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Real Closed Exponential Subfields of
Pseudo-Exponential Fields

Ahuva C. Shkop

Abstract In this paper, we prove that a pseudo-exponential field has continuum
many nonisomorphic countable real closed exponential subfields, each with an
order-preserving exponential map which is surjective onto the nonnegative ele-
ments. Indeed, this is true of any algebraically closed exponential field satisfying
Schanuel’s conjecture.

1 Introduction

For many decades, the first-order theory of complex exponentiation, that is, the the-
ory of Cexp WD hC;C; �; 0; 1; ezi has been very difficult to study, and many questions
stemming from model theory, geometry, and number theory remain open. One of
the most famous of these problems is the following conjecture from the 1960s due to
Schanuel.

Conjecture 1 (Schanuel’s conjecture) If ¹z1; : : : ; znº � C, then tdQ.z1; : : : ; zn;
ez1 ; : : : ; ezn/, where tdQ is the transcendence degree over Q, is at least the Q-linear
dimension of ¹z1; : : : ; znº.

In 2001, Zilber combined this and many other open questions into one intriguing
conjecture. In [7], Zilber constructs a class of exponential fields known as pseudo-
exponential fields. A pseudo-exponential field, K, satisfies the following six proper-
ties.

1. K is an algebraically closed field of characteristic zero.
2. exp is a surjective homomorphism from the additive group of K onto the

multiplicative group of K.
3. There is some transcendental � so that ker.expK/ D �Z.
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4. Schanuel property: If a1; : : : ; an 2 K are Q-linearly independent, then
tdQ.a1; : : : ; an; exp.a1/; : : : ; exp.an// � n. (Note that this is equivalent to
Schanuel’s conjecture for K.)

5. Exponential closure: We need the following definitions to state this property,
but we will not refer to them for the remainder of the paper. Let ˛ 2 N
and G˛.K/ WD K˛ � .K�/˛. For ŒC � D .ci;j / an r � ˛ matrix of inte-
gers, let ŒC � W G˛.K/ ! Gr .K/ be the function which acts additively on
the first ˛ coordinates and multiplicatively on the last ˛ coordinates, that is,
ŒC �. Nz; Ny/ D .u1; : : : ; ur ; v1; : : : ; vr / where

ui D
X̨
jD1

ci;j zj and vi D
Y̨
jD1

y
ci;j

j :

An irreducible Zariski-closed V � K˛�.K�/˛ is rotund if dim.ŒC �.V // � r
for any r �˛ matrix of integers C of rank r where 1 � r � ˛. We say that V
is free if it is not contained in a closed set given by equations of the form°

. Nu; Nv/ W
Y̨
iD1

v
mi

i D b
±

or °
. Nu; Nv/ W

X̨
iD1

miui D b
±

for any m1; : : : ; m˛ 2 Z and b 2 K.
Given these definitions, the exponential closure property can be stated as

follows.
If V � K˛ � .K�/˛ is irreducible, rotund, and free, then for any finite

A 2 K there is .a1; : : : ; a˛; exp.a1/; : : : ; exp.a˛// 2 V a generic point in V
over A.

6. Countable closure: We will state this property in terms of the Schanuel pre-
dimension ı. For finite X � K, let

ı.X/ WD tdQ
�
X; exp.X/

�
�Q-l.d..X/

whereQ-l.d..X/ is theQ-linear dimension of the span of X ; ı is a predimen-
sion. Notice that the Schanuel property implies that ı.X/ � 0. Therefore, the
following is always defined:

d.X/ D min
®
ı.Y / W Y is finite and X � Y � K

¯
:

We can now define the Schanuel closure of any set S � K:

scl.S/ D
®
y 2 K W 9X �fin S; ı.Xy/ D ı.X/

¯
:

Then countable closure states that the Schanuel closure of a finite set is count-
able.

Note: Schanuel closure gives a pregeometry on K. (For the definition of pregeom-
etry, see Marker [4].)

