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Some Remarks on Real Numbers Induced by
First-Order Spectra

Sune Kristian Jakobsen and Jakob Grue Simonsen

Abstract The spectrum of a first-order sentence is the set of natural numbers
occurring as the cardinalities of finite models of the sentence. In a recent survey,
Durand et al. introduce a new class of real numbers, the spectral reals, induced
by spectra and pose two open problems associated to this class. In the present
note, we answer these open problems as well as other open problems from an
earlier, unpublished version of the survey.

Specifically, we prove that (i) every algebraic real is spectral, (ii) every au-
tomatic real is spectral, (iii) the subword density of a spectral real is either 0
or 1, and both may occur, and (iv) every right-computable real number between
0 and 1 occurs as the subword entropy of a spectral real.

In addition, Durand et al. note that the set of spectral reals is not closed under
addition or multiplication. We extend this result by showing that the class of
spectral reals is not closed under any computable operation satisfying some mild
conditions.

1 Spectral Reals

We assume familiarity with basic first-order logic and its model theory at the level
of standard introductory texts such as Ebbinghaus, Flum, and Thomas [9] and En-
derton [10]. Recall that the spectrum of a sentence � in first-order logic is the set of
nonnegative integers n such that � has a model of cardinality n.

In their survey [7], Durand et al. introduce a new class of real numbers induced
by spectra.
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Definition 1.1 For a first-order sentence �, let ��.n/ be the characteristic func-
tion of the spectrum of �. For a 2 Z, the real number induced by � and a is
r�;a D a C

P
n ��.n/2�n.

A real number r is said to be (first-order) spectral if r D r�;a for some first-order
sentence � and a 2 Z.

Open Question 11 in [7] asks (i) whether there are any irrational algebraic reals that
are also spectral, and (ii) whether all automatic reals are spectral. In addition, an
earlier version of the survey by Durand et al. [8, Open Question 14] asked whether
the subword density of all spectral numbers is strictly less than 1 (or even 0).

As it turns out, one of the classic characterizations of the set of spectra furnishes
straightforward answers to all of the above questions. Specifically, the Jones–Selman
characterization in [15] states that if b.n/ is the standard representation of natural
number n in binary, then A � N is a spectrum if and only if ¹b.n/ W n 2 Aº 2 NE,
where NE is the set of sets B � ¹0; 1º� with the property that there exists a non-
deterministic multitape Turing machine that decides B and on input x terminates in
time 2O.jxj/. Thus A is a spectrum if and only if there is a nondeterministic Turing
machine that decides if n 2 A in time 2.O.jb.n/j// D nO.1/. Observe that the latter
equality implies that A is spectral if and only if there is a nondeterministic Turing
machine that decides A in polynomial time in n—equivalently, if and only if there is
a nondeterministic Turing machine that decides A in polynomial time in the size of
its input, if the input is given in unary, that is, n 2 N is represented as 1n.

Durand et al. in [7] note that the set of spectral reals is closed neither under addi-
tion nor under multiplication (see [7, Corollary 3.11]) by proving the stronger result
that there is a spectral real x such that none among 3x, xC1=3, and x2 is spectral (see
[7, Theorem 3.10]). Related problems are well known for the larger class of com-
putable reals where using the canonical base b-expansion as a representation of real
numbers is generally eschewed because the basic algebraic operations fail to be uni-
formly computable (indeed, the operation x 7! 3x is not computable if computable
reals are represented by their canonical base-2 expansion)—even though the class
of computable reals is a real closed field (see [23]). These problems were already
identified by Turing [22] in 1937 and seem to have been anticipated as early as 1921
by Brouwer [4]. Instead of employing the canonical base-b expansion, a computable
real number is usually specified in one of several equivalent ways, for instance, as
computable sequences of nested intervals or as a computable Cauchy sequence of
rational numbers with a computable modulus of convergence (see Weihrauch [23],
Ko [18]). Using such representations it is possible to define proper complexity hi-
erarchies of computable real numbers and computable functions on the reals, and it
may be possible to define an alternative class of spectral reals using such represen-
tations by appealing to the Jones–Selman characterization above. We will not treat
this possibility further in the paper.

