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Guessing, Mind-Changing,
and the Second Ambiguous Class

Samuel Alexander

Abstract In his dissertation, Wadge defined a notion of guessability on sub-
sets of the Baire space and gave two characterizations of guessable sets. A set
is guessable if and only if it is in the second ambiguous class (���0

2), if and only
if it is eventually annihilated by a certain remainder. We simplify this remain-
der and give a new proof of the latter equivalence. We then introduce a notion
of guessing with an ordinal limit on how often one can change one’s mind. We
show that for every ordinal ˛, a guessable set is annihilated by ˛ applications
of the simplified remainder if and only if it is guessable with fewer than ˛ mind
changes. We use guessability with fewer than ˛ mind changes to give a semi-
characterization of the Hausdorff difference hierarchy, and indicate how Wadge’s
notion of guessability can be generalized to higher-order guessability, providing
characterizations of ���0

˛ for all successor ordinals ˛ > 1.

1 Introduction

Let NN be the set of sequences s W N ! N, and let N<N be the set
S

n Nn of finite
sequences. If s 2 N<N, we will write Œs� for ¹f 2 NN W f extends sº. We equip NN

with a second-countable topology by declaring Œs� to be a basic open set whenever
s 2 N<N.

Throughout the paper, S will denote a subset of NN. We say that S 2 ���0
2 if S is

simultaneously a countable intersection of open sets and a countable union of closed
sets in the above topology. In classic terminology, S 2 ���0

2 just in case S is both Gı

and F� .
The following notion was discovered by Wadge [9, pp. 141–42] and independently

by this author [1, Section 2, Definition 1, p. 2].1
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Definition 1.1 We say that S is guessable if there is a function G W N<N ! ¹0; 1º

such that for every f 2 NN,

lim
n!1

G.f � n/ D �S .f / D

´
1; if f 2 S;

0; if f … S:

If so, we say G guesses S , or that G is an S -guesser.

The intuition behind the above notion is captured eloquently by Wadge [9, p. 142]
(notation changed):

Guessing sets allow us to form an opinion as to whether an element f of NN is
in S or Sc , given only a finite initial segment f � n of f .

Game theoretically, one envisions an asymmetric game where II (the guesser) has
perfect information, I (the sequence chooser) has zero information, and II’s winning
set consists of all sequences .a0; b0; a1; b1; : : :/ such that bi ! 1 if .a0; a1; : : :/ 2 S

and bi ! 0 otherwise.
The following result was proved in [9, pp. 144–45] by infinite game-theoretical

methods. The present author found a second proof [1, Section 5, Theorem 25, p. 11]
by using mathematical logical methods.

Theorem 1.2 (Wadge [9, pp. 144–45]) The set S is guessable if and only if
S 2 ���0

2.

Wadge defined the following remainder operation.

Definition 1.3 ([9, pp. 113–14]) For A; B � NN, define Rm0.A; B/ D NN. For
� > 0 an ordinal, define

Rm�.A; B/ D

\
�<�

�
Rm�.A; B/ \ A \ Rm�.A; B/ \ B

�
:

(Here � denotes topological closure.) Write Rm�.S/ for Rm�.S; Sc/.

By countability considerations, there is some (in fact countable) ordinal �, depend-
ing on S , such that Rm�.S/ D Rm�0.S/ for all �0 � �; Wadge writes Rm�.S/ for
Rm�.S/ for such a �. He then proves the following theorem.

Theorem 1.4 (Wadge [9, Theorem B6, Section B, Chapter II, p. 46] attributed to
Hausdorff) We have S 2 ���0

2 if and only if Rm�.S/ D ;.

In Section 2, we introduce a simpler remainder .S; ˛/ 7! S˛ and use it to give a new
proof of Theorem 1.4.

In Section 3, we introduce the notion of S being guessable while changing one’s
mind fewer than ˛ many times (˛ 2 Ord) and show that this is equivalent to S˛ D ;.

In Section 4, we show that for ˛ > 0, S is guessable while changing one’s mind
fewer than ˛ C 1 many times if and only if at least one of S or Sc is in the ˛th level
of the difference hierarchy.

