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Speech Acts, Categoricity, and
the Meanings of Logical Connectives

Ole Thomassen Hjortland

Abstract  In bilateral systems for classical logic, assertion and denial occur as
primitive signs on formulas. Such systems lend themselves to an inferentialist
story about how truth-conditional content of connectives can be determined by
inference rules. In particular, for classical logic there is a bilateral proof system
which has a property that Carnap in 1943 called categoricity. We show that
categorical systems can be given for any finite many-valued logic using n-sided
sequent calculus. These systems are understood as a further development of
bilateralism—call it multilateralism. The overarching idea is that multilateral
proof systems can incorporate the logic of a variety of denial speech acts. So
against Frege we say that denial is not the negation of assertion and, with Mark
Twain, that denial is more than a river in Egypt.

1 Introduction

Logical inferentialism is the idea that the meaning of a logical constant is fixed by the
inferential rules which govern its use. This thought, despite its casual formulation—
or perhaps because of its casual formulation—has been widespread among philoso-
phers of logic. Of course, those who subscribe to logical inferentialism have en-
dorsed very different precisifications of the core thesis. One of these, that the mean-
ing of logical connectives is determined by formal rules of proof systems (e.g., in
natural deduction or sequent calculus) we will call proof-theoretic semantics (PTS).
Mostly, the PTS literature has been focused on two questions.

(A) What are the constraints a set of inference rules must obey in order to be
meaning determining?
(B) Will these constraints, appropriately set, entail a revision of logic?
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Question A was prompted by the introduction of the rogue connective tonk in
Prior [22]." Subsequently there have been numerous replies offering proof-theoretic
constraints that rule out tonk but which standard (nonrogue) connectives are sup-
posed to satisfy, for example, conservativeness, harmony, normalization, the subfor-
mula property, definitional reflection, and so on.”

Philosophers like Prawitz [20], Dummett [6], and Tennant [37], [38] argue that
these proof-theoretic constraints suggest that the inference rules for classical negation
are semantically defective. Thinking of the inference rules as an implicit definition,
we can say that the negation rules semantically misfire—they fail to determine the
meaning of the logical constant. Intutionistic negation, on the other hand, is said to
comply with the proof-theoretic standard.’ In response, others have insisted that the
proposed trouble with classical logic is merely an artefact of the formal presentations,
in particular, the type of proof system they are embedded in or the choice of classical
inference rules. The case for classical logic is made in different variations in Weir
[43], Milne [18], [19], and Read [23].

There is, however, a third question about logical inferentialism which I think is at
least equally important:

(C) What is the nature of semantic content in PTS, and how is the semantic con-
tent determined by inference rules?

The language used by logical inferentialists is rarely helpful on this matter. It is
frequently claimed that inference rules are meaning conferring (e.g., [0, p. 289], and
[18, p. 50]), meaning constitutive (e.g., [38, p. 234]), sense conferring ([38, p. 229]),
that the meaning of the connectives can be read off of the rules (see [6, p. 205]), or
even that the rules should be equated with the meaning. Presumably, these different
glosses on what determining meaning comes to are not equivalent. For our purposes,
however, we will stick with the idea that inference rules fix or determine the meaning,
and leave other glosses behind.

Anyone subscribing to PTS ought not only have a story about how meaning is
determined by inference rules but also what is being determined. We need to give
content to notions such as “meaning conferring” or “meaning constitutive.” In what
follows, I will investigate one avenue for treating these issues, broadly speaking an
account of the semantic role of proof conditions. Deviating from the tradition, I
want to couple PTS with a reification or propositionalization of meaning in the form
of truth conditions. The guiding idea is that inference rules carve out the semantic
content of logical constants. Inferentially speaking, it is a matter of reading off truth
conditions from an inferential practice. But this is not much better than a metaphor.
To make the idea precise in terms of PTS, I will investigate the relationship between
truth values and semantic valuations on one side and proof-theoretic inference rules
on the other. It will become apparent that there is a sense in which the rules induce
sets of valuations, which in turn specify truth conditions for logical constants.

The idea that a logical constant can semantically misfire not because the infer-
ence rules are proof-theoretically defective but because they fail to specify the truth-
conditional content of the constant, was suggested in some early responses to Prior’s
tonk. Both Stevenson [36] and Wagner [42] offer analyses of tonk in terms of
truth-functional shortcomings. Wagner also suggests that what is required is a dis-
tinction between the sense of a logical constant on one hand and its reference on the
other, a move that is developed in more detail in Hodes [16]. With such a Fregean
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bifurcation of the “meaning” of logical constants, it is open to the inferentialist to
adopt a more reconciliatory position in which both proof conditions and truth condi-
tions play a role. More precisely—helping ourselves to a term coined by Hodes—one
can think of the inference rules as being sense-constitutive. The sense of the logical
constant in turn determines the reference by specifying a truth condition.

These early attempts have received little attention compared to the proof-theoretic
tradition. There are at least two reasons for this. First, Stevenson and Wagner’s dis-
cussions appear to be limited to classical semantics. Their suggestions are about
Boolean functions, and there is no indication that they can be extended to more gen-
eral applications. Of course, if one is in the market for a defense of classical logic,
perhaps their approach has some merit, but that is not the aim of the present paper.
Far from it, I think the success of PTS depends precisely on it having a wide range
of applications, not unlike model-theoretic semantics (MTS). There are more things
in heaven and earth than the Boolean universe.

Second, we are not provided with any precise formulation of how the sense of
a logical constant systematically determines reference. In fact, it will turn out that
this matter is nontrivial, even in classical propositional logic. So, without a better
account of how truth-conditional content is carved out by the rules, we have failed to
bridge the gap between the two features of a logical constant’s meaning.

I will start out in Section | by giving a formal characterization of the how proof
rules induce truth conditions—via a categoricity condition. 1 show, using an example
first given by Carnap, how categoricity fails for standard axiomatizations of classical
logic. Then, in Section 2, I introduce bilateral systems with primitive speech act
signs for assertion and denial. Following Smiley [35] and Rumfitt [28] I show how
such systems are categorical for classical logic. In Section 3 I give the analogous
result for multiple conclusion systems, before I proceed in Section 4 to extend the
technique to multilateral systems with speech acts beyond assertion and denial. In
Section 5 I show that multilateral systems can be formally represented using n-sided
sequent calculi and prove that for any finite many-valued logic there is a categorical
multilateral system.

