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Inaccessible Cardinals, Failures of GCH,
and Level-by-Level Equivalence

Arthur W. Apter

Abstract We construct models for the level-by-level equivalence between
strong compactness and supercompactness containing failures of the General-
ized Continuum Hypothesis (GCH) at inaccessible cardinals. In one of these
models, no cardinal is supercompact up to an inaccessible cardinal, and for every
inaccessible cardinal ı, 2ı > ıCC. In another of these models, no cardinal is
supercompact up to an inaccessible cardinal, and the only inaccessible cardinals
at which GCH holds are also measurable. These results extend and generalize
earlier work of the author.

1 Introduction and Preliminaries

In Apter [2], the following theorem was proven.

Theorem 1 ([2, Theorem 3]) Suppose that V � “ZFC C K ¤ ; is the class of
supercompact cardinals.” There is then a partial ordering P � V such that V P �
“ZFC C K is the class of supercompact cardinals.” In V P, 2ı D ıCC if ı is
inaccessible, and 2ı D ıC if ı is not inaccessible. Further, in V P, for every pair of
regular cardinals � < �, � is �-strongly compact if and only if � is �-supercompact,
except possibly if � is a measurable limit of cardinals ı which are �-supercompact,
or � is inaccessible.

If our ground model V satisfies level-by-level equivalence between strong compact-
ness and supercompactness and in addition is such that V � “ZFC C GCH C � is
supercompact C No cardinal is supercompact up to an inaccessible cardinal,” then
we have the next result as an immediate corollary.
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Theorem 2 Suppose that V � “ZFC C GCH C � is supercompact.” Assume, in
addition, that in V no cardinal is supercompact up to an inaccessible cardinal, and
level-by-level equivalence between strong compactness and supercompactness holds.
There is then a partial ordering P 2 V such that V P � “ZFC C � is supercompact.”
In V P, no cardinal is supercompact up to an inaccessible cardinal, and level-by-level
equivalence between strong compactness and supercompactness holds. Further, in
V P, for every inaccessible cardinal ı, 2ı D ıCC, and for every cardinal ı which is
not inaccessible, 2ı D ıC.

The techniques of [2], however, will not produce models analogous to the one for
Theorem 2 in which 2ı > ıCC for every inaccessible cardinal ı. In addition, [2,
Theorem 3] says nothing about whether it is possible to obtain similar models in
which only certain inaccessible cardinals violate GCH. This raises the following two
questions.

Question 1 Is it possible to construct models such as those of Theorem 2 in
which, for every inaccessible cardinal ı, 2ı > ıCC?

Question 2 Is it possible to construct models analogous to those of [2, Theo-
rem 3] in which only certain inaccessible cardinals violate GCH?

The purpose of this paper is to answer the above questions in the affirmative. Specif-
ically, we will prove the following theorems.

Theorem 3 Suppose that V � “ZFC C GCH C � is supercompact.” Assume in
addition that in V , no cardinal is supercompact up to an inaccessible cardinal, and
level-by-level equivalence between strong compactness and supercompactness holds.
Let h W � C 1 ! Ord satisfy the following four conditions.

1. h.ı/ D 0 if ı is not an inaccessible cardinal.
2. For ı an inaccessible cardinal, h.ı/ has the properties that h.ı/ > ıC, h.ı/

is the successor of a cardinal of cofinality greater than ı, and h.ı/ is below
the least inaccessible cardinal above ı.

3. Let �ı be the cardinal predecessor of h.ı/. If ı < � is �ı -supercompact, there
is jı W V ! M witnessing the �ı -supercompactness of ı which is generated
by a supercompact ultrafilter over Pı.�ı/ with jı.h/.ı/ D h.ı/.

4. If ı � � is  -supercompact and  � h.ı/, there is jı; W V ! M witnessing
the  -supercompactness of ı which is generated by a supercompact ultrafilter
over Pı./ with jı; .h/.ı/ D h.ı/.

There is then a partial ordering P 2 V such that V P � “ZFC C � is super-
compact C No cardinal is supercompact up to an inaccessible cardinal.” In V P,
level-by-level equivalence between strong compactness and supercompactness holds,
and for every ı � � which is an inaccessible cardinal, 2 D h.ı/ for all cardinals
 2 Œı; h.ı//. Further, in V P, ı is �ı -supercompact if ı is a measurable cardinal.

Theorem 4 Suppose that V � “ZFC C K ¤ ; is the class of supercompact
cardinals.” There is then a partial ordering P � V such that V P � “ZFC C K

is the class of supercompact cardinals.” In V P, 2ı D ıCC if ı is a nonmeasurable
inaccessible cardinal, and 2ı D ıC if ı is a measurable cardinal. Further, in V P,
for every pair of regular cardinals � < �, � is �-strongly compact if and only if � is
�-supercompact, except possibly if � is a measurable limit of cardinals ı which are
�-supercompact, or � is a nonmeasurable inaccessible cardinal.
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As a corollary to the proof of Theorem 4, we will also have the following theorem.

Theorem 5 Suppose that V � “ZFC C GCH C � is supercompact.” Assume, in
addition, that in V no cardinal is supercompact up to an inaccessible cardinal, and
level-by-level equivalence between strong compactness and supercompactness holds.
There is then a partial ordering P 2 V such that V P � “ZFC C � is supercompact.”
In V P, no cardinal is supercompact up to an inaccessible cardinal, and level-by-level
equivalence between strong compactness and supercompactness holds. Further, in
V P, for every nonmeasurable inaccessible cardinal ı, 2ı D ıC19, and for every
measurable cardinal ı, 2ı D ıC.

