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Logical Consequence and First-Order Soundness
and Completeness: A Bottom Up Approach

Eli Dresner

Abstract What is the philosophical significance of the soundness and com-
pleteness theorems for first-order logic? In the first section of this paper I raise
this question, which is closely tied to current debate over the nature of logical
consequence. Following many contemporary authors’ dissatisfaction with the
view that these theorems ground deductive validity in model-theoretic validity, I
turn to measurement theory as a source for an alternative view. For this purpose
I present in the second section several of the key ideas of measurement theory,
and in the third and central section of the paper I use these ideas in an account of
the relation between model theory, formal deduction, and our logical intuitions.

1 Logical Consequence and First-Order Soundness and Completeness

The soundness and completeness theorems for first-order logic prove the existence of
two converse inclusion relations: of the standard first-order deductive proof relation
within first-order model-theoretic validity, and vice versa. As such their mathemati-
cal content is straightforward and not a matter of interpretation or dispute. However,
when it comes to the extra-formal content that formal logicians and philosophers
read into these theorems things are different. The interpretation of first-order sound-
ness and completeness theorems is closely related to the philosophical analysis of
the concept of logical consequence: any position with respect to the latter issue (the
nature of logical consequence) will have implications to the former. Therefore, the
ongoing controversy concerning logical consequence implies disagreement with re-
spect to the significance of first-order soundness and completeness as well.

As noted by Etchemendy [4], Shapiro [17], and others, there is a received view
on these matters that is given explicit expression in many logic textbooks and im-
plicit expression in standard terminology. According to this received view our in-
tuitive notion of logical consequence was successfully captured formally through
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Tarski’s 1936 model-theoretic analysis. This conception has obvious consequences
to the way first-order soundness and completeness theorems are viewed: if model-
theoretic validity captures most directly and completely our intuitions with respect
to logical consequence, then the degree to which deductive systems (based on first-
order languages) coincide with these intuitions can be assessed by their relation to
the Tarskian notion. The names commonly assigned to these theorems express very
clearly this view. Thus the inclusion of the deductive consequence relation within
model-theoretic consequence is called soundness, because it supposedly confirms the
validity of formal proofs by showing that they are all model-theoretically valid. Simi-
larly, the inverse inclusion is called completeness, because it shows that the deductive
system is complete with respect to intuition—as expressed by model-theoretic valid-
ity. And even the very terms semantic and syntactic consequence that are assigned,
respectively, to the model-theoretic and deductive formal relations, imply these hi-
erarchical relations: logical consequence has to do with meaning (even if only with
formal aspects of meaning), and therefore a formalism that is labeled semantic is
immediately granted predominance in capturing this notion.

This received view has been subject to many attacks and criticisms, as well as to
staunch defense and friendly suggestions for change and improvement. Here are
several of the main trajectories of the debate over the Tarskian notion of conse-
quence, together with their implications to the standing and interpretation of first-
order soundness and completeness theorems. (No claim is made here that the list
below exhausts the extant positions on the question of logical consequence, or that it
provides a full exposition of the positions that appear in it.)

1.1 Proof-theoretic accounts of consequence The major opposition to the
Tarskian account of consequence (and later semantic accounts in its mold) has
traditionally come from proof-theoretic, so-called constructivist conceptions of logic
(Prawitz [15], Martin-Löf [13]). Such conceptions relegate proof rather than truth
the central role in an account of logical consequence, tying this notion to human
epistemic and cognitive capabilities. The obvious consequence of such a perspective
is that formal deduction systems are conceived as the closest in form and spirit to
the philosophical analysis of the intuitive notion, and therefore it is not required
nor possible to justify these systems through their association with the Tarskian
formalism which is truth-theoretic in its orientation.

Many of those who belong to this camp would probably simply show disinterest
in classical first-order logic and the theorems associated with it, preferring alternative
formal systems (such as intuitionistic systems) that are in tune with their philosoph-
ical convictions. Those who do give attention to first-order deductive and model-
theoretic systems and the relations thereof will reject the view implicit in current ter-
minology. From their perspective the soundness theorem certainly does not justify
the deduction rules: if anything, it consists in a completeness theorem, showing that
the model-theoretic consequence relation does not miss any of the more intuitively
and philosophically robust pronouncements of the deductive system. Similarly, what
is usually known as the completeness theorem will be termed according to this op-
posite conception a soundness theorem, ensuring that all model-theoretically valid
inferences do not go astray, that is, that they do not characterize an argument as
valid without it being so characterized by the more trustworthy deductive system
(Shapiro [17]).
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An obvious result of this exercise of identity-switching is that the terms involved
are value-laden, and therefore are sensitive to philosophical outlook and possibly also
to context. (That is, it cannot be ruled out that in one context the deductive system
in question could be viewed as closer to intuition than the model theory assigned to
it, and that therefore the assessments of soundness and completeness would be along
the lines just mentioned, and in another context things will be the other way around
and standard usage of the terms “soundness” and “completeness” would be in place.)
Alternatively, it can be explicitly decided that “soundness” and “completeness” al-
ways indicate the by-now accepted relations between deduction and model-theoretic
systems. In this case, however, care needs to be taken not to read into them any
superfluous extra-formal content.

1.2 Etchemendy’s criticism of Tarskian model-theoretic semantics In a much de-
bated book Etchemendy [4] accepts the general semantic outlook on logical con-
sequence, according to which the consequence of a valid argument must be true
in all possible cases in which the premises of the argument are true. However, by
Etchemendy’s lights Tarski’s formalism (both as expressed in Tarski’s original work
and as used today) does not adequately capture this outlook. Tarskian semantics are
interpretational, in that in order to decide if an argument is valid or not they enumer-
ate different ways in which the nonlogical terms appearing in it can be interpreted.
The notion of logical consequence (the intuitive, philosophically defensible notion),
on the other hand, is representational: it keeps the meaning of the terms (both log-
ical and not) fixed, and (implicitly) quantifies over possible ways the world might
have been. The interpretational mechanism does not coincide with representational
intuition, and therefore it fails both intentionally (as a formal rendering of the correct
analysis of the notion) and extensionally (i.e., in the classification of valid arguments
and logical truths).

