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Naive Infinitism: The Case for an Inconsistency
Approach to Infinite Collections

Toby Meadows

Abstract This paper expands upon a way in which we might rationally doubt
that there are multiple sizes of infinity. The argument draws its inspiration from
recent work in the philosophy of truth and philosophy of set theory. More specif-
ically, elements of contextualist theories of truth and multiverse accounts of set
theory are brought together in an effort to make sense of Cantor’s troubling the-
orem. The resultant theory provides an alternative philosophical perspective on
the transfinite, but has limited impact on everyday mathematical practice.

This relativity of cardinalities is very striking
evidence of how far abstract formalistic set
theory is removed from all that is intuitive.
One can indeed construct systems that
faithfully represent set theory down to the last
detail. But as soon as one applies the finer
instruments of investigation all this fades away
to nothing. Of all the cardinalities only the
finite ones and the denumerable one remain.
Only these have real meaning; every thing else
is formalistic fiction.
—John von Neumann [33, p. 408]

The aim of this paper is to take seriously the idea that we have, in some sense, misun-
derstood the message of Cantor’s theorem, or, at the least, that in hindsight we have
driven headlong into the transfinite when we could have paused a moment longer
to consider an alternative. My goal is to demonstrate that Cantor’s theorem can be
understood more like the liar paradox, as a kind of fork in the road. The crucial idea
is that, in admitting that there are multiple sizes of infinity, we have done irreparable
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damage to our naive conception of the infinite. My goal in this paper is to demon-
strate that we may coherently reject the multiplicity of infinite cardinalities and to
illustrate the value of this perspective.1

Now there is, of course, an extensive, infamous, and largely invisible body of
literature consisting of attempts to refute Cantor’s theorem (see Hodges [17]). This
paper is not intended as a contribution to that corpus. My contention is that, actually,
it is not so difficult to make intelligible something like the view suggested above. The
difficulty, rather, lies in showing that it is interesting.

The paper is broken into three main sections: the Setup; the Case of the Missing
Bijection; and Problems. The first section dominates the paper. The goal here is to lay
out the problem as clearly as possible. We articulate the problem in two passes. The
first pass formulates a version of Cantor’s theorem from a pre-set-theoretic frame-
work, after which we initiate discussion as to its interpretation. We then introduce
and formulate an analogy between Cantor’s theorem and the liar paradox. In the sec-
ond pass, we take up a version of third-order arithmetic and from there argue that
like the liar paradox, we may consider Cantor’s theorem as presenting us with a fork
in the philosophical road. In the second section, we discuss a problem opened in the
first section. We sketch a response to it which sheds some light on a possible link
between contemporary contextualist accounts of truth and multiverse approaches to
set theory. Finally, we address some of obvious problems for the view proposed.

1 The Setup

Let us suppose, for the sake of this argument, that we have no quibbles with the struc-
ture of the natural numbers: that quantification over the natural numbers presents no
problems with regard to intelligibility or ambiguity. Then suppose it becomes con-
venient for us to talk about collections of natural numbers. Perhaps we have need
for analytic number theory, or maybe we want to prove the completeness of a logic
coded by integers. Proceeding in this naive fashion, the following question should
eventually leap out at us.

Question 1.1 What tells us that the natural numbers themselves cannot be used
to represent these classes?

Of course, the obvious answer—which we learned long ago—is that there are just
too many classes for us to do this. Cantor’s theorem tells us that there is no bijection
between the naturals and the classes of naturals, so no such representation can work.
Surely this is the right answer, but this delivery of the argument is too swift. A couple
of important ancillary questions immediately crop up:

(1) What theoretical background must we already have accepted to find the the-
orem compelling?

(2) What is the nature of our compulsion to accept the conclusion of the argu-
ment in Cantor’s theorem?

In addressing the second question, it may be useful to draw a rough distinction be-
tween philosophical and mathematical compulsion. I am thinking here of a certain
difference between philosophical and mathematical arguments and their normative
effect. By a mathematical argument, I have in mind a proof constructed from ax-
ioms using logical rules, the result of which is a theorem. Rejecting the conclusion
of such an argument is usually very difficult as it tends to require revision of deep
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beliefs. Nonetheless, one may reject one of the axioms, leaving us with a valid al-
though unsound argument. On the other hand, a philosophical argument—while it
may be mathematical—also has recourse to a wider variety of persuasive machinery.
For example, pragmatic considerations such as simplicity and elegance may come
into play when arguing for a particular conclusion. Rejecting the conclusion of an
argument which relies on extramathematical techniques is usually easier as both the
premises and the moves made within it are more viable for revision.

I suspect that the answer to the first question is that many of us tend to think
of arithmetic as being adequately represented in set theory, and such a theory is
essentially correct. From this perspective Cantor’s theorem is easy to both formulate
and prove. Moreover in answer to the second question, from this point of view,
our compulsion to accept the conclusion has mathematical force: it is a theorem.
However, there seems to me a sense in which giving ourselves the full power of
set theory begs the question. Underlying this investigation is a question about what
motivates us to accept such a theory of sets. These answers merely tell us what
we should do when we already accept such a theory. I would like to take a slight
step back from this precipice. Intuitively speaking, I want us to imagine a fictitious
moment in history before the advent of set theory but in which we possess a full
toolkit for logical inquiry.

1.1 A first pass Our goal in this section is to formulate and prove Cantor’s theo-
rem from a modest pre-set-theoretic perspective. This should illustrate how Cantor’s
theorem could be used to show that the natural numbers are not sufficient for the
representation of classes. We shall then discuss what we ought to make of the result.
Given our assumption of comfort around arithmetic, we shall take a theory of arith-
metic as our starting point and from there develop a position from which Cantor’s
theorem can be articulated. Our first problem is that we need to be able to refer to
classes and we have no obvious representatives in our language.

Problem 1.1 We want to talk about classes of natural numbers.

To deal with this, let us introduce uppercase variablesX; Y; : : : to represent classes in
our theory. This is, of course, going to result in something which looks like second-
order arithmetic as found in, say, Simpson [30]. However, our use of classes here is
intended to be purely instrumental. We are not presupposing anything about them.
Indeed, we are trying to ascertain whether they are superfluous.

Problem 1.2 Can we use natural numbers to represent classes?