2 Categoricity

The problem of uniquely determining truth conditions from proof rules can be traced
back to Carnap [5]. Carnap observes that standard axiomatizations of propositional
classical logic fail to uniquely specify the class of admissible valuations.* In other
words, it includes nonstandard interpretations of the logical connectives. In partic-
ular, Carnap shows that as far as the proof system is concerned, there is nothing that
rules out a valuation in which everything is true. Needless to say, this wrecks the
intended truth-conditional reading for the negation: For any A, both A and —A can
come out true. The result is that there is no precise sense in which the proof system
determines the truth conditions of the logical connectives in question.

In order to see how Carnap’s problem works, we need to be a bit more precise.
Let WFF be the set of well-formed formulas in some propositional language £, and
let 'V be a set of truth values, with D C V the set of designated values.

Definition 2.1 (Valuation space) A valuation v is a function from each member
of WFF to a value in V. We call the set of all such valuations U the universe of
valuations. A subset V of U is a valuation space.
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As an example, let us look at the language of propositional classical logic and its
Boolean values, {1, 0}, where 1 is the only designated value. Accordingly, a valuation
is any function v : WFF — {1,0}. It is critical to note that U includes valuations
that are not in the set of admissible valuations, Vcpp, for classical logic. In other
words, U contains nonstandard valuations. For example, any valuation v’ such that
v'(A) = 1 = v/(—A) is not in Vpr, but it is in U. It should be clear that similar
differences occur for every connective in the language &£.

If the formal semantics for classical logic allowed the above valuation v’, there
would be a sense in which we have failed to give the appropriate meaning to the
(Boolean) negation. Put differently, if the inference rules are to specify the truth
conditions, they had better screen off ill-behaved valuations like v’. And, in fact,
sometimes the standard inference rules succeed in doing precisely this. Take the
standard inference rules for A:

A B ;, AAB

AANB A
We can think of these inference rules as ordered pairs of a set of formulas and a
single formula, for example, ({A, B}, A A B) for I A. More generally we have the
following.

(EA1)

Definition 2.2 (Sequents) Let a sequent be an ordered pair (I', A), where T is
a set of formulas and A a formula (of some set of WFFs). A valuation v confirms
(or, is a model of) a sequent (I", A) just in case whenever v(I") = 1, we also have
v(A) = 1. Otherwise, v falsifies the sequent.

Sometimes we will write a sequent in the familiar form " - A for convenience.

Definition 2.3 (V -validity) Let VV be a valuation space. A sequent (I, A) is
V-valid if every valuation v € V confirms it.

With these definitions in the background, we can think of sequents as constraints on
a valuation space V. We can “read off” the first conjunction inference rule / A that,
for every valuation v in some valuation space, whenever v(A) = 1 and v(B) = 1,
then v(A A B) = 1. Similarly, the second rule says (contrapositively) that, for every
valuation v, whenever v(A4) = 0, then v(A A B) = 0; this corresponds for the third
rule. The result is the standard truth function associated with A:

e y)={1 ifx=1andy =1,

0 otherwise.

Crucially, these constraints are available without us antecedently knowing the truth
function associated with A. Although we do need to know something about the
semantic framework, that is, what the truth values are and which ones are designated.

So far so good. The problem starts when we realize that other connectives do
not share this property with conjunction. In fact, as Carnap discovered, the standard
inference rules for disjunction (V), implication (—), and negation (—) all fail to pro-
vide exhaustive information about their respective classical truth functions. Take for
example the standard V-rules:

A (B

AvB C C
D (VoI) (VE)(ug,u1)
ave 'V ave '’ C o
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The leftmost rules VI; and VI, tell us that when v(A) = 1, we have v(4 v B) =1
and similarly for v(B) = 1. Hence, we are only left with the task of determining
the truth table line on which v(A4) = v(B) = 0. But the standard Vv E -rule underde-
termines the matter: on the assumption that both disjuncts are false, we still cannot
conclude that A v B must be false as well. Why is this? The Vv E-rule does not
schematize a sequent of the type (I, A) (i.e., from a set of formulas to a formula),
rather, it only conditionally lets us infer C from A Vv B, if there are already two
independent subderivations of C from 4 and C from B.’

A natural conclusion to draw is that this limitation is caused by the fact that the
only inferences we have considered are from a set of formulas to a formula, that is, se-
quents. Let us call this (proof-theoretic) framework {FRML}-FRML. As opposed to
the case of conjunctions, both v and — have rules that schematize inferences which
are more complicated. In order to determine what their valuational contribution is,
let us first formulate these rules in sequent-style natural deduction:

IAF B 'FAvB TILAFC T,BEC
(=1) (VE
'-4—B r=c

Let us call this the framework of {SEQ}-SEQ inferences, where {SEQ} is a set of
sequents, and SEQ a sequent (whereas before the antecedent is a set of formulas,
and the succedent a single formula). It is worth noticing that the {FRML}-FRML
framework is simply a special case of the {SEQ}-SEQ framework where the set of
sequent premises is empty.

Since sequents are not true or false in a valuation, we need to give an alternative
formulation of how such rules constrain the valuation space V.

)

Definition 2.4 A sequent rule {SEQ} - SEQ is V-valid just in case, for every val-
uation v € V, whenever v confirms every sequent in {SEQ} (the premise sequents),
then v confirms the conclusion sequent SEQ.

We can take — [ as an example. Let v(I') = 1, and let v(A — B) = 0. Then v
cannot confirm every premise sequent, so, since v(I") = 1, v(4) = 1 and v(B) = 0.
Thus we have that whenever A — B is false, A4 is true and B is false, from which
it follows that if both A and B are false, then A — B is true, as is required for the
target truth function.

What about vV E? Again, the only problematic input in the truth function is when
both A and B are false. First, take the instance where C = A. Again, assume that
v(I') = 1 and v(A) = v(B) = 0. Then I' I A is falsified, so v cannot model all
the premise sequents. Since v(4) = v(B) = 0, both minor premise sequents are
confirmed. Thus, A vV B must be false in the major premise, in order for v to confirm
the inference rule.

Negation also runs into problems in the {FRML}-FRML framework. Consider,
for instance, the following inference rules:

[-A]' 4]

B -B A —A
P ®eD)1) 22 (EFQ)
A B .

The EFQ-rule does not involve any subderivations, but it is not on its own ade-
quate to determine the truth function for —. It excludes any valuation v for which
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v(A) = v(—A) = 1 and v(B) = 0, but, importantly, it allows a valuation v* where
v*(A) = 1, for every A € WFF. Needless to say, the valuation v* does not respect
the truth function for —. It does, however, respect the truth functions for A, v, and —.

Can the {SEQ}-SEQ framework improve the situation? None of the rules in the
{SEQ}-SEQ framework we have looked at excludes the nonstandard valuation v*.
Actually, it is easy to see that no inference rule in the {SEQ}-SEQ framework is
falsified by the valuation v*. It suffices to note that for each inference rule, the con-
clusion sequent will always be confirmed by v*, and thus the valuation also confirms
the inference rule.

