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On the Uniform Computational Content of the
Baire Category Theorem

Vasco Brattka, Matthew Hendtlass, and Alexander P. Kreuzer

Abstract We study the uniform computational content of different versions of
the Baire category theorem in the Weihrauch lattice. The Baire category theorem
can be seen as a pigeonhole principle that states that a complete (i.e., “large”)
metric space cannot be decomposed into countably many nowhere dense (i.e.,
small) pieces. The Baire category theorem is an illuminating example of a theo-
rem that can be used to demonstrate that one classical theorem can have several
different computational interpretations. For one, we distinguish two different
logical versions of the theorem, where one can be seen as the contrapositive
form of the other one. The first version aims to find an uncovered point in the
space, given a sequence of nowhere dense closed sets. The second version aims
to find the index of a closed set that is somewhere dense, given a sequence of
closed sets that cover the space. Even though the two statements behind these
versions are equivalent to each other in classical logic, they are not equivalent in
intuitionistic logic, and likewise, they exhibit different computational behavior in
the Weihrauch lattice. Besides this logical distinction, we also consider different
ways in which the sequence of closed sets is “given.” Essentially, we can distin-
guish between positive and negative information on closed sets. We discuss all
four resulting versions of the Baire category theorem. Somewhat surprisingly,
it turns out that the difference in providing the input information can also be
expressed with the jump operation. Finally, we also relate the Baire category
theorem to notions of genericity and computably comeager sets.

1 Introduction

The classical Baire category theorem is an important tool that is used to prove many
other theorems in mathematics. It can be seen as a pigeonhole principle that states
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that a complete (i.e., “large”) metric space cannot be decomposed into countably
many nowhere dense (i.e., “small”) pieces.

Theorem 1.1 (Baire category theorem) A complete metric space X cannot be
obtained as a countable union X D

S1

iD0Ai of nowhere dense closed sets Ai � X .

We recall that a set A � X is called nowhere dense if its interior Aı is empty.
Otherwise it is called somewhere dense. Obviously, a closed set is nowhere dense
if and only if its complement is a dense open set. In a slightly stronger version
expressed for open sets, the theorem reads as follows.

Theorem 1.2 (Baire category theorem) Let X be a complete metric space. If
.Un/n is a sequence of dense open subsets Un � X , then

T1

iD0 Ui is also dense
in X .

We recall that a set is called meager if it can be written as a countable union of
nowhere dense sets and it is called comeager if it is the complement of a meager set
(i.e., if it contains a countable intersection of dense open sets).

There are two natural logical ways of writing the Baire category theorem 1.1 as
a for-all-exists statement: one which claims the existence of a point x 2 X , and the
other one which claims the existence of a natural number index i 2 N WD ¹0; 1;

2; : : :º.
(X ) For every sequence .Ai /i2N of nowhere dense closed sets Ai � X , there

exists a point x 2 X n
S1

iD0Ai .
(N) For every sequence .Ai /i2N of closed sets Ai � X such that X D

S1

iD0Ai ,
there exists an index i 2 N such that Ai is somewhere dense.

We can represent the closed sets A � X with either the negative information
representation  � or the positive information representation  C. We denote the
corresponding hyperspaces of closed subsets by A�.X/ and AC.X/, respectively
(see Section 3 for more details). This yields four different versions of the Baire
category theorem that are summarized in the following table:

X N
� BCT0 BCT1
C BCT2 BCT3

We call BCT1 and BCT3 the discrete versions of the Baire category theorem, since
the output is an index. We now give precise definitions of these operations. (The
notation used will be explained in the next section.)

Definition 1.3 (Baire category theorem) LetX be a computable Polish space. We
introduce the following operations:

1. BCT0;X W� A�.X/
N � X , BCT2;X W� AC.X/

N � X with
� BCT0;X .Ai / WD BCT2;X .Ai / WD X n

S1

iD0Ai ,
� dom.BCT0;X / WD dom.BCT2;X / WD ¹.Ai / W .8i/ Aı

i D ;º;
2. BCT1;X W� A�.X/

N � N, BCT3;X W� AC.X/
N � N with

� BCT1;X .Ai / WD BCT3;X .Ai / WD ¹i 2 N W Aı
i ¤ ;º,

� dom.BCT1;X / WD dom.BCT3;X / WD ¹.Ai / W X D
S1

iD0Aiº.

We should mention that the exact location of these operations in the Weihrauch lattice
does depend on the underlying space X . For ease of notation we will typically omit
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the space X in the notation of BCTi , but we often explicitly mention the space that
we are using.

We offer the following interpretations of the four forms of Baire’s category theo-
rem.

� BCT0 can be seen as the constructive Baire category theorem, which can be
used to construct all sorts of computable (counter)examples (see Brattka [5],
Brattka [7]).

� BCT1 can be seen as the functional analytic Baire category theorem, whose
computational content is equivalent to that of many basic theorems of func-
tional analysis, such as the Banach inverse mapping theorem (see Brattka and
Gherardi [10]).

� BCT2 is a computability-theoretic version of the Baire category theorem,
which is closely related to the notion of 1-genericity (see Section 9).

� BCT3 is a combinatorial version of the Baire category theorem, which (for
perfect spaces X ) is computationally equivalent to the cluster point problem
of the natural numbers, as we show in Theorem 4.3.

We mention that analogues of BCT0 and BCT2 have already been studied in
reverse mathematics under the names B.C.T.I and B.C.T.II (see Brown and Simp-
son [17] and also Simpson [33]). Another version of the Baire category the-
orem appeared in reverse mathematics under the name …0

1G, which stands for
…0
1-genericity (see Hirschfeldt, Shore, and Slaman [23, p. 5823]). In Section 8 we

will show that …0
1G is equivalent to BCT2.

Our goal in this paper is to study the uniform computational content of the Baire
category theorem in the Weihrauch lattice. This study can be seen as a continuation
of Brattka, Hendtlass, and Kreuzer [14], and we refer the reader to this source for all
undefined notions.

We briefly mention what is already known on the Baire category theorem in the
Weihrauch lattice. In [5, Theorem 6], it has been proved that BCT0 is computable,
and in [10, Theorem 5.2], it has been proved that for nontrivial spaces, BCT1 is
equivalent to discrete choice CN and hence is complete for the class of functions that
are computable with finitely many mind changes (see Brattka, de Brecht, and Pauly
[8, Theorem 7.11]). We summarize these results.

Fact 1.4 Let X be a computable Polish space. Then BCT0 is computable and
BCT1 �sW CN is computable with finitely many mind changes.

In fact, in [10, Theorem 5.2], only CN �W BCT1 and BCT1 �sW CN were proved. But
it is easy to see that CN �sW BCT1 holds as well.

In Section 2, we introduce some basic concepts related to the Weihrauch lattice. In
Section 3, we discuss different representations of the hyperspace of closed subsets. In
particular, we introduce the spaces A�.X/ and AC.X/ of closed subsets represented
by negative and positive information, respectively. We prove that the jump of A�.X/

can be described with the cluster point representation. This enables us to prove in
Section 4 that (for perfect Polish spaces)

BCT0
0 �sW BCT2 and BCT0

1 �sW BCT3:

In other words, the change of the input space from A�.X/ to AC.X/ can equiv-
alently be expressed by an application of the jump. This is somewhat surprising
and simplifies the picture because we are essentially left with the versions BCT0 and
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BCT1 of the Baire category theorem up to jumps. In Section 5, we prove that BCT0
and BCT2 are parallelizable, and in Section 6 we prove that, for any two computable
perfect Polish spaces, BCT0 yields the same strong equivalence class. This holds also
for BCT2 and the mentioned type of spaces includes Cantor space and Baire space.
In Section 7 we prove that the seemingly stronger version of the Baire category the-
orem expressed in Theorem 1.2 is not actually stronger in terms of its computational
content. In Section 8 we prove

…0
1G �sW BCT2;

and in Section 9 we study the problem of 1-genericity 1-GEN. Among other things
we prove that 1-GEN lies between BCT0 and BCT2, that is,

BCT0 �sW 1-GEN �sW BCT2:

We also prove that limJ is an upper bound on BCT2. (limJ is the limit operation with
respect to the jump topology.) Additionally, we study effective versions of comeager
sets related to BCT0, BCT2, and BCT0

0. Finally, in Section 10, we discuss probabilis-
tic aspects of the Baire category theorem. Among other things, we prove a uniform
version of the theorem of Kurtz that states that

1-GEN �sW.1 � �/-WWKL;

that is, 1-GEN is reducible to a certain variant of the weak weak Kőnig’s lemma. On
the other hand, we prove that there is a co-c.e. comeager set (i.e., one of the effective
types that corresponds to BCT2) without points that are low for �. Using this result,
we can separate 1-GEN and BCT2.

2 Preliminaries

In this section, we give a brief introduction into the Weihrauch lattice, and we provide
some basic notions from probability theory.

Pairing functions We are going to use some standard pairing functions in the follow-
ing that we briefly summarize. As usual, we denote by hn; ki WD

1
2
.n C k C 1/�

.n C k/ C k the Cantor pair of two natural numbers n; k 2 N, and we denote
the pairing of two sequences p; q 2 NN by hp; qi.n/ WD p.k/ if n D 2k and
hp; qi.n/ D q.k/ if n D 2k C 1. By hk; pi.n/ WD kp, we denote the natural
pairing of a number k 2 N with a sequence p 2 NN. We also define a pair-
ing function hp0; p1i WD hhp0.0/; p1.0/i; hp0; p1ii, for p0; p1 2 N � 2N, where
pi .n/ D pi .n C 1/. Finally, we use the pairing function hp0; p1; p2; : : :ihi; j i WD

pi .j / for pi 2 NN.

