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Stable Formulas in Intuitionistic Logic

Nick Bezhanishvili and Dick de Jongh

Abstract  In 1995 Visser, van Benthem, de Jongh, and Renardel de Lavalette
introduced NNIL-formulas, showing that these are (up to provable equiva-
lence) exactly the formulas preserved under taking submodels of Kripke mod-
els. In this article we show that NNIL-formulas are up to frame equivalence
the formulas preserved under taking subframes of (descriptive and Kripke)
frames, that NNIL-formulas are subframe formulas, and that subframe logics
can be axiomatized by NNIL-formulas. We also define a new syntactic class
of ONNILLI-formulas. We show that these are (up to frame equivalence) the
formulas preserved in monotonic images of (descriptive and Kripke) frames
and that ONNILLI-formulas are stable formulas as introduced by Bezhanishvili
and Bezhanishvili in 2013. Thus, ONNILLI is a syntactically defined set of
formulas axiomatizing all stable logics. This resolves a problem left open in
2013.

1 Introduction

Intermediate logics are logics situated between intuitionistic propositional calculus
(IPC) and classical propositional calculus (CPC). One of the central topics in the
study of intermediate logics is their axiomatization. Jankov [14], by means of Heyt-
ing algebras, and de Jongh [12], via Kripke frames, developed an axiomatization
method for intermediate logics using the so-called splitting formulas. These formu-
las are also referred to as Jankov—de Jongh formulas. In algebraic terminology, for
each finite subdirectly irreducible Heyting algebra A, its Jankov formula is refuted in
an algebra B, if there is a one-one Heyting homomorphism from A into a homomor-
phic image of B. In other words, the Jankov formula of A axiomatizes the greatest
variety of Heyting algebras that does not contain A. In terms of Kripke frames, for
each finite rooted frame &, the Jankov—de Jongh formula of § is refuted in a frame
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& if and only if § is a p-morphic image of a generated subframe of &. In fact, the
Jankov—de Jongh formula of § axiomatizes the least intermediate logic that does not
have § as its frame. Large classes of intermediate logics (splitting and join-splitting
logics) are axiomatizable by Jankov—de Jongh formulas. However, not every interme-
diate logic is axiomatizable by such formulas (see, e.g., Chagrov and Zakharyaschev
[11, Section 9.4]).

Zakharyaschev [18], [19] introduced new classes of formulas called subframe
and cofinal subframe formulas that axiomatize large classes of intermediate logics
not axiomatizable by Jankov—de Jongh formulas. For each finite rooted frame %
the (cofinal) subframe formula of & is refuted in a frame & if and only if & is
a p-morphic image of a (cofinal) subframe of &. Logics axiomatizable by sub-
frame and cofinal subframe formulas are called subframe and cofinal subframe log-
ics, respectively. There is a continuum of such logics and each of them enjoys
the finite model property. Moreover, Zakharyaschev showed that subframe logics
are exactly those logics whose frames are closed under taking subframes. He also
showed that an intermediate logic L is a subframe logic if and only if it is axiom-
atizable by (A, —)-formulas, and L is a cofinal subframe logic if and only if it is
axiomatizable by (A, —, L)-formulas. However, there exist intermediate logics that
are not axiomatizable by subframe and cofinal subframe formulas (see, e.g., [11,
Section 9.4]). Finally, Zakharyaschev [18] introduced canonical formulas that gen-
eralize these three types of formulas and showed that every intermediate logic is
axiomatizable by these formulas.

Zakharyaschev’s method was model-theoretic. G. Bezhanishvili and Ghilardi [6]
developed an algebraic approach to subframe and cofinal subframe logics which was
later extended by G. Bezhanishvili and N. Bezhanishvili [1] to a full algebraic treat-
ment of canonical formulas. This approach is based on identifying locally finite
reducts of Heyting algebras. Recall that a variety V of algebras is called locally finite
if the finitely generated V-algebras are finite. In logical terminology, the correspond-
ing notion is called local tabularity. A logic L is called locally tabular if there exist
only finitely many non-L-equivalent formulas in finitely many variables. Note that
v-free reducts of Heyting algebras are locally finite.

Based on the above observation, for a finite subdirectly irreducible Heyting alge-
bra A, [1] defined a formula that encodes fully the structure of the Vv-free reduct
of A, and only partially the behavior of V. This results in a formula that has
properties similar to the Jankov formula of A, but captures the behavior of A not
with respect to Heyting homomorphisms, but rather morphisms that preserve the
v-free reduct of A. This formula is called the (A, —)-canonical formula of A, and
such (A, —)-canonical formulas axiomatize all intermediate logics. In [1], it was
shown, via the Esakia duality for Heyting algebras, that (A, —)-canonical formulas
are frame-equivalent to Zakharyaschev’s canonical formulas, and that so defined
subframe and cofinal subframe formulas are frame-equivalent to Zakharyaschev’s
subframe and cofinal subframe formulas.

However, Heyting algebras also have other locally finite reducts, namely, —-free
reducts. Recently, G. Bezhanishvili and N. Bezhanishvili [4] developed a theory
of canonical formulas for intermediate logics based on these reducts of Heyting
algebras. For a finite subdirectly irreducible Heyting algebra A, [4] defined the
(A, V)-canonical formula of A that encodes fully the structure of the —-free reduct
of A, and only partially the behavior of —. One of the main results of [4] is that each
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intermediate logic is axiomatizable by (A, V)-canonical formulas. This parallels the
result on the axiomatization of intermediate logics via (A, —)-canonical formulas.

The (A, V)-canonical formulas produce a new class of formulas called stable for-
mulas. It was shown in [4], via the Esakia duality, that for each finite rooted frame
& the stable formula of & is refuted in a frame & if and only if & is an monotonic
image of &. Stable logics are intermediate logics axiomatizable by stable formulas.
There is a continuum of stable logics and all stable logics have the finite model prop-
erty. Also, an intermediate logic is stable if and only if the class of its rooted frames
is preserved under monotonic images (see [4]).