We can now give a concrete example of noncategoricity. Let us take the following
{SEQ}-SEQ system for classical logic.’

Definition 2.5 We have classical propositional logic, Nep:
I'FEC

AFA T,AFC
I'tA TEB (AD) I'EAANB (AEa) I'EAAB (AED)

)

I'HAAB 'H4A I'HB
I't4A TEB (AD) I'FAAB (AEa) I'EAAB (AED)
THAAB 4 '+B
'FAvB T,AFC F,BI—C(vE) ”7/1(\/1(1 ”7B(v1b)
r=cC AV B T'HAVB
[-AFB T.-AF—-B (RED) w (EFQ)
| B .

What we know from the above is that Nep, and in general any classical {SEQ}-SEQ
system, is sound and complete with respect to at least two valuation spaces, that is,
Vep and Vep U{v*}. This is the sense in which we have noncategoricity. There is no
unique semantics for the connectives determined by the inference rules. On the latter
valuation space, the nonstandard valuation violates the intended interpretation.’

Before we look at options for regaining categoricity, let us introduce some helpful
definitions.®

Definition 2.6 Let a logic L be a set of {SEQ}-SEQ inferences (with respect to
some language and set of WFFs). We say that an inference is L-valid if itisin L.
A proof system S consisting of {SEQ}-SEQ inference rules and axioms (e.g., Nep)
will determine a corresponding set of inferences Lg, that is, the class of infer-
ences provable in §. For instance, Nep determines Lycp, and for each inference
{SEQ}-SEQ provable in Ncp, we have {SEQ}-SEQ € Lcp.

We can then define the required interaction between L and V.

Definition 2.7 For a valuation space V' € U and a logic L:
L(V) =45 {{SEQ}-SEQ € L : {SEQ}-SEQ is V-valid}.
Definition 2.8 (L-consistency) Let L be alogic, and let v € U be a valuation:
v is L-consistent if and only if v confirms every inference in L;
V(L) =47 {v € U : v is L-consistent}.

The pair (I, V) is an antitone Galois connection between the power set of U, ordered
by inclusion, and the power set of L, ordered by inclusion, respectively. That is, for
any V' C U and L (for a given WFF), L. € (V) if and only if V' C V(L).

We then have the following facts.
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Fact 1 For every valuation space V' and logic L, respectively:
(i) L < L(V(L)),
(i)) V C V(L(V)).

Proof  For (ii), assume for reductio that V' & V(IL(V)). Since (LL, V) is an antitone
Galois connection, it follows by contraposition that L(V') € L(V). O

But what about the converse? This is the question that will occupy us in what follows.

Definition 2.9 (Categoricity) =~ Let L be a logic, and let V' be a valuation space.

If L = L(V(L)), say that L is categorical.
If V =V(L(V)), say that V is categorical.

Our notion of categoricity is what Dunn and Hardegree calls absoluteness and what
in general is called Galois completeness.”>'" Our focus is the categoricity of a valu-
ation space V. If V is the set of intended interpretations (standard valuations), then
categoricity ensures that the inferences that are confirmed by every member of V in
turn have no L-consistent valuation v that is nonstandard. It is thus straightforward
to see that Vep is noncategorical, provided that the inferences induced by L are in
the framework {FRML}-FRML or {SEQ}-SEQ. Simply observe that our nonstandard
valuation v* is not in Vepr, but is in V(IL(Vcpr)).!" The informal gloss on the non-
categoricity result is that standard formalizations of classical logic fail to uniquely
determine the semantic content of the logical constants. Nevertheless, there is no
need to despair quite yet—the inferentialist has other resources.

3 Unilateralism and Bilateralism

One strategy for devising categorical systems is to introduce primitive speech act
signs in the proof systems. This technique was first used to give a categorical system
for classical logic in Smiley [35]. The idea was further elaborated by Rumfitt [28],
with an emphasis on PTS.'? He proposes a system for classical logic using primitive
signs in the formal language, +, —, interpreted as assertion and denial, respectively.'?
Accordingly, Rumfitt’s inference rules operate on signed formulas, + A, —A, read in-
formally as “A? Yes” and “A? No,” where A is a formula in the language of classical
logic. Rumfitt calls this type of system bilateral, as opposed to the standard unilat-
eral natural deduction system where primitive denial is absent. In the background, of
course, is the Frege—Geach debate about whether or not denial can be appropriately
expressed as the assertion of a negated proposition. What Smiley and Rumfitt’s work
shows is that there is at least one advantage to bilateralism, namely, categoricity.

Using the signs 4 and — we can, for example, dualize the standard inference rules
for disjunction, /V and E'V (where C can take either sign):

[+A*  [+B]*

+4 (+1vy) +B (+1v2) t(4v B) ¢ ¢

_ +EV)®)
F(AV B) +(AV B) C

to acquire rules which are symmetric to the conjunction rules, / A and E A:

M (—EvV M (=EVi;) —A -B (=1V)

—A ) B “(AV B)
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Correspondingly, the conjunction has disjunction-like rules for the denial sign in
addition to the standard rules:

w (+En;) M (+Enii) M (+1IA)
A B F(AAB)
[—-A]* [-B]"
A Cqay =B g,y ZUAAB) € (~EA)@)
—(A A B) —(AAB) C .

In fact, with the one proviso that the rules are embedded in a system containing two
coordination principles for 4+ and —, the result is a system where every inference
rule is immediate, that is, involves no discharge of assumptions. As we should expect
then, the coordination principles will compensate for this by themselves, reintroduc-
ing hypothetical reasoning:

o)

L . o o .
= (RED*) (1) = (LNC )'
In RED* and LNC* we use o as a metavariable over signed formulas, with * indi-
cating that the sign is reversed (i.e., + to — and — to +). In other words, thinking
of — as an unembeddable negation, RED* mimics both intuitionistic and classical
reductio. The two rules are both valid in classical logic, but only the leftmost in
intuitionistic logic:

[A]* [—A]*

= @D REDw
It is of special interest to the revisionary debate between classical and intuitionistic
logic that Rumfitt’s system allows us to simplify the classical negation rules:

—A G TEA
+(—A) —A

The two corresponding rules, —/ — and —E —, are derivable in the presence of the
coordination rules. True, the new rules are only made available by shifting the bur-
den of the problematic inferences—namely, classical reductio—over to the coordi-
nation principles. Yet, as Rumfitt insists, these inference rules are not governing the
inferential practice of negation specifically, so the classicist and the intuitionist are
endorsing the same basic rules of negation. Their disagreement only arises in the
context of assertion and denial.