1.1 Preliminaries In the remainder of the article we assume basic familiarity with
computational complexity theory at the level of standard undergraduate textbooks
such as Papadimitriou [20], Sipser [21], and Jones [14]. We set N D ¹1; 2; 3; : : :º,
and for each finite alphabet we fix a standard recursive enumeration M1; M2; : : :

of the set of multitape Turing machines with that alphabet. If M is the i th Turing
machine in this enumeration, we define hM i D i . Any Turing machine M de-
fines a partial function �M W ¹0; 1º� * ¹0; 1º�. If this function is total, we write
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�M W ¹0; 1º� �! ¹0; 1º�. Let N¹0;1º� � ¹0; 1º� be the set of binary strings that
represent elements of N in the usual way. If �M is total and �M .N¹0;1º�/ � N¹0;1º� ,
we write �M W N �! N; similarly, if �M is total and �M .N¹0;1º�/ � ¹0; 1º.

Using the Jones–Selman characterization, it is evident that if a function f W N �!

¹0; 1º satisfies f D �M for some Turing machine M such that M computes f .n/

in time 2O.jb.n/j/ for all n, then f is the characteristic function of the spectrum of
a first-order sentence, and thus any real of the form a C 0:f .1/f .2/f .3/ � � � with
a 2 Z is spectral. Observe that if f is computable in time polynomial in jb.n/j, then
a fortiori the real number a C 0:f .1/f .2/ � � � is spectral.

2 Answers to the Open Problems

With the Jones–Selman characterization, the answers to all the open problems above
are furnished simply by constructing sufficiently fast algorithms for computing the
spectra in question.

2.1 Algebraic reals are spectral Recall that an algebraic number is a root of a
nonzero polynomial with integer coefficients (see Hardy and Wright [11]). An
algebraic real is a real algebraic number. The following is easily proved using the
Jones–Selman characterization.

Proposition 2.1 Every algebraic real is spectral.

Proof Let ˛ be an algebraic real, and write ˛ D a C 0:b1b2 � � � , where a 2 Z and
0:b1b2 � � � is the canonical binary expansion of the fractional part of a. By standard
results (see Hartmanis and Stearns [12, Theorem 11]), the function f W N �! ¹0; 1º

with f .n/ D bn can be computed in time polynomial in n using binary search, and
hence ˛ is spectral.

2.2 Automatic reals are spectral We recall the following notions from Allouche and
Shallit [2]. Let k; b � 2 be integers. A sequence .ai / D a1a2 � � � 2 ¹0; : : : ; b � 1º!

is said to be .k; b/-automatic if there is a deterministic finite automaton with output
(DFAO) M such that if x 2 ¹0; : : : ; k � 1º� is the representation of the positive
integer n in base k, then M.x/ D an. A real number ˛ is said to be .k; b/-automatic
if there is a0 2 Z and a .k; b/-automatic sequence .ai / such that ˛ D a0 C

P
ai b

�i .
In their survey [7], Durand et al. more narrowly define automatic reals to be

.2; 2/-automatic in the above sense, and ask whether all such reals are spectral. Us-
ing the Jones–Selman characterization, it is immediate that it must be the case. If
a real number ˛ D a0 C

P
ai 2

�i is .2; 2/-automatic, then .ai / is computed by a
suitable DFAO with input and output alphabet ¹0; 1º. Any such DFAO can trivially
be simulated by a deterministic multitape Turing machine using constant work space,
hence in time polynomial in jb.n/j and thus a fortiori in time 2O.jb.n/j/, whence .ai /

is the characteristic sequence of a spectrum.
We will prove a stronger and slightly more difficult result.

Proposition 2.2 Let k; b � 2 be integers. Then, every .k; b/-automatic number is
spectral.

Proof Let k; b � 2, and let ˛ D a C 0:b1b2 � � � with a 2 Z be .k; b/-automatic. If
˛ is rational, it is spectral, so in the remainder of the proof, we may assume that ˛ is
irrational. Observe that the expansion ˛ D a C 0:b1b2 � � � is unique in this case.
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As ˛ is .k; b/-automatic, a result by Adamczewski and Cassaigne [1, Theo-
rem 2.1] shows that ˛ is not a Liouville number. Hence, there exists a positive
integer m such that for all integers p; q with q > 0, we have j˛ � p=qj � q�m. We
make use of this fact below.

Below, we describe a deterministic Turing machine M that, for all positive inte-
gers n, computes the prefix b1 � � � bn in time polynomial in n. It then follows that ˛

is spectral. The construction of M is quite straightforward, hence we only give the
high-level details.

Construction of M . On input 1n, convert to binary b.n/ and proceed as follows.
� b.1/. M sets c D 0.
� b.n/ for n > 1. M calls itself on input b.n � 1/ to obtain b1 � � � bn�1, which

yields the number
Pn

iD1 bi 2
�i D d=2n�1 for some integer d , and sets c D d .