These axioms classify pseudo-exponential fields. In [7], Zilber proved the follow-
ing.
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Theorem 2 (Zilber) For � uncountable, there is a unique pseudo-exponential field
of size �, and it has 2k isomorphisms. Furthermore, pseudo-exponential fields are
quasi-minimal; that is, every definable subset of a pseudo-exponential field is count-
able or co-countable.

This leads to the following question: Is Cexp the unique pseudo-exponential field of
size continuum? Zilber conjectured that Cexp is indeed the pseudo-exponential field
of size 2@0 . It is clear that Cexp satisfies properties 1, 2, and 3. In [7] Zilber proved
that Cexp satisfies countable closure. This paper explores a fundamental consequence
of Zilber’s conjecture.

From this point on, let K be a fixed pseudo-exponential field of size �. If � D 2@0

and K is isomorphic to Cexp, then K contains an exponential subfield isomorphic to
Rexp. Motivated by this observation, we will prove the following theorem.

Theorem 3 Let L be any algebraically closed exponential field satisfying
Schanuel’s conjecture (such as the pseudo-exponential field K). Then there are
continuum many nonisomorphic (as fields) countable real closed exponential sub-
fields of L, each with an order-preserving exponential map which is surjective onto
the nonnegative elements.

We prove this theorem in two steps, first constructing real closed exponential fields
where the exponential map is not surjective and then showing how to construct them
so that every positive element is in the image of the exponential map. It is easier to
see how this construction works in two steps, rather than one, and the results of the
first construction are more examples of real closed exponential subfields of K .

We will define real closed E-field and algebraically closed E-field in the next
section.

We will need the following definitions.

Definition 4 A field F is formally real if either one of the following equivalent
conditions holds:
� �1 is not a sum of squares in F ;
� F admits a field ordering.

Similarly, we will say that a ring R is formally real if it is an integral domain and
its field of fractions is formally real or, equivalently, it admits a ring ordering.

We say that a field F is real closed if it is formally real and no proper algebraic
extension is formally real.

We will use a number of classic facts about formally real fields (for a full exposition
see Lam [1], Lang [2]).

Throughout this paper, we make use of the following notation and conventions.
� We use the tuple notation to denote a finite subset. That is, Nt � T is some
finite set t1; : : : ; tn in T .
� For any set A, we write hAi for the Q-additively linear span of A.
� For any set A, we write ŒA� to mean the subring of K generated by A.
� For any integral domain R, Ralg is the field-theoretic algebraic closure of R.
Throughout this paper, the term algebraic refers to the field-theoretic notion.
� For a set A, Q-l.d..A/ is the Q-linear dimension of hAi.
� For any set A, we write exp.A/ for the set ¹exp.a/ W a 2 Aº.
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� Qrc is the real closure of the rational numbers or, equivalently, the real alge-
braic numbers.
� For R an ordered ring, we write R>0 for ¹r 2 R W r > 0º.
� We say that b1; : : : ; bn are Q-linearly dependent over X if 9q1; : : : ; qn 2 Q,
not all zero, such that q1b1C� � �Cqnbn 2 hXi. We say that b1; : : : ; bn areQ-
multiplicatively dependent over X if 9q1; : : : ; qn 2 Q, not all zero, such that
b
q1

1 � � � b
qn
n is in the multiplicative span of X . Unless we specify that we are

referring to a multiplicative linear space, the word linear will mean additively
linear.
� For a finite set Ns, we write td.Ns/ to mean td.Q.Ns/=Q/.

We also make use of the following elementary facts about exponential functions.
� If b 2 hXi, then exp.b/ is algebraic over exp.X/.
� Suppose that b1; : : : ; bn are Q-linearly dependent over X . Then exp.b1; : : : ;
bn/ is Q-multiplicatively dependent over exp.X/.

2 Free Extensions and Formally Real Fields

We begin with the following definitions.

Definition 5 In this paper, a (total) E-ring is aQ-algebraR with no zero divisors,
together with a homomorphism exp W hR;Ci ! hR�; �i.