In Section 5, we generalize guessability, introducing the notion of �th-order
guessability (1 � � < !1). We show that S is �th-order guessable if and only if
S 2 ���0

�C1.
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2 Guessable Sets and Remainders

In this section we give a new proof of Theorem 1.4. We find it easier to work with
the following remainder2 which is closely related to the remainder defined by Wadge.
For X � N<N, we will write ŒX� to denote the set of infinite sequences all of whose
finite initial segments lie in X .

Definition 2.1 Let S � NN. We define S˛ � N<N (˛ 2 Ord) by transfinite
recursion as follows. We define S0 D N<N, and S� D

T
ˇ<� Sˇ for every limit

ordinal �. Finally, for every ordinal ˇ, we define

SˇC1 D
®
x 2 Sˇ W 9x0; x00 2 ŒSˇ � such that x � x0, x � x00, x0 2 S , x00 … S

¯
:

We write ˛.S/ for the minimal ordinal ˛ such that S˛ D S˛C1, and we write S1

for S˛.S/.

Clearly S˛ � Sˇ whenever ˇ < ˛. This remainder notion is related to Wadge’s as
follows.

Lemma 2.2 For each ordinal ˛, Rm˛.S/ D ŒS˛�.

Proof Since S˛ � Sˇ whenever ˇ < ˛, for all ˛, we have S˛ D
T

ˇ<˛ SˇC1

(with the convention that
T

; D N<N). We will show by induction on ˛ that
Rm˛.S/ D ŒS˛� D Œ

T
ˇ<˛ SˇC1�.

Suppose that f 2 Œ
T

ˇ<˛ SˇC1�. Let ˇ < ˛. Let U be an open set around f ;
we can assume that U is basic open, so U D Œf0�, f0 a finite initial segment of f .
Since f 2 Œ

T
ˇ<˛ SˇC1�, f0 2 SˇC1. Thus there are x0; x00 2 ŒSˇ � extending

f0 (hence in U), x0 2 S , x00 … S . In other words, x0 2 Œ
T


<ˇ S
C1� \ S and
x00 2 Œ

T

<ˇ S
C1� \ Sc . By induction, x0 2 Rmˇ .S/ \ S and x00 2 Rmˇ .S/ \ Sc .

By arbitrariness of U, f 2 Rmˇ .S/ \ S \ Rmˇ .S/ \ Sc . By arbitrariness of ˇ,
f 2 Rm˛.S/.

The reverse inclusion is similar.

Note that Lemma 2.2 does not say that Rm˛.S/ D ; if and only if S˛ D ;. It is (at
least a priori) possible that S˛ ¤ ; while ŒS˛� D ;. Lemma 2.2 does, however, imply
that Rm�.S/ D ; if and only if S1 D ;, since it is easy to see that if ŒS˛� D ;, then
S˛C1 D ;. Thus to prove Theorem 1.4, it suffices to show that S is guessable if and
only if S1 D ;. The ) direction requires no additional machinery.

Proposition 2.3 If S is guessable, then S1 D ;.

Proof Let G W N<N ! ¹0; 1º be an S -guesser. Assume (for contradiction) that
S1 ¤ ;, and let �0 2 S1. We will build a sequence on whose initial seg-
ments G diverges, contrary to Definition 1.1. Inductively, suppose we have finite
sequences �0 �¤ � � � �¤ �k in S1 such that 80 < i � k, G.�i / � i mod 2.
Since �k 2 S1 D S˛.S/ D S˛.S/C1, there are � 0; � 00 2 ŒS1�, extending �k , with
� 0 2 S , � 00 … S . Choose � 2 ¹� 0; � 00º with � 2 S if and only if k is even. Then
limn!1 G.� � n/ � k C 1 mod 2. Let �kC1 � � properly extend �k such that
G.�kC1/ � k C 1 mod 2. Note that �kC1 2 S1 since � 2 ŒS1�.

By induction, there are �0 �¤ �1 �¤ � � � such that for i > 0, G.�i / � i mod 2.
This contradicts Definition 1.1 since limn!1 G..

S
i �i / � n/ ought to converge.
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The ( direction requires a little machinery.

Definition 2.4 If � 2 N<N, � … S1, let ˇ.�/ be the least ordinal such that
� … Sˇ.�/.