Observe that bn D 1 iff ˛ � .2c C 1/=2n, and that M needs thus only
check this inequality to output bn.

To check the inequality, M brute-force computes digits of the base-b ex-
pansions of ˛ and of .2c C 1/=2n. Note that as ˛ is not a Liouville number,
we have j˛ � .2c C 1/=2nj � 2�nm � b�nm.

Hence, to ascertain whether ˛ � .2c C 1/=2n, at most the prefix of nm

digits in the base-b expansions of ˛ and .2c C 1/=2n need to be computed
by M .

As ˛ is automatic, the i th digit of the base-b expansion of ˛ can be
computed in constant space, hence in polynomial time in jb.i/j, and as
.2c C 1/=2n is rational, the i th digit can clearly also be computed in poly-
nomial time in jb.i/j and n. Thus, the total time needed to establish whether
˛ � .2c C 1/=2n is polynomial in nm, hence polynomial in n.

End of construction of M .

2.3 The subword complexity and entropy of spectral reals For a real number r , de-
fine Lr � ¹0; 1º� to be the set of finite, nonempty bit strings occurring in the binary
expansion of the fractional part of r (we choose the greedy binary expansion in case
r is a dyadic rational). Furthermore, if L � ¹0; 1º�, set Ln D L \ ¹0; 1ºn for all
nonnegative integers n, and define pr .m/ D jLm

r j.
In an earlier, unpublished version of [7] (see [8]), the authors defined the binary

string complexity of a spectral number r to be the function m 7! pr .m/. The sur-
vey authors asked (“Open Question 14”) whether, for all spectral reals r , we would
have limm!1 pr .m/=2m < 1, or even limm!1 pr .m/=2m D 0. This question
can be easily answered in the negative by giving a (nondyadic) spectral number
whose binary expansion is a disjunctive sequence in the sense of Jürgensen, Shyr,
and Thierrin [16], [17], that is, it contains every binary string, and hence satisfies
limm!1 pr .m/=2m D limm!1 2m=2m D 1. The most well-known such number
is Champernowne’s binary constant (see [5]), obtained by concatenating the binary
representations of the nonnegative integers together in sequence.

Proposition 2.3 Champernowne’s binary constant r D 0:11011100101110 � � � is
spectral. Hence, there is a spectral number r with limm!1 pr .m/=2m D 1.

Proof We will construct a deterministic Turing machine S that, for each n 2 N, on
input 1n computes the first n bits of r in time O.n2/ (whence it is decidable in time
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O.n2/ whether the nth bit of r is 0 or 1). It then follows a fortiori from the Jones–
Selman characterization that r is spectral. The construction of S is straightforward,
whence we only give a high-level description.

Construction of S . Apart from its input and output tapes, S has two auxiliary
tapes, each containing a counter. The first auxiliary tape counts the number of bits
output so far, and S halts when the contents of this tape equal the value on the input
tape. The second auxiliary tape contains another counter starting with the value 1.
The Turing machine S writes the entire contents of this tape to the output, checking
for each bit written to the output whether S should halt (by comparing the contents
of the first auxiliary tape to the input tape). Thereafter, the counter on the second
auxiliary tape is incremented by 1, and the process continues.

End of construction of S .
In the construction above, it is clear that for each bit output, S uses a number of

steps proportional to its tape contents; as the number of cells used on both tapes is
bounded above by the length of the original input, S uses at most O.n2/ steps to
output n bits.

The limit limm!1 pr .m/=2m suffers from the deficiency that it cannot capture fine-
grained variations in the growth rate of pr .m/. In fact, for any real number r , if
r is not disjunctive—that is, there is some binary word that does not occur in r—
then limm!1 pr .m/=2m D 0; this is easy to prove in the same way that one proves
the well-known fact that the set of real numbers whose binary expansions do not
contain some binary word w has Lebesgue measure zero. Thus, for any real num-
ber r , we have either limm!1 pr .m/=2m D 0 or limm!1 pr .m/=2m D 1, and
both are possible for spectral numbers, as shown by the result for the Champer-
nowne constant above and the fact that any rational number is spectral and satisfies
limm!1 pr .m/=2m D 0.

A more fine-grained notion of using subword counting to gauge the complexity
of infinite strings is subword entropy (see Chomsky and Miller [6]), which is simply
the entropy, Hr , of the function pr ; that is,

Hr D lim
m!1

log2.pr .m//

m

if the limit exists.
We will show momentarily that the limit limm!1

log2.pr .m//

m
always exists for

any real number r . First we show a definition that will be of use several times in the
remainder of the section.

