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A Note on Majkić’s Systems

Hitoshi Omori and Toshiharu Waragai

Abstract The present note offers a proof that systems developed by Majkić are
actually extensions of intuitionistic logic, and therefore not paraconsistent.

1 Introduction

In [3], Majkić developed two hierarchies of “paraconsistent” logic called Zn and
CZn (1 ≤ n < ω), which are variations of da Costa’s hierarchy Cn (cf. da Costa
[2]). As is mentioned in [3], this was motivated by the lack of “a kind of (relative)
compositional model-theoretic semantics” (cf. [3, p. 404]) for da Costa’s systems.

Now, the aim of the present note is to prove the following two facts.

Fact 1.1 Two hierarchies Zn and CZn are not actually a hierarchy in the sense that
for any i 6= j , Th(Zi ) = Th(Z j ) and Th(CZi ) = Th(CZ j ) hold, where Th(S) stands
for the set of theorems in a system S.

Fact 1.2 Systems Zn and CZn are not paraconsistent, but instead they are extended
systems of intuitionistic propositional calculus.

These will be proved by giving a simple axiomatization for Zn and CZn which is
different from the original one.

2 Formulation of Zn and CZn

We shall first revisit the systems Zn and CZn . First, the positive part of these systems
is intuitionistic; that is, it consists of the following axiom schemata and a rule of
inference (we shall refer to this system as IPC+) :
(1) A ⊃ (B ⊃ A)
(2) (A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C))
(3) (A ∧ B) ⊃ A
(4) (A ∧ B) ⊃ B
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(5) A ⊃ (B ⊃ (A ∧ B))
(6) A ⊃ (A ∨ B)
(7) B ⊃ (A ∨ B)
(8) (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C))

(MP)
A A ⊃ B

B
.

In addition to the system IPC+, Zn has some axiom schemata, which are related to
negation, but before stating them we need the following definition as it is done in da
Costa’s systems.

Definition 2.1 Let A be a formula and 1 ≤ n < ω. Then we define A◦, An, and A(n)

as follows:

A◦
=def ¬(A ∧ ¬A)

An
=def A

n︷ ︸︸ ︷
◦◦· · ·◦

A(n)
=def A1

∧ A2
∧ · · · ∧ An .

Remark 2.2 Note that the definition given by Majkić in [3, p. 403] is inaccurate.
Here we have adopted the original definition given by da Costa in [2, p. 500].

With the help of the above definition, we obtain the system Zn for each n by adding
the following schemata to the system IPC+.
(11) B(n)

⊃ ((A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A))

(12) (A(n)
∧ B(n)) ⊃ ((A ∧ B)(n)

∧ (A ∨ B)(n)
∧ (A ⊃ B)(n))

(9b) (A ⊃ B) ⊃ (¬B ⊃ ¬A)
(10b) 1 ⊃ ¬0, ¬1 ⊃ 0
(11b) A ⊃ 1, 0 ⊃ A
(12b) (¬A ∧ ¬B) ⊃ ¬(A ∨ B)

Finally, the hierarchy CZn can be obtained by adding the following formula:

(13b) ¬(A ∧ B) ⊃ (¬A ∨ ¬B).

Remark 2.3 Note here that 0 and 1 are considered as contradiction and tau-
tology nullary logic operators (constants), respectively, in the present system
(cf. [3, p. 412]).

In the following section, we shall give another formulation of Zn and CZn .

3 Another Formulation of Zn and CZn

We now consider systems which are inferentially equivalent to Zn and CZn .

Definition 3.1 Let � be a system which consists of the following axiom schemata
in addition to IPC+:
(9b) (A ⊃ B) ⊃ (¬B ⊃ ¬A)
(10b) 1 ⊃ ¬0, ¬1 ⊃ 0
(11b) A ⊃ 1, 0 ⊃ A .

Also, we shall refer to the extended system of � enriched with the following axiom
scheme as C�:



A Note on Majkić’s Systems 505

(13b) ¬(A ∧ B) ⊃ (¬A ∨ ¬B) .

Remark 3.2 It might be curious why we refrain from referring to the system in-
troduced above simply as Z , without the subscript n. The reason is that since there
already is a system of paraconsistent logic called Z studied in Béziau [1], we wanted
to avoid any misunderstanding.