Note that whenever � … S1, ˇ.�/ is a successor ordinal.

Lemma 2.5 Suppose � � � are finite sequences. If � 2 S1, then � 2 S1. And if
� … S1, then ˇ.�/ � ˇ.�/.

Proof It is enough to show that 8ˇ 2 Ord, if � 2 Sˇ , then � 2 Sˇ . This is by
induction on ˇ, the limit and zero cases being trivial. Assume ˇ is successor. If
� 2 Sˇ , this means � 2 Sˇ�1 and there are � 0; � 00 2 ŒSˇ�1� extending � with � 0 2 S ,
� 00 … S . Since � 0 and � 00 extend � , and � extends � , � 0 and � 00 extend � ; and since
� 2 Sˇ�1 (by induction), this shows � 2 Sˇ .

Lemma 2.6 Suppose f W N ! N, f … ŒS1�. There is some i such that for all
j � i , f � j … S1 and ˇ.f � j / D ˇ.f � i/. Furthermore, f 2 ŒSˇ.f �i/�1�.

Proof The first part follows from Lemma 2.5 and the well-foundedness of Ord.
For the second part we must show that f � k 2 Sˇ.f �i/�1 for every k. If k � i ,
then f � k 2 Sˇ.f �i/�1 by Lemma 2.5. If k � i , then ˇ.f � k/ D ˇ.f � i/, and
so f � k 2 Sˇ.f �i/�1 since it is in Sˇ.f �k/�1 by definition of ˇ.

Definition 2.7 If S1 D ;, then we define GS W N<N ! ¹0; 1º as follows. Let
� 2 N<N. Since S1 D ;, � … S1, so � 2 Sˇ.�/�1nSˇ.�/. Since � … Sˇ.�/,
this means for every two extensions x0; x00 of � in ŒSˇ.�/�1�, either x0; x00 2 S or
x0; x00 2 Sc . So either all extensions of � in ŒSˇ.�/�1� are in S , or all such extensions
are in Sc .

(i) If there are no extensions of � in ŒSˇ.�/�1�, and length.�/ > 0, then let
GS .�/ D GS .��/, where �� is obtained from � by removing the last term.

(ii) If there are no extensions of � in ŒSˇ.�/�1�, and length.�/ D 0, let
GS .�/ D 0.

(iii) If there are extensions of � in ŒSˇ.�/�1� and they are all in S , define
GS .�/ D 1.

(iv) If there are extensions of � in ŒSˇ.�/�1� and they are all in Sc , define
GS .�/ D 0.

Proposition 2.8 If S1 D ;, then GS guesses S .

Proof Assume S1 D ;. Let f 2 S . I will show that GS .f � n/ ! 1 as
n ! 1. Since f … ŒS1�, let i be as in Lemma 2.6. I claim that GS .f � j / D 1

whenever j � i . Fix j � i . We have ˇ.f � j / D ˇ.f � i/ by choice of i , and
f 2 ŒSˇ.f �i/�1� D ŒSˇ.f �j /�1�. Since f � j has one extension (namely, f itself)
in both ŒSˇ.f �j /�1� and S , GS .f � j / D 1.

Identical reasoning shows that if f … S , then limn!1 GS .f � n/ D 0.

Theorem 2.9 We have S 2 ���0
2 if and only if S1 D ;. That is, Theorem 1.4 is

true.

Proof The theorem is proved by combining Propositions 2.3 and 2.8 and Theo-
rem 1.2.
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3 Guessing Without Changing One’s Mind Too Often

In this section our goal is to tease out additional information about ���0
2 from the

operation defined in Definition 2.1.

Definition 3.1 For each function G with domain N<N, if G.f � .n C 1// ¤

G.f � n/ (f 2 NN, n 2 N), we say that G changes its mind on f � .n C 1/. Now
let ˛ 2 Ord. We say that S is guessable with fewer than ˛ mind changes if there is
an S -guesser G along with a function H W N<N ! ˛ such that the following hold,
where f 2 NN and n 2 N:

(i) H.f � .n C 1// � H.f � n/;
(ii) if G changes its mind on f � .n C 1/, then H.f � .n C 1// < H.f � n/.