We take this opportunity to make some remarks concerning the above theorems.
First, we note that although the conditions on h in Theorem 3 appear to be rather
technical in nature, they are actually satisfied by many naturally occurring functions.
For instance, if ı is an inaccessible cardinal and h.ı/ is defined as ıC19, the successor
of the least V -strong limit cardinal greater than ı of cofinality ıCC, ıC!C5, etc., then
h satisfies the conditions of Theorem 3. In addition, we observe that in Theorems
2, 3, and 5, it immediately follows that � is the least supercompact cardinal. This is
because in each case, in V and V P, no cardinal is supercompact up to an inaccessible
cardinal. Finally, in Theorem 4, we explicitly note that our techniques require that
it must be the case that 2ı D ıCC if ı is an inaccessible cardinal which is not
also measurable. However, as our proof will show, there are many different possible
values for 2ı in Theorem 5 (e.g., ıCC, ıC5, the successor of the first @ fixed point
above ı, etc.) if ı is an inaccessible cardinal which is not also measurable.

We now give some preliminary information concerning notation and terminology.
For anything left unexplained, readers are urged to consult Apter and Shelah [5] or
[4]. When forcing, q � p means that q is stronger than p. For � a regular cardinal
and � an ordinal, Add.�; �/ is the standard partial ordering for adding �-many Cohen
subsets of �. For ˛ < ˇ ordinals, Œ˛; ˇ�, Œ˛; ˇ/, .˛; ˇ�, and .˛; ˇ/ are as in standard
interval notation. If G is V -generic over P, we will abuse notation slightly and use
both V ŒG� and V P to indicate the universe obtained by forcing with P. We will, from
time to time, confuse terms with the sets they denote and write x when we actually
mean Px or Lx.

The partial ordering P is �-directed closed if every directed set of conditions of
size less than � has an upper bound. P is �-strategically closed if in the two-person
game in which the players construct an increasing sequence hp˛ W ˛ � �i, where
player I plays odd stages and player II plays even stages (choosing the trivial con-
dition at stage 0), player II has a strategy which ensures the game can always be
continued. Note that if P is �-strategically closed and f W � ! V is a function in
V P, then f 2 V . P is <�-strategically closed if P is ı-strategically closed for all
cardinals ı < �. It is in addition the case that if P is �-directed closed, then P is
<�-strategically closed.

Suppose that V is a model of ZFC in which for all regular cardinals � < �, �

is �-strongly compact if and only if � is �-supercompact, except possibly if � is a
measurable limit of cardinals ı which are �-supercompact. Such a universe will be
said to witness level-by-level equivalence between strong compactness and super-
compactness. The exception is provided by a theorem of Menas [13], who showed
that if � is a measurable limit of cardinals ı which are �-strongly compact, then �

is �-strongly compact but need not be �-supercompact. Any model of ZFC with
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this property also witnesses the property of Kimchi and Magidor [9] that the classes
of strongly compact and supercompact cardinals coincide precisely, except at mea-
surable limit points. Models in which GCH and level-by-level equivalence between
strong compactness and supercompactness hold nontrivially were first constructed in
[5].

We assume familiarity with the large cardinal notions of measurability, strong
compactness, and supercompactness. Readers are urged to consult Kanamori [8] for
further details. We do note, however, that we will say � is supercompact up to the
inaccessible cardinal � if � is ı-supercompact for every ı < �.

A corollary of Hamkins’s work on gap forcing found in [7] and [6] will be em-
ployed in the proofs of Theorems 3–5. We therefore state as a separate theorem what
is relevant for this paper, along with some associated terminology, quoting from [7]
and [6] when appropriate. Suppose that P is a partial ordering which can be written
as Q � PR, where jQj < ı, Q is nontrivial, and Q “ PR is ı-strategically closed.” In
Hamkins’s terminology of [7] and [6], P admits a gap at ı. In Hamkins’s terminol-
ogy of [7] and [6], P is mild with respect to a cardinal � if and only if every set of
ordinals x in V P of size less than � has a “nice” name � in V of size less than �, that
is, there is a set y in V , jyj < �, such that any ordinal forced by a condition in P to
be in � is an element of y. Also, as in the terminology of [7], [6], and elsewhere, an
embedding j W V ! M is amenable to V when j � A 2 V for any A 2 V . The
specific corollary of Hamkins’s work from [7] and [6] we will be using is then the
following.

Theorem 6 (Hamkins) Suppose that V ŒG� is a generic extension obtained
by forcing that admits a gap at some regular ı < �. Suppose further that
j W V ŒG� ! MŒj.G/� is an embedding with critical point � for which MŒj.G/� �

V ŒG� and MŒj.G/�ı � MŒj.G/� in V ŒG�. Then M � V ; indeed, M D V \

MŒj.G/�. If the full embedding j is amenable to V ŒG�, then the restricted embed-
ding j � V W V ! M is amenable to V . If j is definable from parameters (such as
a measure or extender) in V ŒG�, then the restricted embedding j � V is definable
from the names of those parameters in V . Finally, if P is mild with respect to � and
� is �-strongly compact in V ŒG� for any � � �, then � is �-strongly compact in V .