Now we shall prove some theses of �. Note that several theses, listed below, can be
proved in IPC+:
(T1) A ⊃ A
(T2) (A ⊃ (B ⊃ C)) ⊃ (B ⊃ (A ⊃ C))
(T3) (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))
(T4) (A ⊃ (B ⊃ C)) ⊃ ((C ⊃ D) ⊃ (A ⊃ (B ⊃ D)))
(T5) ((A ∧ B) ⊃ C) ⊃ (A ⊃ (B ⊃ C))
(T6) (A ⊃ (B ⊃ C)) ⊃ ((A ∧ B) ⊃ C)
(T7) (A ∧ B) ⊃ (B ∧ A) .
We shall make use of these in the proof of the following proposition.

Proposition 3.3 The following theses are provable in �:
(T8) A ⊃ (¬A ⊃ B)
(T9) (A ⊃ 0) ⊃ ¬A
(T10) ¬(A ∧ ¬A)
(T11) (A ⊃ (B ∧ ¬B)) ⊃ ¬A
(T12) (¬A ∧ ¬B) ⊃ ¬(A ∨ B) .

Proof We can prove the proposition as follows:

For (T8):
1. (1 ⊃ A) ⊃ (¬A ⊃ ¬1) (9b)
2. A ⊃ (1 ⊃ A) (1)
3. A ⊃ (¬A ⊃ ¬1) 1, 2, (T3), (MP)
4. ¬1 ⊃ B (10b), (11b), (T3), (MP)
5. A ⊃ (¬A ⊃ B) 3, 4, (T4), (MP)

For (T9):
1. (A ⊃ A) ⊃ 1 (11b)
2. 1 ⊃ ¬0 (10b)
3. (A ⊃ A) ⊃ ¬0 1, 2, (T3), (MP)
4. ¬0 3, (T1), (MP)
5. (A ⊃ 0) ⊃ (¬0 ⊃ ¬A) (9b)
6. ¬0 ⊃ ((A ⊃ 0) ⊃ ¬A) 5, (T2), (MP)
7. (A ⊃ 0) ⊃ ¬A 4, 6, (MP)

For (T10):
1. ((A ∧ ¬A) ⊃ 0) ⊃ ¬(A ∧ ¬A) (T9)
2. (A ∧ ¬A) ⊃ 0 (T8), (T6), (MP)
3. ¬(A ∧ ¬A) 1, 2, (MP)

For (T11):
1. (A ⊃ (B ∧ ¬B)) ⊃ (¬(B ∧ ¬B) ⊃ ¬A) (9b)
2. ¬(B ∧ ¬B) ⊃ ((A ⊃ (B ∧ ¬B)) ⊃ ¬A) 1, (T2), (MP)
3. (A ⊃ (B ∧ ¬B)) ⊃ ¬A 2, (T10), (MP)
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For (T12):
1. ((A ∨ B) ∧ (¬A ∧ ¬B)) ⊃ 0 (T8), (T6), (8), (MP)
2. ((¬A ∧ ¬B) ∧ (A ∨ B)) ⊃ 0 1, (T7), (T3), (MP)
3. (¬A ∧ ¬B) ⊃ ((A ∨ B) ⊃ 0) 2, (T5), (MP)
4. (¬A ∧ ¬B) ⊃ ¬(A ∨ B) 3, (T9), (T3), (MP)

�

Remark 3.4 It should be noted that IPC+ together with (T8) and (T11) give a for-
mulation of intuitionistic propositional calculus. Therefore, � contains intuitionistic
propositional calculus as its subsystem. In other words, � is an extension of intu-
itionistic propositional calculus.

Making use of this proposition, we can prove the following theorem.

Theorem 3.5 For each n, Zn and CZn are inferentially equivalent to � and C�,
respectively.

Proof We shall first consider the systems Zn and �. It is obvious that � is a sub-
system of Zn , so it would be sufficient to show that Zn is a subsystem of �. For this
purpose, we need to prove that axioms (11), (12), and (12b) are theses of �. But
this is an immediate consequence of the previous proposition. As for the inferential
equivalence of CZn and C�, just add (13b) to both Zn and �. �

Remark 3.6 Therefore, combining Remark 3.4 and Theorem 3.5, we conclude that
systems Zn and CZn are not paraconsistent but they are extensions of intuitionistic
propositional calculus.
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