A partial E-ring is a Q-algebra R with no zero divisors, together with a Q-linear
subspace A.R/ of R and a homomorphism expR W hA.R/;Ci ! hR�; �i. The
subspace A.R/ is then the domain of expR and an E-ring satisfies A.R/ D R.

An E-field is an E-ring which is a field.
An algebraically closed E-field is an E-field whose underlying field is alge-

braically closed. A formally real E-ring is an E-ring whose underlying ring is
formally real. A real closed E-field is an E-field whose underlying field is real
closed.

Definition 6 We say that S is a partial E-ring extension of R if R and S are
partial E-rings, R � S , A.R/ � A.S/, and for all r 2 A.R/, expS .r/ D expR.r/.

When there is no ambiguity, we drop the subscript.

The following example is an important subtlety with regard to the definition of a
partial E-ring extension.

Example 7 Let S be a partial E-ring. If one considers R D S and A.R/ ¨ A.S/

a Q-subspace of A.S/, then S is a (proper) partial E-ring extension of R.

Definition 8 Let R be a partial E-ring. We say that R0 � R is a free partial
E-ring extension of R if
� R0 is a partial E-ring extension of R;
� the domain of expR0 contains R;
� if ¹a1; : : : ; anº � R isQ-linearly independent overA.R/, then ¹exp.a1/; : : : ;
exp.an/º � R0 is algebraically independent over R;
� there is no proper partial E-subring of R0 satisfying these conditions.

It is worth noting at this point that the fourth condition implies that A.R0/ D R. The
next lemma easily follows from equivalent constructions of van den Dries [6] and
Macintyre [3].
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Lemma 9 Given any partial E-ring R, there is a free partial E-ring extension
R0 of R. Furthermore, if R0 and S 0 are free partial E-ring extensions of R, then
R0 Š S 0.

Proof Let F be a large algebraically closed field extension of R. Let ¹bi j i 2 I º
be a Q-basis of R over A.R/, and for each i 2 I and q 2 Q, choose di;q 2 F such
that ¹di;1 j i 2 I º is algebraically independent overR, and for all s 2 Z, d si;q D di;qs .
Let R0 be the subring of F generated by R and all the di;q . Extend expR to expR0 by
defining expR0.qbi / D di;q for q 2 Q and i 2 I , and extending additively. It is an
easy exercise to see that this map is well defined. R0 is a free partial E-ring extension
of R.

Let S 0 be a different free partial E-ring extension of R. Considerbd i;q 2 S 0 where
expS 0.qbi / D di;q . At this point note that the set ¹bd i;1 W i 2 I º is algebraically
independent over R since S 0 is a free partial E-ring extension of R. The subring of
S 0 generated by R and bd i;q is also a partial E-ring extension of R. By minimality
of free partial E-ring extensions, S 0 must be generated as a ring by R and bd i;q . Our
claim is that S 0 is isomorphic to R0. Consider the ring homomorphism ' W R0 ! S 0

defined by
'.qbi / D qbi and '.di;q/ D bd i;q :

Consider an algebraically closed field containing both S 0 and R0. Then, there is an
automorphism of this algebraically closed field which fixes the algebraic closure of
R, sends di;1 to bd i;1, and sends any coherent system of roots of di;1 to any coherent
system of roots of bd i;1. Thus ' extends to an automorphism of this algebraically
closed field. If we restrict this automorphism to R0, the image is S 0. It is easy to
check that ' preserves the exponential map. Thus, S 0 is isomorphic to R0 as a partial
E-ring.

For any given partial E-ring, we use the prime notation to denote the free extension;
that is, if R is a partial E-ring, R0 is the free partial E-ring extension of R. We now
connect free extensions to formally real fields via this next lemma.

Lemma 10 Suppose that R is a formally real partial E-ring. Then, R0 is formally
real.