We want to leave open the possibility that the numbers themselves could do the work
of classes, but we also need to leave open the possibility that they might not. We do
not want to make any assumptions either way at this point. However, if we could use
natural numbers for this purpose, then there would need to be a bijection between the
natural numbers and the classes of natural numbers.

The next problem is the statement of Cantor’s theorem. Usually, we state it by
saying that there is no bijection from the naturals to the powerset of them. However,
prima facie, this statement involves a third-order function. Given that our current
stance makes us a little hesitant around second-order objects, we would be better
served leaving third-order objects off the table, at least for the moment. Thus, we
shall first articulate the statement of the theorem in terms of classes. We assume that
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h�; �i W ! � ! ! ! is a bijection. With this in hand, we may then state a version of
the theorem as follows.

Theorem 1.1 :9Y8X9Šn8m.m 2 X $ hn;mi 2 Y /.

Intuitively, this says that there is no Y which codes a bijection between natural num-
bers and the classes thereof. To prove this, we shall assume that some kind of com-
prehension principle (Comp) is acceptable. Assuming that the bijection is a recursive
function, then we only need recursive comprehension (with parameters) to formulate
the argument. In the reverse mathematics literature, such a theory is known asRCA0

and is the weakest comprehension principle in general use (see [30]). Intuitively
speaking, it allows us to prove the existence of all the Turing machines. While we
could formulate weaker comprehension axioms, which would block the argument,
they would be arguably too weak for any interesting mathematical purposes. As
such, such weakness may tell against our initial motivations regarding the congenial-
ity of quantifying over classes of natural numbers. With this in mind, we shall not
attempt to describe the correct comprehension axiom here, but we shall demand that
we can at least prove that given any set, we may prove the existence of any set which
is recursive in it.2

Proof Suppose that there were such a Y, then by (Comp), there will be some B
such that

8m
�
m 2 B $ hm;mi … Y

�
:

By assumption there is some b such that

8m
�
m 2 B $ hb;mi 2 Y

�
:

Now suppose b 2 B . Then hb; bi 2 Y and thus b … B . But suppose b … B . Then
hb; bi 2 Y and b 2 B . This is a contradiction. Thus there is no such Y.

1.1.1 Interpreting the result This is very familiar, but let us now take some time to
consider how the result should be interpreted. At face value, it says that there is no
class witnessing a bijection between the natural numbers and the classes of natural
numbers. But what does it mean for a theory to say this? There appear to be a couple
of ways we could understand this:

(1) we could see it as saying that there is no such bijection; or
(2) we could see it as saying that our theory is incapable of procuring such a

bijection.
They do not necessarily mean the same thing. Clearly, something like (1) is the
traditional interpretation. The theorem states that there is no bijection and so we say
that there is none.

The second approach, and the approach outlined in this paper, is not traditional
and is likely to appear subtle or sophisticated. First, we should note that just because
some theory refutes the existence of an object, this does not always mean that we
should reject the existence of it. For example, the theory could turn out to be false
or inconsistent. Along these lines, my contention is that there is another way of
interpreting the theorem. Rather than seeing the result as a proof of the nonexistence
of a bijection, we might see it as a failure of our theory to quantify over all the subsets
of the naturals. Indeed, we might see it as a necessary failure to do so. The upshot
is not that the bijection fails to exist, but rather that our theory has failed to quantify
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over everything we intended it to. For one thing, we would say that it missed the
class which coded the bijection. This leads us to a difficult question.

Problem 1.3 How do we make sense of the missing bijection?

What can it mean for a theory to necessarily fail to quantify over the objects we intend
it to? First, we might think of this as speaking of some kind of epistemic limitation
or inability for us to express something which we intend to say. However, I think that
this way of interpreting matters cuts deeper than that. I am interested in entertaining
the idea that the range of the quantification in this theory is actually incoherent. The
key and contentious idea is that there is no powerset of the naturals to quantify over.
There is no theory than can quantify over all the subsets of the natural numbers. We
shall return to this problem in the next section of the paper.

This a bare outline of the position. Unless one is of an intuitionistic persuasion, it
should, at present, appear to stand four-square against all that is orthodox and sensible
in the philosophy of mathematics.3 As such, this would give us good reason to think
that it is uninteresting, misguided, or outright incoherent. My goal for the rest of
the paper is to defend the rationality of the upholder of this view. I shall do this in
two parts. First, we shall exploit an analogy with truth to provide a more precise
formalization of the view proposed. The desired upshot here is a demonstration of
the coherence of the viewpoint. Second, we shall be more pragmatic and investigate
the costs and benefits associated with this view. Our goal here is to show that there
is no ultimately persuasive reason to think the position is false.

1.2 An analogy with truth On the road to making sense of the above discussion,
we now explore an analogy between Cantor’s theorem and Tarski’s theorem [31],
[32] regarding the inadmissibility of truth. Usually, Tarski’s theorem is known as
a theorem about the undefinability of truth. Thus, we usually suppose that we are
using theory with sufficient expressive resources to talk about its own syntax, and we
suppose that we have used this language to construct a formula  .x/ with one free
variable such that for all sentences ' of the language we can show in our theory that
' if and only if  p'q.4 Then using the diagonal lemma, which will be present in a
theory with this expressive power, we construct a sentence � such that � if and only
if : p�q. From here, it is a simple matter to demonstrate that the resultant theory
is inconsistent. The assumption that we could define such a formula was therefore
incorrect.

There is a sense in which the inadmissibility reading is stronger. We do not worry
about whether such a formula can be defined; we merely ask whether we could ex-
pand a language with a new predicate T such that for all sentences ' of the expanded
language it is the case that ' if and only if T p'q. To achieve this we simply ex-
pand the theory with a new axiom ' $ T p'q for every sentence '. We call these
T -axioms. Once again, we exploit the diagonal lemma and show that such a theory
is inconsistent; thus there is no way of expanding the language with a predicate that
enjoys the property described above. For this reason we say that truth is inadmissible.

Now, if we squint a little, there does seem to be a similarity between Tarski’s
theorem and Cantor’s. Both proofs make use of some kind of self-referring diagonal
technique and then exploit this to show that a prima facie intuitive assumption cannot
hold. In Tarski’s theorem, we show that is not the case that a truth predicate can be
admitted. In Cantor’s theorem, we show that it is not the case that a bijection exists
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between the naturals and the sets of naturals. But is this merely cosmetic? My goal
is to show that it is not.