Thus, stable formulas play the same role for (A, V)-canonical formulas that sub-
frame formulas play for (A, —)-canonical formulas. Also, the role that subframes
play for subframe formulas are played by monotonic images for stable formulas.
A syntactic characterization of stable formulas was left in [4] as an open problem.
The goal of this article is to resolve this problem. This is done via the NNIL-formulas
of [16].

NNIL-formulas were introduced in Visser, van Benthem, de Jongh, and Renardel
de Lafayette [16]. NNIL stands for no nested implication to the left. It was shown in
[16] that these formulas are exactly the formulas that are closed under taking sub-
models of Kripke models. This implies that these formulas are also preserved under
taking subframes. Moreover, for each finite rooted frame &, N. Bezhanishvili [7]
constructs its subframe formula as an NNIL-formula. In Section 3 of this article we
recall this characterization and use it to show that the class of NNIL-formulas is (up
to frame equivalence) the same as the class of subframe formulas. Hence, an inter-
mediate logic is a subframe logic if and only if it is axiomatized by NNIL-formulas.
This also implies that each NNIL-formula is frame-equivalent to a (A, —)-formula.
We refer to Yang [17] for more details on this.

In this article we define a new class of ONNILLI-formulas. ONNILLI stands for only
NNIL to the left of implications. We show that each ONNILLI-formula is closed under
monotonic images of rooted frames. For each finite rooted frame ¥, we also construct
an ONNILLI-formula as its stable formula. This shows that the class of stable formulas
(up to frame equivalence) is the same as the class of ONNILLI-formulas. We deduce
from this that an intermediate logic is stable if and only if it is axiomatizable by
ONNILLI-formulas.

The article is organized as follows. In Section 2 we recall Kripke and descriptive
frames and models of intuitionistic logic and basic operations on them. In Section 3
we discuss in detail the connection between NNIL-formulas and subframe logics.
In Section 4 we introduce ONNILLI-formulas and prove that they axiomatize stable
logics.

2 Preliminaries

For the definition and basic facts about intuitionistic propositional calculus IPC, we
refer to [11], van Dalen [15], or [7]. Here we briefly recall the Kripke semantics of
intuitionistic logic.
Let £ denote a propositional language consisting of
e infinitely many propositional variables (letters) po, p1,... ,
e propositional connectives A, V, —,
e a propositional constant L.
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We denote by Prop the set of all propositional variables. Formulas in &£ are defined
as usual. Denote by Form(£) (or simply by Form) the set of all well-formed formu-
las in the language £. We assume that p, g, r, ... range over propositional variables
and @, ¥, x,... range over arbitrary formulas. For every formula ¢ and v, we let
—¢ abbreviate ¢ — L and ¢ <> i abbreviate (¢ — V) A (Y — ¢). We also let T
abbreviate —.L.

We now quickly recall the Kripke semantics for intuitionistic logic. Let R be a
binary relation on a set W. For every w,v € W, we write wRv if (w,v) € R, and
we write =(wRv) if (w, v) ¢ R.

Definition 2.1
(1) An intuitionistic Kripke frame is a pair § = (W, R), where W # () and R
is a partial order, that is, a reflexive, transitive, and antisymmetric relation
on W.
(2) An intuitionistic Kripke model is a pair I = (&, V') such that F is an intu-
itionistic Kripke frame and V' is an intuitionistic valuation, that is, a map V'
from Prop to the powerset (W) of W satisfying the condition:

w € V(p) and wRv implies v € V(p).

The definition of the satisfaction relation I, w = ¢, where M = (W, R, V) is an
intuitionistic Kripke model, w € W, and ¢ € Forwm, is given in the usual manner
(see, e.g., [11]). We will write V(p) for {w € W | w = ¢}. The notions M = ¢
and § = ¢ (where & is a Kripke frame) are also introduced as usual.

Let § = (W, R) be a Kripke frame.  is called rooted if there exists w € W
such that for every v € W, we have wRv. It is well known that IPC is complete with
respect to finite rooted frames (see, e.g., [1 1, Theorem 5.12]).

Theorem 2.2 For every formula ¢, we have
IPC = ¢ if and only if ¢ is valid in every finite rooted Kripke frame.

Next we recall the main operations on Kripke frames and models. Let § = (W, R)
be a Kripke frame. Foreach w € W and U € W, let R(w) = {v € W : wRv},
R (w) = {v e W :vRw}, R (w) = {v € W : vRw}, RU) = Upey R(w),
and R (U) = Uyyey R (w).

A subset U C W is called an upset of % if for every w,v € W, we have that
w € U and wRv imply v € U. A frame § = (U, R') is called a generated
subframe of & if U € W, U is an upset of &, and R’ is the restriction of R to U,
thatis, R" = RNU?2. Let M = (F, V) be a Kripke model. A model M’ = (F', V')
is called a generated submodel of M if F' is a generated subframe of & and V" is the
restriction of V to U, that is, V'(p) = V(p) N U. We write I, for the submodel
of M generated by w, that is, with the domain R(w).

Let & = (W,R) and & = (W', R’) be Kripke frames. Amap f : W — W'is
called a p-morphism' between & and §' if for every w,v € W and w’ € W':

(1) wRv implies f(w)R’ f(v),

(2) f(w)R'w’ implies that there exists u € W such that wRu and f(u) = w’.

We call the conditions (1) and (2) the “forth” and “back” conditions, respectively.
We say that f is monotonic if it satisfies the forth condition. If f is a surjec-
tive p-morphism from & onto &', then §’ is called a p-morphic image of &. Let
I = (F, V) and M = (F', V') be Kripke models. A map f : W — W’ is called
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a p-morphism between N and M if f is a p-morphism between & and &', and for
every w € W and p € Prop:

M, w k= piff W', f(w) = p.
If a map between models satisfies the above condition, then we call it valuation-
preserving. If f is surjective, then N is called a p-morphic image of M'; surjective
p-morphisms are also called reductions (see, e.g., [11]). A monotonic map between
two models is a monotonic map between the underlying frames which, in addition,
is valuation-preserving.