Proof Let ¹di;q W i 2 I º be as in the proof of Lemma 9. ConsiderRŒ¹di;1 W i 2 I º�,
the ring extension of R generated by ¹di;1 W i 2 I º. This is a purely transcendental
extension of R and is thus formally real. If we extend an ordering on R such that
di;1 is positive for all i 2 I , then any real closure of RŒ¹di;1 W i 2 I º� in a large
algebraically closed field extension of RŒ¹di;1 W i 2 I º� will contain a consistent
system of positive nth roots ¹di; 1

n
W i 2 I; n 2 Nº. Thus, R0 is a subring of a real

closed field and is thus formally real.

3 Countable Real Closed Exponential Fields

The goal of the next two sections is to prove Theorem 3. Let L be any algebraically
closed E-field satisfying Schanuel’s conjecture. In this section, we will prove that we
can construct a chain of subfields of L,

R0 ,! R1 ,! � � � ;
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where each Ri is a real closed partial E-field and the union is closed under the expo-
nential map. We will do this by considering a more general chain of subrings of L
and then demonstrate the consequences of Schanuel’s conjecture on these subrings.

Consider a chain of subrings of L of the following form:

Q0 ,! Q1 ,! Q2 ,! � � �

whereQ0 � Qalg and ŒQi[exp.Qi /� � QiC1 � ŒQi[exp.Qi /�alg. Let eQ DSQi .

Definition 11 Let A � eQ be finite. We say that a setD � eQ is an E-source of A
if for all a 2 A,

1. a 2 .Q0 [ exp.D//alg,
2. 8d 2 D;d 2 .Q0 [ exp.D//alg,
3. D is minimal such.

By the definition of eQ, E-sources always exist and can be chosen to be finite. For
the purposes of this paper, all E-sources are assumed to be finite. Furthermore, if
A � Qi andD is an E-source of A, then we may and do assume thatD � Qi�1.

Lemma 12 E-sources are Q-linearly independent.

Proof Suppose that D is an E-source of A and D is not Q-linearly indepen-
dent. Then there is d 2 D such that d 2 hD [ ¹dºi and exp.d/ is algebraic
over exp.D � ¹dº/. If c 2 L is such that c 2 ŒQ0 [ exp.D/�alg, then in fact,
c 2 ŒQ0 [ exp.D � ¹dº/�alg. Thus, D � ¹dº contains an E-source of A which
contradicts minimality.

Lemma 13 ŒQi [ exp.Qi /� Š Q0i .

Proof The statement of this lemma is a priori puzzling, as it is not clear that Qi
satisfies the domain condition of a partial E-subring of L. However, in the following
argument we prove that if ¹r1; : : : ; rnº � Qi is Q-linearly independent over Qi�1,
then ¹exp.r1; : : : ; rn/º is algebraically independent overQi . In particular, since each
Qj is aQ-vector space, if r … Qi�1, then exp.r/ … Qi . This implies that the domain
of expQi

is exactlyQi�1, and indeed,Qi is a partial E-ring extension ofQi�1. Since
ŒQi�1 [ exp.Qi�1/� is the smallest subring ofQi to satisfy this, we have proven the
lemma.

Let Nr � Qi be Q-linearly independent over Qi�1. Suppose that exp. Nr/ is alge-
braically dependent over Qi . Then there is Ns � Qi such that exp. Nr/ is algebraically
dependent over Ns and Nr � Ns.

Let Nq � Q0; Nt 2 Qi�1 be such that ¹ Nq; Ntº is an E-source of Ns. So each element of
Nt is algebraic over ¹ Nq; exp.Nt /º, and each element of Ns as well as each element of Nr is
algebraic over ¹ Nq; exp.Nt /º. Then exp. Nr/ is algebraically dependent over ¹ Nq; exp.Nt /º.
Thus

td
�
Nq; Nt ; Nr; exp. Nq/; exp.Nt /; exp. Nr/

�
D td

�
Nq; exp. Nq/; exp.Nt /

�
C td

�
Nt ; Nr; exp. Nr/=

�
Nq; exp. Nq/; exp.Nt /

��
Œ j Nqj C jNt j C jNr j:

Since L satisfies Schanuel’s conjecture, we conclude that ¹ Nq; Nt ; Nrº is Q-linearly
dependent. Since ¹ Nq; Ntº is an E-source and thus Q-linearly independent and a subset
ofQi�1, this implies that Nr is Q-linearly dependent overQi�1.
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Corollary 14 IfQi is formally real, then ŒQi [ exp.Qi /� is formally real.