Definition 2.1 (cf., e.g., [3]) A set L � ¹0; 1º� is factorial if for every u; v 2

¹0; 1º�, uv 2 L implies u; v 2 L. A set L is right-extensible if, for every v 2 L,
there is w 2 ¹0; 1º� such that vw 2 L.

Observe that if L is both factorial and right-extensible, then every subword of v 2 L

is also in L, and v 2 L implies that either v0 2 L or v1 2 L.
Clearly, for any real number r , Lr as defined in Section 2.3 is both factorial and

right-extensible as the elements of Lr are the words occurring in a right-infinite
sequence. We then have the following.

Proposition 2.4 Let r be a real number; then Hr D limm!1 log2.pr .m//=m

exists, and Hr D infm log2.pr .m//=m.
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Proof By standard results (see, e.g., Lind and Marcus [19, Lemma 4.1.7]), any se-
quence .an/ of nonnegative reals such that amCn � amCan satisfies that limm am=m

exists and equals infm am=m.
Lr is factorial, and hence pr .mCn/ � pr .m/ �pr .n/ for all nonnegative integers

m and n, whence log pr .m C n/ � log2 pr .m/ C log2 pr .n/, and the result follows.

Clearly, 0 � infm
log2.pr .m//

m
� 1 for any real r . For any rational number r , we have

Hr D 0, and Champernowne’s constant satisfies Hr D 1.
The main question of interest is then: Which real numbers may occur as Hr for

spectral r? The remainder of this section is devoted to providing a partial answer to
this question.

Proposition 2.5 Let r D a C
P

n an2�n be a real number with a 2 Z and
an 2 ¹0; 1º for all n 2 N. If there is a Turing machine M with �M .n/ D an

for all n 2 N, then there is a computable function f W N2 �! Q such that
Hr D infn supk f .n; k/.

Proof For all nonnegative integers n; k, define p�k
r .n/ to be the number of dis-

tinct subwords of length n among the first k bits in the binary expansion of r . Then,
p�k

r .n/ is increasing in k and limk p�k
r .n/ D pr .n/. Thus, .log p�k

r .n//=n is in-
creasing in k and limk.log p�k

r .n//=n D log pr .n/=n. Define f .n; k/ to be the ra-
tional number

Pk
iD1 ai 2

�i , where a1; : : : ; ak are the initial k bits of .log p�k
r .n//=n.

Clearly f is computable, and by Proposition 2.4 we have Hr D infn supk f .n; k/,
as desired.

Clearly, any spectral r satisfies the requirement of Proposition 2.5.
The set of real numbers s such that s D infn supk f .n; k/ for a total computable

function f .n; k/ is denoted by …2, and such reals s are called …2-reals (see Zheng
and Weihrauch [24]). It is tantalizing to conjecture that every …2-real s can be
realized as s D Hr for a spectral r . We have been unable to prove this conjecture;
instead, we have a weaker result, given in the following.

Recall from [24] that the set …1 of …1-reals (also called right-computable re-
als) consists of the real numbers s such that there exists a computable function
f W N �! Q such that s D infn f .n/. If we denote the ordinary set of com-
putable real numbers in the sense of Turing [22] by �1, it is known from [24] that
�1 ¨ …1 ¨ …2.

The following lemma shows that every …1-real may be realized as the subword
entropy of a spectral real.

Lemma 2.2 If s 2 Œ0; 1� is a …1-real, then there exists a spectral real r with
Hr D s.

Proof By a result of Hertling and Spandl [13, Theorem 22], for every …1-real
s 2 Œ0; 1� there exists a shift space with polynomial-time decidable language
L � ¹0; 1º� such that s D limm.log jLmj/=m; it is well known that the language of
any shift space is factorial and right-extensible (see Béal et al. [3]).

We will define a deterministic Turing machine M running in polynomial time that
on input 1n produces the first n bits of the expansion of a particular real number r ; a
fortiori it follows that r is spectral.
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� M marks off n cells on a work tape (“Work Tape 1”) and initially writes 0 in
each of these cells. Denote the cells from left to right by c1c2 � � � cn.

� For each index i 2 ¹1; : : : ; nº that is a square i D k2 for some positive
integer k, M considers the “block” consisting of the .k C 1/2 � k2 cells
ck2 ; ck2C1; : : : ; c.kC1/2�1 (if .k C 1/2 � 1 > n, the positions beyond n are
ignored). Using a counter on another work tape (“Work Tape 2”), M then
constructs the kth element, w, in the lexicographic order on ¹0; 1º� on a sep-
arate work tape (“Work Tape 3”), and decides whether w is an element of L

(observe that this takes time polynomial in n as L is decidable in polynomial
time in b.n/).