The Weihrauch lattice The original definition of Weihrauch reducibility is due to
Klaus Weihrauch and has been studied for many years (see Brattka [4], Brattka [6],
Hertling [21], Stein [34], Weihrauch [36], Weihrauch [37]). More recently, it has
been noted that a certain variant of this reducibility yields a lattice that is very suit-
able for the classification of the computational content of mathematical theorems (see
[8], [10], Brattka and Gherardi [11], Brattka, Gherardi, and Marcone [13], Gherardi
and Marcone [20], Pauly [29], Pauly [30]). The basic reference for all notions from
computable analysis is Weihrauch’s textbook [38]. The Weihrauch lattice is a lattice
of multivalued functions on represented spaces.
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A representation ı of a set X is just a surjective partial map ı W� NN ! X . In
this situation, we call .X; ı/ a represented space. In general, we use the symbol �

in order to indicate that a function is potentially partial. We work with partial multi-
valued functions f W� X � Y , where f .x/ � Y denotes the set of possible values
upon input x 2 dom.f /. If f is single-valued, then for the sake of simplicity we
identify f .x/ with its unique inhabitant. We denote the composition of two (multi-
valued) functions f W� X � Y and g W� Y � Z either by g ı f or by gf . It is
defined by

g ı f .x/ WD
®
z 2 Z W .9y 2 Y /

�
z 2 g.y/ and y 2 f .x/

�¯
;

where dom.g ı f / WD ¹x 2 X W f .x/ � dom.g/º. Using represented spaces, we
can define the concept of a realizer.
Definition 2.1 (Realizer) Let f W� .X; ıX / � .Y; ıY / be a multivalued function
on represented spaces. A function F W� NN ! NN is called a realizer of f , in
symbols F ` f , if ıYF.p/ 2 f ıX .p/ for all p 2 dom.f ıX /.
Realizers allow us to transfer the notions of computability and continuity and other
notions available for Baire space to any represented space; a function between rep-
resented spaces will be called computable if it has a computable realizer, and so on.
Now we can define Weihrauch reducibility.
Definition 2.2 (Weihrauch reducibility) Let f , g be multivalued functions
on represented spaces. Then f is said to be Weihrauch reducible to g, in sym-
bols f �W g, if there are computable functions K;H W� NN ! NN such that
H hid; GKi ` f for all G ` g. Moreover, f is said to be strongly Weihrauch
reducible to g, in symbols f �sW g, if an analogous condition holds, but with the
property HGK ` f in place of H hid; GKi ` f .
The difference between ordinary and strong Weihrauch reducibility is that the “output
modifier”H has direct access to the original input in the case of ordinary Weihrauch
reducibility, but not in the case of strong Weihrauch reducibility. There are algebraic
and other reasons to consider ordinary Weihrauch reducibility as the more natural
variant. For instance, one can characterize the reduction f �W g as follows: f �W g

holds if and only if a Turing machine can compute f in such a way that it evaluates
the “oracle” g exactly on one (usually infinite) input during the course of its compu-
tation (see Tavana and Weihrauch [35, Theorem 7.2]). We will use the strong variant
�sW of Weihrauch reducibility mostly for technical purposes; for instance, it is better
suited to study jumps (since jumps are monotone with respect to strong reductions
but in general not for ordinary reductions).

We note that the relations �W, �sW, and ` implicitly refer to the underlying rep-
resentations, which we will only mention explicitly if necessary. It is known that
these relations only depend on the underlying equivalence classes of representations
and not on the specific representatives (see [11, Lemma 2.11]). The relations �W
and �sW are reflexive and transitive; thus, they induce corresponding partial orders
on the sets of their equivalence classes (which we refer to as Weihrauch degrees and
strong Weihrauch degrees, respectively). These partial orders will be denoted by �W
and �sW as well. The induced lattice and semilattice, respectively, are distributive
(for details see [30] and [11]). We use �W and �sW to denote the respective equiva-
lences regarding �W and �sW; by <W and <sW we denote strict reducibility; and by
jW and jsW we denote incomparability in the respective sense.
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The algebraic structure The partially ordered structures induced by the two variants
of Weihrauch reducibility are equipped with a number of useful algebraic operations
that we summarize in the next definition. We use X � Y to denote the ordinary set-
theoretic product, we use X tY WD .¹0º �X/[ .¹1º �Y / to denote disjoint sums or
coproducts, and we use

F1

iD0Xi WD
S1

iD0.¹iº � Xi / to denote the infinite coprod-
uct. By X i , we denote the i -fold product of a set X with itself, where X0 D ¹./º

is some canonical singleton. By X� WD
F1

iD0X
i , we denote the set of all finite

sequences over X , and by XN we denote the set of all infinite sequences over X .
All these constructions have parallel canonical constructions on representations, and
the corresponding representations are denoted by ŒıX ; ıY � for the product of .X; ıX /
and .Y; ıY / and by ınX for the n-fold product of .X; ıX / with itself, where n 2 N and
ı0X is a representation of the one-point set ¹./º D ¹"º. By ıX t ıY , we denote the
representation of the coproduct, by ı�

X we denote the representation of X�, and by
we denote ıNX the representation of XN. For instance, .ıX t ıY / can be defined by
.ıX t ıY /hn; pi WD .0; ıX .p// if n D 0 and .ıX t ıY /hn; pi WD .1; ıY .p// other-
wise. Likewise, ı�

X hn; pi WD .n; ınX .p//. See [11], [30], [38], or [8] for details of the
definitions of the other representations. We will always assume that these canonical
representations are used if not mentioned otherwise.

Definition 2.3 (Algebraic operations) Let f W� X � Y and g W� Z � W be
multivalued functions. Then we define the following operations:

1. f � g W� X �Z � Y �W; .f � g/.x; z/ WD f .x/ � g.z/ (product)
2. f u g W� X �Z � Y tW; .f u g/.x; z/ WD f .x/ t g.z/ (sum)
3. f t g W� X tZ � Y tW , with .f t g/.0; x/ WD ¹0º � f .x/ and
.f t g/.1; z/ WD ¹1º � g.z/ (coproduct)

4. f � W� X� � Y �; f �.i; x/ WD ¹iº � f i .x/ (finite parallelization)
5. bf W� XN � Y N; bf .xn/ WD Xi2N f .xi / (parallelization)

In this definition and in general, we denote by f i W� X i � Y i the i -fold product
of the multivalued map f with itself. (f 0 is the constant function on the canonical
singleton.) It is known that f ug is the infimum of f and g with respect to both strong
and ordinary Weihrauch reducibility (see [11], where this operation was denoted by
˚). Correspondingly, f t g is known to be the supremum of f and g with respect
to ordinary Weihrauch reducibility �W (see [30]). This turns the partially ordered
structure of Weihrauch degrees (induced by �W) into a lattice, which we call the
Weihrauch lattice. The two operations f 7! bf and f 7! f � are known to be
closure operators in this lattice (see [11], [30]).

There is some useful terminology related to these algebraic operations. We say
that f is a cylinder if f �sW id � f , where id W NN ! NN always denotes the
identity on Baire space if not mentioned otherwise. For a cylinder f and any g, the
reduction g�W f is equivalent to g�sW f (see [11]). We say that f is idempotent
if f �W f � f and strongly idempotent if f �sW f � f . We say that a multivalued
function on represented spaces is pointed if it has a computable point in its domain.
For pointed f and g, we obtain f tg�sW f �g. The properties of pointedness and
idempotency are both preserved under equivalence, and hence they can be considered
as properties of the respective degrees. For a pointed f , the finite parallelization f �

can also be considered as idempotent closure, since idempotency is equivalent to
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f �W f
� in this case. We call f parallelizable if f �W bf , and it is easy to see thatbf is always idempotent. Analogously, we call f strongly parallelizable if f �sW bf .

Compositional products While the Weihrauch lattice is not complete, some suprema
and some infima exist in general. The following result was proved by the first author
and Pauly in [15] and ensures the existence of certain important maxima and minima.

Proposition 2.4 (Compositional products) Let f , g be multivalued functions on
represented spaces. Then the following Weihrauch degrees exist:

f � g WD max¹f0 ı g0 W f0 �W f and g0 �W gº (compositional product)

Here f �g is defined over all f0 �W f and g0 �W g which can actually be composed
(i.e., the target space of g0 and the source space of f0 have to coincide). In this way,
f � g characterizes the most complicated Weihrauch degree that can be obtained
by first performing a computation with the help of g and then another one with the
help of f . Since f � g is a maximum in the Weihrauch lattice, we can consider
f � g as some fixed representative of the corresponding degree. It is easy to see that
f � g�W f � g holds. We can also define the strong compositional product by

f �s g WD sup¹f0 ı g0 W f0 �sW f and g0 �sW gº;

but we neither claim that it exists in general nor that it is a maximum. The composi-
tional products were originally introduced in [13].

Jumps In [13], jumps or derivatives f 0 of multivalued functions f on represented
spaces were introduced. The jump f 0 W� .X; ı0

X / � .Y; ıY / of a multivalued
function f W� .X; ıX / � .Y; ıY / on represented spaces is obtained by replacing
the input representation ıX by its jump ı0

X WD ıX ı lim, where

lim W� NN
! NN; hp0; p1; p2; : : :i 7! lim

n!1
pn

is the limit operation on Baire space NN with respect to the product topology on
NN. It follows that f 0 �sW f �s lim (see [13, Corollary 5.16]). By f .n/ we denote
the n-fold jump. A ı0

X -name p of a point x 2 X is a sequence that converges
to a ıX -name of x. This means that a ı0

X -name typically contains significantly less
accessible information on x than a ıX -name. Hence f 0 is typically harder to compute
than f , since less input information is available for f 0.

The jump operation f 7! f 0 plays a similar role in the Weihrauch lattice as the
Turing jump operation does in the Turing semilattice. In a certain sense, f 0 is a ver-
sion of f on the “next higher” level of complexity (which can be made precise using
the Borel hierarchy (see [13])). It was proved in [13] that the jump operation f 7! f 0

is monotone with respect to strong Weihrauch reducibility �sW, but not with respect
to ordinary Weihrauch reducibility �W. This is another reason why it is beneficial to
extend the study of the Weihrauch lattice to strong Weihrauch reducibility.

3 Representations of Closed Subsets

In this section, we will introduce and discuss some representations of the hyper-
space A.X/ of closed subsets. Mostly, we are interested in the case of computable
metric spaces X . We recall that .X; d; ˛/ is called a computable metric space if
.X; d/ is a metric space, ˛ W N ! X is a sequence that is dense in .X; d/, and
d ı .˛ � ˛/ W N2 ! R is computable. In particular, every computable metric space
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is separable and nonempty. A computable Polish space is just a computable metric
space that is additionally complete. The Cauchy representation ıX of a computable
metric space is defined by

ıX .p/ WD lim
n!1

˛p.n/;

where dom.ıX / contains all p 2 NN such that .˛p.n//n converges and such that
.8k/ .8n � k/ d.˛p.n/; ˛p.k// < 2�k .

Occasionally we will use the coproduct X t ¹1º of a computable metric space
.X; d/with some additional point of infinity 1. This point has distance 1 to all other
points, and hence it is an isolated point such that “x D 1” is decidable. The point
of infinity is associated to the space in order to have a “dummy point” that indicates
“no information.”