Finally, at several junctures throughout the course of this paper, we will men-
tion the “standard lifting techniques” for lifting a �-supercompactness embedding
j W V ! M generated by a supercompactness measure over P�.�/ to a generic
extension given by a suitably defined Easton support iteration. Although there are
numerous references to this in the literature, we will use the argument found in Apter
[1, Theorem 4] as the basis for the sketch we are about to present. Very briefly, this
argument assumes the following:

1. V � GCH.
2. � is a regular cardinal.
3. P � PQ D hhP˛; PQ˛i W ˛ � �i is an Easton support iteration having length

� C 1.
4. For any inaccessible cardinal ı � �, Pı

“ PQı is <ı-strategically closed.”
5. G0 � G1 is V -generic over P � PQ.
6. P “j PQj � � and PQ is �-directed closed.”
7. j.P � PQ/ D P � PQ � PR � j. PQ/.
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Since V � GCH, MŒG0�ŒG1� � “jRj D j.�/,” and V � “jj.�C/j D jj.2�/j D

j¹f W f W P�.�/ ! �Cºj D j¹f W f W � ! �Cºj D j¹f W f W � ! �ºj”,
V ŒG0�ŒG1� � “There are �C D 2� D jj.�C/j D jj.2�/j-many dense open subsets
of R present in MŒG0�ŒG1�.” Because MŒG0�ŒG1� remains �-closed with respect
to V ŒG0�ŒG1� and R is �-strategically closed in both MŒG0�ŒG1� and V ŒG0�ŒG1�,
working in V ŒG0�ŒG1�, it is possible to build an MŒG0�ŒG1�-generic object G2 over
R such that j 00G0 � G0 � G1 � G2. Still working in V ŒG0�ŒG1�, one then lifts j to
j W V ŒG0� ! MŒG0�ŒG1�ŒG2�. Since MŒG0�ŒG1�ŒG2� remains �-closed with respect
to V ŒG0�ŒG1� and V ŒG0� � “jQj � �,” there is a master condition q 2 V ŒG0�ŒG1� for
¹j.p/ W p 2 G1º. Because V � “jj.�C/j D jj.2�/j D j¹f W f W P�.�/ ! �Cºj D

j¹f W f W � ! �Cºj D �C” and MŒG0�ŒG1�ŒG2� � “jj.Q/j � j.�/,” we may
then build in V ŒG0�ŒG1� an MŒG0�ŒG1�ŒG2�-generic object G3 for j.Q/ contain-
ing q. It is then the case that j 00.G0 � G1/ � G0 � G1 � G2 � G3, so we may
fully lift j in V ŒG0�ŒG1� to a �-supercompactness embedding j W V ŒG0�ŒG1� !

MŒG0�ŒG1�ŒG2�ŒG3�. This argument remains valid (and in fact becomes even
simpler) if no forcing is done at stage � in V , that is, if PQ is a term for trivial
forcing.

2 Forcing Notions from [5] and [4]

In order to present in a meaningful way the iteration to be used in the proof of Theo-
rem 3, we first recall the definitions and properties of the fundamental building blocks
of this partial ordering. In particular, we describe now a specific form of the partial
orderings P0

ı;�
, P1

ı;�
ŒS�, and P2

ı;�
ŒS� of [4, Section 4], where the fixed but arbitrary

regular cardinal  < ı is replaced by the specific regular cardinal !. So that readers
are not overly burdened, we abbreviate our definitions and descriptions somewhat.
Full details may be found by consulting [4], along with the relevant portions of [5].
We quote nearly verbatim from Apter [3, Section 2].

Fix ı < �, � > ıC regular cardinals in our ground model V , with ı inaccessible
and � the successor of a cardinal of cofinality greater than ı. We assume that GCH
holds for all cardinals � � ı. The first notion of forcing P0

ı;�
is just the standard

notion of forcing for adding a nonreflecting stationary set of ordinals S of cofinality
! to �. Next, work in V1 D V P0

ı;� , letting PS be a term always forced to denote S .
P2

ı;�
ŒS� is the standard notion of forcing for introducing a club set C which is disjoint

to S (and therefore makes S nonstationary).
We fix now in V1 a |.S/-sequence X D hx˛ W ˛ 2 Si, the existence of which is

given by [5, Lemma 1] and [4, Lemma 1]. We are ready to define in V1 the partial
ordering P1

ı;�
ŒS�. First, since each element of S has cofinality !, the proofs of [5,

Lemma 1] and [4, Lemma 1] show that each x 2 X can be assumed to be such that
order-type .x/ D !. Then, P1

ı;�
ŒS� is defined as the set of all 4-tuples hw; ˛; Nr; Zi

satisfying the following properties:

1. w 2 Œ��<ı .
2. ˛ < ı.
3. Nr D hri W i 2 wi is a sequence of functions from ˛ to ¹0; 1º, that is, a

sequence of subsets of ˛.
4. Z � ¹xˇ W ˇ 2 Sº is a set such that if z 2 Z, then for some y 2 Œw�! , y � z

and z � y is bounded in the ˇ such that z D xˇ .
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The ordering on P1
ı;�

ŒS� is given by hw1; ˛1; Nr1; Z1i � hw2; ˛2; Nr2; Z2i if and
only if the following hold:

1. w1 � w2.
2. ˛1 � ˛2.
3. If i 2 w1, then r1

i � r2
i .

4. Z1 � Z2.
5. If z 2 Z1 \ Œw1�

! and ˛1 � ˛ < ˛2, then j¹i 2 z W r2
i .˛/ D 0ºj D

j¹i 2 z W r2
i .˛/ D 1ºj D !.

The proof of [5, Lemma 4] shows that P0
ı;�

� .P1
ı;�

Œ PS� � P2
ı;�

Œ PS�/ is forcing
equivalent to Add.�; 1/ � PAdd.ı; �/. The proofs of [5, Lemmas 3, 5] and [4,
Lemma 6] show that P0

ı;�
� P1

ı;�
Œ PS� preserves cardinals and cofinalities, is �C-c.c.,

is <ı-strategically closed, and is such that V P0
ı;�

�P1
ı;�

Œ PS� � “2� D � for every
cardinal � 2 Œı; �/ and ı is nonmeasurable.” These proofs are valid regardless of the
cofinality of the ordinals in S and, in particular, hold when the fixed but arbitrary
regular cardinal  < ı found in the definitions given in [4, Section 4] is replaced by
the specific regular cardinal !.