It is beyond the scope of this paper to pronounce judgment on the historical
question whether Tarski’s original work was indeed interpretational (in particular,
whether Tarski had in mind a single domain of quantification or varied such do-
mains). Much has been written about this question (Sher [19], Mancosu [12]). As
for contemporary model-theoretic systems, the discussion in Section 3 below will
bear upon their status vis-à-vis Etchemendy’s distinction. For now let it only be
noticed that if Etchemendy’s position is accepted, then the soundness and complete-
ness theorems for first-order logic change their orientation in a way similar to that
described in the previous clause, albeit for different reasons. If Tarskian semantics
is misguided, then certainly we should trust it less than we do standard first-order
deductive systems. It follows that the completeness theorem for first-order logic
should be thought of as proving the soundness of Tarski’s suspect system, by in-
cluding its pronouncements within those of the more trustworthy deductive system.
Similarly, the soundness theorem turns out to be a proof of the completeness of the
model-theoretic system with respect to the deductive one. In both cases, the deviant
interpretation of the theorems does not arise from wholehearted trust in deduction.
Rather, along with Tarski and unlike constructivist logicians, Etchemendy holds that
truth-theoretic semantics should foot the bill for the notion of logical consequence. It
is just that extant interpretational semantics does not do so adequately, and therefore
we are left for the time being to rely on first-order deductive systems.



78 Eli Dresner

1.3 Widening the bounds of logic Yet another varied and important group of
thinkers upholds the general model-theoretic framework initiated by Tarski [23], but
rejects the view that first-order logic should be given special status as the real, or core
logic. Tarski himself is noncommittal on this issue in his 1936 paper, as indicated by
his remark that he is unable to defend the choice of logical constants made in the pa-
per. In later writings Tarski [24] does present a substantive conception of the logical
terms, saying that they are those that are insensitive to permutations over the domain
of discourse, and Sher [20] follows this direction and suggests an extension of logic
to all terms that satisfy this requirement. Those who promote second-order logic as
a legitimate (and much stronger) alternative to first-order systems may be placed in
this camp as well (Shapiro [18]), as they expand the bounds of logic on the basis
of semantic considerations. And even more radical suggestions to change or replace
classical first-order logic can be enumerated here, as long as they are model-theoretic
rather than deductive in their orientation. For example, Hintikka and Sandu’s [10] IF
logics break away from classical logic in many respects; in particular, their seman-
tics is game- rather than model-theoretic. However, they may be said to belong to
the domain delineated here due to their all-out emphasis on semantic considerations.

Conceptions of this kind adhere to (a generalized version of) what was labeled
above as the received view of the relations between formal proof systems and for-
mal semantics. Hence they provide grounds for continued interest in soundness
theorems—albeit such theorems that relate their semantics of choice to adequate
proof systems (and not the soundness theorem for first-order logic, which loses its
pride of place). And as for completeness theorems, in many of these contexts it can
be shown that no axiomatizable deductive system is complete with respect to the
chosen semantics. This state of affairs demotes the calibration of the semantics with
some deductive system from its status as an objective that should be aimed at and
pursued and leaves deduction behind as a necessarily crippled tool through which to
follow the lead of the semantic formalism.

1.4 Shapiro’s “eclectic attitude” to logical consequence In a recent article
Shapiro [17] presents deductive and model-theoretic formal systems as representing
distinct strains in our pretheoretic intuitions about logical consequence. According
to his view the deductive framework expresses the intuition that logic is epistemi-
cally grounded, and the model-theoretic framework represents intuitions that ground
logic in modality. Neither of these two strains of intuition (that are not necessarily
the only ones) is prior to (or more basic than) the other. Each of the two kinds of
formalism just mentioned should be judged not on the basis of its correspondence
with the other, but rather solely on its success in capturing the intuitive notion it
arises from. Thus Shapiro suggests a pair of theses with respect to classical formal
deductive systems, namely, that they are correct and adequate with respect to the
epistemic intuition they represent, and a similar pair concerning the relation between
model theory and modal intuition. (The term thesis, as opposed to theorem, indicates
that the relations in question are between an intuitive notion and a formal one, as
is the case of Turing’s celebrated thesis concerning computability.) Correctness
and adequacy are the analogues of soundness and completeness, and the change in
terminology should help distinguish these relations, that obtain (or not) between an
intuitive notion and a formal one, from the standard relations between two formally
defined notions.
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According to Shapiro’s outlook, then, the philosophical burden that is typically
assigned to the soundness and completeness theorems is shifted to the shoulders of
the above-defined theses. This is not to say, though, that the theorems are devoid
of interest and function. Rather, they are viewed as calibrating between two self-
standing strains of intuition, albeit through the mediation of the formal renderings of
these two strains. As such they are claimed by Shapiro to help prove the two less
obvious of the four theses enumerated above (on the basis of the two other ones, that
are argued for on intuitive grounds).

We saw above four views (or types thereof) of logical consequence and its relation
to first-order soundness and completeness. What is common to all these views is that
they are top-down, in the following sense: they begin with a conception of logical
consequence and derive from it certain consequences with respect to the role and
meaning of the said theorems. This is certainly a reasonable course of thought, but
its weakness is that it leaves untapped what could turn out to be a useful resource—
the particulars of the statement, proof, and use of the theorems. These are not given
rigorous attention by the above-mentioned accounts, but I argue that they might be
of utility in our thinking about the issues involved. Therefore, following the lead of
Floyd [5] I propose to start pursuing in this paper an alternative, bottom-up approach.
That is, I intend to make several observations regarding first the soundness theorem
and then the completeness theorem for first-order logic and derive from these ob-
servations some consequences vis-à-vis the philosophical content of these theorems.
These consequences, in turn, will give rise to an alternative picture of the relation be-
tween model theory, proof theory, and the intuitive notion of logical consequences.