By .A�.X/;  �/, we denote the hyperspace A�.X/ of closed subsets of a com-
putable metric space X with respect to negative information. More precisely, the
representation  � of A�.X/ can be defined by

 �.p/ WD X
� 1[
iD0

Bp.i/;

where .Bn/n denotes a standard enumeration of the rational open balls, which can
be defined by

Bhn;ki WD B
�
˛.n/; k

�
;

where k denotes the kth rational number in some standard enumeration of Q. There
are many other equivalent ways of describing this representation (see Brattka and
Presser [16]) and also versions for more general spaces than metric spaces (see
Schröder [32]). In case of the metric space of natural numbers N equipped with the
discrete metric, one can consider a name p with respect to  � just as an enumeration
of the complement of the represented set A.1

By .AC.X/;  C/, we denote the hyperspace AC.X/ of closed subsets of a com-
putable metric space X with respect to positive information. For a subset A � X of
a topological space X , we denote by A the closure of A. The representation  C of
AC.X/ can be defined by (for some sequence .xn/)

 C.p/ D A W ” ıNXt¹1º
.p/ D .xn/n and ¹xn W n 2 Nº \X D A:

We note that the point of infinity 1 is added to X only in order to include the pos-
sibility to represent the empty set A D ;. We point out that there are more general
versions of the representation  C, and the one given here is equivalent to other natu-
ral versions only for computable Polish spaces X (see [16] for more details).2 In the
case of the metric space of natural numbers N equipped with the discrete metric, one
can consider a name p with respect to  C just as an enumeration of the represented
set.

With the help of A�.X/ we can introduce the closed choice problem CX .

Definition 3.1 (Closed choice) Let X be a computable metric space. The closed
choice problem of the space X is defined by

CX W� A�.X/ � X; A 7! A

with dom.CX / WD ¹A 2 A�.X/ W A ¤ ;º.
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Intuitively, a realizer of CX takes as input a nonempty closed set in negative descrip-
tion (i.e., given by  �), and it produces an arbitrary point of this set as output. Hence
A 7! A means that the multivalued map CX maps the input A 2 A�.X/ to the set
A � X as a set of possible outputs.

Besides the closed choice problem we also consider the cluster point problem
CLX , which we define next.

Definition 3.2 (Cluster point problem) Let X be a computable metric space. The
cluster point problem of the space X is defined by

CLX W� XN � X; .xn/n 7!
®
x 2 X W x is a cluster point of .xn/n

¯
;

where dom.CLX / contains all sequences .xn/n that have a cluster point.

In [13, Theorem 9.4], the following fact was proved.

Fact 3.3 C0
X �sW CLX for every computable metric space X .

Translating positive information into negative information is not computable in gen-
eral. However, Brattka and Gherardi [9, Proposition 4.2] proved that positive infor-
mation  C on closed sets can be translated into negative information  � with a limit
computable function. We can express this result as follows.

Fact 3.4 The identity idC� W AC.X/ ! A�.X/, A 7! A is strongly Weihrauch
reducible to lim; that is, idC� �sW lim, for every computable metric space X .

We mention that the fact that the reduction is strong directly follows from the fact
that lim is a cylinder. We will also use the jump  0

� of the representation  �, and we
denote the corresponding hyperspace by .A�.X/

0;  0
�/. Fact 3.4 implies  C �  0

�,
that is, the identity id W AC.X/ ! A�.X/

0 is computable. We note that Facts 3.4,
3.3, and 1.4 immediately yield upper bounds on BCT2 and BCT3.

Proposition 3.5 BCT2 �sW BCT0
0 �sW lim and BCT3 �sW BCT0

1 �sW CLN for
every computable Polish space X .

It is convenient for us to describe the representation  0
� in a different way. For this

purpose we introduce the cluster point representation  � of the set A�.X/ of closed
subsets A � X . This representation  � represents closed sets as the sets of cluster
points of sequences in X . We define

 �.p/ D A W ” ıNXt¹1º
.p/ D .xn/n and CLXt¹1º.xn/n \X D A:

Similarly as in the case of  C, we only use the point of infinity 1 here to allow for
a name of the empty set A D ;. Now [13, Corollary 9.5] can be interpreted such
that  � is equivalent to  0

�. However, strictly speaking, this has only been proved
for nonempty sets A, and hence we need to discuss a suitable extension of the proof
that includes the empty set A.

Proposition 3.6 Let X be a computable metric space. Then the identity map
id W A�.X/ ! A�.X/

0 is a computable isomorphism; that is, id as well as its
inverse are computable. In other words,  � �  0

�.

Proof In the proof of [13, Proposition 9.2], the reduction  � �  0
� is described

for nonempty sets A � X . We extend this algorithm to include the case of the empty
set as follows. Again we check [13, Proposition 9.2(1)] using an enumeration .Bi /i
of balls with respect to X . If A D ;, then xn D 1 for all n � k and some k and
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then [13, Proposition 9.2(1)] is automatically satisfied and all balls Bi will be listed;
that is, a name of A D ; with respect to  0

� will be generated.
In the proof of [13, Theorem 9.4], the reduction  0

� �  � is described for
nonempty sets A � X . The algorithm produces certain outputs ˛.h.s; n//, and
we modify the algorithm such that in any loop we obtain as additional output a name
of the point 1. This guarantees that 1 is one cluster point of the output, possibly
besides other cluster points that remain unchanged. If A is the empty set, we actually
obtain a name of the empty set as output. The correctness proof of the algorithm
stays exactly as given in [13].

In Section 8, we will see another representation  # that is equivalent to  0
� and  �

in the special case of Cantor space X D 2N. We note that Fact 3.3 is a consequence
of Proposition 3.6.

4 Cluster Points and Boundary Approximation

The purpose of this section is to strengthen Proposition 3.5. We will prove that
BCT2 �sW BCT0

0 and BCT3 �sW BCT0
1 for computable perfect Polish spaces. As a

preparation for this result, we prove a purely topological lemma. We recall that a
metric space is called perfect if it has no isolated points.

Lemma 4.1 Let X be a metric space, and let .xn/n be a sequence in X . Then

A WD CLX .xn/n � ¹xn W n 2 Nº DW B:

If X is perfect, then Aı D Bı and, in particular, B is nowhere dense if A is so.

Proof It is clear that A � B , and hence Aı � Bı. We prove that
B n A � ¹xn W n 2 Nº DW C: (1)

Let x 2 B nC . Then there is a strictly increasing sequence .ki /i of natural numbers
such that x D limi!1 xki

2 A. This proves that B nC � A and hence B nA � C .
Let now X be perfect. We prove Bı � Aı. Let x 2 Bı; that is, there is some

r > 0 with B.x; r/ � B . We will show that B.x; r/ � A follows. Let us assume
to the contrary that B.x; r/ ª A. Then there is some y 2 B.x; r/ n A. In par-
ticular, y is not a cluster point of .xn/n, and hence there is some s > 0 such that
B.y; s/ � B.x; r/ and B.y; s/ only contains finitely many xn’s. Since X is perfect,
there is some z 2 B.y; s

2
/ that is different from all these finitely many xn’s and

hence is positively bounded away from all xn’s; that is, there is some t > 0 such that
d.z; xn/ > t for all n 2 N. This implies z 2 B.x; r/ n A, and since B.x; r/ � B ,
this is a contradiction to (1). Hence B.x; r/ � A, and hence x 2 Aı.

This lemma has the following computational consequence, which roughly speaking
says that we can approximate closed sets given as cluster points of sequences by
closed sets given as closures of sequences from above and if the underlying space
is perfect, then this approximation is tight in the sense that nowhere density is pre-
served.

Proposition 4.2 Let X be a computable Polish space. Then there is a computable
multivalued map M W A�.X/ � AC.X/ such that

(1) M.A/ � ¹B W A � Bº,
(2) ifX is perfect and A � X is nowhere dense, then all B 2 M.A/ are nowhere

dense too.
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Proof GivenA D CLXt¹1º.xn/n\X , we simply computeB D ¹xn W n 2 Nº\X

with respect to  C. Then the claim follows from Lemma 4.1 for nonempty A.

Together with Propositions 3.5 and 3.6, we obtain the desired result.

Theorem 4.3 (Jumps) For every computable perfect Polish space X , BCT0
0 �sW

BCT2 and BCT0
1 �sW BCT3 �sW CLN.

The Baire category theorem for nonperfect spaces is not particularly interesting, since
every dense set in a nonperfect space needs to contain the isolated points. The next
proposition shows that in this case BCT2 and BCT3 are computable.

Proposition 4.4 (Nonperfect spaces) Let X be a computable Polish space, which
is not perfect. Then BCT2 �sW id¹0º and BCT3 �sW idN. In particular, BCT2 and
BCT3 are computable.

Proof Let .X; d; ˛/ be a computable Polish space with an isolated point x. Then
x is in the dense subset range.˛/ of the space, and hence x is computable. If A � X

is a closed set with x 2 A, then x 2 Aı and hence Aı ¤ ;.
We consider the case of BCT2. The aforementioned fact implies that the domain

of BCT2 only contains sequences .Ai / such that x … Ai for all i and the constant
function that maps all these sequences to x is a computable selector of BCT2. The
constant sequence .Ai / with Ai D ; is a computable point in the domain of BCT2.
Altogether, this implies BCT2 �sW id¹0º.

We now consider the case of BCT3. If .Ai / is a sequence of closed sets Ai � X

with X D
S1

iD0Ai , then one of the sets Ai has to contain the isolated point x and
hence Aı

i ¤ ;. In order to realize BCT3 we just need to find i with x 2 Ai . Since
Ai is given by a sequence .xij /j2N that is dense in it, we need to find i; j such that
xij D x. Since x is isolated, there is some " > 0 such that for all y 2 X we have
d.x; y/ < " ” x D y. Hence we can decide the equality xij D x and eventually
find i; j with xij D x. This proves BCT3 �sW idN. The reverse reduction is easy to
obtain: given n 2 N we compute a sequence .Ai / of closed sets Ai � X such that
Ai D ; for i ¤ n and An D X .

This result applies to the case of X D N. In particular, it shows that Theo-
rem 4.3 does not hold true for nonperfect spaces. We note that CLN is effectively
†0
3-measurable, but not †0

2-measurable. (The former follows for instance from
[13, Corollary 9.2], which implies the statement CLN �W lim ı lim, and the latter
follows from [13, Proposition 12.5], which implies the stronger statement that not
even CL¹0;1º is †0

2-measurable.) Altogether, we obtain the following dichotomy that
characterizes the perfect spaces among the computable Polish spaces.