If w 2 L, the first ck2 ; ck2C1; : : : ; ck2Cjwj�1 on Work Tape 1 are overwrit-
ten with w (observe that jwj � .k C 1/2 � k2 D 2k C 1 as the kth element
of ¹0; 1º� has length at most k). If w … L, nothing new is written on Work
Tape 1.

� When all square indices i D k2 have been processed, M outputs c1 � � � cn.
Clearly, on input n, M always halts and outputs an element of ¹0; 1ºn. For j < n,

the output of M on input 1j is clearly a proper prefix of the output of M on input 1n.
By construction, M considers at most n indices and for each index queries a decision
procedure for L at most once. Hence, the total running time of M is polynomial in n,
and hence M computes the characteristic sequence of a spectral real number r .

By construction, L � Lr , and hence Hr � limm.log jLmj/=m D s. The remain-
der of the proof is devoted to showing that Hr � s.

Consider a “window” of m consecutive positions in the binary expansion
of r , and let l be the index of the leftmost end of this window. Let wm

l
be the

length-m word in this window; it is clear that pr .m/ D j
S1

lD1¹wm
l

ºj and hence that
pr .m/ � j

Sm2

lD1¹wm
l

ºj C j
S1

lDm2C1¹wm
l

ºj.
Split on cases according to l as follows.

� For l � m2, note that there are at most m2 distinct words of length m

in the initial prefix of length m2 of the binary expansion of r . Hence,
j
Sm2

lD1¹wm
l

ºj � m2.
� For l > m2, the construction of M entails that there are at least m consecutive

zeros between each part of r potentially containing a word v 2 Li with i 2 N.
Any such word v must start from an index j D k2 with k � m, and thus there
are at least k2 � .k � 1/2 D 2k � 1 � k � m zeroes occurring immediately
before v and .kC1/2 �k2 D 2kC1 � i zeros occurring immediately after v.
Hence, the “local part” of the binary expansion of r around such a v is of the
form 0mv0m.

Thus, we may write the binary expansion of r starting from the .m2 C1/th
index as:

0m0j1v10m0j2v20m
� � � :

Consider a window of length m in the above and the length-m word, w, in
this window. The set of all such words w can be partitioned into four types.
We give the types below and for each type an upper bound on the number
of distinct words of length m of each type that occur in the binary expansion
of r .

Type I: w D 0m. There is at most 1 word of Type I.
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Type IIa: w D 0j v, where 1 � j < m and v is a prefix of length m � j of
some word in L. As L is factorial, v 2 Lm�j . Hence, for each j , there
are at most jLm�j j words of Type IIa. As L is also extensible, we have
jLm�j j � jLmj for each j . Hence, there at most mjLmj words of Type
IIa.

Type IIb: w D v0j , where 1 � j < m and v is a postfix of length m � j of some
word in L. By reasoning exactly as in Type IIa, there are at most mjLmj

words of Type IIb.
Type III: w D 0j v0k , where v 2 Li for some 1 � i � m and j C k D m � i .

For each j , there are at most .m � i/jLj j words of Type III. As L is
extensible, we have jLi j � jLmj, and there are hence at most m2jLmj

words of Type III.
Type IV: w is a proper subword of a word v 2 L. In this case, as L is factorial

and w has length m, we have w 2 Lm. Hence, there are at most jLmj

words of Type IV.
By the above, we have j

S1

lDm2C1¹wm
l

ºj � 1C2mjLmjCm2jLmjCjLmj.
In summary, we have pr .m/ � m2 C 1 C 2mjLmj C m2jLmj C jLmj and hence

pr .m/ � 8m2jLmj, whence
Hr D lim

m

�
log pr .m/

�
=m � lim

m

�
3 C 2 log.m/ C log jLm

j
�
=m

D lim
m

�
log jLm

j
�
=m D s;

as desired.

Noting that �1 � …1, we obtain by the above lemma the curious fact that all com-
putable numbers in Œ0; 1� (thus, e.g., every automatic number in Œ0; 1�, every algebraic
number in Œ0; 1�, and the fractional part of many of the standard constants such as �

and e) occur as the subword entropy of a spectral real.