3 The Proofs of Theorems 3 and 4

We turn now to the proof of Theorem 3.

Proof Suppose that V , h, and � are as in the hypotheses for Theorem 3. In par-
ticular, recall that by condition (3) on h, �ı is the cardinal predecessor of h.ı/, so
h.ı/ D �C

ı
. The partial ordering P used in the proof of Theorem 3 is the Eas-

ton support iteration having length � C 1 which begins by forcing with Add.!; 1/

and then does trivial forcing, except at stages ı � � which are inaccessible cardi-
nals in V . If such a ı is not �ı -supercompact, then the forcing done at stage ı is
P0

ı;h.ı/
� P1

ı;h.ı/
Œ PSh.ı/�, where PSh.ı/ is a term for the nonreflecting stationary set of

ordinals of cofinality ! introduced by P0
ı;h.ı/

. If such a ı is �ı -supercompact, then
the forcing done at stage ı is P0

ı;h.ı/
� .P1

ı;h.ı/
Œ PSh.ı/� � P2

ı;h.ı/
Œ PSh.ı/�/, where PSh.ı/

is as in the previous sentence.

Lemma 3.1 V P � “� is supercompact.”

Proof We modify the proof of Apter [3, Lemma 3.1]. Suppose that � > h.�/

is any regular cardinal and j W V ! M is any elementary embedding witnessing
the �-supercompactness of � which is generated by a supercompact ultrafilter over
P�.�/. Since V � “No cardinal is supercompact up to an inaccessible cardinal,”
M � “No cardinal in the half-open interval .�; �� is inaccessible.” From this, it
immediately follows that j.P/ D P � PQ, where the first ordinal at which PQ is forced
to act nontrivially is well above �. Since V � GCH, the standard lifting arguments
mentioned in Section 1 now apply and show that V P � “� is �-supercompact.” Since
� was arbitrary, this completes the proof of Lemma 3.1.

Lemma 3.2 V P � “No cardinal is supercompact up to an inaccessible cardinal.”

Proof Suppose that V P � “There exists a cardinal which is supercompact up to an
inaccessible cardinal.” Write P D P0 � PQ, where jP0j D !, P0 is nontrivial, and
P0

“ PQ is @1-strategically closed.” By Theorem 6, this factorization of P and the
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fact that forcing cannot create an inaccessible cardinal indicate that any ı which is
supercompact up to an inaccessible cardinal in V P had to have been supercompact
up to an inaccessible cardinal in V . Since V � “No cardinal is supercompact up to
an inaccessible cardinal,” this is impossible. This completes the proof of Lemma 3.2.

Lemma 3.3 V P � “Level-by-level equivalence between strong compactness and
supercompactness holds.”

Proof We modify the proof of [3, Lemma 3.3]. Suppose that V P � “ı < � are
regular cardinals such that ı is �-strongly compact.” We begin by noting that V �
“ı is �-supercompact.” To see this, by the definition of P, it is easily established
that any subset of ı in V P of size below ı has a name of size below ı in V . There-
fore, by the factorization of P given in the proof of Lemma 3.2 and Theorem 6,
V � “ı is �-strongly compact.” Since V � “No cardinal is supercompact up to an
inaccessible cardinal,” V � “ı is not a measurable limit of cardinals  which are
�-supercompact.” Thus, by level-by-level equivalence between strong compactness
and supercompactness, V � “ı is �-supercompact.” Further, V � “� is below the
least inaccessible cardinal � above ı.”

Continuing with the proof of Lemma 3.3, because V � “No cardinal is supercom-
pact up to an inaccessible cardinal and � is supercompact,” V � “No cardinal � > �

is inaccessible.” Consequently, V P � “No cardinal � > � is inaccessible” as well.
From this, it immediately follows that ı � �. By Lemma 3.1, Lemma 3.3 is true if
ı D �. It therefore suffices to prove Lemma 3.3 when ı < �, which we assume for
the duration of the proof of this lemma.

Let A D ¹ � ı W  is an inaccessible cardinalº. Write P D PA � PQ, where
PA is the portion of P acting on ordinals at most ı, and PQ is a term for the rest of
P, that is, the portion of P acting on ordinals above ı. Since � < � and PA

“ PQ
is �-strategically closed,” to complete the proof of Lemma 3.3, it hence suffices to
show that V PA � “ı is �-supercompact.”

Consider now the following two cases.
Case 1: sup.A/ D � < ı. If this is true, then by the definition of P, it must

be the case that jPAj < ı. Thus, by the Lévy–Solovay results [11], V PA � “ı is
�-supercompact” as well.

Case 2: sup.A/ D ı. It must be the case that V � “ı is �ı -supercompact,”
because otherwise, by the definition of P, V PA � “ı is not measurable.” How-
ever, by the arguments found in [4, next to last paragraph on p. 2033], V PA �
“ı is �ı -supercompact.” Hence, we may assume without loss of generality that
� � h.ı/ D �C

ı
. Consequently, let j W V ! M be an elementary embed-

ding witnessing the �-supercompactness of ı satisfying condition (4) of Theo-
rem 3 (so j is generated by a supercompact ultrafilter over Pı.�/ and is such that
j.h/.ı/ D h.ı/). Since � � h.ı/, PA is forcing equivalent to Pı � PQ�, where
Pı

“j PQ�j D h.ı/ � � and PQ� is ı-directed closed.” (Q� is forcing equivalent
to Add.h.ı/; 1/ � PAdd.ı; h.ı//.) In addition, the same reasoning as found in the
proof of Lemma 3.1 shows that M � “No cardinal in the half-open interval .ı; �� is
inaccessible.” Thus, j.Pı � PQ�/ is forcing equivalent to Pı � PQ� � PR� j. PQ�/, where
the first ordinal at which PR is forced to act nontrivially is well above �. As in the
proof of Lemma 3.1, the standard lifting arguments mentioned in Section 1 are then
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once again applicable and show that V PA � “ı is �-supercompact.” This completes
the proof of Case 2 and Lemma 3.3.