Corollary 4.5 (Dichotomy) Let X be a computable Polish space. Then X is per-
fect if and only if BCT3 is not computable (in which case, BCT3 �sW CLN).

Analogously, an arbitrary Polish space is perfect if and only if BCT3 is discontinuous.
Finally, we can derive other interesting consequences from Proposition 4.2. In [9,
Theorem 9.3.3] the following result was proved. For a subset A � X of a topological
space X we denote by @A the boundary of A.

Fact 4.6 (Boundary) @ W A�.X/ ! A�.X/; A 7! @A is limit computable for
every computable metric space X ; that is, @�sW lim.
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While the boundary map of type @ W A�.X/ ! AC.X/ is †0
3-hard for Cantor space

and not even Borel measurable for Baire space (see [9, Theorem 9.3]), it turns out
that we can approximate the boundary from above in the following sense.

Corollary 4.7 (Boundary approximation) The map P W A�.X/ � AC.X/ with

P.A/ WD ¹B W @A � B;B nowhere denseº

is computable for all computable perfect Polish spaces X .

This follows from Fact 4.6 together with Proposition 4.2, given that the boundary of
a closed set is always nowhere dense.

5 Parallelizability

In this section we want to prove, among other things, that BCT0 and BCT2 are both
parallelizable. Since BCT1 �sW CN by Fact 1.4 and BCT3 �sW CLN by Theorem 4.3
for perfect Polish spaces, it is clear that BCT1 and BCT3 are not parallelizable. In
fact, we obtain the following corollary.

Corollary 5.1 1BCT1 �sW lim and 1BCT3 �sW lim0 for all computable perfect Pol-
ish spaces.

Proof We have cCN �sW lim by [8, Example 3.10] (where the equivalence is strict
since both problems are cylinders), and hence bCLN �sW lim0, since parallelization
commutes with jumps by [13, Proposition 5.7(3)].

The first statement that 1BCT1 �sW lim does not require perfectness, and, in the case
of nonperfect spaces, one obtains 1BCT3 �sW id by Corollary 4.5.

We recall that in [14] a problem f was called !-discriminative if ACCN �W f

and !-indiscriminative otherwise. Here ACCN is the problem CN restricted to
dom.ACCN/ D ¹A W jN n Aj � 1º; hence the name all-or-counique choice. A prob-
lem f is called discriminative if C2 �sW LLPO �W f and indiscriminative other-
wise. Since ACCN < C2, it is clear that discriminative implies !-discriminative, but
not conversely.

It is easy to see that BCT1 and BCT3 are both discriminative (where we consider
the latter for perfect X ). This follows from

C2 �sW CN �sW BCT1 �sW CLN �sW BCT3:

On the other hand, BCT0 and BCT2 are both !-indiscriminative and hence also indis-
criminative: since BCT0 and BCT2 are each densely realized,3 by the Baire category
theorem 1.2 itself, this follows from [14, Proposition 4.3]. Moreover, every jump of
BCT0 or BCT2 is also !-indiscriminative, since it is merely a property of the image.

Proposition 5.2 BCT.n/0 and BCT.n/2 are both densely realized and hence
!-indiscriminative for all n 2 N and each computable Polish space X .

This property can even be transferred to intersections of these problems, which we
formally define next.

Definition 5.3 (Intersection) Let f W� X � Z and g W� Y � Z be multivalued
functions on represented spaces. Then we define f \ g W� X � Y � Z by

.f \ g/.x; y/ WD f .x/ \ g.y/
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and dom.f \ g/ WD ¹.x; y/ 2 X � Y W f .x/ \ g.y/ ¤ ;º. Let fi W� X � Y

be a sequence of multivalued functions on represented spaces. Then we defineT1

iD0 fi W� XN � Y N by � 1\
iD0

fi

�
.xi /i WD

1\
iD0

fi .xi /

and dom.
T1

iD0 fi / WD ¹.xi /i W
T1

iD0 fi .xi / ¤ ;º.

In the case of dom.f \ g/ D dom.f / � dom.g/ and dom.
T1

iD0 f / D dom.fi /N
we obtain

f � g�sW f \ g and bf �sW

1\
iD0

fi ;

respectively. For pointed f , g we also have f t g�sW f � g, which implies
f �sW f \ g and g�sW f \ g. We note that BCT0 and BCT2 are both pointed,
since they contain the constant sequence of the empty set in their domains. Due to
the Baire category theorem itself, we can mix the two problems BCT0 and BCT2 and
their jumps without losing any points in the domain. We make this statement precise.

Lemma 5.4 For a fixed computable Polish space, we have that
(1) dom.BCT.n/i \ BCT.k/j / D dom.BCT.n/i / � dom.BCT.k/j / and
(2) dom.

T1

iD0 BCT.n/j / D dom.BCT.n/j /N

for all i; j 2 ¹0; 2º and n; k 2 N.

All the intersections mentioned in this lemma are also densely realized. We mention
that it follows from Proposition 5.2 and [14, Proposition 4.3] that BCT.n/0 and BCT.n/2
are all not cylinders. We obtain the following result.

Proposition 5.5 (Parallelizability) BCT.n/0 and BCT.n/2 are strongly parallelizable
and strongly idempotent for every computable Polish space and n 2 N.

Proof The map K with ..Aj;i /i2N/j2N 7! .Aj;i /hi;j i2N that maps sequences of
sequences in A.X/ to a single sequence in A.X/ is computable with respect to
positive and negative information, as is the map H that maps a point x 2 X to the
constant sequence with value x. Since

1\
jD0

�
X

� 1[
iD0

Aj;i

�
D X

� 1[
iD0

1[
jD0

Aj;i ;

we have that for each k 2 ¹0; 2º�
BCTk.Aj;i /hi;j i2N

�N
D

� 1\
jD0

BCTk.Aj;i /i2N
�N

� 1BCTk
��
.Aj;i /i2N

�
j2N

�
;

and soH ıBCTk ıK.A/ � 1BCTk.A/ for each sequence of sequences A. This proves
the claim on strong parallelizability for BCTk . For the general case of BCT.n/

k
with

n 2 N we additionally note that ŒıN�0 � .ı0/N for every representation ı. Strong
idempotency follows from strong parallelizability, since BCT.n/

k
is pointed for all

n 2 N.
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6 The Baire Category Theorem on Perfect Polish Spaces

In this section we prove that the Baire category theorem BCT0 defines a single equiv-
alence class for all computable perfect Polish spaces, which include Cantor space 2N
and Baire space NN. By Fact 1.4 this is already known for BCT1, and by Theo-
rem 4.3 the same applies to BCT2 and BCT3. We subdivide the proof essentially into
the following reduction chain:

BCT0;X �sW BCT0;NN �sW BWT0;2N �sW BCT0;X :

We start with a special version of the Cauchy representation.

Lemma 6.1 (Cauchy representation) Let .X; d; ˛/ be a computable Polish space.
Then there exists a computable, surjective, and total map ı W NN ! X such that
ı�1.A/ is nowhere dense in NN for every nowhere dense A � X .

Proof We consider the restricted Cauchy representation
Qı W� NN

! X; p 7! lim
n!1

˛
�
p.n/

�
;

with domain

dom. Qı/ WD
®
p 2 NN

W .8k/ .8n > k/ d
�
˛p.n/; ˛p.k/

�
� 2�k�1

¯
:

The map Qı is well defined and surjective, sinceX is complete. Since Qı is a restriction
of the usual Cauchy representation ıX as defined in Section 3, it follows that Qı is com-
putable (with respect to ıX ). There exists a total computable function f W NN ! NN

that satisfies

f .p/.n/ D

´
p.n/ H) .8k < n/ d.˛p.n/; ˛.f .p/.k/// < 2�k�1;

f .p/.n � 1/ H) .9k < n/ d.˛p.n/; ˛.f .p/.k/// > 2�k�2;

for all p 2 NN and n 2 N.4 We obtain range.f / � dom. Qı/, and hence ı WD Qı ı f

is total. It is clear that ı is also computable. We note that Qı restricted to
D WD ¹p 2 NN W .8k/ .8n > k/ d.˛p.n/; ˛p.k// � 2�k�2º is still surjec-
tive and f .D/ D D. Hence, ı is surjective too. Finally, let A � X be such that
ı�1.A/ is somewhere dense. Then there is a wordw 2 N� such thatwNN � ı�1.A/.
We let p WD w000 � � � and ak WD f .p/.k/ for all k D 0; : : : ; n, where n WD jwj � 1.
Then

Tn
kD0 B.˛.ak/; 2

�k�1/ is a nonempty subset of A, which implies that A is
somewhere dense.

Hence we obtain the following result.

Proposition 6.2 BCT0;X �sW BCT0;NN for every computable Polish space X .

Proof Lemma 6.1 implies that the map ı�1 W A�.X/ ! A�.NN/; A 7! ı�1.A/

is well defined; it is computable since ı is computable; it preserves nowhere density;
and it maps nonempty sets to nonempty sets since ı is surjective. Now, given a
sequence .Ai /i of nowhere dense closed sets, we can compute .ı�1.Ai //i , and if
p 2 BCT0;NN.ı�1.Ai //i D

S1

iD0.NN n ı�1.Ai //, then we obtain

ı.p/ 2

1[
iD0

�
ı
�
NN

n ı�1.Ai /
��

D

1[
iD0

.X n Ai / D BCT0;X .Ai /:

By Lemma 6.1, ı is computable and hence BCT0;X �sW BCT0;NN .
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A map f W X ,! Y is called a computable embedding if it is injective and both f
and its partial inverse f �1 are computable. In [9], a computable metric space was
called rich if there is a computable embedding � W 2N ,! X . In [9, Proposition 6.2],
the following was proved using a Cantor scheme.

Fact 6.3 Every perfect computable Polish space is rich.

For rich computable Polish spaces we obtain the following reduction.

Proposition 6.4 BCT0;2N �sW BCT0;X for every rich computable Polish space X .