I intend to expand upon an alternative interpretation of Cantor’s theorem, although
I would like to stress that by no means am I trying to refute it. From a wide-angle
view, I would like to show that Cantor’s theorem should be treated more as a fork in
the road than as a surprising result which nonetheless pushes us to theorize subse-
quently in a particular way. In contrast to the prevailing view, I am aiming to demon-
strate that Cantor’s theorem could show us that we were mistaken to think we could
unproblematically quantify over all of the sets of natural numbers. Moreover, I would
like to suggest that there is a relationship here with well-known problems regarding
the truth predicate. To see this, we observe that a common philosophical diagnosis
of the inadmissibility of the truth predicate is to assert that we were mistaken to think
we could ever genuinely quantify over all of the sentences in a semantically closed
language. We now attempt to draw out this analogy.

To get things moving, I make the following intuitive contention.

Claim 1.2 The idea of there being multiple sizes of infinity is very strange and
mysterious.

I do not propose to argue for this claim—I doubt that it is susceptible to a satisfy-
ing philosophical defense. I shall, however, assume that the reader has, at least at
some point, shared this intuition—presumably before their first encounter with the
theorem.

We do, however, observe that the idea of infinity being strange is not without
historical precedent. Before Cantor came along, infinity—if it was countenanced at
all—was a size larger than any size—arguably not even a size at all. In measuring
the size of infinite collections of natural numbers, Paolo Mancosu [23, p. 613] pro-
vides a rich historical discussion of philosophical attitudes to infinite collections. In
particular, he attributes the following paradox to Galileo:

(1) There are more natural numbers than squares.
(2) The collection of natural numbers has as many elements as the collection

of squares.

Intuitively, we are pulled toward (1) since so many natural numbers are not square
numbers at all. On the other hand, we are pulled toward (2) since, for every number,
we can find a square number corresponding to it. This kind of confusion is deeply
pre-Cantorian and not the focus of this paper. Nonetheless, it is reflective of the
difficulties philosophers and mathematicians faced in reconciling the infinite to naive
conceptions of size.5

Our position in this paper does not fit easily in this schema. For extrinsic reasons,
we have agreed from the outset to countenance talk of infinite collections, but in the
next section we shall see how this leads to paradox. Depending on how matters are
made precise, we sit somewhere around (1) and (2).

We shall take it that to talk of multiple sizes of infinity is simply absurd. Moreover,
this intuition forms the basis of our argument. In looking for something to blame,
we shall look to our theory of infinite collections and argue that something has gone
awry.
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1.3 The second pass To draw out our analogy, we are now going to formalize an
admissibility argument regarding theories of infinite collections. To do this, we need
some way of articulating our assertion that

(Inf) there is only one size of infinity.
This will play an analogous role as the T -axioms in the theory of truth. From

here, we show that this leads to inconsistency and thus that we are obliged to change
something in our theory. We first observe a way that does not work. It will not do
to stay in our theory of classes of naturals and state that every class X is such that
either

� X is finite; or
� there is a bijection between X and the naturals.

While we can articulate this in the language of classes and numbers described
above, it cannot work for our purpose since there are never going to be any classes
of naturals which are larger than the class of all naturals. So to draw out the analogy,
we need to get into a position where we can articulate the problem. According to
the traditional reading, Cantor’s theorem tells us that the collection of all classes of
naturals is larger than any class of naturals. Thus we need to be able to talk about
collections of classes as well as classes. To do this, we shall move into something
like third-order arithmetic. We shall introduce a third level of objects which can refer
to what we shall call families of classes. Once again, we are making no commitments
as to what families are or whether or not they too could be represented by naturals or
classes of naturals.

We augment our formal language with a collection of family variables which we
represent with uppercase calligraphic letters: X;Y; : : : . We then provide a formula-
tion of our intuition as follows:

(INF) for all X, either X is finite or there is some Y witnessing that X Š !.
Intuitively, we are saying that every family of classes is finite or (simply) infinite.

Thus, we deem that the cardinality of the natural numbers is the cardinality of the one
and only infinite size. Since (INF) is a principle we take to be true, we incorporate it
into our theory of arithmetic, classes, and families.

Now when we then come to formulate Cantor’s theorem, we do not show that
there is no bijection. We show, rather, that the resultant theory is inconsistent. To see
this, suppose that we have a relation 2 in a theory of families, classes, and numbers
such that

� (INF) is true; and
� some reasonable comprehension principles are in place.

Then suppose that there is a bijection F between naturals and all the classes of
naturals. Then by our comprehension principle there is some Y such that

Y D
®
z

ˇ̌
9Z

�
F .z/

�
D Z ^ z … Z

¯
:

Then there is some Y such that F .y/ D Y . Suppose that y 2 Y . By definition,
it cannot be; so y … Y . But then y 2 Y . Thus there is no bijection F . But
this contradicts (INF) and thus our assumption that there is an 2 governed by the
principles above is incorrect. We might call this the enumerator paradox.

Obviously, the reason why this occurs is that we have formalized our intuition
about infinity and admitted it into our theory. Thus we now have a theory in which
something must be wrong. Following the traditional line of attack, we reject (INF)
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and end up with the Cantorian theory of the transfinite. But we are canvassing an
alternative. We contend that giving up (INF) is a significant cost and not a step to be
taken lightly. Let us see what is at stake here.6

To get a sense of this, we return to our analogy with theories of truth. Tarski’s
theorem on the inadmissibility of truth showed us that we could not admit a predicate
T into our language if it was governed by the T -axioms. So what is the impact of this
theorem? The usual answer in the truth literature is that there are (at least) a couple
of ways to go here. We might say that

� the T -axioms do not provide the correct analysis of the concept of truth; or
� the T -axioms do provide the correct analysis and there is no correct formal-

ization of truth to be had.
Recent work in the theory of truth has worked to make the distinction between these
perspectives clearer (see Azzouni [1], [2], Chihara [5], Eklund [7], Patterson [25]).
However, it is also possible to discern a similar thread in Tarski [31]. The first ap-
proach dictates that we have made some kind of error in our axiomatization of truth.
There is a coherent concept, so to speak, out there for analysis, and Tarski’s theo-
rem shows us that this first cut at formalizing it has made a mistake. We might then
look at the work carried out by Kripke [19], Tarski [32], and more recently in Field
[9] as attempts to provide the correct formalization. Nonetheless, there is a sense in
which these new attempts seem to miss something crucial to our conception of truth.
We must either sacrifice some of the T -axioms or revise the logic in which these
arguments are conducted. Both options present significant costs.