Next we recall the definition of general frames (see, e.g., [11, Sections 8.1 and
8.4)).

Definition 2.3 An intuitionistic general frame or simply a general frame is a triple
& = (W, R, P), where (W, R) is an intuitionistic Kripke frame and & is a set of
upsets such that # and W belong to &, and & is closed under U, N, and = defined
by

Uy = U,:={weW:Vo(wRvAaveU »vel,)}=W\R (U \U).

Note that every Kripke frame can be seen as a general frame where & is the set of all
upsets of & = (W, R, P). A valuation on a general frame is a map V : Prop — .
The pair (F, V) is called a general model. The validity of formulas in general models
is defined exactly the same way as for Kripke models.

Definition 2.4 Let § = (W, R, ) be a general frame.

(1) We call § refined if for every w,v € W: —(wRv) implies that there is
UePsuchthatw e U andv ¢ U.

(2) We call & compact if forevery X € P U{W \ U : U € P}, if X has the
finite intersection property (i.e., every intersection of finitely many elements
of X is nonempty), then [ X # 0.

(3) We call ¥ descriptive if it is refined and compact.

We call the elements of P admissible sets.

Definition 2.5 Let & = (W, R, ) be a descriptive frame. A descriptive valua-
tion is amap V : Prop — P. A pair (§, V) where V is a descriptive valuation is
called a descriptive model.

Validity of formulas in a descriptive frame (model) is defined similarly to the Kripke
case except that it ranges over all descriptive valuations. It is well known that every
intermediate logic L is complete with respect to a class of descriptive frames (see,
e.g., [11, Theorem 8.36]).

Next we recall the definitions of generated subframes and p-morphisms of
descriptive frames.

Definition 2.6

(1) A descriptive frame & = (W', R', P’) is called a generated subframe of
a descriptive frame § = (W, R, P) if (W', R’) is a generated subframe of
(W,R)and ' ={UNW’':U € P}.

(2) Amap f : W — W'is called a p-morphism between & = (W, R, #) and
& = (W',R,P’)if f is a p-morphism between (W, R) and (W', R") and
for every U’ € P’ we have f~1(U’) € . If a map between descriptive
models satisfies the latter condition, it is called admissible.
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Generated submodels and p-morphisms between descriptive models are defined as in
the case of Kripke semantics. For convenience, we will sometimes denote a descrip-
tive frame, just as a pair (W, R), dropping the set # of admissible sets from the
signature.

3 Subframe Logics and NNIL-Formulas

Subframe formulas for modal logic were first introduced by Fine [13]. Subframe for-
mulas for intuitionistic logic were defined by Zakharyaschev [18]. For an overview
of these results, see [1 1, Section 9.4]. For an algebraic approach to subframe formu-
las, we refer to [6] and [1]. We will define subframe formulas differently and connect
them to the NNIL-formulas of [16]. Most of the results in this section have appeared
in the PhD dissertation [7].

We first recall from [16] and [17] some facts about NNIL-formulas. NNIL-formulas
are known to have the following normal form.

Definition 3.1 NNIL-formulas (no nested implication to the left) in normal form
are defined by

¢ = Llple Aolpvelp — g
Definition 3.2

(1) Let § = (W, R) be a Kripke frame. A frame § = (W', R’) is called a
subframe of & if W' C W and R’ is the restriction of R to W'.

(2) Let & = (W, R, ) be a descriptive frame. A descriptive frame § = (W',
R, P") is called a subframe of & if (W', R’) is a subframe of (W, R),
P ={UNW :U € P} and the following condition, which we call the
topo-subframe condition, is satisfied:

Forevery U € W' suchthat W'\ U € £’ we have W \ R™1(U) € £.

For a detailed discussion about the topological motivation behind the notion of sub-
frames and its connection to nuclei of Heyting algebras, we refer to [6] (see also [7]).
Here we just note how we are going to use this condition.

Remark 3.3 The reason for adding the topo-subframe condition to the defini-
tion of subframes of descriptive frames is explained by the next proposition. The
topo-subframe condition allows us to extend a descriptive valuation V' defined on a
subframe &’ of a descriptive frame F to a descriptive valuation V' of §& such that the
restriction of V' to &' is equal to V.

Proposition 3.4 Let § = (W,R,P) and § = (W', R',P’) be descriptive
frames. If §' is a subframe of &, then for every descriptive valuation V' on &'
there exists a descriptive valuation V on § such that the restriction of V to W' is V'.

Proof For every p € Prop, let V(p) = W \ R~Y (W’ \ V'(p)). By the topo-
subframe condition, V(p) € . Now suppose x € W’. Then x ¢ V(p) if and
only if x € R~ (W’ \ V'(p)) if and only if (there is y € W’ such that y ¢ V'(p)
and xRy) if and only if x ¢ V’(p), since V'(p) is an upset of &'. Therefore,
Vip)n W =V'(p). O

We say that a formula ¢ is preserved under submodels, if for all models M = (W,
R, V)and Mt = (W', R’, V'), if w is in the domain of 9t, 9t is a submodel of IN, and
M, w = @, then N, w = ¢. We say that a formula ¢ is preserved under subframes,



Stable Formulas in Intuitionistic Logic 313

if for all (descriptive or Kripke) frames § = (W,R) and & = (W', R’), if G is a
subframe of § and § | ¢, then & | ¢.

We have the following characterization theorem showing that NNIL-formulas are
exactly the ones that are preserved under submodels (see [16]).

Theorem 3.5

(1) Every ¢ € NNIL is preserved under submodels.
(2) If ¢ is preserved under submodels, then there exists v € NNIL such that
IPCF ¢ < o.

Corollary 3.6 NNIL-formulas are preserved under subframes.