Before this is done, however, there will be an interlude: in the next section I give
a brief exposition of several key notions and ideas in the theory of measurement. The
rationale behind this detour is as follows. The soundness and completeness theorems
can be said to consist in mappings between two structured domains: the set of sen-
tences in a given first-order language structured through the deductive consequence
relation and the same set structured through model-theoretic consequence. (Alterna-
tively, the second domain can be construed as consisting of sets of models, related to
one another set theoretically.) As argued above, the interpretation of these mappings
implicit in the terms “soundness” and “completeness” should not be presupposed,
and hence possible alternatives to it should be looked for. One prominent such al-
ternative can be found in the representational theory of measurement. As will be
elaborated below, in this theory measurement is construed as a mapping between an
empirical domain and a numeric one. Not surprisingly, such measurement theoretic
mappings are conceived of very differently from the logical mappings considered
above. However, it will be argued in Section 3 below that there is some conceptual
affinity between mappings in the two domains, which can shed some light on the
function of the theorems we are concerned with here.

2 Measurement Theoretic Representation

Measurement theory is concerned with the foundations of measurement: What does
numeric measurement—for example, of length, mass or temperature—consist in?
What is required from a certain property to be measurable? What is the relation
between physical objects (or states) and numbers that is claimed to hold by mea-
surement statements? Although the practice of measurement has been in existence
for thousands of years, the study of these questions began only toward the end of



80 Eli Dresner

the nineteenth century, notably by Helmholtz [8]. During the first half of the twenti-
eth century measurement was given further attention and treatment, for example, by
Campbell [3] and Stevens [21]. These earlier efforts were later integrated by Suppes
and his collaborators and presented in a mature form in the Foundations of Measure-
ment [11] as the Representational Theory of Measurement (RTM), which is currently
the most widely accepted view of measurement.

According to RTM measurement consists in a homomorphism, that is, as
structure-preserving mapping, from what is called an empirical relational struc-
ture to a numerical structure. The empirical structure is described and characterized
without any initial appeal to the numbers or to numeric properties whatsoever. It
consists in a class of objects, and several operations and relations defined on these
objects. For example, in length measurement the empirical relational structure
involves qualitative length-comparison and the concatenation operation as two prim-
itives, relating physical objects to each other and induced by empirically legitimate
operations. (Length comparison is affected by placing objects next to each other and
observing which extends the other, and concatenation is realized in the way that is
relevant to length-measurement, that is, by placing the objects one next to the other
in the right way.) Such a structure can be shown to have various formal properties:
for example, in the case of length measurement the comparison relation involved
can be seen to consist in an ordering, the concatenation operation to be commutative
and positive with respect to the ordering relation, and so on. (The sense in which
the relations/operations and their formal properties can be said to be empirical is
debatable. We shall not enter this debate here.)

In some cases these formal properties of the empirical relational structure are
sufficient to prove what is called in measurement theory a representation theorem.
Such a theorem establishes the existence of a structure-preserving mapping from the
empirical structure to the numbers (typically the real numbers)—that is, a function
that assigns a number to each object and numerical relations and operations to their
empirical counterparts in such a way that a given empirical relation holds between
any given array of objects if and only if its numerical counterpart holds between
the numbers assigned by the mapping to these objects. (We can indeed talk here of
a theorem in the strict mathematical sense because only the formal aspects of the
empirical structure are taken into account in the proof of a representation theorem;
their physical concreteness is abstracted away.) The existence of such a mapping is
a necessary and sufficient condition for the applicability of measurement to a given
physical domain—it is what measurement amounts to.

The above-described representation theorem is usually accompanied in any given
context by what is called a uniqueness theorem, a mathematical characterization of
all the possible mappings from the empirical domain to the numbers. (The existence
of one such mapping is already established by the representation theorem, but usu-
ally there is more than one.) A switch from one such mapping to another consists
in scale change, for example, from measurement of length in inches to the metric
system. Uniqueness theorems are of interest partly because in any specific case of
measurement they can help us distinguish between numerical properties and rela-
tions between measures that do represent physical facts in the empirical domain and
such properties and relations that do not. For example, the fact that 20 is two times
10 does represent a physical relation in mass measurement (i.e., that a body assigned
20 units of a given scale has two times the mass of a body assigned 10 units), and
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indeed this relation between mass-measures is preserved by any switch to a differ-
ent mass scale. In temperature measurement, on the other hand, things are not this
way, as attested by the fact that changes in temperature scale (e.g., from Celsius to
Fahrenheit) do not preserve absolute size relations between measures.

A key intuitive aspect of measurement is that it allows us to use our acquaintance
with the domain of the numbers in order to reason about various physical aspects
of the world. RTM captures this aspect of measurement well: the homomorphic
mapping from the empirical domain to the numbers, the existence of which is proved
by a representation theorem, allows us to start with certain objects (or the properties
thereof), reason about their numeric measures, and apply the results of this reasoning
back to the physical world. Swoyer [22] calls this surrogative reasoning.

Note how distinct requirements from the homomorphic mapping give rise to dis-
tinct aspects of surrogative reasoning (Swoyer [22], Mundy [14]). According to RTM
the homomorphism from the physical domain to the numeric one needs to satisfy a
bidirectional requirement (“if-and-only-if”):

(i) whenever an empirical relation holds its numeric counterpart must hold as
well (between the representing numeric measures), and conversely,

(ii) whenever a numerical relation holds its physical counterpart does too.

(As follows from the discussion of uniqueness in the previous paragraphs, clause (ii)
applies only to those numeric relations that are meaningful in the given context.)
The second requirement, that goes backward (against the direction of the mapping
function), ensures that the measurement function yields sound surrogative reasoning:
whatever the numeric representations tell us about the represented domain is correct.
The first requirement entails that the representation is complete: whenever a physical
relation obtains between objects in the domain (a relation that is part of the empirical
relational structure, of course) it will not be missed—its numeric counterpart will
obtain between the numeric representations as well. Also, note that complete rep-
resentation of a given relation is equivalent to sound representation of its negation:
if whenever a physical relation R obtains among objects its numeric counterpart R′

obtains among the numeric measures of these objects, then ipso facto whenever ∼ R′

obtains among numeric measures ∼ R will obtain among the objects these measures
are assigned to.