By the remarks in the last paragraph of Section 2, the fact that by condition (2)
of Theorem 3, for any inaccessible cardinal ı, h.ı/ is below the least inaccessible
cardinal above ı, and the definition of P, V P � “For every ı � � which is an
inaccessible cardinal, 2 D h.ı/ for all cardinals  2 Œı; h.ı//.” By the proof of
Lemma 3.3, V P � “ı is �ı -supercompact if ı is a measurable cardinal.” These
observations, together with Lemmas 3.1–3.3, complete the proof of Theorem 3.

Having completed the proof of Theorem 3, we turn now to the proof of Theorem 4.

Proof Let V � “ZFC C K is the class of supercompact cardinals.” Without loss
of generality, by first doing a preliminary forcing as in [5] if necessary, we may also
assume that GCH and level-by-level equivalence between strong compactness and
supercompactness hold in V . This allows us to define in V our partial ordering P as
the Easton support iteration which begins by forcing with Add.!; 1/ and then does
nontrivial forcing only at stages ı which are inaccessible cardinals in V . If V � “ı

is inaccessible but nonmeasurable,” then PıC1 D Pı � PQı , where PQı is a term for
Add.ı; ıCC/. If V � “ı is measurable,” then PıC1 D Pı � PQı , where PQı is a term
for Add.ı; ıC/. Exactly the same arguments as in the proof of [2, Theorem 3] (i.e.,
standard arguments in tandem with Theorem 6) show that cardinals and cofinalities
are preserved when forcing with P and V P � “ZFC C K is the class of supercompact
cardinals.” By the definition of P, it is further the case that the inaccessible cardinals
of V and V P are precisely the same and V P � “2ı D ıCC if ı is inaccessible
but nonmeasurable in V C 2ı D ıC if ı is measurable in V .” Thus, the proof of
Theorem 4 will be complete once we have established the following three lemmas.

Lemma 3.4 If V � “� < � are such that � is �-supercompact and � is a successor
cardinal,” then V P � “� is �-supercompact.”

Proof We follow the proof of [2, Lemma 3.1], quoting almost verbatim when ap-
propriate. If � and � are as in the hypotheses of Lemma 3.4, then we consider the
following two cases.

Case 1: Either � is not the successor of an inaccessible cardinal or � is the succes-
sor of a measurable cardinal. Write P D P� � PP�, where P� acts nontrivially on ordi-
nals below �, and P� consists of the rest of P. By the choice of �, jP�j � �. Suppose
that j W V ! M is an elementary embedding witnessing the �-supercompactness of
� which is generated by a supercompact ultrafilter over P�.�/ and that � D ıC. Note
that since 2ı D ıC D � and M � � M , V � “� is the successor of a measurable
cardinal” if and only if M � “� is the successor of a measurable cardinal.” Hence,
by the definition of P�, no matter which of the two clauses in Case 1 holds, P� is
an initial segment of j.P�/. Therefore, the standard lifting arguments mentioned in
Section 1 once again show that V P� � “� is �-supercompact.” Since P�

“ PP� is
.2Œ��<�

/
C

-directed closed,” V P��PP�
D V P � “� is �-supercompact.”

Case 2: � is the successor of a nonmeasurable inaccessible cardinal. Once again,
write P D P� � PP�, where P� acts nontrivially on ordinals below �, and P� is the rest
of P. In this instance, it is not the case that jP�j � �, since for the ı such that � D ıC,
jP�j D ıCC D �C > �. However, arguments originally due to Magidor [12], which
are also given in both [5, pp. 119–20] and [2, Lemma 3.1, Case 2] and are found other
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places in the literature as well, will yield that V P� � “� is � D ıC-supercompact.”
For the convenience of readers, we present these arguments below.

Write P� D Q0 � PQ1 � PAdd.ı; ıCC/, where Q0 acts nontrivially on ordinals
below � and PQ1 is forced to act nontrivially on all remaining ordinals in the in-
terval Œ�; ı/. Let G be V -generic over P�, with G0 � G1 � G2 the corresponding
factorization of G. Fix j W V ! M an elementary embedding witnessing the
� D ıC D 2ı -supercompactness of � which is generated by a supercompact ultrafil-
ter U over P�.�/. Since M � “� is the successor of a nonmeasurable inaccessible
cardinal,” we then have j.P�/ D Q0 � PQ1 � PAdd.ı; ıCC/ � PR0 � PR1, where PR1

is a term for Add.j.ı/; j.ıCC// as computed in MQ0� PQ1� PAdd.ı;ıCC/� PR0 . Therefore,
as in [2, Lemma 3.1, Case 2], since MŒG0�ŒG1�ŒG2� remains �-closed with respect
to V ŒG0�ŒG1�ŒG2� and V � GCH, it is possible working in V ŒG0�ŒG1�ŒG2� to con-
struct an MŒG0�ŒG1�ŒG2�-generic object G3 over R0 and lift j to j W V ŒG0�ŒG1� !

MŒG0�ŒG1�ŒG2�ŒG3�. It is then the case that MŒG0�ŒG1�ŒG2�ŒG3� remains �-closed
with respect to V ŒG0�ŒG1�ŒG2�.

