w:A.
Since the automata have disjoint state sets, the unification problems �Ai

do not share
variables. Thus, we can combine the unifiers w;i into an EL�>-substitution  by
defining .Y / WD 9w:A and .Xq/ WD w;i .Xq/ for each i 2 ¹1; : : : ; kº and q 2 Qi .
Obviously, this is an EL�>-unifier of � since it satisfies the additional subsumptions
Xq0;i

v‹ Y .

Since the intersection emptiness problem for DFAs is PSpace-hard (see [19], [22]),
this lemma immediately yields our final theorem.

Theorem 35 The problem of deciding unifiability in EL�> is PSpace-hard.

This concludes our complexity analysis of the unification problem in EL�>.

Corollary 36 The problem of deciding unifiability in EL�> is PSpace-complete.

The above construction also allows us to derive a lower bound on the size of local
EL�>-unifiers corresponding to the upper bound shown in Theorem 30. We can
construct a series of solvable EL�>-unification problems such that the size of any
EL�>-unifier is at least exponential in the size of the problem. The reason is that
these unifiers must contain particles of exponential size. Since a particle is just a
nesting of existential restrictions, exponential size also implies exponential depth.
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Here, the depth of a concept description is the maximal nesting of existential restric-
tions; that is, given an EL�>-concept description C , its depth d.C / is defined as (i) 0

if C is a concept name, (ii) the maximum of d.D/ and d.D0/ if C D D u D0, and
(iii) d.D/ C 1 if C D 9r:D.

Example 37 We consider the proof of the PSpace-completeness of the inter-
section emptiness problem for DFAs (see [22]). For any deterministic Turing
machine M with polynomial space bound, the proof constructs several DFAs Ai

(i D 1; : : : ; k) of size polynomial in the size of M. The number k of these automata
is also polynomial in the size of M. These automata have the property that an input
word u is accepted by M if and only if there is a successful run r of M on u such
that wr 2

Tk
iD1 L.Ai /. Here, the word wr is a representation of the run r that is

constructed by concatenating the content of the tape of M for each step of the run,
that is, it may be exponentially long. This means that the intersection

Tk
iD1 L.Ai /

contains exactly the representations of all successful runs of M.
For each n 2 N, consider the following .n C 2/-space bounded deterministic Tur-

ing machine Mn with input alphabet ¹0; 1º. First, the machine Mn checks whether
the input is equal to 0n. If it is not, then Mn rejects the word. Otherwise, it views 0n

as the binary representation of the number 0 and then iteratively increases this num-
ber by 1 until it reaches 1n. The Turing machine Mn can be defined in such a way
that it works only on the input tape section (and the two adjoining tape cells) and is
of size polynomial in n. It accepts only the word u D 0n and has only one successful
run rn on this word. The length of the representation wrn

of rn is exponential in n

since Mn enumerates exponentially many binary numbers.
For this deterministic Turing machine Mn, we can now construct k DFAs Ai

(i D 1; : : : ; k) with ¹wrn
º D

Tk
iD1 L.Ai /, where k and the size of the automata

are bounded by a polynomial in n (see [22]). The equality ¹wrn
º D

Tk
iD1 L.Ai /

holds since by construction
Tk

iD1 L.Ai / contains exactly the representations of all
successful runs of Mn.

Following the proof of Lemma 34, we now construct a flat unification problem
�n of size polynomial in n that is unifiable in EL�> if and only if the intersectionTk

iD1 L.Ai / is nonempty. We now consider any local EL�>-unifier  of �n, which
must exist since this intersection contains the word wrn

. By Lemmas 31 and 33, wrn

is the only word such that .Xq0;i
/ v 9wrn

:A holds for all i D 1; : : : ; k. Since 

must satisfy Xq0;i
v‹ Y for each i D 1; : : : ; n and .Y / must contain at least one

particle, this particle can only be 9wrn
:A. This particle is of size exponential in n,

which shows that every local EL�>-unifier of �n is of size at least exponential in the
size of �n and also of depth at least exponential in the size of �n.

We thus have the following tight complexity bounds for the problem of computing a
local EL�>-unifier for a flat EL�>-unification problem.