Corollary 15 Consider the chain

Q0 ,! Q1 ,! Q2 ,! � � �

where Q0 D Qrc and QiC1 is a real closure of ŒQi [ exp.Qi /�. Then the union eQ
is a real closed exponential subfield of L.

In order to define a specific real closure of a formally real ring R, the order must be
fixed. We have shown that if R is formally real, then R0 will be formally real and
an element in R0 transcendental over R can satisfy any positive cut over Q which
is transcendental over R. Notice that these positive transcendental cuts are actu-
ally types over the empty set. Thus, isomorphic real closed exponential fields must
satisfy the same cuts over Q, and every positive transcendental cut is satisfiable in
some construction of a real closed exponential eQ. Since a given eQ is countable and
can only satisfy countably many types, there are uncountably many nonisomorphic
constructions of a countably real closed exponential field eQ.

Proposition 16 expeQ is injective.

Proof Consider first the exponential map restricted to Qrc. Schanuel’s conjecture
implies that the kernel is trivial. Now consider an element q 2 Qi where q … Qi�1.
We have shown that expL.q/ is transcendental over Qi . Thus, the kernel of the
exponential map restricted to eQ is trivial.

Corollary 17 There are uncountably many nonisomorphic constructions of eQ
where the exponential map is order preserving.

Proof At each stage we have shown the extension to be free, and then we took
the real closure. It is enough to show that if at stage n we require that ¹di;1º from
the construction of the free extension has the same order type over the image of
expQn�1

as ¹bi j i 2 I º has over A.Qn�1/, then the exponential map will be order
preserving, and since ¹di;1º are algebraically independent over Qn�1, we can do
this. It will be important that we keep the image of the exponential map positive,
and from the proof below it will be clear that this can certainly be done. Then, if you
notice that even when constructingQ1 any positive cut can be satisfied, there are still
continuummany real closed exponential subfields ofL each with an order-preserving
exponential map.

We will do this by induction on n and use the fact that at each stage it is a free
construction.

Let n D 0. Since the domain of Q0 D ¹0º, expQ0
will be order pre-

serving. Now suppose that expQn�1
is order preserving and that the image is

strictly positive. We will now proceed with the free construction of Qn and
use the notation. Let ¹di;1º satisfy the same positive order type over image of
expQn�1

as ¹biº satisfy over A.Qn�1/. We know that the domain of expQn
is

the Q-span of A.Qn�1 [ ¹bi W i 2 I º. We also know that for a 2 A.Qn�1/,
di;1 < exp.a/ ” bi < a. So we know that di;q < exp.a/ ” qbi < a andQ
di;qi

< exp.a/ ”
P
qibi < a. Therefore, as we have defined it,
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i

qibi C a1 <
X
j

q0j bj C a2 ” x
X
i

qibi �
X
j

q0j bj < a2 � a1

”

Y
i

di;qi

Y
j

dj;�q0
j
<

exp.a2/
exp.a1/

;

and since we are requiring that the cuts we choose be positive, we know that this is
if and only if exp.a1/

Q
i di;qi

< exp.a2/
Q
j dj;q0j

.

4 Adding Logs

In this section, we will prove by induction that we can construct the following chain
of partial exponential rings:

Q1 Q2 Q3

bQ0

�

-

bQ1

�

-
�

- bQ2

�

-
�

- bQ3 � � �

�

-

where bQ0 D Qrc,
QiC1 D

�bQi [ exp.bQi /
�rc
;

and bQiC1 D
�
QiC1 [ log.Q>0

iC1/
�rc
:

Let eQ DSQi .
Similarly to the proofs we did earlier in this paper, the proof that at each stage of

this construction the rings we are considering are formally real will rely on showing
that we are essentially dealing with purely transcendental extensions. In order to
understand the construction of eQ, it is useful to know what the expected domain and
image of the exponential map are at each stage and to keep track of notation. We will
show the following:
� ŒbQi[exp.bQi /� Š bQi ŒE