With the classical logic embedded in an enriched language with primitive asser-
tion and denial, the system has properties corresponding to those of standard intu-
itionistic logic. Note for instance that there is a straightforward conversion transfor-
mation for Rumfitt’s negation rules:

I1
+A

—(=4) 11
+A4 T 4A.

(+E-)
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Here IT is a subderivation whose end node is the premises for concluding +A4. In
fact, unlike standard axiomatizations of classical logic, the system is separable; that
is, any proof I' = A only requires inference rules for connectives occurring in a
formula in T or in A (in addition to the coordination rules).'*

In order to investigate a bilateral system with respect to categoricity, we will intro-
duce a new proof-theoretic framework where inference rules are still in {SEQ}-SEQ,
but sequents are built up from signed formulas. Interestingly, the speech act signs
make a crucial difference to how the inference rules can be read as constraints on a
valuation space. I will use SEQ™ to indicate a (single-conclusion) sequent of signed
formulas and call the framework {SEQ*}-SEQ*, that is, inferences from a set of
signed sequents to a single signed sequent.

Let us reformulate some of the bilateral inference rules in sequent-style natural
deduction. Here is disjunction again (with I'* a set of signed formulas):

'*r—(AvB) T*F—(AVB) T*--4 I'*F-B
-4 I'*+—B I*+—(AV B)

Bilateral inference rules are not governing the sort of inferences that preserve truth
(or designated-value-in-a-valuation). The reason is simple: signed formulas do not
represent an expression of a proposition, they represent an expression of a judgment,
that is, speech acts (e.g., +) operating on a content (e.g., A). These speech acts are
not the sort of things that are true or false, and thus accordingly, what is preserved
from premises to conclusion in a bilateral inference is not truth but correctness. In
short, —A is correct just in case A is false, and + A is correct just in case A is true.
This might be a rather pedestrian formulation of the norms of assertion and denial,
but we bracket such complications for now.

Definition 3.1 (Correctness) Let T'* be a set of signed formulas, let A* be a
signed formula, and let v be a valuation. We say that + A (—A) is correct on v just in
case v(A) = 1 (v(A) = 0). A bilateral sequent I'* - A* is confirmed by a valuation
v just in case whenever B* is correct on v, for every B* € I'*, A* is correct on v.

Definition 3.2 (V -validity) A {SEQ*}-SEQ* sequent is V-valid just in case every
v € V confirms it.

Definition 3.3 Let a (signed) logic L* be a set of {SEQ*}-SEQ* inferences (with
respect to some language and set of WFFs). We say that an inference is L*-valid if
itisin L*.

Definition 3.4 Let V be a valuation space, and let L* be a logic:

L*(V) =qr {{SEQ*}-SEQ* € L* : {SEQ*}-SEQ" is V -valid}.

The new pair (IL*, V) is also an antitone Galois connection between the power set
of U, ordered by inclusion, and the power set of L*, ordered by inclusion, respec-
tively.

We can now prove the first theorem about valuation spaces V' (and Vcpr in partic-
ular) with respect to I *.

Theorem 3.5 (Smiley [35]) For any valuation space V. .C U, V = V(IL*(V)).

Proof = We only prove one direction; the other direction follows from the fact that
the we are dealing with a Galois connection. The proof proceeds by contraposition.
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Let vg ¢ V. Define the sets T', F as follows:
T = {A € WFF : v9(4) = 1},
F = {A € WFF : vy(4) = 0}.

Obviously, T U F = WFF. There are two cases: (i) F = @; and (ii) F is nonempty.
We show the first case and indicate the structure of the other three.

Case (i). Take the sequent +(7'/ Q) = —Q, where +(7/ Q) is the set of +-signed
formulas in 7" except the formula Q. For each v # vy, there will be some B € WFF
such that v(B) = 0. Thus, either v(Q) = 0 or, for some B € T/Q, v(B) = 0. That
is, either some + B € +(T'/ Q) is incorrect or —Q is correct. Either way, v confirms
the sequent +(7'/Q) F —Q. So, the argument is V' -valid, and thus in L* (V). Yet, as
is evident, vy does not confirm +(7'/Q) = —Q, hence vy is not L*(V')-consistent.
In other words, vy ¢ V(IL*(V)).

Case (ii). Take the sequent +7 U {—Ag,—A1,...} F +0, where F = {0, Ao,
Ay, ...}. The technique is as before. O

The proof of Theorem 3.5 actually only needs the degenerate case of {SEQ*}-SEQ*
inferences where {SEQ*} = @. In other words, we are only relying on a weaker
framework of single signed sequents, that is, a set of signed formulas and a signed
formula, {FRML* }-FRML*.

Let us look at an example. Recall the nonstandard valuation v* where v*(4) = 1,
for every A € WFF, which caused problems for Nep. In a signed system (with the
coordination rules) we can derive the sequent +A4 — ——A. Thus, for every v € V,
if +A is correct on v, then ——A is also correct. That is to say, if v(A4) = 1(0), then
v(—A) = 0(1), which is what we require.

4 Multiple Conclusion

Smiley [35] shows that multiple conclusion sequents also yield categoricity for clas-
sical propositional logic.

Definition 4.1 (Multiple conclusion sequents) Let a multiple conclusion sequent
be an ordered pair (I", A) where both I and A are (possibly empty) sets of formu-
las (of some set of WFF's). A valuation v confirms a multiple conclusion sequent
(T, A) just in case whenever v(I") = 1, we also have v(B) = 1, for some B € A.
Otherwise, v falsifies the sequent.

As before, we will sometimes write the sequents in the familiar form I" = A for
convenience. A multiple conclusion sequent inference will be an inference from a
set of (multiple conclusion) sequents to a single sequent. We call this framework
{MSEQ}-MSEQ.

Definition 4.2 (V -validity) A multiple conclusion sequent (I', A) is V-valid just
in case it is confirmed by every v € V.

Definition 4.3 Let a (multiple conclusion) logic LM be a set of {MSEQ}-MSEQ
inferences (with respect to some language and set of WFF's). We say that an inference
is LM -valid if it is in LM .13

Definition 4.4 (LM-consistency) Let LM be a logic, and let v € U be a valua-
tion:

v is LM -consistent if and only if v confirms every inference in LM .
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Definition 4.5 Let V be a valuation space, and let LM be a logic:

LM (V) =4 {{MSEQ}-MSEQ € L™ : {MSEQ}-MSEQ is V-valid},
v(LM) =gr{veU:vis LM _consistent}.

Theorem 4.6 ((MSEQ}-MSEQ, Dunn and Hardegree [3]) For any valuation space
VCcuv=vLrMww)).