This notion bears some resemblance to the notion of a set Z � N being f -computably
enumerable in Figueira et al. [4], or g-computably approximable in Nies [7].

Theorem 3.2 For ˛ 2 Ord, S is guessable with fewer than ˛ mind changes if and
only if S˛ D ;.

Proof ()) Assume S is guessable with fewer than ˛ mind changes. Let G; H be
as in Definition 3.1. We claim that for all ˇ 2 Ord, if � 2 Sˇ , then H.�/ � ˇ.
This will prove ()) because it implies that if S˛ ¤ ;, then there is some � with
H.�/ � ˛, which is absurd since codomain.H/ D ˛.

We attack the claim by induction on ˇ. The zero and limit cases are trivial. As-
sume ˇ D 
 C 1. Suppose � 2 S
C1. There are x0; x00 2 ŒS
 � extending � , x0 2 S ,
x00 … S . Pick x 2 ¹x0; x00º so that �S .x/ ¤ G.�/, and pick �C 2 N<N with
� � �C � x such that G.�C/ D �S .x/ (some such �C exists since G guesses S ).
Since x 2 ŒS
 �, �C 2 S
 . By induction, H.�C/ � 
 . The fact G.�C/ ¤ G.�/

implies H.�C/ < H.�/, forcing H.�/ � 
 C 1.
(() Assume S˛ D ;. For all � 2 N<N, define H.�/ D ˇ.�/ � 1 (by definition

of ˇ.�/, since S˛ D ;, clearly H.�/ 2 ˛). I claim that GS ; H witness that S is
guessable with fewer than ˛ mind changes.

By Proposition 2.8, GS guesses S . Let f 2 NN, n 2 N. By Lemma 2.5,
H.f � .n C 1// � H.f � n/. Now suppose GS changes its mind on f � .n C 1/;
we must show H.f � .n C 1// < H.f � n/. Assume for sake of contra-
diction that H.f � .n C 1// D H.f � n/. Assume GS .f � n/ D 0; the
other case is similar. By definition of GS , (�) for every infinite extension f 0 of
f � n, if f 0 2 ŒSˇ.f �n/�1�, then f 0 2 Sc . Since GS changes its mind on
f � .n C 1/, GS .f � .n C 1// D 1. Thus (��) for every infinite extension f 00

of f � .n C 1/, if f 00 2 ŒSˇ.f �.nC1//�1�, then f 00 2 S . And f � .n C 1/ does
actually have some such infinite extension f 00, because if it had none, that would
make GS .f � .n C 1// D GS .f � n/ by case 1 of the definition of GS (see Def-
inition 2.7). Being an extension of f � .n C 1/, f 00 also extends f � n; and by
the assumption that H.f � .n C 1// D H.f � n/, f 00 2 ŒSˇ.f �n/�1�. By (�),
f 00 2 Sc , and by (��), f 00 2 S , which is absurd.

It is not hard to show S is a Boolean combination of open sets if and only if S is
guessable with fewer than ! mind changes, so Theorem 3.2 and Lemma 2.2 give a
new proof of a special case of the main theorem of Dougherty and Miller [3, p. 1348]
(see also Allouche [2]).
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4 Mind Changing and the Difference Hierarchy

We recall the following definition from Kechris [5, p. 175] (stated in greater
generality—we specialize it to the Baire space). In this definition, †††0

1.NN/ is
the set of open subsets of NN, and the parity of an ordinal � is the equivalence class
modulo 2 of n, where � D � C n, � a limit ordinal (or � D 0), n 2 N.

Definition 4.1 Let .A�/�<� be an increasing sequence of subsets of NN with
� � 1. Define the set D� ..A�/�<� / � NN by

x 2 D� ..A�/�<� / , x 2
S

�<� A� and the least � < � with x 2 A� has
parity opposite to that of � .

Let
D� .†††0

1/.NN/ D
®
D�

�
.A�/�<�

�
W A� 2 †††0

1.NN/; � < �
¯
:

This hierarchy offers a constructive characterization of ���0
2: it turns out that

���0
2 D

[
1��<!1

D� .†††0
1/.NN/

(see [5, Theorem 22.27, p. 176], attributed to Hausdorff and Kuratowski).
For brevity, we will write D˛ for D˛.†††0

1/.NN/.