These observations complete this quick survey of several key ideas in the theory
of measurement. I believe that even before (and also after) it is attempted below to
apply some of these ideas to the domain of logic there is an important lesson to be
gained from the mere juxtaposition of logical soundness and completeness theorems
on the one hand and measurement-theoretic representation theorems on the other
hand. Such juxtaposition shows that there are radically different nonformal types of
content that can be ascribed to mappings from one domain to another. (So far there
were reviewed here two kinds of such content, but of course there can be others.)
Therefore, a pluralistic approach to such mappings is called for: we should be willing
to consider various possible interpretations of every such mapping and accept those
(not necessarily a single one, but rather possibly several) that seem to be most in
accord with intuition and practice.
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3 First-Order Soundness and Completeness Revisited

Let us return, then, to the discussion of logic and take another look at first-order
soundness, and then at first-order completeness. I believe that an obvious observa-
tion is that the soundness theorem for standard axiomatic and natural deduction proof
systems of first-order logic does not deserve its name. As noted by Shapiro [17], the
term “soundness” tells us that the theorem is supposed to give us assurance in the
validity of the inference rules and/or axioms of the said systems. However, it seems
unreasonable to say so: in the proof of the theorem for each of these systems the very
inference rules and axioms whose soundness is at stake are applied (in the metalan-
guage) to the set-theoretic models that are supposed to ground this soundness. As
Girard [6] bluntly puts it, Tarskian semantics (and the soundness theorem as part of
it) consists in a pleonasm.

Note that this is not to say that every so-called soundness theorem—that is, ev-
ery theorem showing that a class of syntactically valid inferences is included in a
class of model-theoretically valid inferences—does not deserve its name. There can
be cases—even for first-order proof systems—where our intuitive confidence in the
deduction system (i.e., the degree to which it is in accord with preformal intuition)
is weaker than our confidence in the model-theoretic semantics (i.e., the degree to
which it captures our intuition). In such cases a soundness proof would relegate (at
least some) of our assurance in the latter to the former. Is there a clear-cut distinction
between cases of the two kinds (that is, of “real” proofs of soundness as opposed to
“bogus” such proofs)? There need not be. Each specific case should be decided on
its own, depending on the intuitive appeal of the two sides involved, on the proof
itself, and possibly on other factors as well. My claim here is only that the proof
of the soundness theorem for standard proof systems of first-order logic disqualifies
it from counting as a real such theorem. If it is of interest at all it is not because it
confers soundness on the proof system.

Also, note that this is certainly not to say that we should jump to the conclusion
that we should in fact think of the soundness theorem as a completeness theorem,
showing that the suspect model-theoretic system covers all the inferences that are
sanctioned as valid by the more intuitively robust proof system, First, as noted by
Shapiro [17], we may have strong intuitions about the intuitive soundness of proof
system(s) in question, but this is not to say that we have similarly strong confidence
in their completeness; arguably we don’t. And second (and more generally), a key
general point of this paper is that soundness and completeness (in the traditional
logical sense) are not the only two options. Thus ruling out one of these options does
not entail the other. By the same coin, the fact that the soundness theorem is not
convincing as a completeness theorem does not imply that it is a soundness theorem
after all. I argue it is neither.

As further (albeit circumstantial) support for rejecting the content of the sound-
ness theorem suggested by its name, consider Tarski’s [23] famous paper in which he
introduces the notion of model-theoretic validity. It is clear that proving the sound-
ness of proof-theoretic validity is not among Tarski’s objectives in this paper: his
complaint against proof-theoretic validity is not that it is not intuitively sound.

So what is the content that can be reasonably assigned to the soundness theorem?
Does the theorem have any intuitive, methodological, or philosophical significance?
I think we should reject the definite article that appears in the first question (and may
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be implicit in the second): there need not be a single label that should replace the
extant one and point to the sentence’s role. Rather, there could be an array of such
roles. Here I want to argue for two, which are related to each other, but there could
be more.

3.1 The soundness theorem as an extension theorem As noted above, in his 1936
paper Tarski does not motivate the introduction of model-theoretic validity by saying
that the intuitive soundness of deductive validity needs further support. Rather, his
complaint against deduction systems is that at least in some cases they do not seem
to capture all valid inferences. This complaint goes hand in hand with his claim that
the model-theoretic machinery expresses in a better way our intuition about validity:
because the model-theoretic formalism is in closer accord with intuition it can, at
least in some cases, capture formally inferences that are intuitively valid but are not
so characterized deductively. (By 1936 Tarski would have known that this is not the
case for first-order logic. Nevertheless, he can (and does) still hold the general claim
with respect to the relation between deductive and model-theoretic systems.)

But before it is examined in each specific case whether model-theoretic validity
does indeed extend deductive validity it must be verified that the former (model-
theoretic) notion does not miss any valid arguments that the latter (deductive) notion
diagnoses as such; otherwise we would not have a case of possible extension, but
rather failure of overlap (or proper inclusion of model-theoretic validity in proof-
theoretic validity). This task is realized by so-called soundness theorems, and, in
particular, by the soundness theorem for first-order logic: it shows that every deduc-
tively valid argument is indeed model-theoretically valid as well. Thus I argue that
we should conceive of the theorem in this way: it provides the required assurance
that the model theory extends proof theory.

One advantage of this interpretation is that it legitimizes the triviality of the sound-
ness proof. The standard interpretation of the theorem, according to which it proves
the soundness of the deductive system on the basis of the model theory, equates
this triviality with circularity: if the inference rules whose soundness needs support
are merely rehearsed in the construction of possible model-theoretic interpretations,
then how can these rules be said to have gained any intuitive support? However, if
it is acknowledged that the theorem involves no pursuit of support, but rather mere
verification of conservation (no loss of valid arguments), then the theorem’s straight-
forwardness becomes unproblematic.