Proof  Assume that an NNIL-formula is not preserved under subframes. Then there
exists an NNIL-formula ¢, (descriptive or Kripke) frames & and & such that & is a
subframe of &, & | ¢, and § £ ¢. So there exists a valuation V' on & such that
(%, V) £ @. Let V’/ be a valuation on & such that (F, V) is a submodel of (&, V).
If ¥ and & are descriptive frames, then such a V' exists by Proposition 3.4. If &
and & are Kripke frames, then we again use the valuation V' defined in Proposi-
tion 3.4. Thus, we obtain that ¢ is not preserved under submodels, which contradicts
Theorem 3.5. O

A formula is called a subframe formula if it is preserved under subframes. An inter-
mediate logic is called a subframe logic if it is axiomatizable by subframe formulas.
Chagrov and Zakharyaschev proved (see, e.g., [1 1, Theorem 11.25]) that an interme-
diate logic L is a subframe logic if and only if L is axiomatizable by (A, —)-formulas
if and only if descriptive frames of L are closed under subframes. Also, every sub-
frame logic has the finite model property (see [11, Theorem 11.20]).

Definition 3.7 Let N = (F, V) be a descriptive model. We fix n propositional
variables pi,..., p,. With every point w of I, we associate a sequence i ...iIp
such thatfork = 1,...,n:

) 1, ifwkE p,

1, =

k 0, ifw b pg.
We call the sequence iy . . . i, associated with w the color of w (or, more specifically,
the n-color of w) and denote it by col(w).

A finite model 9t = (W, R, V) is colorful if the number of propositional vari-

ables is |W| and, for each w € W, there is a propositional variable p,, such that
v = py if and only if wRv.

Definition 3.8 Letiy...i, and j; ... j, be two colors. We write
i1...in < J1...jpifand only if i < ji foreachk =1,...,n.
We also write iy ... i, <j1...jnifi1...in <Jj1---Jn and iy ...i, ;é]l]n

Let & be a finite rooted frame. For every point w of $§, we introduce a propositional
letter py, and let V' be such that V(p,,) = R(w). We denote the model (&, V') by
IMN. Then YN is colorful. Thus, with any finite frame % we can associate a colorful
model (&, V). We call (F, V) the colorful model corresponding to 3.

Lemma 3.9 Let (%, V) be a colorful model. Then, for every w,v € W, we have
(1) w # v and wRv if and only if col(w) < col(v),
(2) w = v ifand only if col(w) = col(v).
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Proof  The proof is just spelling out the definitions. O

Let § = (W, R) be a finite rooted frame, and let M = (F, V') be the corresponding
colorful model. Next, we inductively define the subframe formula B(g) in the NNIL
form. For every v € W, let

prop(v) := {pk : v |= px,k <nj,  notprop(v) := {pg 1 v ¥ pr.k < nj.

Definition 3.10  We define B(&) by induction. If v is a maximal point of ¢, then
let

B(v) = /\prop(v) — \/notprop(v).

Let w be a point in M, and let wy, ..., wy, be all the immediate successors of w. We
assume that 8(wj;) is already defined, for every w;. We define S(w) by

B(w) := /\ prop(w) — \/notprop(w) v \/ p(ws).

i=1
Let r be the root of ¥. We define 5(F) by

B(&) = B(r).
We call (&) the subframe formula of §.

Note that B(§) is an NNIL-formula. We will need the next lemma for establishing
the crucial property of subframe formulas. We first recall the definition of depth of a
frame and of a point.

Definition 3.11 Let & be a (descriptive or Kripke) frame.

(1) We say that % is of depth n < w, denoted d(§) = n, if there is a chain of n
points in & and no other chain in & contains more than n points. The frame
& is of finite depth if d(F) < w.

(2) We say that & is of an infinite depth, denoted d(F) = w, if for every n € w,
& contains a chain consisting of n points.

(3) The depth of a point w € W is the depth of &y, that is, the depth of the
subframe of & generated by w. We denote the depth of w by d(w).

Lemma 3.12 Let § = (W, R) be a finite rooted frame, and let V be defined as
above. Let W' = (W', R', V') be an arbitrary (descriptive or Kripke) model. For
everyw,v € Wand x € W', if wRv, then

W, x £ B(w) implies W, x £ B(v).

Proof The proof is a simple induction on the depth of v. If d(v) = d(w) — 1
and wRv, then v is an immediate successor of w. Then M',x F£ B(w) implies
I, x B B(v), by the definition of S(w). Now suppose that d(v) = d(w) — (k + 1)
and the lemma is true for every u such that wRu and d(u) = d(w) — k, for every k.
Let ©’ be an immediate predecessor of v such that wRu’. Such a point clearly exists
since we have wRv. Then d(u’) = d(w) — k and by the induction hypothesis
IN, x B B(u'). This, by definition of S(u’), means that ', x £ B(v). O

The next theorem states the crucial property of subframe formulas (see also [7, The-
orem 3.3.16]).
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Theorem 3.13  Ler & = (W', R', P') be a descriptive frame, and let § = (W, R)
be a finite rooted frame. Then

& £ B(®) if and only if & is a p-morphic image of a subframe of &.

Proof  Suppose that & £ B(F). Then there exists a valuation V/ on & such
that (&,V’) £ B(F). For every w € W, let {wy,...,wy,} denote the set of all
immediate successors of w. Let py,..., p, be the propositional variables occurring
in B(%F) (in fact, n = |W|). Then, V’ defines a coloring of &. Let

m
Py, = {x € W' : col(x) = col(w) and x }£ \/ ﬁ(w,-)}.
i=1
Take Y := Jyew Pw and  := (¥, S, @), where S is the restriction of R" to Y, and
Q={U'NY : U’ € '}. We show that $ is a subframe of & and F is a p-morphic
image of 9.

For the proof that $ is a subframe of &, we just check the topo-subframe con-
dition. The other conditions are clear from the definition of $. So, assume that
Y \ U’ € @. We have to show that W'\ R~ (U’) € #'.