Proof  Suppose that vy ¢ V. We show that vy ¢ V(LM (V)). Define two sets T,
F as follows:

T = {A € WFF : v9(4) = 1},
F = {A € WFF : vy(4) = 0}.

For each v # vy, either v(B) = 0 for some B € T or v(B) = 1 for some B € F.
Thus, v confirms the sequent 7'+ F. It follows that the sequent is V -valid (since it
is confirmed by every valuation except vg). Since vy does not confirm the argument,
however, vy is not LM (V)-consistent. In other words, vy ¢ V(LM (V)). O

Thus, we know that the multiple conclusion framework offers categoricity with re-
spect to the same valuational spaces as the signed framework. This is not altogether
surprising. There is indeed formal evidence that the two frameworks are mere no-
tational variations of each other. Although Smiley did not show it, it seems likely
that he had in mind a translation between a signed and a nonsigned sequent which
preserves both validity and categoricity.

In fact, it is straightforward to define a faithful translation between signed sequents

and multiple conclusion sequents. First, let Ay,..., 4,,...,F By,...,By,...bea
multiple conclusion sequent. Its translation t(Ay, ..., Ay, ..., By,..., By, ...)is
the signed sequent +A44,...,+A4,,—B>,...,—Bp, ..., + B;. We can then prove

that every multiple conclusion sequent I' - A is satisfied by valuation v just in case
(' F A) is satisfied by v. For left-to-right, assume that (I" - A) is not satisfied
by v. Then + Bj is incorrect on v and each of +Ay,...,+A4,,—B2,...,—Bn, ...,
is correct on v. Thus, for each i, v(B;) = 0 and v(A;) = 1, as required. The other
direction is equally straightforward.

Correspondingly, for a signed sequent +Ai,...,+A4,,...,—B1,...,—Bp,
..., £C, the translation is

T(+A1,...,+An,...,—Bl,...,—Bm,...,l_:l:C)
A1 An...FC.Bi,....Bp,..., if+C,
" \C,A1,...,Ay,...,bBy,...,Bp,.... if—C.

Again, the translation is faithful in the sense that a valuation v satisfies an inference
I'* F A* if and only if it satisfies ('™ F 4*).

There is no doubt then that the two frameworks are intimately connected. But
for all the technical similarities, it might be worth investigating whether the two
frameworks have different philosophical merits:

The close formal relationship between bilateral calculi and their multiple-
conclusion cousins, however, should not blind us to what is, for present purposes,
a crucial philosophical difference. (Rumfitt [28, p. 810])
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What is the crucial difference? Rumfitt is not at all impressed by the capacities of
the multiple conclusion framework. He argues at length against multiple conclu-
sion in [31] and also broaches the topic when he presents his bilateralism. Rumfitt
[28, pp. 795-96] claims that “not only is it doubtful whether people actually give
such [multiple conclusion] arguments, it is also doubtful whether we can attain any
intelligible conception of them.” Rumfitt suggests that we understand multiple con-
clusion as a “meta-logical remark” of the form “if these propositions are true, then
some other propositions cannot all be false.” Such a remark, he continues, is a poor
representation of inference, since the involved propositions are merely mentioned.

Rumfitt’s position, that multiple conclusion frameworks are somehow too arti-
ficial to represent actual inference, is shared by several others in the inferentialist
literature. For example, according to Dummett,'°

Sequents with two or more sentences in the succedent, by contrast, have no
straightforwardly intelligible meaning, explicable without recourse to any log-
ical constant. Asserting A and asserting B is tantamount to asserting "A and B™;
so, although the sentences in the antecedent of a sequent are in a sense conjunc-
tively connected, we can understand the significance of a sequent with more than
one sentence in the antecedent without having to know the meaning of ‘and’.
But, in a succedent comprising more than one sentence, the sentences are con-
nected disjunctively; and it is not possible to grasp the sense of such a connection
otherwise than by learning the meaning of the constant ‘or’. [6, p. 187]

Rumfitt’s objection appears to be inspired by Dummett’s analysis. Oddly enough,
however, Dummett’s analysis relies precisely on a reduction of denial to assertion of
negation—the very strategy that Rumfitt has set out to reject. Dummett is correct in
claiming that conjunction and disjunction are asymmetric with respect to assertion.
However, this does not show that conjunctive commas are conceptually kosher prior
to their object language counterparts, whereas disjunctive commas are not. Unlike
the antecedent-side commas, the disjunctive (right-hand) commas ought not to be
treated assertorically. Rather, we will think of the normative constraint imposed by
a multiple conclusion consequence relation as saying that one should not (on pain of
incoherence) assert all premises and deny all conclusions simultaneously. With such
areading there is not necessarily a genuine disjunctive element: (I", A) is invalid just
in case we assert A, and we assert A,, and so on, for each A; € I', and we deny B,
and we deny B, and so on, for each B; € A. Summed up, to the extent that it is a
worry at all that there are metalevel conceptions of connectives, Dummett seems to
have put too much emphasis on the role played by the interaction between assertion
and conjunction.'”

5 Beyond Assertion and Denial

This counter to Dummett can be made more precise using a framework offered by
Restall [24], [25]). Restall says:

We can think of the rules for the connectives as giving instructions on how to treat
assertions and denials—at least with regard to whether or not these assertions and
denials are out of bounds. [25, p. 245]

On Restall’s approach we consider structures deceptively similar to arguments, that
is, pairs of collections of statements, written [I" : A]. Call such a structure a position.
We say further that for a position [I" : A], T is the set of asserted propositions and
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A is the set of denied propositions. A position [I" : A] such that ' N A # @ is an
incoherent position (i.e., positions where the very same proposition is both asserted
and denied). For an incoherent position [I" : A], we write I' - A.'8

Formally, there is a lot of freedom with respect to how the sequent framework fixes
the associated notion of incoherence. We can, for example, strengthen the notion of
incoherence by adding structural constraints on the sequent calculus. Restall suggests
that if [I" : A] is coherent, and I'" € T" and A’ C A, then [T’ : A’] is also coherent
(weakening); if [[" : A] is coherent, then so is either [[, A : A] or [[" : A, A]
(transitivity)."”