Another related advantage of the suggested outlook is this: it does not represent
our intuitive confidence in the deductive system as weaker than (or dependent on)
our confidence in the model theory, and this without falling into either of two pit-
falls. One pitfall is the simplistic claim that things are the other way around, that is,
that the proof system is the benchmark according to which the model theory should
be judged. We saw earlier that this view is avoided by a refusal to construe the sound-
ness theorem as a completeness theorem. The extension-interpretation goes even fur-
ther in this direction—that is, this interpretation reads the theorem as leaving the door
open for the possibility that model-theoretic validity extends proof-theoretic validity,
and that therefore the latter is not exhaustive. The other pitfall, that Shapiro [17] falls
into, is the radical claim that the deductive system and the model-theoretic one ex-
press completely independent strains of intuition with respect to logical consequence
(see Section 1 above). It is my view that this claim goes too far, and the soundness
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theorem (according to its construal suggested here) supports this view. The theo-
rem shows in a straightforward manner that model-theoretic validity encompasses
deductive validity, and therefore it is unreasonable to say that the former formalism
expresses an intuition that is wholly independent from the one expressed by the lat-
ter. Rather, as will be argued below, the connections between the formal systems and
the intuitions behind them are more complex than either complete independence on
the one hand, or one-sided intuitive dependence of one system upon the other system
on the other hand.

3.2 The soundness theorem as a representation theorem for consistency The
proof of the soundness theorem for standard first-order deductive systems is indeed
almost trivial, but it yields valuable and useful results. One of them (shared by other
soundness theorems) is this: the theorem can be used in the proof that a certain set of
sentences is deductively consistent. The familiar line of reasoning is that if a model
is found where all members of the set are true, then by the soundness theorem they
cannot lead to contradiction—otherwise, there would be a deductively valid argu-
ment that is not model-theoretically valid. Thus the soundness theorem allows us
to use model theory in order to address questions of nonprovability in the deductive
system, which are not afforded a straightforward answer by the system itself. (Note
that it is certainly not claimed here that there exists a procedure (an algorithm) such
that whenever an argument is invalid the procedure can produce a model that attests
to this fact. The undecidability of first-order logic tells us that this is impossible.)
An example from relatively recent literature is Kripke’s new model-theoretic proof
of Gödel’s incompleteness theorem (Putnam [16]): Kripke produces a nonstandard
model of PA in which a sentence S (that is true in the standard model) is false, and
reasons (via soundness) that this sentence is not provable from PA.

Note that this application of the soundness theorem does not depend in any way
on its construal as a soundness theorem, in the standard sense: it is not required
that we view deductive validity as being justified by its remaining within the bounds
of model-theoretic validity for the use of model existence in the proof of deductive
consistency. Rather, it is only required for such use that we appreciate that (i) model
construction, as a proof of model-theoretic invalidity, is in some cases a feasible task,
and that (ii) according to the mapping established by the soundness theorem every
model-theoretically invalid argument is a syntactically invalid one. These two obser-
vations together make it useful and legitimate to use the model-theoretic construction
in order to reason about deductive relations.

I therefore argue that the soundness theorem has a function of a partial measure-
ment-theoretic representation theorem. As noted in the previous section, whenever
each case of a relation R holding in a domain A is mapped into a case of a relation R′

holding in a domain B, this can be viewed as a complete (but not necessarily sound)
representation of R by R′, or a sound (but not necessarily complete) representation
of ∼ R by (∼ R)′. In our case the domains A and B are equal to each other—they
comprise the sentences of the first-order language in question. The relations R and
R′ are (respectively) deductive and model-theoretic validity. And the application of
the soundness theorem considered above shows that it can be usefully construed as
ensuring the sound representation of ∼ R, that is, deductive consistency (invalidity),
by (∼ R)′, that is, model-theoretic invalidity (existence of a countermodel). Thus the
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term “soundness” receives a surprising new interpretation and vindication: the theo-
rem is a soundness theorem not because it ascribes soundness to deductive validity in
virtue of its inclusion within model-theoretic validity, but rather because it ascribes
representational soundness to model-theoretic invalidity because of its inclusion in
deductive invalidity.

The assimilation of the logical case with the measurement theoretic case can be
used to stress again that this interpretation rejects the construal of the soundness the-
orem as founding deductive validity on the basis of model-theoretic validity. Recall
that measurement-theoretic representation consists in a structure-preserving map-
ping between an empirical domain and an abstract, mathematical (numeric) domain.
The former is certainly not viewed as being founded by the theorem on the latter.
Rather, the empirical domain is self-standing and of prior interest, and the mathemat-
ical domain is only used to reason about it. Similarly, the interpretation suggested
here of the soundness theorem as one half of a measurement-theoretic representation
theorem allows us to view deduction as having self-standing and prior interest and
construe the model theory in this case as a vehicle through which we can reason
about it.

Note that it is not my claim that this measurement-theoretic relation between
model theory and deduction exhausts the interplay between these formalisms and
the intuitions that they capture. It is not suggested here that this relation should
just replace the one expressed by the standard name of the theorem. Rather, I argue
(as already stated above) that the relation between the formalisms may involve var-
ious distinct factors and aspects, having to do both with philosophical outlook and
mathematical practice. The foregoing discussion rejected one such aspect (the tra-
ditionally received one) and suggested two others (conservation and representation)
instead, without commitment that they are exhaustive. Indeed, in the discussion of
the completeness theorem below further dimensions of this interplay between the
formalisms will be suggested.

This qualification having been made, it should be noted that the interpretation of
the soundness theorem as (one half of) a representation theorem for syntactic consis-
tency is in accord with various other cases where the association of semantic values
with syntactic entities is made for the same purpose—proof of consistency. One
example is Hilbert and Bernay’s 1918 proof of the consistency of the propositional
calculus (Zach [25]), using assignments of 0 and 1 to formulas and showing that

(i) all axioms get 0 under every assignment,
(ii) all inference rules preserve this property, and

(iii) a formula and its negation cannot be both assigned 0 and therefore cannot be
both provable.