For ˛ 2 .ı; ıCC/ and p 2 Add.ı; ıCC/, let p � ˛ D ¹hh�; �i; �i 2 p W � < ˛º,
and let G2 � ˛ D ¹p � ˛ W p 2 G2º. Clearly, V ŒG0�ŒG1�ŒG2� � “jG2 � ˛j � ıC for
all ˛ 2 .ı; ıCC/.” Thus, since Add.j.ı/; j.ıCC//

MŒG0�ŒG1�ŒG2�ŒG3� is j.ı/-directed
closed and j.ı/ > ıCC, q˛ D

S
¹j.p/ W p 2 G2 � ˛º is well defined and is an

element of Add.j.ı/; j.ıCC//
MŒG0�ŒG1�ŒG2�ŒG3�. Further, if h�; �i 2 dom.q˛/ �

dom.
S

ˇ<˛ qˇ / (
S

ˇ<˛ qˇ is well defined by closure), then � 2 Œ
S

ˇ<˛ j.ˇ/; j.˛//.
To see this, assume to the contrary that � <

S
ˇ<˛ j.ˇ/. Let ˇ be minimal

such that � < j.ˇ/. It must thus be the case that for some p 2 G2 � ˛,
h�; �i 2 dom.j.p//. Since by elementarity and the definitions of G2 � ˇ and
G2 � ˛, for p � ˇ D q 2 G2 � ˇ, j.q/ D j.p/ � j.ˇ/ D j.p � ˇ/, it must be the
case that h�; �i 2 dom.j.q//. This means h�; �i 2 dom.qˇ /, a contradiction.

Since MŒG0�ŒG1�ŒG2�ŒG3� � “GCH holds for all cardinals greater than or
equal to j.ı/,” MŒG0�ŒG1�ŒG2�ŒG3� � “Add.j.ı/; j.ıCC// is j.ıC/-c.c. and has
j.ıCC/-many maximal antichains.” This means that if A 2 MŒG0�ŒG1�ŒG2�ŒG3�

is a maximal antichain of Add.j.ı/; j.ıCC//, A � Add.j.ı/; ˇ/ for some
ˇ 2 .j.ı/; j.ıCC//. Thus, since GCH in V and the fact that j is generated by
a supercompact ultrafilter over P�.ıC/ imply that V � “jj.ıCC/j D ıCC,” we can
let hA˛ W ˛ 2 .ı; ıCC/i 2 V ŒG0�ŒG1�ŒG2� be an enumeration of all of the maximal
antichains of Add.j.ı/; j.ıCC// present in MŒG0�ŒG1�ŒG2�ŒG3�.

Working in V ŒG0�ŒG1�ŒG2�, we define now an increasing sequence hr˛ W ˛ 2

.ı; ıCC/i of elements of Add.j.ı/; j.ıCC// such that 8˛ 2 .ı; ıCC/Œr˛ � q˛

and r˛ 2 Add.j.ı/; j.˛//� and such that 8A 2 hA˛ W ˛ 2 .ı; ıCC/i9ˇ 2

.ı; ıCC/9r 2 AŒrˇ � r�. Assuming we have such a sequence, G4 D ¹p 2 Add.j.ı/;

j.ıCC// W 9r 2 hr˛ W ˛ 2 .ı; ıCC/iŒr � p�º is an MŒG0�ŒG1�ŒG2�ŒG3�-generic
object over Add.j.ı/; j.ıCC//. To define hr˛ W ˛ 2 .ı; ıCC/i, if ˛ is a limit, we
let r˛ D

S
ˇ2.ı;˛/ rˇ . By the fact that hrˇ W ˇ 2 .ı; ˛/i is (strictly) increasing

and MŒG0�ŒG1�ŒG2�ŒG3� is ıC-closed with respect to V ŒG0�ŒG1�ŒG2�, this definition
is valid. Assuming now that r˛ has been defined and we wish to define r˛C1, let
hBˇ W ˇ < � � ıCi be the subsequence of hAˇ W ˇ � ˛ C 1i containing each
antichain A such that A � Add.j.ı/; j.˛ C 1//. Since q˛; r˛ 2 Add.j.ı/; j.˛//,
q˛C1 2 Add.j.ı/; j.˛ C1//, and j.˛/ < j.˛ C1/, the condition r 0

˛C1 D r˛ [q˛C1

is well defined, since by our earlier observations, any new elements of dom.q˛C1/
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will not be present in either dom.q˛/ or dom.r˛/. We can thus, using the fact that
MŒG0�ŒG1�ŒG2�ŒG3� is ıC-closed with respect to V ŒG0�ŒG1�ŒG2�, define by induc-
tion an increasing sequence hsˇ W ˇ < �i such that s0 � r 0

˛C1, s� D
S

ˇ<� sˇ if � is
a limit ordinal, and sˇC1 � sˇ is such that sˇC1 extends some element of Bˇ . The
just-mentioned closure fact implies r˛C1 D

S
ˇ<� sˇ is a well-defined condition.