More interesting for our purposes are the position rules for logical connec-
tives. We will consider the position rules for a logical connective to be concep-
tually antecedent to its truth conditions. Let us take conjunction as an example. If
[T : A, AAB]is coherent, then either [I" : A, A] is coherent or [[" : A, B] is coherent
(or both). As with the structural constraints above, we recognize sequent rules by
taking the contraposition of the constraints. In other words, if both [I" : A, A] and
[l : A,B] are incoherent (i.e., ' H A, Aand I" = A, B), then [[" : A, A ABJis
incoherent (i.e., ' A, A A B). Put more informally, if we assert A and we assert
B, then we ought to assert A A B. Accordingly, we might want to express that if
you deny either A or B, you ought to deny A A B. This leads to the following rule:
if [T, A,B : A] is incoherent, then [[, A A B : A] is incoherent. Again, these are
simply notational variations of sequent rules for conjunction:

IA,B= A I'=sA4,A I'= B, A
IMAAB = A I'=>AAB,A

On the position interpretation, multiple conclusion is not a mere “metalogical re-
mark”: there is so far no talk about truth conditions at all but only about assertion
and denial. There are two advantages to this. First, we are free to explore ways
in which the truth-conditional semantics of logical connectives are “read off” the
pragmatic rules governing positions. Unsurprisingly, this will be a question of cate-
goricity. More contentiously, one might think of the rules governing the positions as
constitutive for the sense of logical connectives. Thus paraphrased, the question of
whether or not these very rules also determine the reference is precisely the question
of categoricity.

Second, we need not stop with assertion and denial. There is no tertium non datur
for speech acts. We might think that there is more than one type of denial, just as we
sometimes think that there is more than one type of negation. Perhaps, for example,
there is a type of denial which corresponds roughly to metalinguistic negation. For
example, in cases of presupposition failure we can deny propositions like Sue stopped
smoking without denying its content.”’ Or, alternatively, there might be an inferen-
tially significant speech act which falls, in some sense, between assertion and denial.
For instance, propositions with both vague expressions and paradoxical propositions
are sometimes considered neither true nor false and thus perhaps neither assertible
nor deniable. A middle speech act might correspond to doubting, being agnostic,
or withholding assent/dissent.”' Paraphrasing Rumfitt’s informal reading of +, — as
“A? Yes” and “A? No,” we may for example introduce a reading of a third position
as “A? Dunno.””? Positions are not two-party systems: Everyone’s invited.”’
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6 Multilateralism and Many-Valued Logics

With the position interpretation of sequent calculus in mind, I will move on to con-
sider an expansion of the bilateralist project. The above section should serve to
motivate the thought that once we appreciate the advantages of going bilateral, there
is nothing stopping us from expanding to multilateralism for logical connectives.

Bilateral rules give us categoricity for valuation spaces in the Boolean universe.
Multilateralism will give us categoricity for arbitrary finite many-valued matrices.
The idea is twofold. Formally we introduce sequents which are n-sided and show
how we can give a categoricity result for many-valued logics. Informally, we allow
inference rules to operate on speech acts other than assertion and denial. Pursuing
the inferentialist thought, we then say that the truth conditions of logical connectives
are carved out by these more fine-grained rules.

One way of thinking about the generalization is to say that the logic now comes
with n-signed formulas, each index indicating a distinct speech act. But, with se-
quent calculus, we simply indicate the signs with locations in n-sided positions. Un-
surprisingly, bilateral systems will simply be the special case where the positions are
two-sided. In this sense, the classical bilateral system is just the standard sequent
calculus for classical logic.

What we need is a proof-theoretic framework that generalizes the bilateral sys-
tems, and which ultimately leads to the required categoricity result. Fortunately,
such a framework is already available in the form of n-sided sequent calculus, pi-
oneered in Schroter [33] and Rousseau [26] and subsequently developed further in
Baaz, Fermiiller, and Zach [1].%*

We simply start out with a standard sequent ' = I'; and then turn it into a
position-like structure:

o | I'y.
We read this two-sided sequent disjunctively as saying, informally, that either some-

thing in I’y is denied or something in I'; is asserted. In other words, the informal
gloss is along the following lines:

(Yo VYEV VYV (i VYRV vy,

where each yé € Iy is denied, and each 7/{ € Ty is asserted.”

Recall the general Definition 2.1 of valuations, valuation spaces, and the universe
of valuations. In a finite many-valued semantics, there will be three or more values in
the set of truth values u1,..., 1w, € V, and one or more of these will be designated.

Definition 6.1 (n-sided sequents) Let an n-sided sequent be an ordered n-tuple

(T'y,...,Ty) where each T; (1 < i < n) is a (possibly empty) set of formulas (of
some set of WFFs). Let i1, ..., iy be the truth values of the many-valued semantics.
A valuation v confirms an n-sided sequent (I'y,..., ;) just in case, for some I3,

there is a formula A € I'; such that v(A) = w;. Otherwise, v falsifies the sequent.

Definition 6.2 (V-validity) Let V be a valuation space. An n-sided sequent
(T'q,...,Ty) is V-valid just in case it is confirmed by every v € V.

Instead of the usual turnstile notation we will use vertical bars to separate positions
in an n-sided sequent:

Ty l...| T
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Inference rules operating on n-sided sequents are pairs consisting of a set of n-sided
sequents (the premises) and an n-sided sequent (the conclusion):

1 1
[0 0 VU I 0 IR O B I B N
Fy|...| Ty
Importantly, the sequent premises are conjunctive (as in standard sequent calcu-
lus), so that the combination of all the premises are in conjunctive normal form.

We call the proof-theoretic framework consisting of inference rules of this type
{nMSEQ}-nMSEQ.”*

Definition 6.3 Let an (n-sided sequent) logic L” be a set of {(nMSEQ}-nMSEQ
inferences (with respect to some language and set of WFF's). We say that an inference
is L"-valid if itis in L".

Definition 6.4 Let V be a valuation space, and let L” be a logic:
L"(V) =4r {{nMSEQ}-nMSEQ € L" : {MSEQ}-MSEQ is V-valid}.

With the {nMSEQ}-nMSEQ framework we can complete a project started in [27].
Rumfitt extends the bilateral system to give a categoricity result for strong Kleene,
K3.”” With a multilateral approach, however, we can get categoricity for any finite
many-valued logic. In addition, we can treat logics with preservation properties that
involve more than one value.

Theorem 6.5 ({(nMSEQ}-nMSEQ) For any valuation space V. C U, V =
V@ (V).

Proof  Suppose that vg ¢ V. We show that vy ¢ V(IL"(V')). Define the following
sets:

[y = {A € WFF: vg(4) # 1},
[ = {A € WFF : vy(4) # 12},

Iy = {A € WFF : vg(A) # in}.

For each v # vy, v confirms the n-sided sequent I'1|I2| - - - |T',. For, since v # vy,
there is a formula A such that v(A) # vo(A4). Assume that vg(A) = w;. Then for
some j # i, v(A) = u;, and since, by definition, A € T, for every I'y where
k # i, we know that A € I'; in particular. Thus, v confirms I';[I'2|---|I';, as
required. On the other hand, vy does not confirm I'y|T';|-- - |T,. For, if it did, then
for some i, there is a formula A € I'; such that vo(A) = w;. But, by definition, if
A €Ty, then vo(A4) = u;.