3 (Lack of) Closure Properties of the Spectral Reals

Durand et al. [7] have shown that the class of spectral reals is closed neither under
addition nor under multiplication (see [7, Corollary 3.11]). The purpose of this sec-
tion is to extend those results by showing that the set of spectral reals is not closed
under operations from a very general class. In particular, Theorem 3.4 below af-
fords a method for proving the existence of a spectral number x such that no fi .x/ is
spectral for certain infinite families ¹fi W i 2 I º of functions.

Definition 3.1 Let D�0 be the set of finite strings over ¹0; 1; :º that contain
“:” exactly once, and let D D D�0 [ .�D�0/. An element q 2 D is called a
representation of a dyadic rational and corresponds to a dyadic rational CqB in
the straightforward way: Cam � � � a0:b1 � � � bnB D

Pm
iD1 ai 2

i C
Pn

j D1 bj 2�j and
C � am � � � a0:b1 � � � bnB D �.

Pm
iD1 ai 2

i C
Pn

j D1 bj 2�j /. The length jd j of the
representation d of a dyadic rational is just the length of the string d (in case of
negative numbers, the sign � is not counted toward the length).

Definition 3.2 A set of functions F D ¹fi W i 2 I º, where I is either ¹1; : : : nº

or I D N and with fi W Œa; b� �! R, is said to be a spectral barrier on Œa; b� if the
following hold.

1. 8i 2 I : fi W Œa; b� �! R, and fi 2 C 1.Œa; b�/.
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2. 8i 2 I : f 0
i > 0 on .a; b/.

3. The function G W I � D � N0 �! Z that maps .i; d; 0/ to the integer part of
fi .d/ and maps .i; d; n/ to the nth bit after the decimal separator of fi .d/ is
computable in time polynomial in i C jd j C n.

4. There is a deterministic Turing machine M that, on input 1i and y 2 D
such that CyB 2 fi .Œa; b�/, returns t 2 ¹0; 1º� with yt 2 D and CytB 2

fi .Œa; b�/ such that the (by requirement 2 necessarily unique) x 2 Œa; b� with
f .x/ D CytB is nondyadic.

Furthermore, M runs in time polynomial in i C jyj.

In the above, requirement 4 is merely a formalization of the property that for every
dyadic rational CyB 2 fi .Œa; b�/, we may quickly compute another dyadic rational
CytB in the image “close to” CyB such that f �1

i .CytB/ is not dyadic.

Example 3.3 Let

F D ¹x 7! kx W k integer, not a power of 2º

[ ¹x 7! x C 1=k W k integer, not a power of 2º;

and index F such that

fi D

8̂<̂
:

x 7! .ix/=2 for i even and i=2 not a power of 2;

x 7! x C 2=.i C 1/ for i odd and .i C 1/=2 not a power of 2;

x 7! 3x for i=2 or .i C 1/=2 a power of 2:

Then, F is a spectral barrier on Œ0; 1�. It is clear that all the functions in F are
differentiable with positive derivative on .0; 1/. To check requirement 3, note that
the nth bit of CxBCCyB, CxB �CyB, and CxB

CyB
for CyB ¤ 0 can be computed

using ordinary schoolbook addition, multiplication, and long division on x; y 2 D
by a deterministic Turing machine in time polynomial in jxj C jyj C n.

It is clear that the functions x 7! x C 1=k, where k is not a power of 2, are not
going to cause trouble in requirement 4 in the definition of spectral barrier: all such
functions send dyadic numbers to nondyadic numbers, so the preimage of a dyadic
number will always be nondyadic. Thus it does not matter what M outputs on input
.b.i/; y/ whenever i represents one of these functions.

Next we consider the functions x 7! kx, where k is not a power of 2. We write
k D b � 2j , where b and j are integers with b > 1 odd. If kx D CyB 2 Œ0; 1� is
a dyadic rational, we may write kx D a=2n with a and n integers and a odd. Then
x D a=b � 2�n�j , and as both a and b are odd, x is a dyadic rational if and only
if b divides a. If b does not divide a, we are done. If b divides a, then b does not
divide 2a C 1. Thus, for Cy1B D a=2n C 1=2nC1 D .2a C 1/=2nC1, the unique
x0 for which kx0 D Cy1B satisfies x0 D .2a C 1/=b � 2�.nC1/�j with 2a C 1 and
b both odd, whence x0 cannot be rational. All the previous checks can certainly be
performed in time polynomial in jyj and i .

Theorem 3.4 If F is a spectral barrier, then there is a spectral number r such
that for every f 2 F , f .r/ is not spectral.