Proof Let � W 2N ,! X be a computable embedding. Then � preserves nowhere
density: if A � 2N is such that �.A/ is somewhere dense, then there exists some
nonempty open U � X with U � �.A/ and, since � is injective and continuous,
we obtain that ��1.U / � A is nonempty and open. Hence, A is somewhere dense.
Finally, the map J W A�.2

N/ ! A�.X/, A 7! �.A/ is computable by [9, Theo-
rem 3.7], since �.2N/ is computably compact and hence, in particular, co-c.e. closed.
Now given a sequence .Ai /i of nowhere dense closed sets, we can compute .J.Ai //i ,
and if x 2 BCT0;X .J.Ai /i / D

S1

iD0.X n �.Ai //, then we obtain

��1.x/ 2 ��1
� 1[
iD0

�
X n �.Ai /

��
D

1[
iD0

.2N n Ai / D BCT0;2N.Ai /i :

Since ��1 is computable, we obtain BCT0;2N �sW BCT0;X .

In particular, this applies to perfect computable Polish spaces X by Fact 6.3. Finally,
we relate the Baire category theorem BCT0 for Baire and Cantor spaces by the follow-
ing result. We use the notion of a c.e. comeager set as defined later in Definition 9.9.

Lemma 6.5 (Embedding of Baire space into Cantor space) The map

� W NN
! 2N; p 7! 1p.0/01p.1/01p.2/ � � �

is a computable embedding with a c.e. comeager range.�/, and the map

I W� A�.NN/ � A�.2
N/; I.A/ WD

®
B W �.A/ � B and B is nowhere dense

¯
is computable, restricted to dom.I / WD ¹A W A nowhere denseº.

Proof (1) It is clear that � and its partial inverse are computable. (2) The sequence
.Un/n with Un WD ¹q 2 2N W .9k � n/ q.k/ D 0º is a computable sequence of
dense c.e. open subsets Un � 2N and range.�/ D

T1

nD0 Un. Hence .2N n Un/n
is a computable sequence in A�.2

N/, and range.�/ is c.e. comeager. (3) We prove
that �.A/ � 2N is nowhere dense for all closed and nowhere dense A � NN. We
define a word function J W N� ! ¹0; 1º� by J.a0 � � � an/ WD 1a001a10 � � � 1an0

for all a0; : : : ; an 2 N. Since J is monotone, we obtain for all v 2 N� that
J.v/2N \ �.A/ D ; if vNN \ A D ;. Let now wNN ª A for w 2 N�. Then
there is some v 2 N� with w v v and vNN \A D ;, and hence J.v/2N \ �.A/ D ;,
which implies J.w/2N ª �.A/. In other words, if �.A/ is somewhere dense, then A
is so. (4) The fact that the partial inverse ��1 W� 2N ! NN is computable implies that
for every closed A 2 A�.NN/ we can compute some closed B 2 A�.2

N/ such that
B \ range.�/ D �.A/. Since range.�/ is dense, Bı D .B \ range.�//ı D .�.A//ı.
Hence, B is nowhere dense if �.A/ is so. Altogether, this shows that I is com-
putable.
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We can now prove the following result.

Theorem 6.6 (Cantor and Baire) BCT0;2N �sW BCT0;NN and BCT2;2N �sW
BCT2;NN .

Proof We only need to prove that BCT0;NN �sW BCT0;2N , since the second state-
ment follows from Theorem 4.3 and BCT0;2N �sW BCT0;NN follows from Proposi-
tion 6.4. To this end, let .Ai /i be a sequence of nowhere dense closed sets in
A�.NN/. Then we can compute by Lemma 6.5 a sequence .Bi /i of nowhere dense
closed sets in A�.2

N/ such that �.Ai / � Bi . Moreover, we can compute a sequence
.Ci /i of nowhere dense closed sets in A�.2

N/ such that 2N n range.�/ D
S1

iD0 Ci . If

p 2 BCT0;2N.Bi [ Ci /i D 2N
� 1[
iD0

.Bi [ Ci / � range.�/
�
�
� 1[
iD0

Ai

�
;

then ��1.p/ 2 NN n
S1

iD0Ai D BCT0;NN.Ai /i . Hence BCT0;NN �sW BCT0;2N .

We can summarize the other results of this section in the following corollary.

Corollary 6.7 (Perfect Polish spaces) BCTi;X �sW BCTi;NN for each computable
perfect Polish space X and i 2 ¹0; 1; 2; 3º.

Proof By Fact 1.4, the claim is already known for BCT1. If we can prove the claim
for BCT0, then the claim follows for BCT2 and BCT3 by Theorem 4.3. In order to
prove the claim for BCT0, it suffices to prove

BCT0;X �sW BCT0;NN �sW BWT0;2N �sW BCT0;X ;

which follows from Propositions 6.2 and 6.4, Fact 6.3, and Theorem 6.6.

We mention that many typical spaces, such as 2N, NN, R, Œ0; 1�N, `2, and C Œ0; 1�, are
computable perfect Polish spaces with their usual metrics.

7 Dense Versions of the Baire Category Theorem

In view of the strong version of the Baire category theorem that is formulated in The-
orem 1.2, it is also natural to consider versions of BCT0 and BCT2 where the output
is not just a single point, but an entire sequence that is dense in the complement of
the given union of closed sets. We define such versions more precisely now.

Definition 7.1 (Dense Baire category theorem) Let X be a computable Polish
space. We define DBCT0;X W� A�.X/

N � XN and DBCT2;X W� AC.X/
N � XN

with
� DBCT0;X .Ai / WD DBCT2;X .Ai / WD ¹.xi /i W .xi /i is dense in X n

S1

iD0Aiº,
� dom.DBCT0;X / WD dom.DBCT2;X / WD ¹.Ai / W .8i/ Aı

i D ;º.

Even though prima facie DBCT0 and DBCT2 might appear to be stronger than BCT0
and BCT2, respectively, this is not actually the case, as we will show now at least
for perfect spaces. First, for every computable metric space .X; d; ˛/ we use the
abbreviation Bn;k WD B.˛.n/; 2�k/ (which denotes the closure of the given open
ball, not the corresponding closed ball). We note that these balls induce computable
Polish spaces in a uniform way, provided .X; d; ˛/ is a computable Polish space.
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Lemma 7.2 (Closure of balls) Let .X; d; ˛/ be a computable Polish space. Then
.Bn;k ; d jBn;k

; ˛n;k/ is a computable Polish space for all n; k 2 N, where .˛n;k/hn;ki

is a computable sequence of maps ˛n;k W N ! X such that range.˛n;k/ is dense
in Bn;k . Moreover, the sequence .�n;k/hn;ki of embeddings �n;k W Bn;k ,! X is
computable, too.

Proof We just choose ˛n;k.0/ WD ˛.n/ and then we continue inductively. We let
˛n;k.t C 1/ D ˛.m/ if within t time steps and in some systematic way we can find
a fresh value m that has not been used before to define any of the points ˛n;k.s/
with s � t and such that d.˛.n/; ˛.m// < 2�k . Otherwise, if we can find no such
m, then we let ˛n;k.t C 1/ D ˛.n/. In this way we obtain a computable sequence
.˛n;k/hn;ki with the desired properties. We note that the algorithm guarantees that
there exists a computable function f W N ! N such that ˛n;k.m/ D f̨ hn; k;mi

for all n; k;m 2 N. Hence, it follows that the sequence .�n;k/hn;ki of embeddings is
computable.

By a uniform version of Lemma 6.1 and using the fact that BCT0;NN is parallelizable,
we can now obtain the following conclusion.

Proposition 7.3 (Dense Baire category theorem) DBCT0;X �sW BCT0;NN for
every computable Polish space X .

Proof First, we note that, by a uniform application of the method described in
the proof of Lemma 6.1, where we use the dense sequences ˛n;k according to
Lemma 7.2, we obtain a computable sequence .ın;k/hn;ki of maps ın;k W NN ! Bn;k
such that ı�1

n;k
.A/ is nowhere dense in NN for every nowhere dense A � Bn;k and

n; k 2 N. Given a sequence .Ai /i of nowhere dense subsets Ai � X , we can
uniformly compute sequences .An;k;i /i with An;k;i WD ��1

n;k
.Ai / D Ai \ Bn;k by

Lemma 7.2, which are nowhere dense in Bn;k . By Proposition 5.5, this implies

DBCT0;X �sW
1

X
hn;kiD0

BCT0;Bn;k
�sW 3BCT0;NN �sW BCT0;NN :

By using Proposition 7.3, Theorem 4.3, and Corollary 6.7, the observation that
DBCT2;X �sW DBCT0

0;X holds by Fact 3.4, and the fact that BCTi;X �sW DBCTi;X
obviously holds, we obtain the desired main result of this section.

Corollary 7.4 (Dense Baire category theorem) For every computable perfect Pol-
ish space X and i 2 ¹0; 2º, DBCTi;X �sW BCTi;X .

8 …0
1
-Genericity

The purpose of this section is to classify yet another version of the Baire category the-
orem that has been called …0

1G, which stands for …0
1-genericity (see [23, p. 5823]).

Essentially, …0
1G is a version of the nondiscrete Baire category theorem on Cantor

space with a variant  # of the cluster point representation  � on the input side. In
the following, we use the representation  � of A�.¹0; 1º

�/. We define the represen-
tation  # of the set A#.2

N/ of closed subsets of 2N by

 #.p/ WD 2N
� [
w2 �.p/

w2N:

So a closed subset of 2N is described here as the complement of a union of balls given
by words, which are presented negatively, that is, by listing all words which are not
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used. In terms of this representation  # of closed sets,…0
1G is just the corresponding

variant of BCT0 or BCT2.

Definition 8.1 Let …0
1G W A#.2

N/N � 2N be defined by

…0
1G

�
.Ai /i

�
WD

1\
iD0

2N
�
Ai

with dom.…0
1G/ WD ¹.Ai /i W .8i/ Aı

i D ;º.

As it turns out, this variant of the Baire category theorem is equivalent to BCT0
0. This

follows from the following result (which is related to the fact that …0
1G and �02G are

equivalent, as mentioned following Definition 9.44 in Hirschfeldt [22]).

Proposition 8.2 id W A�.2
N/0 ! A#.2

N/ is a computable isomorphism; that is,
id as well as its inverse are computable.