Thus 'y |T2]| -« - [T is V-valid (every v except vy confirms it), and since vy does
not confirm it, we have vy ¢ V(IL"(V)). O

The result tells us little, however, about the proof-theoretic specifics. In the
{MSEQ}-MSEQ and {SEQx*}-SEQ* frameworks, we had corresponding formal-
izations of systems for classical logic. But the above theorem gives us no particulars
about proof systems. In fact, it is a key aspect of the refutation sequents that they
might involve infinite sets I';. Recall that the refutation sequent is defined over a
valuation and thus involves every formula in the language. But, if one is interested
in PTS, it is a natural constraint that the inference rules—and thus the sequents—be
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finitary. In particular, if we think of sequent rules as an agent’s rational management
of assertions, denials, and other speech acts, then one might want to keep each
location in the sequent finite.

Yet, for all that has been said so far there is no guarantee that inference rules of
finite n-sequents have the requisite expressive power. Perhaps some such systems
suffer from noncategoricity. Fortunately, that is not the case. We can give finite
n-sided sequent rules that capture precisely the truth conditions of a logical connec-
tive. The idea is roughly as follows: For each connective, and each location in the
sequent, there is a single rule which states the necessary and sufficient grounds for
introducing the connective in the location. Even more tentatively, we can think of
these introduction rules as stating the respective conditions under which one ought
to assert or deny or doubt, say, A VvV B.

Let us look to an example. Consider K3 mentioned above and in particular the
truth table for its disjunction:

SR
e |t
—_ e | =
S = =O

The K3-matrix has three values, of which only 1 is designated. Consider the follow-
ing three 3-sided sequent rules where each I is finite:

(To, A| ;| Ty) (To.B|T;|Ty) TolTi|T1,A B
FO,A\/B|F,~|F1 F0|F,-|F1,A\/B
To | i, A,B|T1) (To,A|T;,A|T1) (To,B |1, B|T)
F0|Fi,A\/B|F1

How do we interpret the above n-sided sequent rules? For simplicity, simply let
I'y = T3 = T'y = 0. The top leftmost rule and the top rightmost rule give the
0-conditions and 1-conditions for disjunction in K3, respectively. Corresponding to
the position-interpretation of standard two-sided sequents we are invited to interpret
these proof conditions as denial conditions and assertion conditions, respectively.
A disjunction is deniable just in case each of its disjuncts are; a disjunction is assert-
ible just in case at least one of its disjuncts are.

In fact, given that the K3 matrices are simply Boolean (or classical) in the absence
of the third value i, the assertion and denial conditions specified by these rules are
identical to those of both Restall’s classical sequent system and Rumfitt’s signed
natural deduction system. We can think of this as classical recapture in the limit
cases, that is, in the leftmost and rightmost locations in the sequents.zx

Let us move on to the bottom rule. It gives the i-conditions for a disjunction.
As is evident from the truth table above, the K3-disjunction has the value i just in
case either both disjuncts also have the value i, or one disjunct has value i and the
other 0. However, as we saw above, the sequent rule expresses this in conjunctive
normal form, rather than disjunctive normal form. That is, each premise-sequent is
a disjunction, whereas the premises themselves are combined as conjunctions. Thus
the sequent premises combined say that three conditions are necessary and sufficient
for the disjunction having value i: A or B takes value i; A takes value O or value i;
and B takes value O or value .
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Is there a speech act, or a propositional attitude, that corresponds to the value
i in the sense that assertion corresponds to the value 1? Let us try on one of the
suggestions from Section 5 and interpret i -conditions as conditions for doubting (or
being agnostic about) a proposition. The philosophical motivation is that K3 ac-
commodates indeterminate or “gappy”’ propositions, and it seems plausible that such
propositions can neither be correctly asserted nor denied.”’
Let us quickly also look at the K3 negation, which is determined by the following
rules:
Lo [T [T A Lo [, AT Lo, A| T | Ty
Fo,—A|T; |y, To|li,—=A[Ty, Tol|li|I,—4.

This imposes a constraint on a valuation space V' as follows: For every valuation
velv,

1 ifv(d) =0,
v(—=A) =13i ifv(A) =1,
0 ifv(d) =1.

It should be clear from this that n-sided sequents can be used to give categorical
axiomatization of a range of logics. That is not to say, however, that any set of n-sided
sequent rules will do the trick. What we know from the above is that for any finite
many-valued logic, there is a categorical axiomatization in the {nMSEQ}-nMSEQ
framework. It is nonetheless straightforward to see that there are systems that will
lead to both overdetermination and underdetermination. For example, for a connec-
tive @ we might have the following rules:

(To, A|T; | T1) (Lo, BTy |T1) (Do |y |T1,4) (To|Ti| Ty, B)
Fo,A@B|F,’|F1 s F0|F,’|F1,A@B s
Iy |Ti,A,B| T
To | T A®B [T, .

The constraints imposed by the above inference rules for @ yield the following in-
complete truth table:

0
5
i
0

O'—"’—‘?
O e = =

[S P ey

Similarly, we might have a situation where a set of inference rules are in conflict.
In fact, this is a situation familiar from the inference rules for tonk. These rules
offer more than one way of determining the truth table. Recall the standard sequent
rules for tonk:
Lo, B| T Io [ ATy
Iy, AtonkB | 'y, Ty | AtonkB, T .

In terms of (Boolean) truth conditions, the above rules for tonk both overdetermine
and underdetermine. First, the rules are in conflict with respect to what happens
when B is in the 0-location and A in the 1-location. Second, the rules are silent
about what happens when B is in the 1-location and A in the O-location. Essentially,
the overdetermination witnessed here is a precise formulation of the worry voiced
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by Stevenson and Wagner about tonk. What they failed to realize is that the phe-
nomenon is general and can thus be studied independently of tonk and the Boolean
setting.

Conclusion

Categoricity is a formal approach to the question of how inference rules determine
the meaning of logical connectives. It captures formally the connection between
proof conditions and truth conditions. The present investigation shows how sensi-
tive this approach is to the details of proof-theoretic frameworks. With the help of
n-sided sequents we have proved categoricity for arbitrary finite many-valued logics,
and thus taken proof-theoretic semantics beyond its traditional revisionistic bound-
aries. The notion of categoricity also offers a diagnosis of rogue connectives like
tonk that brings together both proof conditions and truth conditions. Finally, by
extending bilateralism to a multilateralist account of logical connectives, we provide
an informal reading of n-sided sequents in terms of the norms governing speech acts.