In contrast, the second approach acquiesces to the analysis provided by the
T -axioms as the one which faithfully represents what it means to be true. From this
perspective, Tarski’s theorem then shows us that this conception is, in some sense,
incoherent, or at least unformalizable. We then might look at projects undertaken
by formalized truth programs such as Tarski’s and Kripke’s as providing, not the
correct formalization of the actual concept, but rather a replacement of one which is
demonstrably faulty (see Scharp [27]). We might think of a replacement theory as a
felicitous approximation to our theory of truth. For example, suppose we provide a
theory of truth for the language of arithmetic which only caters to those sentences
which do not involve a truth predicate, that is, the arithmetic sentences. Then we
would presume that any theory of truth, worthy of the name, would agree about these
sentences. It is only once iterated truth contexts occur that problems arise, and even
then it has to be iterated a lot. So while there may be no way of getting a perfect
truth theory, we agree that there is a sense in which we can approximate it.

In parallel to the story about truth, I contend that Cantor’s theorem can be under-
stood as a theorem about inadmissibility and that this leads us to another fork in the
road. Either Cantor’s theorem shows us that

� the 2-theory including (INF) does not provide the correct analysis of infinite
collections; or

� the 2-theory including (INF) does provide the correct analysis but there is
no formal theory to be had.

Taking the first path, we end up with the traditional story. Cantor’s theorem is then
understood as having demonstrated that our naive theory of infinity provides a faulty
analysis of our intuitive conception of infinity. We then see the set theories provided
by Cantor and developed by Zermelo as attempts to provide the correct formalization
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of the concept of infinite collections. If, on the other hand, we take the second
path, then we assert that our analysis of the naive conception of infinite collections
is adequately represented by the theory proposed above and that Cantor’s theorem
shows us that no formalization of this concept is possible. We thus reject the idea
that it ultimately makes sense to quantify over the collection of all classes of natural
numbers. But this does not mean that we cannot take up theories which approximate
that concept. Perhaps we could look at formalized set theory as a replacement of the
faulty conception of the infinite with a congenial approximation to it.

In summary, we might understand the fork in the road in the following fashion. On
the one hand, we get to make good sense of our talk about all the collections of natural
numbers, while losing our intuitive sense of the concept of infinity. While on the
other hand, taking up the solution proposed here, we retain our intuitive conception
of infinity while sacrificing our ability to talk genuinely about the collection of all
classes of natural numbers.

1.3.1 Should we take set theory seriously? This discussion leads us to a kind of in-
consistency view about theories of infinite collections. We can only have such a
theory at the cost of intuitively obvious principles. Thus, we do not take seriously
the idea that there could be multiple sizes of infinity. We excommunicate the cardi-
nals. It is a radical view, but not altogether off the books. We might think back to
Boolos’s question in [3] about whether we should take set theory seriously. Boolos
gets us to consider some fixed points of normal functions such as the @ and Æ func-
tions. ZFC can easily deliver the existence of cardinals � and � such that � D @�

and � D Æ� . The argument goes through with an application of a weak form of the
axiom of replacement. However, Boolos implores us to ask whether we really think
there are such a staggering number of objects, so to speak, out there. In particular, he
questions what it is about the axioms of ZFC that we find so evident as to prompt
us to accept such a prima facie outlandish conclusion. Boolos proposes that it is the
iterative conception of set which provides the philosophical foundation for ZFC .
Moreover, building upon Dana Scott’s [28] work, Michael Potter [26] has further
developed an axiomatic approach to the iterative conception in which the axiom of
replacement has no place.

One might wonder how seriously such a challenge can be taken by the contempo-
rary set-theoretic community which now accepts, for example, measurable cardinals
as a standard part of set theory. A measurable cardinal can scarcely figure in Boo-
los’s picture. To see this we might extend the fixed points he considers to their regular
cousins. Thus, we consider the least-regular fixed points of the @ and Æ functions:
the first weak and strong inaccessible cardinals. These are much larger than the �
and � that Boolos considers. But a measurable is much larger than that. If we con-
sidered any normal function (not just @ and Æ) and demanded that they had a regular
fixed point, then we would still be well below a measurable. No process from below
can get anywhere near a measurable cardinal: they exhibit qualitative transcendence
(see Kanamori [18]). While the reasons for the acceptance of such large cardinals
are extrinsic, being related to fixing the theory of analysis, they nonetheless appear
compelling to the set theorist.

Our challenge, however, probes more deeply into the core of set theory. Our con-
cern is not whether there are cardinals of some appropriately inconceivable trans-
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finite magnitude; rather, we are worried about whether or not there are transfinite
cardinalities at all. We are concerned that such talk may be ultimately incoherent.

2 The Case of the Missing Bijection

We observed earlier that there was something left to explain about the missing bi-
jection given by our proof of Cantor’s theorem in Section 1.1. In an effort to make
a little more sense of this we make use of some tools from the philosophy of truth
and set theory. We shall sketch a way of understanding the issue by using Hamkins’s
[15] multiverse framework while philosophically underpinning it with an adaptation
of Glanzberg’s [11] contextualist approach to truth.

We might describe the issue as follows. In Section 1.3, using our semiformal
third-order theory, we were able to demonstrate its inconsistency in the presence of
the axiom (INF), which is designed to uphold our intuitive understanding of the size
of infinity. This put us in a position to reject the idea of there being a genuine notion
of all classes of natural numbers over which we could quantify; thus, we leave open
the question of what a good theory of classes of natural numbers should be like.
However, in Section 1.1, we were able to prove a similar result on a playing field
where (INF) could not be articulated. We were able to show that a certain reasonable
representation of a bijection could not be present. Thus, there may be something
residual left for us to explain.

We use this section to explore a way of making sense of this. We first introduce
Hamkins’s multiverse theory of sets and Glanzberg’s contextualist theory of truth.
We then combine those elements to get an idea of where the missing bijection may
have, so to speak, gone.