Note that

xeW\R-NU iff x¢ RV
iff =3y(xRyAnyelU’)
if Vy(xRy —y ¢U’)
if Vy(xRy ->y¢YvyeY\U
if Vy(xRyAnyeY —>yeY\U
iff forU” € #" suchthat Y \U' =U"NY,
Vy(xRynyeY —yeU”").

Since ¥ = |J,ew Pw., the latter is equivalent to the conjunction of all the
Vy(xRy Ay € Py, >y € U”) forw € W. Then

Vy(xRy Ay e Py, —yeU"”) iff Vy(xRy Acol(y) = col(w)A
y ¥ Vs Bwi) — y eU”)
ifft Vy(xRy Ay E Aprop(w) —
y |\ notprop(w)v
yE Vi Bwi) vy eU”).

Now the sets {x | Vy(xRy Ay E Aprop(w) — y E \/ notprop(w) vV y E
Vit Bwi) v y € U")} are equal to the sets V’'(/\prop(w)) =
(V'(\/ notprop(w)) U V'(\/7; B(w;)) U U”) and therefore are in ', as P’ is
closed under = and union. So their intersection (the conjunction of the correspond-
ing formulas) is also in #’.

Defineamap f : Y — W by

f(x) =wifx € Py.

We show that f is a well defined onto p-morphism. By Lemma 3.9, distinct points
of W have distinct colors. Therefore, Py, N Py = @ if w # w’. This means that f
is well defined.

To prove that f is onto, by the definition of f, it is sufficient to show that P,, # @
for every w € W. If r is the root of &, then since (&, V') £ B(F), there exists a

point x € W' such that x |= /\ prop(r) and x F£ \/ notprop(r) and x t \/7—, B(r;).
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This means that x € P,. If w is not the root of ¥, then we have rRw. Therefore,
by Lemma 3.12, we have x = B(w). This means that there is a successor y of x
such that y = /\ prop(w), y £ \/ notprop(w), and y F B(w;), for every immediate
successor w; of w. Therefore, y € Py, and f is surjective.

To show that f is admissible, we first note that to show an onto p-morphism to
a finite frame to be admissible, it is sufficient to show that for every upset U of
W we have f~1(U) € @. Itis clear that U = R(u;) U --- U R(uy) for some
ui,...,ux € W. Since (&, V) is a colorful model, we have R(u;) = V(py,) for
eachi = 1,..., k. Now observe that by the definition of f, for each x € Y we have
col(f(x)) = col(x). So f(x) € V(py,) if and only if x € V'(py;). This means that
S7HU) = (V(pu,) U+~ U V'(pu,)) N Y, which clearly is in Q.

Next assume that x, y € Y and xSy. Note that by the definition of f, for every
t € Y we have

col(r) = col(f(t)).

Obviously, xSy implies col(x) < col(y). Therefore, col(f(x)) = col(x)
< col(y) = col(f(y)). By Lemma 3.9, this yields f(x)Rf(y). Now suppose
f(xX)Rf(y). Then by the definition of f, we have that x £ B(f(x)), and by
Lemma 3.12, x £ B(f(»)). This means that there is z € W’ such that xR'z,
col(z) = col(f(y)), and z F£ B(u), for every immediate successor u of f(y). Thus,
z € Py and f(z) = f(y). Therefore, ¥ is a p-morphic image of 5.

Conversely, suppose that $ is a subframe of a descriptive frame & and that
f 9 — & is a p-morphism. Clearly, § ¥ B(F) and since f is a p-morphism,
we have that $ F£ B(F). This means that there is a valuation ¥’ on $ such that
(%, V") £ B(F). By Proposition 3.4, V’ can be extended to a valuation V' on
& such that the restriction of V to &’ is equal to V’. Finally, recall that & is an
NNIL-formula. This, by Theorem 3.5(1), implies that & F£ B(F). O

Zakharyaschev [18] showed that every subframe logic is axiomatizable by the for-
mulas satisfying the condition of Theorem 3.13. We will now put this result in the
context of the first-named author’s frame-based formulas of [7] and [8]. We will use
the same argument in the next section for stable logics and ONNILI-formulas.

For each intermediate logic L, let DIF (L) be the class of rooted descriptive frames
of L. Note that [7] and [8] work with finitely generated descriptive frames. But for
our purposes this restriction is not essential.

Definition 3.14 Call a reflexive and transitive relation << on DIF(IPC) a frame
order if the following two conditions are satisfied.

(1) Forevery &, & € DF(IPC), & is finite and § <1 & imply that |§| < |&].
(2) For every finite rooted frame % there exists a formula (&) such that, for
every & € DF(IPC),

G F a(F) ifandonly if § < &.
The formula a(F) is called the frame-based formula for <.
Definition 3.15 Let L be an intermediate logic. We let
M(L, <) := m<i]n(]D)]F(IPC) \ DF(L)).

Theorem 3.16 ([7, Theorem 3.4.12], [8, Theorem 3.9]) Let L be an intermediate
logic, and let < be a frame order on DF (IPC). Then L is axiomatized by frame-based
SJormulas for < if and only if the following two conditions are satisfied.
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(1) DF(L) is a <-downset. That is, for every &, & € DF(IPC), if & € DF(L)
and § 1, then § € DF(L).

(2) Forevery & € DF(IPC) \ DIF(L) there exists a finite § € M(L, <) such that
§96.

The formula B(%) is a particular case of a frame-based formula for a relation <,
where § < & if § is a p-morphic image of a subframe of &. Theorem 3.16(2) is
always satisfied by < (see [11, Theorem 9.36]); for an algebraic proof of this fact,
see [6] and [1]. So an intermediate logic L is a subframe logic if and only if L is
axiomatizable by these formulas if and only if DF(L) is a <-downset. As p-morphic
images preserve the validity of formulas, we obtain that DIF(L) is a <-downset if and
only if DF(L) is closed under subframes. Thus, L is a subframe logic if and only if
L is axiomatizable by these formulas if and only if DIF (L) is closed under subframes.