Theorem 4.2 (Semicharacterization of the difference hierarchy) Let ˛ > 0. The
following are equivalent:

(i) S is guessable with fewer than ˛ C 1 mind changes; and
(ii) S 2 D˛ or Sc 2 D˛ .

We will prove Theorem 4.2 by a sequence of smaller results.

Definition 4.3 For ˛; ˇ 2 Ord, write ˛ � ˇ to indicate that ˛ and ˇ have the
same parity (i.e., 2 j n � m, where ˛ D � C n and ˇ D � C m, n; m 2 N, � a limit
ordinal or 0, � a limit ordinal or 0).

Proposition 4.4 Let ˛ > 0. If S 2 D˛ , say, S D D˛..A�/�<˛/ (A� � NN open),
then S is guessable with fewer than ˛ C 1 mind changes.

Proof Define G W N<N ! ¹0; 1º and H W N<N ! ˛ C 1 as follows. Suppose
� 2 N<N. If there is no � < ˛ such that Œ�� � A� , let G.�/ D 0, and let H.�/ D ˛.
If there is an � < ˛ (we may take � minimal) such that Œ�� � A� , then let

G.�/ D

´
0; if � � ˛I

1; if � 6� ˛;
H.�/ D �:

Let f W N ! N.

Claim 1 We have limn!1 G.f � n/ D �S .f /.

If f …
S

�<˛ A� , then f … D˛..A�/�<˛/ D S , and G.f � n/ will always be 0,
so limn!1 G.f � n/ D 0 D �S .f /. Assume f 2

S
�<˛ A� , and let � < ˛

be minimum such that f 2 A� . Since A� is open, there is some n0 so large that
8n � n0, Œf � n� � A� . For all n � n0, by minimality of �, Œf � n� ª A�0 for any
�0 < �, so G.f � n/ D 0 if and only if � � ˛. The following are equivalent:

f 2 S iff f 2 D˛

�
.A�/�<˛

�
iff � 6� ˛
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iff G.f � n/ ¤ 0

iff G.f � n/ D 1:

This shows that limn!1 G.f � n/ D �S .f /.

Claim 2 We have 8n 2 N, H.f � .n C 1// � H.f � n/.

If H.f � n/ D ˛, there is nothing to prove. If H.f � n/ < ˛, then H.f � n/ D �,
where � is minimal such that Œf � n� � A� . Since Œf � .n C 1/� � Œf � n�, we
have Œf � .n C 1/� � A� , implying H.f � .n C 1// � �.

Claim 3 For all n 2 N, if G.f � .n C 1// ¤ G.f � n/, then H.f � .n C 1// <

H.f � n/.

Assume (for the sake of contradiction) H.f � .n C 1// � H.f � n/. By
Claim 2, H.f � .n C 1// D H.f � n/. By definition of H this implies that
8� < ˛, Œf � .n C 1/� � A� if and only if Œf � n� � A� . This implies
G.f � .n C 1// D G.f � n/, a contradiction.

By Claims 1–3, G and H witness that S is guessable with fewer than ˛ C 1 mind
changes.

Corollary 4.5 Let ˛ > 0. If S 2 D˛ or Sc 2 D˛ , then S is guessable with fewer
than ˛ C 1 mind changes.

Proof If S 2 D˛ , this is immediate by Proposition 4.4. If Sc 2 D˛ , then Propo-
sition 4.4 says that Sc is guessable with fewer than ˛ C 1 mind changes, and this
clearly implies that S is too.

Lemma 4.6 Suppose S is guessable with fewer than ˛ mind changes. Let
G W N<N ! ¹0; 1º, H W N<N ! ˛ be a pair of functions witnessing as much (see
Definition 3.1). There is an H 0 W N<N ! ˛ such that G; H 0 also witness that S
is guessable with fewer than ˛ mind changes, with H 0.;/ D H.;/, and with the
additional property that for every f W N ! N and every n 2 N,

H 0.f � .n C 1// � H 0.f � n/ if and only if G.f � .n C 1// D G.f � n/.