In order to show that G4 is MŒG0�ŒG1�ŒG2�ŒG3�-generic over Add.j.ı/; j.ıCC//,
we must show that 8A 2 hA˛ W ˛ 2 .ı; ıCC/i9ˇ 2 .ı; ıCC/9r 2 AŒrˇ � r�. To
do this, we first note that hj.˛/ W ˛ < ıCCi is unbounded in j.ıCC/. To see this,
if ˇ < j.ıCC/ is an ordinal, then for some f W P�.ıC/ ! M representing ˇ, we
can assume that for p 2 P�.ıC/, f .p/ < ıCC. Thus, by the regularity of ıCC in V ,
ˇ0 D

S
p2P�.ıC/ f .p/ < ıCC, and j.ˇ0/ > ˇ. This means by our earlier remarks

that if A 2 hA˛ W ˛ < ıCCi, A D A�, then we can let ˇ 2 .ı; ıCC/ be such that
A � Add.j.ı/; j.ˇ//. By construction, for � > max.ˇ; �/, there is some r 2 A

such that r� � r . And, as any p 2 Add.ı; ıCC/ is such that for some ˛ 2 .ı; ıCC/,
p D p � ˛, G4 is such that if p 2 G2, j.p/ 2 G4. Thus, working in V ŒG0�ŒG1�ŒG2�,
we have shown that j lifts to j W V ŒG0�ŒG1�ŒG2� ! MŒG0�ŒG1�ŒG2�ŒG3�ŒG4�, that
is, V ŒG0�ŒG1�ŒG2� � “� is � D ıC-supercompact.” Since as in Case 1, P�

“ PP� is
.2Œ��<�

/
C

-directed closed,” V P��PP�
D V P � “� is �-supercompact.” This completes

the proof of Case 2 and Lemma 3.4.

Lemma 3.5 V P � “2ı D ıC if ı is a measurable cardinal.”

Proof Suppose that V P � “ı is a measurable cardinal.” As in the proof of
Lemma 3.2, write P D P0 � PQ, where jP0j D !, P0 is nontrivial, and P0

“ PQ is
@1-strategically closed.” Again by Theorem 6, this factorization of P indicates that ı

is measurable in V . As we have already observed, the measurability of ı in V implies
that V P � “2ı D ıC.” Thus, the proof of Lemma 3.5 will be complete once we have
shown that V P � “ı is a measurable cardinal.” However, since P D PıC1 � PPıC1,
where PıC1 acts nontrivially on ordinals less than or equal to ı and PıC1

“ PPıC1

is .2ı/C-directed closed,” it will suffice to show that V PıC1 � “ı is a measurable
cardinal.”

To do this, we combine the standard lifting arguments mentioned in Section 1
with Magidor’s argument found in the proof of Case 2 of Lemma 3.4 above
and an idea found in Levinski [10]. Suppose that G � H is V -generic over
PıC1 D Pı � PAdd.ı; ıC/. Let j W V ! M be an elementary embedding witnessing
ı’s measurability generated by a normal measure over ı such that M � “ı is nonmea-
surable.” Write j.PıC1/ D j.Pı � PAdd.ı; ıC// D Pı � PQı � PR � PAdd.j.ı/; j.ıC//,
where PQı is a term for the stage ı forcing done in M Pı and PR is a term for the
forcing done in M Pı� PQı D M PıC1 (strictly) between stages ı and j.ı/. Because
M � “ı is nonmeasurable,” PQı is a term for .Add.ı; ıCC//MPı .

We use now Levinski’s ideas of [10] to show that it is possible to rearrange H

to form an MŒG�-generic object H 0 over Qı in V ŒG�ŒH�. Since V � GCH and j

is generated by an ultrafilter over ı, V � “j.ıCC/M j D ıC.” In addition, since P
is an Easton support iteration, Pı is ı-c.c., which means that cardinals at and above
ı are preserved from V to V ŒG� and M to MŒG�. Hence, .ıCC/MŒG� D .ıCC/M ,
.ıC/V ŒG� D .ıC/V , and V ŒG� � “j.ıCC/MŒG�j D ıC.” Let .ıCC/MŒG� D �.
Working in V ŒG�, we may therefore let f W ıC ! � be a bijection. For any
p 2 Add.ı; ıC/, g.p/ D ¹hh˛; f .ˇ/i; i W hh˛; ˇi; i 2 pº 2 .Add.ı; �//MŒG�.
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As can be easily checked (see [10]), H 0 D ¹g.p/ W p 2 H º is an MŒG�-generic
object over .Add.ı; �//MŒG�.

We continue with the lifting argument. Since M is ı-closed with respect to V ,
Pı � PAdd.ı; ıC/ is ıC-c.c: in V , and Pı � PQı is ıC-c.c: in M , MŒG�ŒH 0� remains
ı-closed with respect to V ŒG�ŒH�. Therefore, since j is generated by an ultrafil-
ter over ı and V � GCH, the standard arguments mentioned in Section 1 show
that it is possible to construct in V ŒG�ŒH� an MŒG�ŒH 0�-generic object H 00 over R
and lift j to j W V ŒG� ! MŒG�ŒH 0�ŒH 00�. Because the first ordinal at which R
does nontrivial forcing is above .ıCC/MŒG�, MŒG�ŒH 0�ŒH 00� remains ı-closed with
respect to V ŒG�ŒH�.

It remains to lift j in V ŒG�ŒH� through the stage ı forcing Add.ı; ıC/. How-
ever, Magidor’s argument as given in the proof of Case 2 of Lemma 3.4 above
for the construction of the generic object G4, replacing the use of a normal mea-
sure over P�.�/ with a normal measure over ı, allows us to work in V ŒG�ŒH� to
construct an MŒG�ŒH 0�ŒH 00�-generic object H 000 for Add.j.ı/; j.ıC// such that if
p 2 H , j.p/ 2 H 000. Thus, working in V ŒG�ŒH�, we have shown that j lifts to
j W V ŒG�ŒH� ! MŒG�ŒH 0�ŒH 00�ŒH 000�, that is, V ŒG�ŒH� � “ı is a measurable cardi-
nal.” This completes the proof of Lemma 3.5.