We say that formulas ¢ and y are frame-equivalent if for any (descriptive) frame

&, we have § = ¢ if and only if § = .

Corollary 3.17

(1) An intermediate logic L is a subframe logic if and only if L is axiomatizable
by NNIL-formulas.

(2) The class of NNIL-formulas (up to frame equivalence) coincides with the
class of subframe formulas.

(3) Each NNIL-formula is frame-equivalent to a (A, —)-formula.

Proof (1) As we showed above, L is a subframe logic if and only if it is axiom-
atizable by the formulas of type B(F). As each B(F) is NNIL, subframe logics are
axiomatizable by NNIL-formulas. Conversely, by Corollary 3.6, every NNIL-formula
is preserved under subframes. Therefore, if L is axiomatizable by NNIL-formulas,
DIF(L) is closed under subframes. Thus, L is a subframe logic.

(2) By Corollary 3.6, every NNIL-formula is preserved under subframes. So every
NNIL-formula is a subframe formula. Now suppose that ¢ is preserved under sub-
frames. Then IPC + ¢ (where IPC + ¢ is the least intermediate logic containing
formula ¢) is a subframe logic. By (1) subframe logics are axiomatizable by the for-
mulas B(F). Then there exists 1, ..., Fn such that IPC+ ¢ = IPC+ A’_, B(Fi).
Note that n € w, otherwise IPC + ¢ is infinitely axiomatizable, which is a contradic-
tion. Each (&) is an NNIL-formula, so A7_, B(F:) is also an NNIL-formula. Thus,
¢ is frame-equivalent to an NNIL-formula and NNIL is (up to frame equivalence) the
class of formulas preserved under subframes.

(3) This also follows from (1) and the fact that subframe formulas are frame-
equivalent to (A, —)-formulas (see [11, Theorem 11.25]). A direct syntactic proof
that each NNIL-formula is frame-equivalent to some (A, —)-formula can be found in
[17]. O

We do not treat cofinal subframe logics here as they are not axiomatized by
NNIL-formulas. We refer to [11, Section 9.4] for a detailed treatment of these
logics, to [6] and [1] for their algebraic analysis, and to [7, Section 3.3.3] for the
details on how to obtain cofinal subframe formulas from the subframe formulas
introduced in this article.
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4 Stable Logics and ONNILLI-Formulas

In this section we construct a new class of formulas, ONNILLI, that turns out to be
the class of formulas preserved by onto monotonic maps. This class is defined using
the class of NNIL-formulas.

Proposition 4.1 Let Wt = (X, R, V) and Nt = (Y, R', V') be two intuitionistic
(Kripke or descriptive) models, and let f : X — Y be a monotonic map on these
models. Then, for each x € X and each ¢ € NNIL, we have

RO Fe=xFe.

Proof  This is by induction on the normal form of ¢ as in Definition 3.1. The basic
steps are trivial. Assume that the induction hypothesis holds for ¢ and i and that
f(x) E ¢ A Y. Then, f(x) E ¢ and f(x) = ¥. By the induction hypothesis,
x Epand x E ¢¥. So, x |E ¢ A . The case for V is similar.

So, finally assume that the induction hypothesis holds for ¢ and that f(x) &
p — ¢. Now let xRy and y = p. Then f(x)Rf(y) and, as f is valuation-
preserving, f(y) E p. So, f(y) E ¢. By the induction hypothesis, y = ¢. So
xXEp—o. O

Corollary 4.2 For each formula  there exists an NNIL-formula ¢ such that
IPC F ¢ < v if and only if for any pair of intuitionistic (Kripke or descriptive)
models Wt = (X, R, V) and N = (Y, R', V') with a monotonic map f : X — Y
and x € X, we have

JREV=>xEY. (1

Proof  The left-to-right direction follows from Proposition 4.1. Conversely, note
that the identity function from a submodel into the larger model is always a mono-
tonic map. Thus, if i satisfies (1), then v is preserved in submodels and, by Theo-
rem 3.5, is equivalent to some NNIL-formula ¢. O

Definition 4.3

(1) BASIC is the closure of the set of the propositional variables plus T and L
under conjunctions and disjunctions.

(2) Formulas of the form ¢ — ¥ with ¢ € NNIL and ¥ € BASIC are called
simple ONNILLI-formulas.

(3) The class ONNILLI (only NNIL fo the left of implications) is defined as the
closure of the set of simple ONNILLI-formulas under conjunctions and dis-
junctions.

Note that there are no iterations of implications in ONNILLI-formulas except inside
the NNIL-part. Note also that, if ¥ € BASIC and f is valuation-preserving, then by
a simple induction argument we obtain that

YEV S fO)EY. 2

Example4.4  —pVv——pis ONNILLI. To see this, writeitas (p — L)v(—p — 1),
and note that —p is in NNIL. It is well known that —p v ——p is not preserved under
taking subframes. (Note, however, that —p v ——p is preserved under taking cofinal
subframes; see, e.g., [1 1, Section 9.4].) So, by Corollary 3.17 it cannot be equivalent
to an NNIL-formula. Thus the class NNIL does not contain ONNILLI. We will see later
that ONNILLI also does not contain NNIL.
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Proposition 4.5
(1) Let M = (X, R, V) and N = (Y, R, V') be two rooted intuitionistic (Kripke
or descriptive) models, let f : X — Y be a surjective monotonic map, and
let @ € ONNILLI such that IR |= ¢. Then It = ¢.
(2) Let § = (X,R) and & = (Y, R') be two rooted intuitionistic (Kripke or
descriptive) frames, and let f : X — Y a monotonic map from & onto &.
Then, for each ¢ € ONNILLI, if & = @, then & = .