The mechanism is identical to that of standard contemporary soundness proofs for
propositional logic. However, this mechanism is not viewed by Hilbert and Bernays
as grounding syntactic consistency in a more basic truth-theoretic apparatus, but
rather as a means for capturing and proving syntactic relations that are in no need of
further grounding in any way. A different, much newer example, is the apparatus of
Boolean valued models (Bell [2]). These are assigned as interpretations for standard
first-order languages, but certainly without any claim that they stand in closer prox-
imity to our logical intuitions than typical deductive rules for these languages. (For
one thing, the elements of such models are viewed as names, and identity statements



86 Eli Dresner

involving these names (intuitively meaning that they refer to the same object) are as-
signed the elements of a Boolean algebra, as generalized truth values.) Rather, these
models were invented as an alternative presentation of the forcing proof-method used
in set theory, and as such they too play the function of consistency representation,
via soundness: the fact that there exists such a model for a given theory is a proof for
the (more intuitively accessible and significant) fact that this theory is syntactically
consistent.

The upshot of placing the soundness theorem of first-order logic within the con-
text of these two examples is this. First, there cannot be drawn a clear-cut distinction
between so-called merely instrumental semantic assignments on the one hand, whose
objective is to represent aspects of self-standing and possibly also intuitively prior
syntax, and semantic assignments that are “real,” in the sense that they are supposed
to consist in interpretations of the syntax and provide grounding for its axioms and/or
inference rules. Similar semantic formalisms can be interpreted and used in oppos-
ing ways in this respect. And second, the suggested interpretation of a first-order
soundness theorem as one half (the soundness half) of a representation theorem of
deductive consistency is in accord with actual mathematical usage of similar seman-
tic formalisms.

We turn now to the completeness theorem for first-order logic, first proved by
Gödel in 1929. My goal, again, will be to suggest an interpretation of this theorem
that is not bound by a prior philosophical outlook on the intuitive weight of the two
formalisms related by it. Rather, as noted in Section 1, the analysis undertaken here
goes in the opposite direction.

As opposed to the claim made above, that the soundness theorem does not deserve
its name (in its usual construal), I suggest that the completeness theorem does wear
its title rightly, at least in a basic, extensional sense. As stated in Section 3.1 of
the foregoing discussion, in the soundness theorem it is shown that model-theoretic
validity includes deductive validity, and thus the question is left open whether there
is indeed a relation of proper inclusion between the two notions. The completeness
theorem gives a negative answer to this question: the deductive notion is shown
to be complete with respect to the model-theoretic notion. Thus, we have here an
initial construal of the completeness theorem as indeed proving the completeness of
deductive validity with respect to model-theoretic validity. However, this construal is
justified by relating the completeness theorem to the soundness theorem, not by the
presupposition that the model-theoretic framework is more intuitively fundamental.
(This presupposition is not ruled out by this interpretation, though. See below.)

Following this first modest step, I suggest two further interpretations of the theo-
rem, echoing those discussed vis-à-vis soundness but presented in reverse order.

3.3 The completeness theorem as the second half of a representation theorem for
consistency In view of the argument presented in Section 3.2 of the discussion of
the soundness theorem above, it is clear that the completeness theorem for first-order
logic can be viewed as the completeness half of a measurement-theoretic represen-
tation theorem of deductive consistency. If, indeed, it is acknowledged that one role
(possibly among others) played by the model-theoretic formalism is of representing
certain aspects of the deductive system, then the foregoing analysis of the soundness
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theorem can be applied to the completeness theorem as well. According to this anal-
ysis the theorem is not viewed as grounding the intuitive completeness of the deduc-
tive system by showing that it is coextensive with model-theoretic validity. Rather,
what the theorem proves is the representational completeness of model-theoretic
invalidity—that is, the existence of a countermodel—with respect to deductive con-
sistency. The soundness theorem proved the soundness of this representation—that
is, that whenever there is a model for a theory it is consistent—and the completeness
theorem proves the completeness of the representation: whenever there is a deduc-
tively consistent theory there is a model that attests to this fact.

Note that this interpretation is distinct from, but not at odds with, the construal of
completeness suggested in the previous paragraph. The theorem proves that deduc-
tive validity is coextensive with model-theoretic validity, and thereby also allows for
model-theoretic invalidity to completely represent deductive consistency.

Next, I argue that the suggested measurement-theoretic construal of the complete-
ness theorem is in tune with actual mathematical and logical practice—otherwise,
such a construal remains an artificial exercise. For one thing, consider the way the
theorem is stated when it is proved, both by Gödel [7] and later by Henkin [9]. In
both cases the theorem is stated in the very form considered above, namely, as the
claim that every deductively consistent set of sentences of a first-order language has
a model. The fact that it is under this formulation that the theorem is proved is in-
dicative of its significance. We usually do not start with a formal argument that we
know to be model-theoretically valid and use the theorem to find (or as an assurance
that we can find) a deduction that proves it. Rather, we often start with a theory
that is known (or hypothesized) to be deductively consistent and use the theorem as
indicating that there is indeed a model that attests to this fact. An example of such
a consideration can be found following the proof of Gödel’s 1931 incompleteness
theorem: together with the earlier completeness theorem the later result shows that
there are nonstandard models of arithmetic, where the (indirectly) self-referring G is
false.

As was the case in the discussion of soundness, the claim made here with respect
to first-order completeness is not to be understood as applying to completeness the-
orems in general: it is not argued here that any such theorem can be usefully viewed
as the completeness half of a representation theorem of deductive consistency by
model-theoretic invalidity. In some cases the main interest of such a theorem may
be indeed the assurance it yields that model-theoretically valid arguments can de-
ductively (and therefore oftentimes also algorithmically) be reproduced. Rather, the
point made here is of a local nature, namely, that in the case of first-order logic this is
a central way in which the theorem is used and (albeit implicitly) thought of. Some
of the ramifications of this will be considered in Section 3.4 below.