Proof It follows from Fact 3.4, applied to the space X D ¹0; 1º�, that the inverse
of id is computable. We need to prove that id is computable too. Given a double list
.wij /i;j of words wij 2 ¹0; 1º� such that wi WD limj!1wij exists (with respect
to the discrete metric on ¹0; 1º�), we need to compute a list .vi /i of words with
E WD ¹v 2 ¹0; 1º� W .8i/ vi ¤ vº such that U WD

S1

iD0wi2
N D

S
v2E v2

N. We
describe an algorithm that generates a corresponding list .vi /i , given .wij /i;j . The
algorithm works in stages s D hi; j i D 0; 1; 2; : : : , and for bookkeeping purposes it
works with finite sets Fi � ¹0; 1º� of “forbidden words” for each column i , which
are changed during the course of the computation. Initially all these sets are empty.
In stage s D hi; j i, we inspect the word wij with the following algorithm:

1. If j D 0 or wij�1 ¤ wij or Fi D ;; that is, if we have a new word in column
i or the forbidden word list of column i is empty, then column i requires
attention and we set Fi WD ¹u0; : : : ; ukº, where the ui ’s are words that are
longer than any word v that has been written to the output yet, with k and the
ui ’s minimal, and

Sk
lD0 ul2

N D wij 2
N. We also set Fk WD ; for all k > i ;

that is, we clear all forbidden word lists of lower priority.
2. We check all the words v 2 ¹0; 1º� with number less than or equal to s

(with respect to some standard enumeration of words), and we write each
corresponding word v to the output, provided that v …

S1

lD0 Fl (which we
can check since this set is finite at any time).

3. If no word v has been written in the previous step, then we write the empty
word to the output.

Since the words in each column converge, each column i requires attention at most
finitely many times. When column i requires attention for the last time at stage
s D hi; j i, then the forbidden word list Fi will be filled with words that ensure
wij D wi is covered by E in the sense that wi2N �

S
v2E v2

N. On the other hand,
up to stage s all words v up to number s are written to the output, provided they are
not included in

Si
lD0 Fl . This finally ensures U D

S
v2E v2

N.

From this proposition and Corollary 6.7, we directly get the desired corollary.

Corollary 8.3 …0
1G �sW BCT2 �sW BCT0

0 for every computable perfect Polish
space.
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9 1-Genericity

In this section we compare BCT0 and BCT2 with the problem 1-GEN of 1-genericity.
If not mentioned otherwise, then BCT0 and BCT2 in this section are considered with
respect to Cantor space 2N, which is not an essential restriction by Corollary 6.7, but
is more convenient since 1-genericity is typically considered in Cantor space.

We recall some definitions. For one, we assume that we have some effective
standard enumeration .U qi /i2N of the subsets U qi � 2N that are c.e. open in q 2 2N

(and which can be defined by U qi WD ¹p 2 2N W '
hp;qi

i .0/ #º). Then the Turing jump
operator Jq relatively to q can be defined by

Jq W 2N ! 2N; Jq.p/.i/ WD

´
1 if p 2 U

q
i ;

0 otherwise:

Now a point p 2 2N is called 1-generic in q 2 2N if for all i 2 N there exists some
w v p such that w2N � U

q
i or w2N \ U

q
i D ;. As observed in [8, Lemma 9.3], a

point p 2 2N is 1-generic in q if and only if it is a point of continuity of Jq . We call
p just 1-generic if it is 1-generic in some computable q 2 2N. We use the concept of
1-genericity in order to define the problem 1-GEN of 1-genericity.

Definition 9.1 (Genericity) We define 1-GEN W 2N � 2N by

1-GEN.q/ WD ¹p W p is 1-generic in qº

for all p 2 2N.

If p�T q, then 1-GEN.q/ � 1-GEN.p/. The points p which are 1-generic relative
to q can also be described as follows. For a subset A � X we denote by Ac D X nA

the complement of A.

Lemma 9.2 (Generic points) For all p 2 2N, we obtain

1-GEN.p/ D

1\
iD0

.U
p
i [ U

p
i

c
/ D

1\
iD0

.2N n @U
p
i /:

Here @U pi D @..U
p
i /

c/, and ..U pi /
c/i is a computable sequence in A�.2

N/. Since
the boundaries @U pi are nowhere dense, it follows that the set of 1-generic points in
p is comeager for each p. We also note the following relation between the Baire
category theorem BCT0 and 1-GEN.

Proposition 9.3 For Cantor space X D 2N, BCT0 �sW 1-GEN.

Proof We note that for a nowhere dense subset A we have A D @A D @Ac. Hence
we obtain, for every sequence .Ai / of closed nowhere dense subsets Ai � 2N,

BCT0.Ai / D 2N
� 1[
iD0

Ai D

1\
iD0

.2N n @Ac
i /:

If the sequence .Ai / is in A�.2
N/ and computable from p, then there is a computable

s W N ! N such that Ac
i D U

p

s.i/
. Hence 1-GEN.p/ � BCT0.Ai / by Lemma 9.2.

This implies BCT0 �sW 1-GEN.

With Fact 4.6, Lemma 9.2, and the observation that the sets @U pi are nowhere dense,
one obtains 1-GEN �sW BCT0

0. Together with Theorem 4.3 we obtain the following.
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Corollary 9.4 BCT0 �sW 1-GEN �sW BCT2 �sW BCT0
0 �sW lim for X D 2N.

We will sharpen this result by replacing lim with limJ. The Turing jump operator
J W NN ! NN on Baire space NN induces some initial topology on NN, which
we call the jump topology. This topology has been studied in Miller [26] and
[8]. Moreover, we recall that limJ denotes the limit map limJ W� NN ! NN,
hp0; p1; p2; : : :i 7! limi!1 pi restricted to sequences that converge with respect
to the jump topology. Hence, limJ is just a restriction of the ordinary limit operator
lim W� NN ! NN with respect to the Baire space topology on NN, and as shown in
[8], one obtains limJ D J�1

ı lim ıJN, where JNhp0; p1; : : :i WD hJ.p0/; J.p1/; : : :i.
In [8], a point p 2 NN was called limit computable in the jump if there is a com-
putable q 2 NN such that p D limJ.q/, and in [8, Proposition 9.4] it has been shown
that every 1-generic limit computable p 2 NN is limit computable in the jump (this
holds analogously for p 2 2N). Here we formulate a straightforward uniform version
of this result.

Proposition 9.5 (Limit computability in the jump) Let f be a multivalued function
on represented spaces that has some limit computable realizer whose range only
contains 1-generic points. Then f �sW limJ.

Proof Let F W� NN ! NN be a realizer of f that is limit computable and
whose range only contains 1-generic points. Then there is a computable G such
that F D lim ıG. The range of G contains only sequences hp0; p1; p2; : : :i such
that .pi / converges to some 1-generic p, and since such a p is a point of continuity
of J, the sequence .J.pi // converges. This means that .pi / converges in the jump
topology, and hence we even obtain F D limJ ıG. This proves f �sW limJ.

We also note the following consequence of previous results.

Proposition 9.6 (Genericity) BCT0
0 \ 1-GEN �sW BCT0

0 and BCT2 \ 1-GEN �sW
BCT2 for X D 2N.

Proof First, we note that BCT0
0 \ 1-GEN is densely realized by the Baire category

theorem 1.2, since the set of 1-generic points in each p is comeager by Lemma 9.2
and, in particular, dom.BCT0

0 \ 1-GEN/ D dom.BCT0
0/ � dom.1-GEN/. This

implies BCT0
0 �sW BCT0

0 \ 1-GEN. With the help of Fact 4.6 and Lemma 9.2 we
can conclude that BCT0

0 \ 1-GEN �sW BCT0
0 \ BCT0

0. Finally, Proposition 5.5 yields
BCT0

0 \ BCT0
0 �sW BCT0

0. Altogether, we obtain BCT0
0 �sW BCT0

0 \ 1-GEN. The
proof for BCT2 in place of BCT0

0 follows by an application of Corollary 4.7 in place
of Fact 4.6.

In particular, BCT0
0 \ 1-GEN �sW lim has a realizer that is limit computable and

whose range has only 1-generic points. Hence we obtain BCT0
0 �sW limJ by Proposi-

tion 9.5. This allows us to sharpen Corollary 9.4 in the desired way.

Corollary 9.7 (Genericity) BCT0 �sW 1-GEN �sW BCT2 �sW BCT0
0 �sW limJ,

BCT0<W 1-GEN, and BCT0
0<W limJ for X D 2N.

We obtain BCT0<W 1-GEN, since BCT0 is computable and 1-GEN is not. We obtain
BCT0

0<W limJ, since C2 �W CN �W limN �W limJ, and hence limJ is discriminative,
while BCT0

0 is indiscriminative by Proposition 5.2.
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We also note the following consequence of Brattka, Gherardi, and Hölzl [12, The-
orem 14.11], which implies that any single-valued probabilistic function to Cantor
space 2N has to map computable inputs to computable outputs. Here a multival-
ued function f W� X � Y on represented spaces .X; ıX / and .Y; ıY / is called
probabilistic if there is a computable function F W� NN � 2N ! NN such that
�.¹r 2 2N W ıYF.p; r/ 2 f ıX .p/º/ > 0 for all p 2 dom.f ıX /, where � is the
uniform measure on Cantor space 2N.

Corollary 9.8 limJ is not probabilistic.

We can also express consequences of our result in terms of comeager sets, and, for
this purpose, we introduce effective versions of the notion of a comeager set.

Definition 9.9 (Comeager sets) Let X be a computable Polish space. We call a
subset A � X c.e. comeager or co-c.e. comeager if there is a computable sequence
.Ai / in A�.X/ or AC.X/, respectively, such that all Ai ’s are nowhere dense and
NN n A D

S1

iD0Ai . We add the postfix in the limit if the corresponding sequences
are in A�.X/

0 or AC.X/
0, respectively.

We can now formulate the following observations.

Corollary 9.10 (Comeager sets) Let A;B � 2N.
(1) NN is c.e. comeager, co-c.e. comeager, and c.e. comeager in the limit.
(2) If A is c.e. comeager, then A contains a dense set of computable points and

all 1-generic points.
(3) If A is c.e. comeager in the limit, then A contains a dense set of 1-generic

points which are computable in the limit.
(4) If A is c.e. comeager, then A contains a set B , which is co-c.e. comeager.
(5) If A is c.e. comeager or co-c.e. comeager, then A is also c.e. comeager in the

limit.
(6) If A, B are c.e. comeager, co-c.e. comeager, or c.e. comeager in the limit,

then A \ B has the respective property.
(7) The set of 1-generic points is c.e. comeager in the limit.
(8) The set of noncomputable points is a co-c.e. comeager set.
(9) There is a co-c.e. comeager set A that only contains points which are

1-generic, in particular, the set A contains no points of minimal Turing
degree.