Q
iC1�, the free extension of bQi . Here, we are denoting

the algebraically independent set ¹di;1 j i 2 I º from the construction of the
free extension EiC1, and the set ¹di;q W i 2 I; q 2 Qº from this stage of the
construction we denote EQ

iC1.
� ŒQiC1 [ log.Q>0

iC1/� Š QiC1ŒLiC1� where LiC1 is a set which is alge-
braically independent overQiC1.

The domain and image of the map are as small as possible at each stage; that is,
� dom.expbQi

/ is the Q-additively linear span of bQi�1 [ Li ;
� img.expQi

/ is the Q-multiplicative span ofQ>0
i�1 [Ei .

Definition 18 Let Ns � bQn. We say that ¹E;Lº WD ¹Ne1; : : : ; Nen; Nl1; : : : ; Nln W Nei �
Ei ; Nli � Liº is an LE-source of Ns if
� for all s 2 Ns, s is algebraic over ¹E;Lº;
� for all e 2 Nei for i D 1; : : : ; n, log.e/ is algebraic over ¹E;Lº;
� for all l 2 Nli for i D 1; : : : ; n � 1, exp.l/ is algebraic over ¹E;Lº;
� ¹E;Lº is minimal such.

If Ns � Qn, then we use the same definition but note that ¹E;Lº WD ¹Ne1; : : : ; Nen;
Nl1; : : : ; Nln�1 W Nei � Ei ; Nli � Liº, since we have not yet added the logs at the nth
stage. This will be key in the proofs below.
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Notice now that Q1 and T1 exist by the proofs done at the end of Section 3. Thus,
we have a base case for the induction, and we will assume for purposes of induction
that we have carried out the construction though Qn or bQn and chosen an ordering
at each stage so that all elements of EQ

i are positive. Also notice that for l 2 Li ,
exp.l/ 2 Qi . Similarly, for e 2 Ei , log.e/ 2 bQi�1. By the induction assumption
that we have carried out the construction up to and includingQn or bQn, LE-sources
exist, are finite as defined, and minimality guarantees that they are algebraically in-
dependent as sets. We will need the following claim about LE-sources.

Claim 19 Let ¹E;Lº WD ¹Ne1; : : : ; Nen; Nl1; : : : ; Nln W Nei � Ei ; Nli � Liº be an
LE-source for some finite subset of bQn. Let Nq D log. Ne1/ � Qrc. Then, the set
¹ Nq; Nl1; log. Ne2/; Nl2; : : : ; Nln�1; log. Nen/; Nlnº is Q-linearly independent.

Proof Suppose n D 1. Then, by induction, since E1 is algebraically independent
and Ne1 � E1, log. Ne1/ must be Q-linearly independent. Since Nl1 is algebraically
independent overQ1, and thus Q-linearly independent overQ1, ¹ Nq; Nl1º is Q-linearly
independent. Similarly, if ¹ Nq; Nl1; : : : ; log. Nei /º is linearly independent, then since this
set is in bQi�1 and Li is algebraically independent over Qi and thus over bQi�1, the
set ¹ Nq; Nl1; : : : ; log. Nei /; Nliº is Q-linearly independent.

Now suppose that the set up to Nli is Q-linearly independent. Then, since EiC1 is
algebraically independent over bQi and NeiC1 � EiC1, we know that log. NeiC1/ � bQi

is Q-linearly independent over the domain of the exponential map in bQi . Since the
domain contains bQi�1 [ Li and the set up to Nli is contained in bQi�1 [ Li , we have
that the set up to log. NeiC1/ is Q-linearly independent.

We are now ready to prove that the construction can be extended fromQn to bQn.

Lemma 20 Notice thatQ>0
n is a Q-multiplicatively linear space sinceQn is real

closed and every positive element has a unique positive nth root. Suppose that
Na 2 Q>0

n is Q-multiplicatively independent over Q>0
n�1 [ En. Then log. Na/ is al-

gebraically independent overQn.