2.1 A multiverse understanding of sets The basic idea motivating the multiverse
theory of sets is that there are many different universes in which we can do set the-
ory, none of which should be privileged over any other (see Hamkins [14], [15]).
We should think of working in a different universe of sets as no different from con-
sidering different groups or rings in algebra. As such, according to the multiverse
understanding, a question such as the continuum hypothesis is deflated away as a
misleading way of asking in which universe we are currently. Hamkins argues for
this thesis most persuasively on what we might understand as extrinsic or pragmatic
grounds. He argues that mathematicians are too familiar with working in both CH
and :CH worlds. Moreover, the fruitfulness of exploring the wide variety of set-
theoretic universes is also clear. As such, any argument which rejected the existence
of one of those worlds should be rejected on the basis of familiarity and mathemat-
ical fecundity. It may, however, turn out that the position articulated in this paper
provides a way of understanding the multiverse from a more intrinsic—and perhaps
philosophically satisfying—point of view. In coming to understand that the theory of
infinite collections is ultimately fraught, we hope to get a better idea of why multiple
universes are natural and indeed of why such an understanding conforms to the spirit
of our analysis of this troubled concept.

To get a better feeling for Hamkins’s proposal, we shall look at one of the prin-
ciples governing the multiverse and then consider a model of a simplified version of
the system.
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For Hamkins, the multiverse of different possible set concepts is constrained by
both internal and external relations. Internally, each universe is governed by famil-
iar axioms which tell us which sets must exist. For example, the axioms of ZFC
would suffice for this purpose, although Hamkins would also like to consider even
weaker systems such as theories of second-order arithmetic. The external relations
are, however, more interesting. They tell us that if we are in one universe, then there
is another universe which has an interesting relationship with the one in which we
are currently. For example, Hamkins proposes that we add the following:

� Axiom of generic extensions: For every universe and any collection of ap-
proximations to an object G there is a forcing extension of that universe
which contains G.

Strictly, we probably should not call this an axiom as we have not formulated it in a
first-order theory: we are using an informal language which speaks of universes and
forcing. We could, of course, formalize this talk by using the language of set theory
and the resources of ZFC , thus reducing the talk of universes to models. However,
this is problematic because our multiverse should consist of genuinely alternative
set-theoretic universes, not the simulacra which our traditional foundation provides:
the multiverse approach is intended to provide an alternative foundation. The prob-
lem of an axiomatization of the multiverse remains open and beyond the scope of
this paper; however, we remark that a synthesis of modal approaches in contempo-
rary philosophy of set theory may provide a solution (see Hamkins and Löwe [16],
Linnebo [21]).

If we put this difficult problem on hold, we can make use of our ordinary ZFC
foundations to give us a simpler picture of how the multiverse works. Let us then
take some countable domain, say, !, and consider a system of countable transitive
models of ZFC closed under the axiom of generic extensions.7

Of course, in using ZFC in each universe we are taking up something more
powerful than the weak systems approximating second- and third-order arithmetic,
which we have considered above. Moreover, it clearly omits the axiom (INF). This
will allow us to keep closer in letter to Hamkins’s work [15], but the important thing
is that we shall still be able to see the effect of the missing bijection. We shall call
such a system of models a generic multiverse (see Gitman and Hamkins [10], Woodin
[34]).

2.2 Contextualism and semantic paradox We now briefly describe how a contex-
tualist may address the liar paradox. The approach was pioneered by Parsons [24]
and has been further developed and generalized to other paradoxical situations by
Glanzberg [11], [12]. In a nutshell, the contextualist claims that the reason the ar-
gument for inconsistency from the liar paradox goes through is that the range of our
quantifiers, and thus the salient ontology, has shifted during the argument. To see
this in action, let us run through the basic argument for the contradiction by using the
liar paradox and consider a simple version of the contextualist response.8 We start
with the assumption that for all sentences ' it is the case that

' $ T p'q:

We then claim that there is some sentence � such that

� $ :T p�q:
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But � is itself a sentence so
� $ T p�q;

and from there, we see that

� $ :T p�q $ :�:

So where have our quantifiers shifted? At the beginning of the argument, we made
an assumption about how truth should work for any sentence. But which sentences
count as just any sentence? The contextualist sees the inconsistency as resulting
from a naive understanding of how far the quantifiers range. The simplest move for
the contextualist is then something reminiscent of Tarski [32]. We say that at the
beginning of the argument, when we said, “for all sentences,” we only meant those
sentences which did not make use of the truth predicate. On the other hand, in the
next step, when we argue that there is some sentence, �, such that � $ :T p�q,
our domain of quantification (over sentences) has shifted: we are now admitting
sentences that do involve a truth predicate. Then since the domain of quantification
has shifted, there is no reason to think that our first assumption applies to sentences
like �; and thus, inconsistency is averted.

Of course, this is a mere sketch which raises a couple of obvious problems. First,
we might, naturally enough, think that our first assumption, or at least something
like it, should apply to � too. This is easy enough to accommodate along Tarskian
lines. We introduce a new truth predicate, say, T1, to accommodate sentences from
the new range of quantification and say of all the sentences ' not involving T1, that
' $ T1p'q. We may then continue extending in this fashion, gaining a hierarchy
of languages each with their own truth predicate (see Feferman [8], Halbach [13]).
More seriously, we may wonder about the precise conditions under which we must
shift the context of our sentential quantifiers. Glanzberg [11] has made a serious
effort to address the problem by introducing a framework of propositional quan-
tification and employing work from the contextualist literature in the philosophy of
language. This is not, however, our current problem.

2.3 A contextualist approach to the multiverse via forcing We now have the tools to
illustrate how the multiverse account of sets and the contextualist approach to truth
can be composed together to provide an account of our missing bijection. The basic
plan is as follows.

(1) Take a multiverse M in which every universe U believes itself to contain
multiple infinite cardinalities, but such that we actually see that each universe
is countable.

(2) Consider the argument for Cantor’s theorem as conducted in a particular
universe U.

(3) Show how a generic extension may be understood as giving us a universe U0

corresponding to the context shift implicit in Cantor’s theorem.
For our multiverse, we just take a generic multiverse as described above (see [34]).
Given that we are following Hamkins’s framework, each universe in our multiverse
believes itself to contain multiple infinite cardinalities. Moreover, since we are taking
ZFC to be true in each of these universes, there is a sense in which the inhabitants
of each universe are able to prove this by using Cantor’s theorem. We now focus on
how they do this, observing where a shift of context may occur.
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We take ourselves to be in a particular universe U in M and we start by taking
what it thinks is the powerset of the natural numbers P .!/. We then assume that
there is a bijection f W ! Š P .!/ and using separation let

A D
®
n 2 !