Proof Let F be a spectral barrier on Œa; b�. The first part of the proof is devoted
to the case where b > 0.
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Consider Turing machines Ni that have no output, but instead either halt in unique
and distinct accept and reject states, or fail to halt. It is clear that such machines com-
pute exactly the partial recursive functions ¹0; 1º� * ¹0; 1º, and that it is decidable
in time polynomial in jxj whether x 2 ¹0; 1º� is a correct representation of such a
machine.

There is an algorithm that, for each j 2 N, on input 1j constructs a Turing ma-
chine Mj as follows. If b.j / does not represent a Turing machine of the form as
above, let Mj be a Turing machine that rejects its input immediately. If b.j / repre-
sents a Turing machine Nj of the correct form, let Mj be a Turing machine with the
following behavior:

�Mj
.x/ D

´
�Nj

.x/ if Nj halts after at most 22jxj�j
C 1 steps;

0 otherwise:

The function j 7!
˝
Mj

˛
is clearly computable in polynomial time. The standard

map taking 1j to b.j / is computable in polynomial time, the check for b.j / having
the correct form can be performed in linear time, and the machines Mj can be con-
structed in polynomial time by noting that new Turing machine states for computing
the “clocking function” jxj 7! 22jxj�j

C 1 can be added to Nj in time O.j /.
We now use the above construction to devise a deterministic multitape Turing ma-

chine T running in polynomial time, with �T W N �! D, and we set r D limn �T .n/.
The construction of T is fairly involved due to the need for successive approxi-

mations to real numbers and case splits for each approximation. We give full details
below.

Construction of T: T has an input tape, an output tape, and five work tapes that
we name as follows: a counter tape (used to contain a pair of natural numbers), an
Mj -tape, a simulation tape, an r-tape (used to contain a representation of a finite
prefix of r), and a computation tape.

Choose a0; b0 2 D such that (i) max.0; a/ < Ca0B < Cb0B < b, (ii) ja0j D jb0j,
and (iii) a0 and b0 differ only in the rightmost (i.e., the least significant) bit.

On input 1n with n 2 N, T does as follows.
� If n D 0, T returns a dyadic representation of bCa0Bc.
� If n > 0, T halts when it has computed n bits after the decimal separator, and

it returns this nth bit. We now describe T ’s computation on n in detail.
1. T starts by writing a0 on the r-tape and writing .1; 1/ on the counter

tape. T never erases from the r-tape, so clearly r 2 Œa0; b0�. Define the
total order on < on I � N by .i1; j1/ < .i2; j2/ if i1 C j1 < i2 C j2 or
if i1 C j1 D i2 C j2 and i1 < i2.

2. T now uses the counter tape to count through I � N. When the counter
tape is set to a value .i; j / 2 I � N, T computes hMj i and writes this
on the Mj -tape. The r-tape holds a representation r.i;j / of a dyadic
rational when the counter changed to .i; j /; as no erasure occurs on
the r-tape, we have Cr.i;j /B � r , that is, Cr.i;j /B is a lower bound
on r . Similarly, we obtain an upper bound as follows. Denote by r .i;j /

the element of D obtained by adding one to the last bit of the num-
ber on the r-tape, and propagating carries leftward if necessary; clearly
Ca0B � Cr.i;j /B < Cr .i;j /B � Cb0B. We let y.i;j /; y.i;j / 2 R such
that y.i;j / D fi .Cr.i;j /B/ and y.i;j / D fi .Cr .i;j /B/ (see Figure 1).
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Figure 1 Rational approximations in the proof of Theorem 3.4.

3. T now finds a representation y 2 D with CyB 2 .y.i;j /; y.i;j //. To do
this, T computes the integer parts of y.i;j / and y.i;j /, and subsequently
computes the first 2jr.i;j /j bits of the canonical binary expansions of
both y.i;j / and y.i;j /. Denote by y.i;j /j2jr.i;j /j and y.i;j /j2jr.i;j /j the two
elements of D obtained in this way, and observe that y.i;j /j2jr.i;j /j and
y.i;j /j2jr.i;j /j can be found in polynomial time in i C jr.i;j /j C 2jr.i;j /j

by requirement 3 in the definition of spectral barrier.
T then splits on cases as follows:

“Success” If jy.i;j /j2jr.i;j /j � y.i;j /j2jr.i;j /jj � 2 � 2�2jhr.i;j /ij, T adds
3 � 2�2jhr.i;j /ij�1 to y.i;j /j2jr.i;j /j to obtain y 2 D such that
for all strings t 2 ¹0; 1º�, we have CytB 2 .y.i;j /; y.i;j //.