Proof Define H 0.�/ by induction on the length of � as follows. Let H 0.;/ D H.;/.
If � ¤ ;, write � D �0 _ n for some n 2 N (_ denotes concatenation). If
G.�/ D G.�0/, let H 0.�/ D H 0.�0/. Otherwise, let H 0.�/ be either H.�/ or
H.�/ C 1, whichever has parity opposite to H 0.�0/.

By construction, H 0 has the desired parity properties. A simple inductive argu-
ment shows that (�) 8� 2 N<N, H.�/ � H 0.�/ < ˛. I claim that for all f W N ! N
and n 2 N, H 0.f � .n C 1// � H 0.f � n/, and if G.f � .n C 1// ¤ G.f � n/,
then H 0.f � .n C 1// < H 0.f � n/.

If G.f � .nC1// D G.f � n/, then by definition H 0.f � .nC1// D H 0.f � n/

and the claim is trivial. Now assume G.f � .n C 1// ¤ G.f � n/. If
H 0.f � .n C 1// D H.f � .n C 1//, then H 0.f � .n C 1// < H.f � n/ �

H 0.f � n/, and we are done. Assume

H 0
�
f � .n C 1/

�
¤ H

�
f � .n C 1/

�
;

which forces that (��) H 0.f � .n C 1// D H.f � .n C 1// C 1. To see that

H 0
�
f � .n C 1/

�
< H 0.f � n/;
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assume not (� � �). By Definition 3.1, H.f � .n C 1// < H.f � n/, so

H.f � n/ � H
�
f � .n C 1/

�
C 1 (basic arithmetic)

D H 0
�
f � .n C 1/

�
(by (��))

� H 0.f � n/ (by (� � �))
� H.f � n/: (by (�))

Equality holds throughout, and H 0.f � .n C 1// D H 0.f � n/. Contradiction: we
chose H 0.f � .n C 1// with parity opposite to H 0.f � n/.

Definition 4.7 For all G; H as in Definition 3.1, f 2 NN, write G.f / for
limn!1 G.f � n/ (so G.f / D �S .f /), and write H.f / for limn!1 H.f � n/.
Write G � H to indicate that 8f 2 NN, G.f / � H.f /; write G 6� H to indicate
that 8f 2 NN, G.f / 6� H.f / (we pronounce G 6� H as “G is anticongruent
to H”).

Lemma 4.8 Suppose G W N<N ! ¹0; 1º and H W N<N ! ˛ witness that S is
guessable with fewer than ˛ mind changes. There is an H 0 W N<N ! ˛ such that
G; H 0 witness that S is guessable with fewer than ˛ mind changes, and such that the
following hold.

If G.;/ � ˛, then H 0 6� G. If G.;/ 6� ˛, then H 0 � G.

Proof I claim that without loss of generality, we may assume the following (�).

If G.;/ � ˛, then H.;/ 6� G.;/. If G.;/ 6� ˛, then H.;/ � G.;/.

To see this, suppose not: either G.;/ � ˛ and H.;/ � G.;/, or else G.;/ 6� ˛ and
H.;/ 6� G.;/. In either case, H.;/ � ˛. If H.;/ � ˛, then H.;/ C 1 ¤ ˛, and
so, since H.;/ < ˛, H.;/ C 1 < ˛, meaning we may add 1 to H.;/ to enforce the
assumption.

Having assumed (�), we may use Lemma 4.6 to construct H 0 W N<N ! ˛

such that G; H 0 witness that S is guessable with fewer than ˛ mind changes,
H 0.;/ D H.;/, and H 0 changes parity precisely when G changes parity. The latter
facts, combined with (�), prove the lemma.

Proposition 4.9 Suppose G W N<N ! ¹0; 1º and H W N<N ! ˛ C 1 witness that
S is guessable with fewer than ˛ C 1 mind changes. If G.;/ D 0, then S 2 D˛ .

Proof By Lemma 4.8, we may safely assume the following.

If G.;/ � ˛ C 1, then H 6� G. If G.;/ 6� ˛ C 1, then H � G.

In other words, we have the following.

.�/ If G.;/ � ˛, then H � G. .��/ If G.;/ 6� ˛, then H 6� G.

For each � < ˛, let

A� D
®
f 2 NN

W H.f / � �
¯

(H.f / as in Definition 4.7):

I claim that S D D˛..A�/�<˛/, which will prove the proposition since each A� is
clearly open.