ˇ̌
n … f .n/

¯
:

Since A 2 P .!/, there is by assumption some a 2 ! such that f .a/ D A.
But then

a 2 A $ a … f .a/ $ a … A:

As in the truth case, we claim that a shift occurs between the first and second steps.
We have rejected the assumption that there is some absolute notion of the family of
all classes of natural numbers, thus our move to take P .!/ is merely relative to the
context U from which we begin the argument. But where has the context shifted to?

This is where the generic multiverse comes in. Using a forcing argument we can
collapse P .!/ by adding a generic object G which witnesses the ultimate countabil-
ity of P .!/ in U. Such an G cannot be present in U but will be present in another
universe U0 D UŒG� in M since it is closed under forcing extensions (see Kunen
[20]). Moreover, UŒG� will be the minimal extension of U which still upholds the
axioms ofZFC . So we make sense of the missing bijection as a generic objectG. It
is not present in the initial context U but there is always another context U0 in which
it is.

Observing this situation and given our claim that there are not any really uncount-
able infinities, we might imagine ourselves as, so to speak, navigating an endless
collection of these countable models in something like the generic multiverse we
have described. While the illusion of multiple infinite cardinalities is witnessed in-
side each of the universes, we are free to move between them.9

But all this should cause us to ask the questions: Why should we accept the forcing
extension axiom? What is so natural about it?

In an effort to provide a more philosophical response, I would like to make the
provocative suggestion that forcing is a kind of natural revenge or dual to Cantor’s
theorem: where Cantor gives us the transfinite, forcing tears it down. But what is
interesting about this suggestion? Why would we think there is any natural relation-
ship between the two approaches? In defense of this claim, I would like to gesture
at an obvious similarity between the way we prove Cantor’s theorem and the way we
show that generic objects cannot exist in our universe.

To illustrate this, we first provide a quick précis of the forcing technique. In brief,
we start with a ground model M and construct, so to speak, a generic object G from
a series of approximations to it. Each of these approximations is in M and indeed, we
can collect together all the different ways of constructing such a G in a partial-order
P which is also an element of M. We then consider particular subsets D of the
partial order P which we call dense. Intuitively speaking, a dense set D contains a
set of approximations such that no matter which way you tried to assemble aG using
P there would always be another approximation p in D to which you could extend
your current approximation. A set G is generic if it ends up using some of every
dense D � P.

Our generic extension principle then tells us that there is a universe in which such
aG must occur, but we also want to know thatG was not already in M. The argument
for this follows that of Cantor in a step-by-step fashion. We illustrate this in Table 1.
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Table 1

Cantor Cohen
Suppose the existence of a surjection
f W ! ! P .!/.

Suppose the existence of a
G W !M ! �M 2 M.

Then consider the set A D ¹n 2 ! j n … f .n/. Then consider the set E D ¹p 2 P j p … Gº,
which is dense.

Observe that since f is surjective 9a such that
f .a/ D A.

Observe that since E is dense 9e 2 E such that
e 2 G.

We then have a 2 A $ a … f .a/ $ a … A. We then have e 2 E $ e … G $ e … E .
Thus, there is no such f . Thus, G … M .

The tentative lesson I would like to draw from this is that Cantor’s theorem and
Cohen’s are two sides of the same coin. Rather than seeing forcing and generic
extensions as mere, albeit powerful, instruments in the set theorist’s toolkit, I am
proposing that we see forcing as a deep insight that results from our analysis of the
theory of infinite collections. We should perhaps see the axiom of generic extensions
as exactly the kind of thing which our experience with infinite collection should force
upon us: it is intrinsic.
2.3.1 Why not Skolem hulls? We observe that a more traditional approach in this
vicinity is a species of Skolem relativism. In contrast to the approach proposed in
this paper, this kind of Skolem relativist approach uses the downward Löwenheim–
Skolem theorems (rather than Cohen’s) to show that any first-order theory with a
reasonable axiomatization has a countable model. From this, we are encouraged
to draw skeptical conclusions about the viability of multiple infinite cardinalities
(see von Neumann [33]). Despite the similarities in the final positions of these ap-
proaches, we have opted against the Skolem approach here. Our main reason is that,
in using the downward Löwenheim–Skolem theorem, we have to start, so to speak,
in a model which is uncountable before we apply it. So there is a sense in which we
start off in the very place whose ultimate coherence we already doubt. This seems
less congenial than the generic multiverse approach in that there we may start with
countable models and move between them by transforming those models: the move
is additive rather than subtractive. Moreover, since our starting position is always
countable, we minimize our indulgence of the transfinite realm.
2.3.2 A remark about indefinite extensibility As a final remark for this section, we
observe that there is a species of indefinite extensibility at work in this sketch. Dum-
mett [6] describes the notion of indefinite extensibility as follows:

An indefinitely extensible concept is one such that, if we can form a definite
conception of a totality all of whose members fall under that concept, we can, by
reference to that totality, characterize a larger totality all of whose members fall
under it [6, p. 441].

The archetypal example of such a concept is Russell’s concept of a set which is not
a member of itself. If we take a definite totality of sets which are not members of
themselves, then we may then characterize a new, larger totality. Shapiro and Wright
[29] have attempted to make sense of this by demanding that a definite conception of
a totality be a set. This results in a notion of indefinite extensibility where a concept is
indefinitely extensible if it can be put in correspondence with the ordinals: indefinite
extensibility is reduced away, so to speak, to the prior concept of the absolute infinity
of the ordinals.
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In contrast to this kind of formulation, the indefinite extensibility witnessed above
is horizontal, so to speak, rather than vertical. Given a particular universe, we claim
that there will always be another one extending it to a wider one which contains
witnesses to its ultimate countability. The forcing construction allows us to take
an existing totality (our current universe) and characterize a larger totality which
contains all the elements of the original totality.

Dummett also appears to have recognized something very close to what we are
suggesting in this paper:

The argument [for Cantor’s theorem] does not show that the real numbers form a
non-denumerable totality unless we assume at the outset that they form a deter-
minate totality comprising all that we shall ever recognise as a real number: the
alternative is to regard the concept real number as an indefinitely extensible one
[6, p. 442].