“Failure” If jy.i;j /j2jr.i;j /j � y.i;j /j2jr.i;j /jj < 2 � 2�2jhr.i;j /ij, T writes a 0 on
the r-tape. Then it updates r.i;j /, r .i;j /, y.i;j /, and y.i;j / as if the
counter just had increased to .i; j /, and performs the above case
split again.

As fi 2 C 1.a; b/ and f 0
i > 0, there is an "i > 0 such that f 0

i > "i

on Œa0; b0�. Then, Cy.i;j /B � Cy.i;j /B � "i � 2�jhr.i;j /ij, so eventually
T will find some y.i;j / and y.i;j / such that the “Success” case above is
encountered.
Each case split above takes time polynomial in jr.i;j /j, and after the “fail-
ure” case is encountered, it writes a bit on the r-tape. Hence, the entire
process above uses at most time polynomial in n before the nth bit on
the r-tape has been written.

4. Now T computes a string t 2 ¹0; 1º� such that the unique s.i;j / 2

.Cr.i;j /B; Cr .i;j /B/ with fi .s.i;j // D CytB is nondyadic. This is
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possible in time polynomial in i C jyj by the definition of spectral bar-
rier, hence possible in time polynomial in jr.i;j /j.

5. Let k.i;j / be the position after the decimal separator of the rightmost 1

in yt . Now T computes hMj i and writes it on the Mj -tape. T then sim-
ulates Mj on k.i;j / one step at a time. After each step in the simulation,
T computes the next bit of s.i;j / and writes it on the r-tape.
To compute a bit of s.i;j /, T simply uses binary search. First, let r 2 D
be the contents of the r-tape; T checks whether fi .Cr1B/ � CytB. If
it is, then the next bit of s.i;j / is 1; otherwise it is 0.

The above check can clearly be performed in time polynomial in the
number of bits of r computed, as CytB is dyadic and is not the image
under fi of a dyadic rational, and hence, in particular, is not equal to
fi .Cr1B/.

If the simulation of Mj on k.i;j / accepts, T ensures that the k.i;j /th
bit of the dyadic representation of fi .CrB/ is 0. That is, if CytB > 0,
T computes the bits of s.i;j / and writes them on the r-tape until the
dyadic representation of fi .CrB/ agrees with yt on all but the last
nonzero bit of yt . Subsequently, T writes 0’s on the r-tape until it has
written 0 on a position where the bit in s.i;j / is 1. Similarly, if the simu-
lation of Mj on ki;j rejects, T sets the k.i;j /th bit of fi .r/ to 1. Clearly,
the total number of operations between each bit written on the r-tape is
bounded above by some polynomial.

End of construction of T: From the assumptions about spectral barriers it is clear
that T can be constructed such that the time it takes to compute the (nC1)th bit after
the nth has been computed is only polynomial in n. Thus, T runs in time polynomial
in the unary representation of the input, and thus r is spectral.

Assume for contradiction that the fi .r/ were spectral for some i 2 I . By the
Jones–Selman characterization, there is a language S 2 NE and an a 2 Z such that
fi .r/ D a C

P
k2S 2�k . As S 2 NE, we can find a c 2 N and an infinite number of

deterministic Turing machines that decide S in time 22nc
C 1; as there are infinitely

many such machines Nj , we can choose one with hNj i > c. Now �Nj
D �Mj

as
Nj halts in time 22nc

C 1. But by construction,

fi .r/ ¤ a C

X
k2L.Mj /

2�k
D a C

X
k2L.Nj /

2�k
D a C

X
k2S

2�k
D fi .r/;

and we obtain the desired contradiction.
The above proves the case where b > 0. It remains to prove the theorem for

the case a < b � 0. Here we observe that the set ¹x 7! �fi .�x/ W i 2 I º is
a spectral barrier on Œ�b; �a�. By the proof for the case where b > 0, there is a
real number r 2 .�b; �a/ and a deterministic Turing machine T that on input 1n

computes the nth bit in r , and such that for all i 2 I no Turing machine running in
time 22nc computes the nth bit of �fi .�r/ on input 1n. As T is deterministic, we
may compute the bits of a real number x as fast as the bits of �x, whence �r 2 .a; b/

is spectral, but none of the fi .�r/ are spectral.

Thus, by Example 3.3, there is a spectral real r such that the only elements s 2 Nr

that are spectral are those for which s D 2kr with k 2 N.
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