Proof (1) This is proved by induction on the form of ¢. For the base case, let us
consider a simple ONNILLI-formula ¢ = ¥ — x with ¥ € NNIL and y € BASIC,
and let N = ¢ — y, thatis, x =y — y forall x € X. Now assume that yR’y’ and
y" E . Note that because f is surjective, all elements of Y are of the form f(x)
for some x € X. So, assume that y’ = f(x). Then f(x) E . By Proposition 4.1,
we know that x = . But then, since x = ¥ — y, we have x = y. As y € BASIC,
we can, as we noted above (see (2)), conclude that y’ = y. Hence, y = ¢ — .
Thus, N = ¢ — .

The induction step for conjunctions is straightforward. For the induction step
for disjunctions it is necessary to require that the models are rooted. Indeed, let
@ = ¥ V x, and let the induction step hold for ¥ and y. Furthermore, let r and r’ be
the roots of It and N, respectively. Then M = ¢ v y implies that r = Y orr = y.
Then, since f(r) = r’, by the above, we have r’ =y orr’ = y. Sor’ = ¢ Vv y and
therefore N = ¢ V y.

(2) The proof is similar to the proof of Corollary 3.6 and follows immediately
from part (1). O]

In general, this proposition holds definitely only for rooted models, and not for truth
in a node. Also surjectivity is an essential feature. Let us give an example to show
that rootedness is needed for the result.

Example 4.6  Consider a nonrooted model Mt which is the disjoint union of two
linear 2-point models M, and N5, M consisting of two nodes with colors 00 and
10, and M, consisting of two nodes with colors 00 and 01. Furthermore, consider
the 3-point model N consisting of a root of color 00 and successors with colors 01
and 10 (see Figure 1). Wehave Nt = (p — q) V(¢ — p) because Ny Eq¢ — p
and N, | p — ¢. But although there is an obvious surjective monotonic map from
M to N, clearly N F (p — q)V (g — p) in spite of the fact that (p — q) V(¢ — p)
is even in the intersection of NNIL and ONNILLI.

10 01 10 01
00 00 00
RIS m, n

Figure 1
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Definition 4.7
(1) If ¢ is an n-color, we write Y. for p1 A= A pr > q1 V- Vgmif p1... pr
are the propositional variables that are associated with 1 in ¢ and ¢y ...¢qm
are the ones that are associated with 0 in c.
(2) If M is colorful and w € W, we write Colors(t,,) for the formula
prop(w) A \{¥. | ¢ is not the color of any point in M, }.
(3) If I = (W, R, V) is finite and colorful, we let

y(In) = \/{Colors(imw) — Pw, VoV Du | we W, wy,...,wy, all

immediate successors of w}.

(4) Let % be a finite rooted frame, and let M = (F, V') be the colorful model
corresponding to &. We define

Y(&) = y(M).
We call y(§) the stable formula of .

Note that (%) is an ONNILLI-formula.

Lemma 4.8 Let W\t = (W, R, V) be a colorful model, and let 1t = (W', R, V')
be a model.

(1) The formula V. expresses that the color ¢ does not occur; more precisely, for
u' € W' we have that u' = V. if and only if, for all v/ with u' R'v', v' does
not have color c.

(2) The formula Colors(MMy,) expresses that only the colors in My, occur; that
is, if w € W andu' € W, then u' |= Colors(My,) if and only if, for all v’
with u’' RV, v’ has the color of some node in My,.

(3) Let w,w’ € W such that wRw’, and let u' € W’. Then u’ |= Colors(Iy,)
implies that for any v/ € W', u'R'v' and v' = prop(w’) if and only if
v" = Colors(Myy).

4) Let w e W, u' € W/, and u’ [£ Colors(My) — py, V-V puw,, where
w1, ..., Wy are the immediate successors of w in . Then there is v/ € W'
such that ' Rv’, v' = Colors(IMy,) and col(v') = col(w).

Proof  Assertion (1) is obvious. For (2) just note that the presence of prop(w)
means that only colors > col(w) occur, and then apply (1).

For (3) apply (2), and note that then v’ | Colors(My,) if and only if v’
Colors(My,) and col(v’) > col(w’) (using for the «<-direction the fact that I is
colorful) if and only if v’ = Colors(#My,) and v’ |= prop(w’).

(4) Let u’ B~ Colors(My) = pw, V-V Pu,,. Then there is v' € W’ with u’ Rv’
such that v’ |= Colors(My,) and v' £ py,, V+++V py,,- By (2), col(v’) should occur
inMy. As v’ £ pw,. ..., Pwy. this color must be the color of w. O

It may be good to stress the fact that truth of Colors(t, ) in a node u does not
imply that all colors in 9t,, occur above u, but only that different colors do not occur
above u.

Lemma 4.9 Let §§ be a finite rooted frame. Then & F v(F§).

Proof It is easy to see that if I is a finite rooted colorful model with a root r,
then r £ Colors(My) — pw, V -+ V pu, foreach w € W and w;,..., wy, all
immediate successors of w. The result follows from Lemma 4.8(4). O]
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Theorem 4.10  Let § = (W, R) be a finite rooted frame, and let & = (W', R’)
be a rooted (Kripke or descriptive) frame. Then

& £ y(F) if and only if there is a surjective monotonic map from & onto .

Proof <«: Let ¥ and & be as in the above assumptions of the theorem, and
assume that there is a surjective monotonic map from & onto %. Furthermore, let
IR be a colorful model on &. By Definition 4.7, y(F) = y (). By Lemma 4.9,
& F y(&). Since y (%) is an ONNILLI-formula, by Proposition 4.5(2), it is preserved
under monotonic images of rooted frames. Thus, & F y(F).

=: Let M = (W/,R',V’) be a model on & such that N,u £ y(F) for
some u € W'. Then u has, for each element w € W, a successor u’ that makes
Colors(My,) true and py, ..., Pw,, false if py,,..., pw,, are the immediate suc-
cessors of w. This means, by Lemma 4.8(4) and 4.8(2), that u’ has the color of
w and its successors have colors of successors of w. Let U be the set of all such
w’s, thatis, U = {u’ | 3w € W' E Colors(fMy) and col(u’) = col(w))}. By
Lemma 4.8(2) and Lemma 4.8(3), U is an upset of W’.