Suppose f 2 S . I will show f 2 D˛..A�/�<˛/. Since f 2 S , H.f / ¤ ˛,
because if H.f / were D ˛, this would imply that G never changes its mind on f ,
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forcing limn!1 G.f � n/ D limn!1 G.;/ D 0, contradicting the fact that G

guesses S .
Since H.f / ¤ ˛, H.f / < ˛. It follows that for � D H.f /, we have f 2 A�

and � is minimal with this property.
Case 1: G.;/ � ˛. By (�), H � G. Since f 2 S , limn!1 G.f � n/ D 1,

so � D limn!1 H.f � n/ � 1. Since ˛ � G.;/ D 0, this shows � 6� ˛, putting
f 2 D˛..A�/�<˛/.

Case 2: G.;/ 6� ˛. By (��), H 6� G. Since f 2 S , limn!1 G.f � n/ D 1,
so � D limn!1 H.f � n/ � 0. Since ˛ 6� G.;/ D 0, this shows � 6� ˛, so
f 2 D˛..A�/�<˛/.

Conversely, suppose f 2 D˛..A�/�<˛/. I will show f 2 S . Let � be minimal
such that f 2 A� (by definition of A� , � D H.f /). By definition of D˛..A�/�<˛/,
� 6� ˛.

Case 1: G.;/ � ˛. By (�), H � G. Since limn!1 H.f � n/ D H.f / D

� 6� ˛ � G.;/ D 0, we see limn!1 H.f � n/ D 1. Since H � G,
limn!1 G.f � n/ D 1, forcing f 2 S since G guesses S .

Case 2: G.;/ 6� ˛. By (��), H 6� G. Since

lim
n!1

H.f � n/ D H.f / D � 6� ˛ 6� G.;/ D 0;

we see limn!1 H.f � n/ D 0. Since H 6� G, limn!1 G.f � n/ D 1, again
showing f 2 S .

Corollary 4.10 If S is guessable with fewer than ˛C1 mind changes, then S 2 D˛

or Sc 2 D˛ .

Proof Let G; H witness that S is guessable with fewer than ˛ C 1 mind changes.
If G.;/ D 0, then S 2 D˛ by Proposition 4.9. If not, then .1 � G/; H witness
that Sc is guessable with fewer than ˛ C 1 mind changes, and .1 � G/.;/ D 0, so
Sc 2 D˛ by Proposition 4.9.

Combining Corollaries 4.5 and 4.10 proves Theorem 4.2.

5 Higher-Order Guessability

In this section we introduce a notion that generalizes guessability to provide a char-
acterization for ���0

�C1 (1 � � < !1). We will show that S 2 ���0
�C1 if and only if S

is �th-order guessable. Throughout this section, � denotes an ordinal in Œ1; !1/.

Definition 5.1 Let S D .S0; S1; : : :/ be a countably infinite tuple of subsets
Si � NN.

(i) For every f 2 NN, write S.f / for the sequence .�S0
.f /; �S1

.f /; : : :/ 2

¹0; 1ºN.
(ii) We say that S is guessable based on S if there is a function

G W ¹0; 1º
<N

! ¹0; 1º

(called an S -guesser based on S) such that 8f 2 NN,

lim
n!1

G
�
S.f / � n

�
D �S .f /:
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Game theoretically, we envision a game where I (the sequence chooser) has zero
information and where II (the guesser) has possibly better-than-perfect information:
II is allowed to ask (once per turn) whether I ’s sequence lies in various Si . For
each Si , player I ’s act (by answering the question) of committing to play a sequence
in Si or in Sc

i is similar to the act (described in Martin [6, p. 366]) of choosing a
I -imposed subgame.

Example 5.2 If S enumerates the sets of the form ¹f 2 NN W f .i/ D j º,
i; j 2 N, then it is not hard to show that S is guessable (in the sense of Definition 1.1)
if and only if S is guessable based on S .

Definition 5.3 We say that S is �th-order guessable if there is some S D

.S0; S1; : : :/ as in Definition 5.1 such that the following hold:
(i) S is guessable based on S ;
(ii) 8i , Si 2 ���0

�i C1 for some �i < �.