The first half of (2) follows from [5, Corollary 7], the second half follows from
Lemma 9.2 (see the proof of Proposition 9.3), (3) follows from Proposition 9.6
and Corollary 9.7, (4) follows from Corollary 4.7 (noting that P can be restricted
to nowhere dense sets A, which satisfy @A D A), (5) follows from Facts 3.4 and
4.6, (6) follows from the proof of Proposition 5.5, (7) follows from Lemma 9.2 and
Fact 4.6, and (8) is the following example. Finally, (9) follows from (4) and (7) (and
the well-known fact that 1-generics are not minimal). It strengthens the well-known
observation that minimal Turing degrees form a meager class.

Example 9.11 LetA � 2N be the set of noncomputable functions f W N ! ¹0; 1º.
We prove that it is a co-c.e. comeager set. By ' we denote a Gödel numbering
such that the function 'i W� N ! ¹0; 1º is the i th computable function, and
by ˆi W� N ! N we denote the corresponding time complexity. We define
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fit W N ! ¹0; 1º by

fit .n/ WD

´
'i .n/ if .8k � n/ ˆi .n/ � t ;

0 otherwise;

and we let
Ai WD ¹fit W t 2 Nº:

Clearly, .Ai /i is a computable sequence in AC.2
N/. The sequence .fit /t has only

one cluster point fi W N ! ¹0; 1º, which is 'i if this function is total or otherwise is
given by

fi .n/ D

´
'i .n/ if .8k � n/ k 2 dom.'i /;
0 otherwise:

In any case, fi is a total computable function and all functions fit are total com-
putable as well. So all members of Ai are total computable functions, and if 'i is
total, then 'i 2 Ai . This means that

S1

iD0Ai is the set of all total computable
functions and A D 2N n

S1

iD0Ai is co-c.e. comeager.

We close this section with a brief discussion of a well-known weakening of
1-genericity. By Corollary 9.10, all c.e. comeager sets contain all 1-generics.
However, the class of 1-generics is not the largest class of points with this property.
We recall that p 2 2N is called weakly 1-generic in q 2 2N if p 2 U for each dense
set U � 2N that is c.e. open in q (see Nies [27, Definition 1.8.47]).

Definition 9.12 (Weak 1-genericity) By 1-WGEN W 2N � 2N, we denote the
problem

1-WGEN.q/ WD ¹p W p is weakly 1-generic in qº:

It follows directly from this definition that every point p 2 2N which is 1-generic in
q is also weakly 1-generic in q. Moreover, every c.e. comeager set A � 2N contains
all weakly 1-generic points. The following corollary captures the uniform content of
this observation.

Corollary 9.13 (Weak 1-genericity) For Cantor space, BCT0 �sW 1-WGEN �sW
1-GEN.

10 Probabilistic Properties of the Baire Category Theorem

In this section, we continue to study BCT0 and BCT2 on Cantor space X D 2N

with respect to some probabilistic properties. In particular, we will show that
BCT2 —W WWKL0 and 1-GEN �W WWKL0, which yields a separation of 1-GEN and
BCT2.

We recall that WWKL W� Tr � 2N denotes the problem that maps infinite binary
trees T 2 Tr to the set WWKL.T / D ŒT � of their infinite paths, restricted to the set of
trees with positive measure, dom.WWKL/ D ¹T 2 Tr W �.T / > 0º. Here � denotes
the usual uniform measure on 2N (see [12] for more details).

By MLR.p/ we denote the set of all points q 2 2N that are Martin-Löf random
relative to p 2 2N. The Chaitin number � 2 2N is an example of a left-c.e. Martin-
Löf random point (see Downey and Hirschfeldt [19, Theorem 6.1.3]) (where left-c.e.
means that all lower rational bounds can be computably enumerated if � is seen as
a real number in binary notation). We recall that p 2 2N is called low for � if the
Chaitin number � 2 2N is Martin-Löf random relative to p, that is, � 2 MLR.p/.
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This implies that the points which are low for � are closed downward with respect
to Turing reducibility. Since � is Martin-Löf random, it is clear that all computable
p are low for �, and it is well-known that the points p 2 2N which are low for �
form a meager class of points. We prove that there is even a co-c.e. comeager set
A � 2N without points that are low for�. The proof is inspired by the proof of Nies,
Stephan, and Terwijn [28, Theorem 3.14].

Proposition 10.1 There is a co-c.e. comeager set A � 2N such that no point of A
is low for �.

Proof The Chaitin number � 2 2N is left-c.e., and hence we can assume that
we have a computable sequence .�s/s in 2N that enumerates � in the sense that it
converges to � pointwise and monotonically from below. Since � is computable
in the limit, there is also a limit computable modulus of convergence c� W N ! N
for the above enumeration; that is, c�.n/ is the least s such that �t jn D �jn for all
t � s. In particular, there is a computable sequence .c�;s/s that converges to c�
pointwise monotonically from below.

The plan is to construct a sequence .Ai /i of closed nowhere dense sets such that
A D 2N n

S1

iD0Ai . By adding suitable sets Ai , we can achieve that A contains no
computable points (see Example 9.11). For each p 2 2N the function f W� N ! N
with

f .n/ WD min
®
k > n W p.k/ ¤ 0

¯
;

which searches the next nonzero value of p, is computable in p. We now let p 2 A.
SinceA contains no computable points, the function f is total. Moreover, we assume
that the set A is constructed such that

f .n/ > c�.3n/

holds for infinitely many n 2 N. LetM W 2� ! RC be the martingale (see, e.g., [27,
Definition 7.1.1] for a precise definition) defined by M."/ WD 1 and

M.�b/ WD

´
3
2
M.�/ if b D �f .j� j/.j� j/;
1
2
M.�/ otherwise;

for � 2 2� and b 2 ¹0; 1º. This martingale M is computable in f and hence in
p, and we claim that M succeeds on �. If n is such that f .n/ > c�.3n/, then
�j3n D �f .n/j3n. By definition, M wins the round from n C 1 to 3n; that is,
M.�ji / D

3
2
M.�ji�1/ for i D nC 1; : : : ; 3n, and hence

M.�j3n/ �

�1
2

�n�3
2

�2n
�

�9
8

�n
:

Thus, supn2NM.�jn/ D 1 if f .n/ > c�.3n/ holds for infinitely many n. This
means that M succeeds on �, and hence � … MLR.p/ by [27, Proposition 7.2.6];
thus p is not low for �.

We still need to constructA such that it satisfies all required conditions. We define

Ai WD
®
p 2 2N W .8n � i/ pjn0c�.3n/ 6v p

¯
for all i 2 N. Then .Ai /i is a computable sequence in AC.2

N/. In order to prove
this, we first note that, for each fixed n 2 N,

.9s/.pjn0
c�;s.3n/ 6v p/ ” pjn0

c�.3n/ 6v p;
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since .c�;s.3n//s converges monotonically to c�.3n/ from below. Now we need to
enumerate a sequence .xij /j in 2N which is dense in Ai , and this enumeration has
to be uniform in i : for each fixed k and n D i; : : : ; i C k one can generate all words
w that avoid all the respective blocks 0c�;s.3n/ of zeros for at least one s (that can
depend on n) and then one adds tails of b1 to these words and enumerates them into
Ai . By dovetailing, one can consider all k’s, n D i; : : : ; i C k, and all possible s’s
for each n in this way. This procedure is computable because .c�;s/s is a computable
sequence.

The sets Ai are also nowhere dense, since for each word w of length n D jwj � i

we obtain p D wb0 … Ai . Let us suppose the contrary. Then there is a sequence
.pk/k that converges to p and satisfies pkjn0

c�.3n/ 6v pk for all n � i and k 2 N.
This implies that there is some k0 such that pkjn0

c�.3n/ D w0c�.3n/ v pk for all
k � k0, which is a contradiction.

For an arbitrary p … Ai , there exists some n � i such that pjn0
c�.3n/ v p.

This implies that f .n/ � n C c�.3n/ � c�.3n/ for some n � i , provided f .n/
is defined. If p … A D NN n

S1

iD0Ai , then f is total (under the assumption that
we have added additional Ai ’s that ensure that A contains no computable points) and
f .n/ � c�.3n/ holds for infinitely many n, as desired.

In order to use this result to separate BCT2 from WWKL0, we want to show that
WWKL0 has a realizer that maps computable inputs to outputs that are low for�. For
this purpose we need a (relativized version) of the lemma of Kučera [24, Lemma 3],
which we formulate first.

Lemma 10.2 (Kučera) Let p 2 2N, and letA � 2N be co-c.e. in p with �.A/ > 0.
Then for any q 2 MLR.p/ there exist w 2 2� and r 2 A such that q D wr .

The standard proof of the lemma of Kučera relativizes directly to the formulation
given above (see, for instance, the proof of [19, Lemma 6.10.1]). This leads to the
following observation (see also Avigad, Dean, and Rute [1, Theorem 3.7] for an
account of the situation for 2-randomness in reverse mathematics). We recall that a
point p 2 2N is called .nC 1/-random for n 2 N if p 2 MLR.;.n//.

Proposition 10.3 Let n 2 N. Then WWKL.n/ has a realizer that maps computable
inputs to outputs that are Turing below any fixed .n C 1/-random point. If n � 1,
then the outputs are, in particular, low for �.

Proof Let p D b0 be the constant zero sequence. Fix n � 1, and let q 2 MLR.p.n//
be some .nC1/-random point. The computable inputs of WWKL.n/ are exactly those
binary trees T such that the setsA D ŒT � � 2N are of positive measure and co-c.e. in
p.n/. By Lemma 10.2 for every such set A � 2N there exist some r 2 A and w 2 2�

such that q D wr . In particular, r �T q. This means that WWKL.n/ has a realizer F
that maps computable inputs to outputs that are Turing below the .nC 1/-random q.
Since q 2 2N is 2-random if and only if it is Martin-Löf random and low for � (see
[27, Proposition 3.6.19]) and the class of points which are low for � is downward
closed with respect to Turing reducibility, it follows that F maps computable inputs
to outputs that are low for � if n � 1.

If we combine Propositions 10.1 and 10.3, then we obtain the following conclusion.