Notes

1. As areminder, tonk has the following intro- and elim-rules:

A (intro) AtO;lkB

L (elim)
AtonkB , .

Assuming transitivity, tonk gives a provability relation where anything is provable from
a nonempty set of premises. In the presence of most negations, it proves anything from
any set of premises.

2. See, for example, Milne [19], Read [23], Schroeder-Heister [32], and Tennant [39] for
some proposals.

3. This is not the place for details, but the arguments typically cite the fact that classical
negation is nonconservative over the (intuitionistic) —-fragment in standard natural de-
duction systems or that the negation rules do not have the standard detour conversions
applied in the normalization theorem.

4. The admissible valuations for classical logic are the ones that respect the standard truth
functions associated with the classical connectives. Let an assignment be a function vg
from propositional variables to truth values. Then an admissible valuation is a valuation
recursively defined over the truth functions from an assignment. It is straightforward that
for each assignment there is a unique valuation.

5. The degenerate instances where no formulas are discharged in the subderivations will not
help. The valuation ve defined below in note 7 is one example of why these disjunction
rules cannot work to determine the truth table.

6. In fact, the classical reductio rule, RED, is sufficient alone, since the vacuous case where
we do not discharge any assumptions is simply EFQ. In sequent style natural deduction,
we can see this by the following derivation, applying the structural rule weakening (K):
T'FB (K) I'+--B (K)
Ir-A+B I-AF—-B
r-4

(RED)
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* is not the only nonstandard valuation that cannot be dealt with in
{SEQ}-SEQ. Take, for instance, the valuation v® such that v@ (4) = 0 just in case ¥ A.
I owe this example to Elia Zardini.

The notation here is adapted from Hardegree [14]. See also Dunn and Hardegree [8] for
further details.

In Shoesmith and Smiley [34] the notion of categoricity is different from what is pre-
sented here. Instead of valuations, they consider partitions of formulas into designated
and nondesignated. Since a valuation, regardless of the truth values, will determine a
partition but not necessarily vice versa, our present definition is more fine-grained.

Categoricity also plays an implicit role in questions of logicality (see especially Bonnay

[3D.

An alternative approach that will not be pursued here is to insist that the universe of
valuations be limited to valuations where for some A € WFF, v(4A) = 0. This is
the basis of closely related research in Belnap and Massey [2] and Garson [11], [12].
Although their findings are very interesting, the assumption that each valuation takes
something to false is undesirable for present purposes. Denis Bonnay has also suggested
that it might be worth restricting the scope to compositional valuations. Although this
would rule out nonintended valuations such as v*, I would prefer the compositionality
of the semantics to follow proof-theoretically.

For the debate following Rumfitt’s paper, see Dummett [7], Gibbard [13], Rumfitt [29],
Ferreira [9], and Rumfitt [30].

More broadly one could interpret the signs as the propositional attitudes of acceptance
and rejection rather than speech acts.

Standard natural deduction systems for classical logic fail on this account because some
theorems (e.g., Peirce’s law) in the —-fragment of the language are only provable using
inference rules for the classical negation.

There is a variety of proof systems for classical logic, which is based on multiple con-
clusions. See for example Borici¢ [4] and Ungar [41] for Prawitz-style natural deduction
system for classical logic. However, a sequent calculus presentation is more typical (see,
e.g., Troelstra and Schwichtenberg [40]).

. Tennant [38, p. 320] is another: “In normal practice, arguments take one from premises

to a single conclusion.”

Interestingly, we can dualize and say, equivalently, that the argument (T", A) is valid just
in case we deny A, or we deny Az, and so on, OR, we assert B or assert By. This
perspective will become useful in what follows.

I have deviated somewhat from Restall’s preferred characterization of positions. He uses
an equivalent reading of sequents where the antecedent set I are the denied propositions,
and the succedent set A are the asserted propositions. I owe this observation to a referee.
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One might have conceptions of assertion and denial (and associated conceptions of co-
herence) which drop any or all of these constraints. The difference, as Restall remarks,
amounts roughly to a variety of substructural sequent calculi. Additionally, the frame-
work builds in contraction by working with sets rather than multisets. However, we will
not pursue substructural issues any further in what follows.

A similar consideration is made in Rumfitt [27, pp. 226-27] as internal versus external
rejection.

What is expressed by saying that one doubts something might vary. If I say “There is
mate in two” and you reply “I doubt it,” a plausible reading is that you are denying what
I said. What is of interest for the present purposes is the weaker attitude where one will
neither assert nor deny.

See [7] for a discussion of “A? Can’t say.”

A final advantage to the position interpretation is that it avoids a problem with Rumfitt—
Smiley-style bilateral systems. Recall that these systems have rules that operate on signed
formulas. Informally, the rules govern the connections between assertion and denial
of propositions with logical connectives. However, in the coordination principles, the
signed formulas occur as assumptions that are discharged by the application of the rule.
This is misleading. What is being assumed for the sake of argument (the hypothetical)
is neither asserted nor denied. In fact, what this reveals is that in unilateral systems, it
would be wrong to think of inferences as operating exclusively on asserted propositions.
There are two modes: asserted propositions and assumed propositions. Thus, explicating
assertions and denials with signs, 4+, —, in assumption position confuses matters. What
is being assumed is a proposition, not a speech act. Propositionalizing by saying that we
assume that A is denied/asserted would sabotage the signs. For, if the signs are propo-
sitionalized in assumption position, why are they nonembeddable? Importantly, there is
no corresponding problem with sequent calculi under the position interpretation.

n-sided systems are also used to give proof systems with more than one derivability
relation in Hjortland [15].

Feel free to think of the subscripts as signs, but in the actual sequents the location deter-
mines the judgment type.

An n-sided sequent calculus has corresponding structural rules; for example, weakening,
for a 3-valued Lukasiewicz logic:

I'1|To|T I'1|T2 | 1|2 |
11023 (K 1IT2|T'3 (Ka) 11T2|T'3 (K3)
Iy, AlT2|T3 , Tz, A|T'3 , Ti|I2|l3, 4 .

For further details, including cut elimination, soundness, and completeness for n-sided
calculi, see for example [1] and references therein.

See Priest [21, pp. 22-24] for details.
Notice, however, that this is a special feature of K3, and need not hold in other many-

valued matrices we consider. We are free to insist that the presence of a non-Boolean
value impacts on assertion and denial as well.
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Think, for example, of the way in which K3 is applied to ungrounded propositions in the
literature on semantic paradoxes (see, e.g., Kripke [17] and Field [10]).
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