This lemma will guarantee that Ln exists as described and that ŒQn [ log.Q>0
n /� Š

QnŒLn�.

Proof Suppose that log. Na/ is algebraically dependent over Qn. Then there is
Ns � Qn such that log. Na/ is algebraically dependent over Ns and without loss of gener-
ality, we may assume that each a 2 Na is algebraic over Ns. Let ¹E;Lº D ¹Ne1; : : : ; Nen;
Nl1; : : : ; Nln�1º be an LE-source of Ns. Consider®

Nq; Nl1; log. Ne2/; Nl2; : : : ; Nln�1; log. Nen/; log. Na/; Ne1; exp. Nl1/; : : : ; Nen; Na
¯

where Nq D log. Ne1/ � Qrc and thus the second half of the set we are considering is
the exponential image of the first half. By definition of an LE-source, we compute

td
�
Nq; Nl1; log. Ne2/; Nl2; : : : ; Nln�1; log. Nen/; log. Na/; Ne1; exp. Nl1/; : : : ; Nen; Na

�
<
ˇ̌
¹E;Lº

ˇ̌
C jNaj:

So, by Schanuel’s conjecture, we have that ¹ Nq; Nl1; log. Ne2/; Nl2; : : : ; Nln�1; log. Nen/;
log. Na/º is Q-linearly dependent. By the claim, we know that ¹ Nq; Nl1; log. Ne2/; Nl2; : : : ;
Nln�1; log. Nen/º is Q-linearly independent. Thus, log. Na/ is Q-linearly dependent over
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¹ Nq; Nl1; log. Ne2/; Nl2; : : : ; Nln�1; log. Nen/º. So Na isQ-multiplicatively dependent over ¹ Ne1;
exp. Nl1/; : : : ; exp. Nln�1/; Nenº � Q>0

n�1 [En.

Thus, if Qn is formally real, then so is the purely transcendental extension QnŒLn�
and we can take the real closure as bQn.

As in Section 3, the following lemma will guarantee that ŒbQn[exp.bQn/� is indeed
the free extension of bQn and that the domain of the exponential map is precisely what
we described above.

Lemma 21 Suppose that Na � bQn is Q-linearly independent over bQn�1 [ Ln.
Then exp. Na/ is algebraically independent over bQn.

Proof Suppose that exp. Na/ is algebraically dependent over bQn. Then there
is Ns � bQn such that exp. Na/ is algebraically independent over Ns, and we may
assume without loss of generality that each a 2 Na is algebraic over Ns. Let
¹E;Lº D ¹Ne1; : : : ; Nen; Nl1; : : : ; Nlnº be an LE-source of Ns. Now, where Nq D log.Nt1/ �
Qrc, we have

td
�
Nq; Nl1; log. Ne2/; Nl2; : : : ; log. Nen/; Nln; Na; Ne1; exp. Nl1/; : : : ; Nen; exp. Nln/; exp. Na/

�
;ˇ̌

¹E;Lº
ˇ̌
C jNaj:

So, by Schanuel’s conjecture, Na is Q-linearly dependent over ¹ Nq; Nl1; log. Ne2/;
Nl2; : : : ; log. Nen/; Nln

¯
� bQn�1 [ Ln.

Thus, if bQn is formally real, then so is the free extension ŒbQn [ exp.bQn/�, and we
can take the real closure to getQnC1. This completes the proof that the chain exists
as described and that at each stage the domain and image of the exponential map are
precisely the minimal possible set.

To finish the proof of the theorem, notice that at each stage we are adding tran-
scendental elements. If we make the Li satisfy the same order type over the previous
domain as their exponential image satisfies over the previous image, and make the
Ei satisfy the same order type over the previous image as their preimage satisfies
over the previous domain, the exponential map will be order preserving. As there
are clearly continuum many positive cuts that can be satisfied when constructingQ1
and only countably many are satisfied in any one construction, we have proven the
theorem.
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