Theorem 5.4 The set S is �th-order guessable if and only if S 2 ���0
�C1.

To prove Theorem 5.4 we will assume the following result, which is a specialization
and rephrasing of [5, Exercise 22.17, pp. 172–73] (attributed to Kuratowski).

Lemma 5.5 The following are equivalent.
(i) S 2 ���0

�C1.
(ii) There is a sequence .Ai /i2N, each Ai 2 ���0

�i C1 for some �i < �, such that

S D

[
n

\
m�n

Am D

\
n

[
m�n

Am:

Proof of Theorem 5.4 ()) Let S D .S0; S1; : : :/, and let G witness that S is
�th-order guessable (so each Si 2 ���0

�i C1 for some �i < �). For all a 2 ¹0; 1º and
X � NN, define

Xa
D

´
X; if a D 1I

NNnX; if a D 0:

For notational convenience, we will write “G.Ea/ D 1” as an abbreviation for
“0 � a0; : : : ; am�1 � 1 and G.a0; : : : ; am�1/ D 1,” provided m is clear from
context. Observe that for all f 2 NN and m 2 N, G.S.f / � m/ D 1 if and only if

f 2

[
G.Ea/D1

m�1\
j D0

S
aj

j :

Now, given f W N ! N, f 2 S if and only if G.S.f / � n/ ! 1, which is true if
and only if 9n8m � n, G.S.f / � m/ D 1. Thus

f 2 S iff 9n8m � n; G
�
S.f / � m

�
D 1

iff 9n8m � n; f 2

[
G.Ea/D1

m�1\
j D0

S
aj

j

iff f 2

[
n

\
m�n

[
G.Ea/D1

m�1\
j D0

S
aj

j :



Guessing and Mind-Changing 219

So

S D

[
n

\
m�n

[
G.Ea/D1

m�1\
j D0

S
aj

j :

At the same time, since G.S.f / � m/ ! 0 whenever f … S , we see f 2 S if and
only if 8n9m � n such that G.S.f / � m/ D 1. Thus by similar reasoning to the
above,

S D

\
n

[
m�n

[
G.Ea/D1

m�1\
j D0

S
aj

j :

For each m,
S

G.Ea/D1

Tm�1
j D0 S

aj

j is a finite union of finite intersections of sets in
���0

�0C1 for various �0 < �, thus
S

G.Ea/D1

Tm�1
j D0 S

aj

j itself is in ���0
�mC1 for some

�m < �. Letting Am D
S

G.Ea/D1

Tm�1
j D0 S

aj

j , Lemma 5.5 says S 2 ���0
�C1.

(() Assume S 2 ���0
�C1. By Lemma 5.5, there are .Ai /i2N, each Ai 2 ���0

�i C1

for some �i < �, such that

S D

[
n

\
m�n

Am D

\
n

[
m�n

Am: (�)

I claim that S is guessable based on S D .A0; A1; : : :/. Define G W ¹0; 1º<N ! ¹0; 1º

by G.a0; : : : ; am/ D am. I will show that G is an S -guesser based on S .
Suppose f 2 S . By (�), 9n s.t. 8m � n, f 2 Am and thus �Am

.f / D 1. For all
m � n,

G
�
S.f / � .m C 1/

�
D G

�
�A0

.f /; : : : ; �Am
.f /

�
D �Am

.f /

D 1;

so limn!1 G.S.f / � n/ D 1. A similar argument shows that if f … S , then
limn!1 G.S.f / � n/ D 0.

Combining Theorems 1.2 and 5.4, we see that S is guessable if and only if S is
1st-order guessable. It is also not difficult to give a direct proof of this equivalence,
and having done so, Theorem 5.4 provides yet another proof of Theorem 1.2.

Notes

1. A third independent usage of the term guessable, with similar but not the same meaning,
appears in Tsaban and Zdomskyy [8, p. 1280], where a subset Y � NN is called guess-
able if there is a function g 2 NN such that for each f 2 Y , g.n/ D f .n/ for infinitely
many n.

2. In general, there seems to be a correspondence between remainders on NN and remain-
ders on N<N that take trees to trees; in the future we might publish more general work
based on this observation.
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