Lemma 3.6 V P � “For every pair of regular cardinals � < �, � is �-strongly
compact if and only if � is �-supercompact, except possibly if � is a measurable
limit of cardinals ı which are �-supercompact, or � is a nonmeasurable inaccessible
cardinal.”

Proof We significantly modify the proof of [2, Lemma 3.2]. Suppose that V P �
“� < � are regular, � is either a successor or measurable cardinal, � is �-strongly
compact, and � is not a measurable limit of cardinals ı which are �-supercompact.”
By its definition, forcing with P preserves all cardinals and cofinalities. In addi-
tion, by the proof of Lemma 3.5, V � “� is a measurable cardinal” if and only if
V P � “� is a measurable cardinal.” Consequently, V � “� is either a successor or a
measurable cardinal.”

Consider now the following two cases.
Case 1: � is a successor cardinal in both V P and V . By the definition of P,

any subset of � in V P of size below � has a name of size below � in V . Thus, by
the factorization of P given in the second sentence of the proof of Lemma 3.5 and
Theorem 6, V � “� is �-strongly compact.” By Lemma 3.4, any cardinal ı such that
V � “ı is �-supercompact” remains �-supercompact in V P. This means that V �
“� is not a measurable limit of cardinals ı which are �-supercompact.” Hence, by
level-by-level equivalence between strong compactness and supercompactness in V ,
V � “� is �-supercompact,” so another application of Lemma 3.4 implies that V P �
“� is �-supercompact.”

Case 2: � is a measurable cardinal in both V P and V . As in Case 1, V � “� is
�-strongly compact.” It is in addition true that V � “� is not a measurable limit of
cardinals ı which are �-supercompact.” To see this, assume not, and let ı < � be
such that V � “ı is �-supercompact.” It is then true that V � “ı is  -supercompact
for every successor cardinal  < �,” so by Lemma 3.4 and the fact that forcing with P
preserves cardinals and cofinalities, V P � “ı is  -supercompact for every successor
cardinal  < �.” By an application of the alternate proof sketched in [8, Exer-
cise 22.9], since V P � “� is a measurable cardinal,” V P � “ı is �-supercompact.”
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Thus, if V � “� is a measurable limit of cardinals ı which are �-supercompact,”
then V P � “� is a measurable limit of cardinals ı which are �-supercompact,” a
contradiction. Therefore, by level-by-level equivalence between strong compactness
and supercompactness in V , V � “� is �-supercompact.” The argument just given
then shows that V P � “� is �-supercompact” as well. This completes the proof of
Case 2 and Lemma 3.6.

Lemmas 3.4–3.6 complete the proof of Theorem 4.

We note that the definition of the partial ordering P used in the proof of Theorem 4
shows that V P � “2ı D ıC if ı is a successor or singular cardinal.” In addition,
any cardinal � in V P which is a measurable limit of cardinals ı which are �-strongly
compact where � > � is regular and is either a successor or measurable cardinal must
be in V P a measurable limit of cardinals ı which are �-supercompact. This is since
Theorem 6, which tells us that there are no new instances of measurability, strong
compactness, or supercompactness in V P, implies that � must be in V a measurable
limit of cardinals ı which are �-strongly compact. � can then be written in V as
a measurable limit of cardinals ı which are �-strongly compact where each such ı

is not itself a measurable limit of cardinals  which are �-strongly compact. By
level-by-level equivalence between strong compactness and supercompactness in V ,
each such cardinal ı must be �-supercompact in V . Lemmas 3.4–3.6 then imply that
each of these cardinals remains �-supercompact in V P.

We briefly indicate how Theorem 5 follows as a corollary of (the proof of ) The-
orem 4. Suppose that V � “ZFC C GCH C � is supercompact C No cardinal is
supercompact up to an inaccessible cardinal C Level-by-level equivalence between
strong compactness and supercompactness holds.” Let P be defined as in the proof of
Theorem 4, except that each use of Add.ı; ıCC/ is replaced by a use of Add.ı; ıC19/.
An analogous argument to the one found in the proof of Lemma 3.2 shows that V P �
“No cardinal is supercompact up to an inaccessible cardinal.” In addition, Levin-
ski’s ideas in [10] used in the proof of Lemma 3.5 remain valid if Add.ı; ıCC/ is
replaced by Add.ı; ıC19/. These key observations then allow us to infer as in the
proof of Theorem 4 that V P � “� is supercompact C Level-by-level equivalence
between strong compactness and supercompactness holds C For every inaccessible
cardinal which is not also measurable, 2ı D ıC19 C For every measurable cardinal
ı, 2ı D ıC.” This completes our discussion of the proof of Theorem 5.

Suppose that � is a measurable cardinal and j W V ! M is an elementary em-
bedding having critical point � which is generated by a normal measure over �. We
remark that our application of the ideas of [10] only requires the existence of a func-
tion f W � ! � such that V � “cof.f .// >  if  < � is inaccessible and
jj.f /.�/j D �C.” This allows for great flexibility in the proof of Theorem 5 when
determining the possible values for 2ı if ı < � is a nonmeasurable inaccessible
cardinal.

It is reasonable to hope that the partial orderings described in Section 2 which are
used in the proof of Theorem 3 can also be employed to prove versions of Theorems
1 and 4 containing different violations of GCH for the relevant inaccessible cardinals.
However, because the definition of P0

ı;�
� P1

ı;�
Œ PS� implies that in V P0

ı;�
�P1

ı;�
Œ PS�, ı is

nonmeasurable, it will not be possible to force with these partial orderings and end
up with a universe containing more than one supercompact cardinal. We therefore
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conclude by asking whether it is possible to establish alternate forms of Theorems 1
and 4 in which for the relevant inaccessible cardinals �, 2� > �CC.
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