Corollary 38 The depth of the concept terms in the image of the local EL�>-
unifiers of an EL�>-unification problem may grow exponentially in the size of the
problem. On the other hand, given a solvable EL�>-unification problem, we can
always compute a local EL�>-unifier of at most exponential size and depth in expo-
nential time.
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The reason that we stress the exponential depth of the constructed EL�>-unifiers
rather than just the exponential size is that, already in EL, local unifiers may have ex-
ponential size. However, as detailed in Section 3.2, local EL-unifiers can be encoded
by acyclic TBoxes of polynomial size such that the substitution can be computed as
the unfolding with respect to this acyclic TBox. The depth of such an unfolding is al-
ways linear in the number of defined concept names, and thus, the depth of a concept
term in a local EL-unifier is always linear in the number of variables of the unifi-
cation problem. However, in EL�> we cannot compress local unifiers into acyclic
TBoxes in the same way since any acyclic TBox encoding of the local EL�>-unifiers
from Example 37 would still have to be of exponential size, as they contain particles
of exponential depth.

6 Conclusion

Unification in EL was introduced in [10] as an inference service that can support the
detection of redundancies in large biomedical ontologies, which are frequently writ-
ten in this DL. Motivated by the fact that the large medical ontology SNOMED CT
actually does not use the top concept available in EL, we have in this article investi-
gated unification in EL�>, which is obtained from EL by removing the top concept.
More precisely, SNOMED CT is an acyclic EL�>-TBox,3 rather than a collection
of EL�>-concept terms. However, as shown in [12], acyclic TBoxes can be easily
handled by a unification algorithm for concept terms. Furthermore, unification in
EL�> is equivalent to unification modulo the equational theory SLmO and can be
used to decide unification in the fragment of the modal logic Km that is restricted to
the connectives ^ and Þri

.
Surprisingly, it turned out that the complexity of unification in EL�> (PSpace)

is considerably higher than that of unification in EL (NP). From a theoretical point
of view, this result is interesting since it provides us with a natural example where
reducing the expressiveness of a given DL results in an increase of the complex-
ity of the unifiability problem. A corresponding complexity increase also occurs
when we consider the problem of computing local unifiers. For EL, local unifiers
are of polynomial size if represented by acyclic TBoxes. We have shown that a lo-
cal EL�>-unifier can be constructed by adding particles to an EL-unifier that has a
polynomial representation as an acyclic TBox. These particles may, however, be of
exponential length, which cannot be compressed using acyclic TBoxes.

Apart from its theoretical interest, the results of this article also have practical
implications. Whereas a practically rather efficient unification algorithm for EL can
readily be obtained by a translation into SAT (see [11]), it is not so clear how to turn
the PSpace algorithm for EL�>-unification introduced in this article into a practi-
cally useful algorithm. One possibility could be to use a SAT modulo theory (SMT)
approach (see Nieuwenhuis, Oliveras, and Tinelli [23]). The idea is that the SAT
solver is used to generate all possible subsumption mappings for � , and that the
theory solver tests the system I�;� induced by � for the existence of a finite, admis-
sible solution. The theory solver basically has to solve a series of reachability tests
between sets of states of our "-AFA. How well this works will mainly depend on
whether we can develop such a theory solver that efficiently solves these reachability
problems and satisfies all the requirements imposed by the SMT approach.
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Regarding the complexity of unification in more expressive DLs, not much is
known. Allowing for a cycle-restricted form of general TBoxes in EL does not affect
the complexity (see [6]). If we add negation to EL, then we obtain the well-known
DL ALC , which corresponds to the basic (multi-)modal logic Km (see [25]). The
decidability of unification in K is a long-standing open problem. The undecidability
of unification in some extensions of K (for example, by the universal modality) was
shown in [28]. These undecidability results also imply the undecidability of unifi-
cation in some expressive DLs (e.g., in SHIQ; see Horrocks, Sattler, and Tobies
[20]).

Notes

1. See http://www.ihtsdo.org/snomed-ct/ for more information about SNOMED CT.

2. In [11], nearly the same conditions as in Definition 9 were expressed as propositional
clauses to show that EL-unifiability is in NP. It was shown in [11, Proposition 3.7] that
� is actually an EL-unifier of � .

3. Note that the right-identity rules in SNOMED CT are actually not expressed using com-
plex role inclusion axioms, but through the SEP-triplet encoding (see Suntisrivaraporn,
Baader, Schulz, et al. [27]). Thus, complex role inclusion axioms are not relevant here.
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