Our contextualist sketch takes up the position that there is no determinate totality
comprising all that we shall ever recognize as a real number. Moreover, we take
it that the argument from (INF) to inconsistency demonstrates that there is no such
totality to be had. Rather, we are restricted to particular contexts or universes. As
such, like Dummett, we treat the concept of a real number as indefinitely extensible.

3 Problems

So that is the view we are entertaining. We now examine some of the obvious prob-
lems for it.

(1) Is there a naive conception of infinity?
(2) Sociological differences between theories of truth and theories of infinity.
(3) Where do we stop?
(4) What about simpler problems of cardinality and the transfinite?

3.1 Is there a naive conception of infinity? The intelligibility of the view proposed
crucially depends on there being a naive conception of infinity which does not permit
more than one size of infinity. Without this, the analogy between infinity and truth
fails. However, a conceivable point of difference between accounts of truth and of
infinite collections is the work done by intuitiveness. It seems plausible (and has
certainly been defended) that the T -axioms constitute in the meaning of truth. If
you were asked the question: what does “true” mean, we could explain it saying
that we are “entitled to assert (or deny) a sentence that it is true precisely under the
circumstances when we can assert (or deny) the sentence itself” (see [19]). This
is, loosely speaking, just an informal characterization of the T -axioms. Moreover,
while the analysis is shrewd, it is also very intuitive. It appears to accord well with
our usual use of the term and as such, it seems quite reasonable to attribute to the
average person such a naive conception of truth.

On the other hand, we might think differently about the concept of infinity. At
face value, it is a mathematical concept and as such, the characterization of its mean-
ing should be left to the experts: mathematicians. For example, we would not want
to trust the meaning of the term “natural number” to the man on the street. Char-
acterizing such a concept is surely the task of a mathematician or philosopher of
mathematics. With this particular example, one reason for this is that the concept of
natural numbers is difficult to characterize. A reasonable characterization of the laws
of arithmetic requires a recursive axiomatization and, as such, seems well beyond the
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abilities of the layperson. On the other hand, the concept of infinity is easy enough
to grasp, despite its vertiginous quality. Infinity is that quantity beyond which there
is no larger. What exactly that means may end up depending a lot on the context in
which it is articulated. However, in the case of arithmetic and its theory of families
and classes, it seems relatively straightforward. A family is infinite if every other
family is either smaller than it or has the same size.10 The definition is not partic-
ularly complicated or subtle. On this basis, I would like to contend that there is,
indeed, a sense in which we possess a naive conception of infinity.

3.2 Historical differences between theories of truth and theories of infinity Another
potential weakness in the analogy emerges in the history of theoretical approaches
to these problems. The study of theories of truth is extremely diverse. There are
a plethora of different theories and logics of truth, each defended for the most part
in plausible ways. This kind of diversity lends a certain credence to the idea that
truth is ultimately problematic. On the other hand, the theory of the transfinite is
relatively unified. Moreover, once the axiom of choice has been admitted, the world
of the transfinite is very well behaved. This unification could lend credence to the
claim that the transfinite is not problematic. I do not have much to say on what
effect this distinction should have on the analogy proposed. However, if this were the
driving reason why there is less plurality in theories of infinity, then that would seem
interesting in its own right.

3.3 Where do we stop? Another problem for the view proposed above is the question
of its scope. An important feature of the analogy above is the dependence of both liar
reasoning and Cantorian reasoning on a diagonal argument. We might be tempted to
take this as implying that there is something fishy going on in diagonal arguments,
and we should perhaps alleviate dependence upon them in our core theories. But
of course this will not do. It would be difficult to enumerate the value of diagonal
arguments in mathematical logic. To take just a small selection, without them we
would lose Gödel’s theorem, Turing’s halting problem, the Baire category theorem,
and the Borel hierarchy theorem. We do not want to throw the baby out with the
bathwater.

So what is stopping us from taking other diagonal arguments and saying that they
too are paradoxical like the liar? I think the answer is that we can, but to make the
analogy work some argument still needs to be made to show that an intuitive principle
has been violated.

Let us consider the halting problem in more detail. To take up an inconsistentist
approach to recursion theory, we need to argue that some intuitive principle has been
violated. But what would this be? Let us quickly review the argument.

Theorem 3.1 There is no total recursive function f W ! ! ! which verifies
whether or not an arbitrary partial recursive function halts on its own code number.

Proof Suppose not. Then there is a total recursive function f W ! ! ! such that
for any algorithm code e 2 !, we have

f .e/ D

´
1 if 'e.e/ halts,
0 otherwise.
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Given this, we then construct the partial recursive function 'k W ! + ! such that

'k.n/ D

´
1 if f .n/ D 1;

0 otherwise.

Now supposing that 'k is coded by k, let use consider what happens when we
present k to 'k . We get

'k.k/ halts $ 'k.k/ D 0 $ f .k/ D 0 $ 'k.k/ does not halt,
which is a contradiction, thus there is no such recursive function f .

What intuitive principle has been violated in this argument? In analogy with our
Cantorian rejection, we might say that our efforts to quantify over all of the partial
recursive function were flawed in the first place. Thus our total recursive function is
bound to miss something, in analogy with the missing bijection.

But an important difference creeps in here. In the cardinality case, we had the idea
that we could not quantify over all the subsets of the naturals and so the important
bijection was necessarily missing. The bijection was, however, understood to become
available in some larger context. But even this new bijection is relative: it only works
for the classes of the previous context. This allows us to retain our intuition that
nothing is “really” uncountable, merely relatively so.

However, in the case of the halting problem, our goal is to establish the existence
of, so to speak, an absolute function capable of verifying all of the facts about partial
recursive functions, regardless of context. The argument above establishes that this
cannot be done in the local context, and a fortiori we shall fail to find such an absolute
function when we move across multiple contexts too.

3.4 What about simpler problems of cardinality and the transfinite? Throughout
this narrative, I have unquestioningly presupposed the idea that cardinality should be
understood via bijection. However, the naive conception of cardinality also seems
to involve something like subset-hood. If we have a finite collection of objects and
consider a proper subset of that collection, then the subset is smaller in cardinality
than the original collection. It is only when we consider infinite collections that
this property can fail. So given that we are questioning Cantor’s conception of the
transfinite, perhaps we should also be questioning the use of bijection as well. If I
am arguing for one intuitive notion of cardinality, should I not be defending this one
too?