In the same vein, it certainly needs to be acknowledged that the symmetry that
is entailed by the conjunction of the soundness and the completeness theorems, to-
gether with the requirements for representation as presented in Section 2, open the
door for various other claims to the effect that (in)validity in one system represents
(in)validity in the other. It is not argued here that only the representational claims
considered above have formal basis, and that the others do not. Rather, the objectives
of the introduction of measurement-theoretic conceptualization to the discussion of
first-order soundness and completeness were
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(i) to show how talk of representation can fruitfully replace (or be added to) talk
of grounding, and

(ii) to argue that in the cases considered above the formal possibility of intro-
ducing representational concepts is in accord with mathematical practice and
preformal intuition.

An agreement on the first, more general of these two theses can be accompanied
with disagreement on the specific way it was applied here, and/or with different
applications of it elsewhere.

3.4 Completeness as expressive completeness In the foregoing discussion of the
soundness theorem it was argued that reading this theorem as grounding the validity
of the deductive rules in the model-theoretic semantics is misguided: the construc-
tion of models appeals to analogues of these rules in the metalanguage, and there-
fore cannot convincingly be said to intuitively underlie them. This rejection of the
standard hierarchical view of the two systems (i.e., that model theory is intuitively
more fundamental than deduction) carries over to the discussion of completeness.
If the simplistic view that model theory is intuitively more basic than deduction is
rejected, then we cannot read the completeness theorem as simply proving the ade-
quate scope of the deduction rules by showing that these rules are coextensive with
the self-standing and more fundamental model theory.

On the other hand, as was shown above, the proof of the soundness theorem does
not support Shapiro’s [17] claim that the two formalisms express two independent
strains of intuition as regards the question what logical consequence is. Thus I
believe we need a conception of the relation between model theory and deduction
that avoids the Scylla of complete, one-sided dependence on the one hand, and the
Charybdis of complete independence of the two sides on the other. In what follows I
present an outline of such a conception.

First-order predicate logic can be rightly described as a logic of object-talk and
predication-talk. In the atomic formulas of first-order formal languages predicates
are applied to names of objects (or relations are applied to series thereof), and
complex formulas are yielded from atomic ones through the application of the
truth-functional sentential connectives and the quantifiers. The latter too are object-
oriented—they allow us to apply predicates (either simple or complex) to all or some
objects in the given domain of discourse, through the mediation of variables. The
fact that first-order logic is object- (and predication-) oriented is of course given
expression in the rules of typical first-order deductive systems. In a natural deduc-
tion system, for example, these rules tell us how we can introduce and eliminate
quantifiers from formulas, thus capturing formally some of our intuitions concerning
what moves are allowed in reasoning about objects and their properties. By the same
coin, model theory captures in a different fashion the fact that first-order languages
are object- and predication-oriented. The constants and predicate symbols are,
respectively, associated with objects and extensions in any given model-theoretic
interpretation, and the invariable interpretation of the quantifiers expresses their
object-oriented meaning.

But how are these two formal representations of object-oriented talk and concep-
tualization related to each other? Sher [20] answers this question in the following
way, that gives philosophical priority to Tarskian model-theoretic semantics. Ac-
cording to her view, model theory captures through set-theoretical means the fact
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that our world is made up of objects that satisfy (or do not satisfy) various proper-
ties. This so-called formal structure of the world is presented by Sher as independent
of any linguistic description of it. The success of model theory is in that it allows us
to use mathematical means to represent the various combinatorial arrangements (of
objects and properties) that this basic structure makes possible, and thus sift out the
logical concepts and the logically valid arguments. The logical concepts are those
second-order concepts (such as nonemptiness) that for any model are insensitive to
permutations of the objects in the model—this ensures that they appeal only to gen-
eral formal structure that is common to all models, and, supposedly, characterizes the
world. The logical arguments are those arguments in which logical concepts (as de-
fined above) are treated as logical constants (their meaning remains fixed), and which
satisfy the regular model-theoretic requirement for validity (i.e., the consequence of
the argument is true in all interpretations in which the premises are true). On the
basis of this analysis, the roots of which can be found in Tarski’s later writings, Sher
rejects the claim (made by Tarski himself in his 1936 paper) that the choice of logical
constants in first-order languages is arbitrary. She shows that these constants satisfy
the above-stated requirement and argues that the bounds of logic should include fur-
ther concepts (such as finiteness) that satisfy this requirement as well.

I believe that Sher’s analysis of the way model theory captures the formal under-
pinnings of objects talk is correct and valuable. However, I also believe that we can
enjoy the fruit of this analysis without accepting Sher’s presupposition that the for-
mal structure captured by model theory applies to the world as it is, and that therefore
model theory is more fundamental than deduction in accounting for our logical intu-
ition. Instead, I suggest that the structure captured by the model-theoretic apparatus
should be viewed as representing and elaborating object talk: not the most general
formal characteristics of the world as it is, but rather the most general formal char-
acteristics of the way we talk (and think) of the world as being comprised of objects
that satisfy (or do not satisfy) various properties.

Such a change of perspective is of course motivated by a general philosophical
outlook according to which language consists in Nuerath’s famous boat—the frame-
work that our physics, metaphysics, epistemology, and logic cannot escape or tran-
scend. It is certainly not my aim to defend this outlook here: it is at the center of
the linguistic turn in analytic philosophy, and as such has been supported and elabo-
rated by some of the main figures of this tradition (and, of course, attacked by other
prominent members of it). Instead, I want to show how there can be derived from
this outlook a conception of the relation between first-order model theory, deductive
systems, and our pretheoretic logical intuition that is both plausible and in accord
with the observations made above as regards the soundness and completeness the-
orems. If such a conception is seen to be of interest and value it can serve as yet
another source of support of the said general language-oriented outlook.