Let r be the root of . Defineamap f : W — W by

w, ifu e U,u = Colors(ty,) & col(u) = col(w),

r, otherwise.

f(u)={

Because each point of W has a distinct color, f is well defined.

If u’,v" € U are such that u’Rv’, then there are u,v € W such that col(u’) =
col(u) and col(v’) = col(v). By Lemma 3.9, we have uRv. So f(u’)Rf(v') and
f is monotonic on U. Mapping the other nodes to the root of ¥ preserves this
monotonicity.

We already saw that, for each w € W, there exists ¥ € U such that u =
Colors(My,) and col(u) = col(w). Thus, f(u) = w and f is also surjective.
So, f is monotonic and surjective.

If 9N is a descriptive model, it remains to prove that f is admissible. For that
it is sufficient to prove that, for each w € W, f~!(R(w)) is definable, that is,
V'(¢) for some ¢. But that is straightforward. If (') = w for the root r’ of
&, it is trivial: f~1(R(w)) = W’. Otherwise, f~1(R(w)) = V'(Colors(My)).
Namely, if f(#) = w, then u = Colors(My,), and, if f(u) = w’ for some w’ with
wRw’, then u | Colors(IM,,), so u = Colors(IM,,) as well. On the other hand,
if u = Colors(IM,,), then, by Lemma 4.8(2) and Lemma 4.8(3), for some w’ with
wRw’, u = Colors(IM,,/) and col(u) = col(w’), so that f(u) = w’. O

If we define an order < on (Kripke or descriptive) frames by putting § < & if F is a
monotonic image of &, then the formula y (F) becomes a frame-based formula for <.
Note that, similarly to subframe formulas, Theorem 3.16(2) is always satisfied by <
(see [4]). Thus, an intermediate logic L is axiomatizable by these formulas if and
only if DIF(L) is a <-downset. Intermediate logics axiomatizable by these formulas
are called stable logics. Therefore, a logic L is stable if and only if DF(L) is closed
under monotonic images. Formulas closed under monotonic images are called stable
formulas. There are continuum many stable logics and all of them enjoy the finite
model property (see [4]). Now we are ready to prove our main theorem resolving an
open problem of [4] on syntactically characterizing formulas that axiomatize stable
logics.
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Theorem 4.11

(1) An intermediate logic L is stable if and only if L is axiomatized by
ONNILLI-formulas.

(2) The class of ONNILLI-formulas is (up to frame equivalence) the class of all
stable formulas.

Proof (1) As each y(&) is ONNILLI, all stable logics are axiomatized by
ONNILLI-formulas. By Proposition 4.5(2), every ONNILLI-formula is preserved
under monotonic images. Therefore, if L is axiomatized by ONNILLI-formulas,
DI (L) is closed under monotonic images. So L is stable.

(2) By Proposition 4.5(2), every ONNILLI-formula is preserved under mono-
tonic images. So ONNILLI-formulas are stable. Now suppose that ¢ is pre-
served under monotonic images. Then IPC 4 ¢ is a stable logic. Stable log-
ics are axiomatized by the formulas y(%). So there exist §1,..., &, such that
IPC + ¢ = IPC + Aj_; 7(%:). Note that n € w, otherwise IPC + ¢ is infinitely
axiomatizable, which is a contradiction. Each y(&;) is ONNILLI, so Aj_; y(F:) is
also ONNILLI. Thus, ¢ is frame-equivalent to an ONNILLI-formula and ONNILLI is
(up to frame equivalence) the class of formulas closed under monotonic images. [

Example 4.12 It is now easy to construct NNIL-formulas that are not equivalent to
an ONNILLI-formula. Note that the logic BD,, of all frames of depth n for eachn € w
is closed under taking subframes. Thus, it is a subframe logic and hence by Corol-
lary 3.17 is axiomatizable by NNIL-formulas. On the other hand, it is easy to see that
there are frames of depth n having frames of depth m > n as monotonic images. So
BD, is not a stable logic. Therefore, it cannot be axiomatized by ONNILLI-formulas.
Thus, the class of ONNILLI-formulas does not contain the class of NNIL-formulas
(up to frame equivalence).

Example 4.13 We list some more examples of stable logics. Let LC,, be the logic
of all linear rooted frames of depth < n, let BW,, be the logic of all rooted frames
of width < n, and let BTW,, be the logic of all rooted descriptive frames of cofinal
width < n. (For the definition of width and cofinal width, we refer to [11].) Then,
for each n € w, the logics LC,, BW,,, and BTW,, are stable. (For the proofs, we refer
to [4].)

It remains an open problem whether ONNILLI-formulas are exactly the ones that are
preserved under monotonic maps of models in the sense of Proposition 4.5(1).

We finish here by mentioning the connection to modal logic. Modal analogues
of subframe formulas were defined by Fine [13]. Analogues of (A, —)-canonical
formulas for transitive modal logics were investigated by Zakharyaschev (see [11,
Chapter 9] for an overview). An algebraic approach to these formulas was developed
in G. Bezhanishvili and N. Bezhanishvili [2] and generalized to weak transitive logics
by these authors in [3]. Modal analogues of (A, V)-canonical formulas are studied in
[5], where modal analogues of stable logics are also defined. N. Bezhanishvili and
Ghilardi [9] show that modal stable logics have nice proof-theoretic properties. In
particular, they have the bounded proof property.

It still remains open how to define modal analogues of NNIL- and ONNILLI-
formulas for transitive modal logics and whether these formulas axiomatize all
subframe and stable transitive modal logics, respectively. We note that a syntactic
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characterization of formulas axiomatizing subframe transitive modal logics is a
long-standing open problem (see [11]).

(1]

(2]

(3]

(4]

(3]
(6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

(14]

Note

Some authors call such maps bounded morphisms (see, e.g., Blackburn, de Rijke, and
Venema [10]).
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