I think there are a couple of ways for me to respond here. First, we could ac-
knowledge that there are further nuances in the theory of cardinality which involve
the move from the finite to the infinite. A serious attempt at providing a nonbijective
equinumerosity account can be found in the second half of Mancosu’s work [23]. The
essential problem is to find a natural total ordering on infinite collections of natural
numbers which extends the partial order on the underlying powerset algebra. This is
a fascinating project, but it is outside the scope of this paper. Moreover, it has little
effect on its claims. Even if such an project could be successful, the problems for the
bijective story still stand. Perhaps the conclusions of this paper could be used to lend
philosophical support to such projects. We might also make the stronger claim that
in finite contexts, strict subset-hood implies that “less than” is merely symptomatic
rather than characteristic of the cardinality concept. In finite cases, it is merely suf-
ficient but not necessary: there are finite collections which have less cardinality than
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others but are not subsets of them. Thus we claim that it would be better to restrict
our attention to the content which is definitive of cardinality.

4 Conclusion

Our goal in this paper has been to elucidate an alternative philosophical interpreta-
tion of Cantor’s theorem. Rather than understanding it as foundation for a highway
into the transfinite, we have attempted to understand it as speaking about the ultimate
problems of quantifying over infinite collections and the difficulties in forming co-
herent theories thereof. To bolster our case, we have drawn heavily on an analogy
with theories of truth and the problem of the liar paradox. In the second section, we
have taken this analogy a step further and made an opening move toward a contextu-
alist diagnosis of the problem, making use of recent research into multiverse theories
of sets. Finally, we have attempted to address some of the more obvious objections
and issues for the position proposed here.

Notes

1. By way of background, I first entertained this idea when considering an issue that
emerged in a response by Florio and Shapiro to a paper by Linnebo and Rayo [22]. The
issue in question concerned what occurs when we make the move from an interpreted
language to its metatheory. It seemed obvious that something like the powerset of the
original domain was required to think about its metatheory in a natural way. But after
further consideration, this now seems less obvious.

2. It is worth noting that a much stronger (indeed impredicative) comprehension principle
is required to generate Russell’s paradox. In neo-Fregean projects, this leaves open the
possibility of revising comprehension to get out of trouble (see Burgess [4]).

3. Further discussion of the relationship between the position proposed in this paper and
intuitionism is discussed in Section 2.3.2.

4. p'q is a natural number coding the formula '.

5. Mancosu lays out the four main positions historically taken with regard to infinite col-
lections:
(1) Use the paradoxical features that such infinities would have (one is a part of another,

i.e., one infinity is smaller than another) to declare this strictly impossible and thus
block the process of generation of such infinities . . .

(2) Accept infinite collections but deny that ‘greater than’, ‘less than’, and ‘equality’
can be applied to infinities . . .

(3) Accept infinities and analyze how different part–whole relations apply to infinities
than those that apply to finite quantities . . .

(4) Accept infinities and try to develop an arithmetic of the infinite in analogy to the
arithmetic of the finite [23, p. 616].

6. We should note here the relationship between our argument here and what is usually
known as Cantor’s paradox. This is usually presented in the form of a theorem:

Theorem There is no largest cardinal.
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Proof Assume the contrary, and let C be the largest cardinal number. Then (in the
von Neumann formulation of cardinality) C is a set and therefore has a powerset 2C

which, by Cantor’s theorem, has cardinality strictly larger than that of C . Demonstrating
a cardinality (namely that of 2C ) larger than C , which was assumed to be the greatest
cardinal number, falsifies the definition of C . This contradiction establishes that such a
cardinal cannot exist.

We prove this theorem with the tools of set theory. However, it is easy enough to adapt
the argument into our framework. It is essentially just the argument we have provided,
but rather than assuming (INF), the argument is used to establish that (INF) is incorrect.

7. We assume well-foundedness to make the models relatively well behaved. However, we
could also consider multiverses in which this condition is jettisoned (see [15]).

8. Glanzberg [11] makes use of a framework admitting propositional quantification, which
we shall not need here. He claims that a richer semantic framework admitting proposi-
tions is required to make what is actually happening in the context shifts clear. However,
as our target is somewhat different, we may avoid that extra complexity here.

9. This discussion might lead us to suspect that a kind of revenge phenomenon is in the
offing. Reasonably enough, we might be led to ask how this theory of countable models
works. But if we respond to this by providing a first-order theory that talks about these
countable models, then it will probably be able to formulate something akin to Cantor’s
theorem; and thus, we will end up saying something like there are uncountably many
countable models. This is an interesting problem, but a full response is outside the scope
of this paper. We do, however, provide an outline of three main lines of response.

(1) We might say that the story of multiple universes is pretheoretic and not suscep-
tible to formalization. This means that talk of functions whose domains and ranges are
models is unavailable and Cantor’s theorem is blocked. This is the simplest response,
but also the least philosophically satisfying. The request to provide some (of course,
incomplete) axiomatization of the theory of the multiverse seems reasonable.

(2) On the other hand, we might allow the theory of multiple universes to be for-
malized, and further, concede that some form of Cantor’s theorem is likely to be prov-
able. Thus it appears that we have established that there are uncountably many objects.
However, we might then respond that the multiverse principles should still apply to this
newly formalized system. So just as we allowed different universes of our set theory in
the generic multiverse, we should allow different multiverses of our multiverse theory.
Thus, we shift to a second-order multiverse (of multiverses) in which, for example, we
would demand that for any multiverse in the second-order multiverse another multiverse
is present which witnesses its countability. We then claim that since the second-order
multiverses are countable, there are not really uncountably many countable models in
any of them.

(3) Finally, we might design a formal system which is capable of axiomatizing the
multiverse and which accommodates the response of (2) but does not lead into a theo-
retical regress. Ideally, such a system would be able to characterize both the internal and
external principles of the multiverse in such a way that the external multiverse principles
are also upheld as internal principles. A modal approach or something altogether novel
may be appropriate here.

10. Now of course, there is the further question of what it means for one collection to be
larger than another. Let us take it that we have already gained acceptance of the equinu-
merosity of the naturals and the even numbers. Thus we take it the lack of a surjection
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from class X to class Y would mean that Y is larger than X . There are other theories of
cardinality which do not use bijection (see [4]). See Section 3.4.
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