If model theory is viewed as capturing the structure (or, rather, the possible struc-
tures) imputed on the world by object talk, then both first-order deductive systems
and model-theoretic systems are placed “on the same trajectory,” so to speak: sys-
tems of both types represent formal aspects of the way we talk (and think) of the
world in terms of objects and properties. Deductive systems do so by formally cap-
turing inferential moves involving predication and quantification that we hold to be
valid. In this they may be described as staying relatively close to our natural lan-
guage inferential practices. Model theory goes a step (or several steps) farther: it
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abstracts away from this or that set of inference rules and aims to formally represent
all the possible combinations that are allowed for by our scheme of objectification
and predication. However, in doing so it should not be viewed as probing underneath
language, and therefore going deeper than the deductive systems that represent lin-
guistic inferential practices. Rather, model theory represents in a more general (and
possibly extended) way the formal underpinnings of deduction.

Consider how this perspective is supported by various aspects of the foregoing
discussion of the soundness and completeness theorem for first-order logic. First, it
is in accord with the characterization of the soundness theorem as an extension theo-
rem. Model theory is not needed to provide intuitive grounding for formal deductive
systems—these are intimately tied to our intuition as regards what inferential moves
are valid, and do not need (and cannot get) support from model theory, that simply
rehearses them. Rather, the theorem’s philosophical value is in that it shows that the
more abstract (and possibly more general) representation of object talk is an exten-
sion of the more concrete, deductive representation, and hence does not violate its
pronouncements: whatever is deductively valid is also model-theoretically valid.

Second, the suggested outlook coheres with the claim that the soundness theorem
(which, as has just been said, does not prove soundness in the usual sense) is not
a completeness theorem as well—completeness of the model theory with respect
to the deductive system. The reason is that although the deductive system is not
viewed as in need of support from model theory, still it is viewed as possibly being
inferior to model theory in exhausting our object-oriented notion of validity. This is
because model theory gets at this validity in a more abstract and general way. Thus
the soundness theorem opens the door for the possibility that model theory goes
beyond deduction, that is, that it is able to characterize as valid inferences that are
not so characterized deductively. (Recall that this was Tarski’s proclaimed objective
in defining model-theoretic validity: he did not want to ground deduction, but rather
to go beyond its bounds.) However, note again that such extension is possible not
because model theory describes the world from without the prism of deduction or
language, but rather because it elaborates more generally and abstractly the formal
mechanisms that underlie deduction (and presumably natural language as well).

Third, this view yields an interpretation of the completeness theorem that is in
accord with its title, yet infuses new content into this title, that is in tune with the
foregoing discussion. The theorem does indeed prove that the deductive system is
complete with respect to model theory, but this is of interest and importance not
because model theory invokes more fundamental intuitions with respect to logical
validity. Rather, model theory is shown by the soundness theorem to possibly ex-
tend deductive validity, and the completeness theorem proves that in the first-order
case this possibility is not realized. Therefore, the concrete deductive mechanism
is proved to be equivalent to the abstract model-theoretic one in expressing object-
oriented validity. But this equivalence is of interest and importance, again, not be-
cause the two formalisms are ordered hierarchically in their philosophical strength.
Rather, one is more abstract and therefore seemingly more general, and the com-
pleteness theorem shows that in the first-order case it does not, in fact, extend the
bounds of validity.

Fourth, the suggested framework coheres with the representational content as-
cribed to both the soundness theorem and the completeness theorem. A formalism
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of a higher level of abstraction can indeed be used to represent aspects of a less ab-
stract formalization of a given concept. This is as opposed to the view of model
theory as being intuitively more fundamental, in which case its representational uses
(in the measurement-theoretic sense) are more difficult to account for.

Fifth, note how the position presented here allows for a new perspective on the
history of formal logic from Frege’s Begriffsschrift onward. (In this remark and the
following one I go beyond the foregoing discussion of the soundness and complete-
ness theorems.) The standard construal of model-theoretic validity as more funda-
mental than deduction makes the earlier development of deductive systems look like
a historical accident: formal logic went the wrong (deductive) way, and then turned
to the right (semantic) tracks. The view advocated for here changes this pronounce-
ment. According to this view the model-theoretic route is not distinct and more
fundamental, but rather a more abstract continuation of the deductive outlook. This
way the historical development of formal logic becomes more rational and coherent.
Now admittedly history need not necessarily be rational and coherent—even not the
history of formal logic—but certainly it is not a disadvantage of a philosophical posi-
tion that it helps the intellectual developments in the domain it applies to make more
sense.

Sixth, the suggested construal of Sher’s work allows us to enjoy its above-
described fruit without sharing Sher’s view that the formal structure captured by
model theory (including the added structure suggested by Sher that goes beyond
first-order logic) is Logic, with a capital L. If the structure captured by set theoretic
model theory is not found out there, in the language-independent world, but is rather
extracted and abstracted from language, then it has no priority over other types
of structure that may be extracted and abstracted from language, possibly through
other mathematical means. One can (and should, I think) accept the centrality of
object talk in our language and thought, and therefore accept the centrality of set-
theoretically analyzed structure in our intuitive notion of logic, but accepting these
claims can (and should, I think) go hand in hand with a view that the bounds of logic
are vague and contextual, and may reasonably include other kinds of structure. Thus
the outlook presented here leaves the doors of logic open for the multitude of formal
systems that are currently called logics. This so-called logical pluralism (Beall and
Restall [1]), that respects actual pluralistic usage of the term “logic,” seems to me as
yet another advantage of this position.

I claim to have thus fulfilled the promise of a bottom-up approach to the issue of
logical consequence. On the basis of a series of observations as regards the content
and proof of the soundness and completeness theorems for first-order logic there was
presented here a conception of the intuitive, philosophical, and historical interplay
among model theory, deductive systems, and pretheoretic logical intuition. As al-
ready noted above, the general framework underlying this conception can be applied
to the discussion of other logical systems and the soundness/completeness theorems
that can (or cannot) be proved for them, although the results of such an application
need not be identical to those reached here.
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