Theorem 10.4 For all n 2 N, BCT2 —W WWKL.n/.
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Proof Let us assume that BCT2 �W WWKL.nC1/ for some n 2 N. Then there
are computable H , K such that H hid; GKi is a realizer of BCT2 whenever G is
a realizer of WWKL.nC1/. By Proposition 10.1, there is a co-c.e. comeager set
A D NN n

S1

iD0Ai that contains no point r 2 A that is low for � and such that
.Ai /i is a computable input for BCT2 with A D BCT2..Ai /i /. Hence there is a
computable name p of .Ai /i such that K.p/ is a computable name for some input
of WWKL.nC1/. By Proposition 10.3, there exists a realizer G of WWKL.nC1/ that
maps this computable inputK.p/ to an output q D G.p/ which is low for�. Hence
r D H hp; qi �T q is also low for � and r 2 A, which is a contradiction. Since
BCT2 —W WWKL0 and WWKL �sW WWKL0, it follows that also BCT2 —W WWKL.

This yields the following obvious question.

Question 10.5 Is BCT2 probabilistic?

BCT0 �sW WWKL.n/ would imply BCT2 �sW BCT0
0 �sW WWKL.nC1/ by Proposi-

tion 3.5, which contradicts Theorem 10.4. Hence we also obtain the following
corollary.

Corollary 10.6 BCT0 —sW WWKL.n/ for all n 2 N.

In the next step, we want to provide some probabilistic upper bound for 1-GEN. For
this purpose we need .1 � �/-WWKL0, where

.1 � �/-WWKL.Tn/n D

1G
nD0

.1 � 2�n/-WWKL.Tn/

was introduced in [12] and is based on "-WWKL.T /, which is WWKL restricted to
dom."-WWKL/ D ¹T W �.ŒT �/ > "º for every " 2 Œ0; 1�. (This problem was
first introduced in Dorais, Dzhafarov, Hirst, Mileti, and Shafer [18].) Intuitively
speaking, .1 � �/-WWKL is the problem that, given a sequence of trees .Tn/ with
�.ŒTn�/ > 1 � 2�n, finds an infinite path p 2 Tn in one of these trees together with
the information n that indicates which tree it is.

A classical theorem of Kurtz [25] states that every 2-random degree bounds a
1-generic degree. Using the fireworks argument5 we prove the following result,
which can be seen as a uniform version of the theorem of Kurtz. Alternatively, one
could approach this result using the technique recently introduced by Barmpalias,
Day, and Lewis-Pye [2, Theorem 4.10].

Theorem 10.7 (Uniform theorem of Kurtz) 1-GEN �W.1 � �/-WWKL0.

Proof Given a q 2 2N, we want to find some p 2 2N that is 1-generic relative to q
with the help of .1��/-WWKL0. We describe a probabilistic algorithm that computes
such a p with probability greater than 1 � 2�k from a given q 2 2N and k 2 N. Let
.U

q
i /i be an enumeration of c.e. open sets relative to q; we can assume that each U qi

has the form U
q
i D

S1

jD0wij 2
N with words wij 2 ¹0; 1º�. The goal is to satisfy the

property Ri W p … @U
q
i for all i 2 N, which can be reformulated as

Ri W .9j / wij v p or .9w v p/ .8j / .w2N \ wij 2
N

D ;/:

This can be achieved by a probabilistic algorithm that uses another “random” input
r 2 2N, which we consider as a sequence r D n0n1n2 � � � of blocks ni 2 ¹0; 1º�



630 Brattka, Hendtlass, and Kreuzer

of length jni j D k C i C 1. Each such block ni is identified with a number
ni 2 ¹1; : : : ; 2kCiC1º.

Algorithm. Upon input of q, r , and k, the probabilistic algorithm works in steps
s D 0; 1; 2; : : : and computes a sequence p by producing longer and longer prefixes
vs of p. Initially, the prefix v0 is the empty sequence. We also use two sequences
of natural number programming variables .ci /i and .li /i , which are initially all set
to zero. In stage s D hi; j i we perform the following steps, provided Ri has not yet
been declared satisfied (otherwise we do nothing).

(1) If wij v vs , then property Ri is declared satisfied, and we set vsC1 WD vs .
(2) If vs v wij , then we set vsC1 WD wij and property Ri is declared satisfied.
(3) If vs is incompatible with wij , but has a common prefix with it of length

greater than or equal to li , then we consider this as an “event” and we do the
following:
(a) We increase the “event counter” ci WD ci C 1, and we set the “length

bound” to li WD jvsj.
(b) If ci D ni , then we consider this as a “critical event” and we increase

j step by step until we find some j with vs v wij , in which case we
set vsC1 WD wij and property Ri is declared satisfied (if no suitable j is
found, then the algorithm loops here forever).

Verification. We note that the algorithm produces an infinite output p D sups vs if
it never happens to loop forever in the case of a critical event in Step (3)(b). In this
case all properties Ri are satisfied, either because there is some j with wij v p

(in which case Ri will be declared satisfied) or because the event counter ci never
reaches the critical value ni , which means that there exists some w v p such that w
is incompatible with wij for all j .

Success probability. The algorithm is unsuccessful if and only if there is an i such
that an infinite loop in Step (3)(b) occurs. We need to calculate the probability that
this happens for some arbitrary r 2 2N (seen as a sequence .ni /i ). The key obser-
vation for this calculation is to understand what counts as an “event”: whenever an
event happens and ci is increased, then the next event will happen only if there is a
wij that extends the current output vs . The unsuccessful case happens if the event
counter reaches ci D ni for some i and an infinite loop is reached, since no suitable
j is found afterward in Step (3)(b). Let us fix such an i and the corresponding ni that
leads to an infinite loop. Then we claim that no other value of ni 2 ¹1; : : : ; 2kCiC1º

can lead to an infinite loop:

(1) Since the event counter eventually reached the value ci D ni no infinite loop
can happen in Step (3)(b) for a smaller value of ni due to the key observation
above.

(2) Since Step (3)(b) enters an infinite loop for the current value of ni , the event
counter could never reach a larger value of ni due to the key observation
above.

Since at most one value ni 2 ¹1; : : : ; 2kCiC1º can lead to an infinite loop, the failure
probability for our fixed i and ni is at most 2�k�i�1, and hence the total failure
probability for r is at most

P1

iD0 2
�k�i�1 D 2�k . So the probability that the random
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input r is successful is at least 1 � 2�k . This probabilistic algorithm describes a
computable functionH that computes p D H hq; hk; rii given q; r 2 2N and k 2 N.

We still need to describe a computable function K that given q and k computes
a name for a sequence .Tm/m of binary trees that converges to some binary tree
T D limm!1 Tm such that ŒT � is the set of successful random advices r 2 2N.
For this purpose, we let Tm initially be the full binary tree of all paths of length
hm D

Pm
iD0 2

kCiC1 (i.e., all the paths v 2 Tm contain suitable values n0; : : : ; nm).
Then we simulate the above algorithm for input q; k and each path v 2 Tm of full
length hm as a prefix of r for all stages s D hi; j i � m. This bound implies i � m,
and hence the simulation will never require an ni which is not included in v. If the
algorithm runs through without ever entering a search for j in some Step (3)(b) that
runs longer than for m values of j , then v is kept in the tree Tm; otherwise, v is
shortened to length hs for the corresponding stage s at which the problem occurred.
If a random advice r 2 2N is successful, then each critical search that it enters in
some Step (3)(b) will terminate after finitely many steps; hence longer and longer
prefixes of r will be included in the sequence .Tm/m and so r 2 Œlimm!1 Tm�. On
the other hand, if r 2 Œlimm!1 Tm�, then each critical Step (3)(b) will eventually
terminate for r . Thus, T WD limm!1 Tm is a tree such that ŒT � contains exactly the
successful r 2 2N.

Thus, the desired reduction 1-GEN �W.1��/-WWKL0 is given by the computable
functionsH;K; more precisely, q 7! H hq;GhKhq; 0i; Khq; 1i; : : :ii is a realizer of
1-GEN whenever G is a realizer of .1 � �/-WWKL0.

We note that Corollaries 9.7 and 10.6 show that the reduction in Theorem 10.7 cannot
be improved to a strong one. Theorem 10.7 yields

1-GEN �W.1 � �/-WWKL0
�sW WWKL0;

and hence we obtain the following corollary with the help of Theorem 10.4.

Corollary 10.8 BCT2 —W 1-GEN.

Since BCT0 �sW 1-GEN by Corollary 9.7, we also obtain the following consequence
of Theorem 10.7 and Corollary 10.6.

Corollary 10.9 1-GEN —sW WWKL.n/ for all n 2 N.

We can easily derive probabilistic upper bounds for BCT1 and BCT3. For one,
BCT1 �sW CN �sW PCN�2N �sW WWKL0 by [12, Theorem 9.3] and by Fact 1.4, and
hence BCT3 �sW BCT0

1 �sW WWKL00 by Proposition 3.5.

Corollary 10.10 For any fixed computable Polish space X , BCT1 �sW WWKL0

and BCT3 �sW WWKL00.

11 Conclusion

The diagram in Figure 1 shows different versions of the Baire category theorem for
computable perfect Polish spaces in the Weihrauch lattice together with their neigh-
borhoods.6 The solid lines indicate strong Weihrauch reductions against the direction
of the arrow, and the dashed lines indicate ordinary Weihrauch reductions.
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lim0

CLR �sW C0
R

CL2N �sW WKL0 CLN �sW BCT0
1 �sW BCT3

lim �sW J

limJ

lim�

L �sW.J�1/0

CR

C2N �sW WKL

WWKL0

.1� �/-WWKL0

WWKL�

WWKL

.1� �/-WWKL

1-GEN

1-WGEN

BCT0

BCT0
0 �sW BCT2 �sW…

0
1GCN �sW BCT1

LPO

C2 �sW LLPO

ACCN

id

limit computable = †0
2 computable = †0

1

double limit computable = †0
3

Figure 1 The Baire category theorem for perfect computable Polish spaces in the
Weihrauch lattice.

Notes

1. It is known that  � is admissible with respect to the upper Fell topology (which corre-
sponds to the Scott topology on the hyperspace of open subsets; see [16]).

2. IfX is a Polish space, then the representation  C is known to be admissible with respect
to the lower Fell topology (see [16]).

3. A notion introduced in [14], which, roughly speaking, says that the image of BCT0 and
BCT2 is densely covered over all realizers.
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4. We note that this equation does not define f , since the conditions overlap; however, the
conditions can be verified, and depending on which condition is met first, the algorithm
for f chooses the corresponding case.

5. The fireworks technique is due to Rumyantsev and Shen [31]; the fact that it can be used
to prove that every 2-random degree bounds a 1-generic has been communicated to us
by Laurent Bienvenu (see also Bienvenu and Patey [3]).

6. For all problems not defined in this paper, the reader is referred to Brattka, Gherardi, and
Hölzl [12] and [14].
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