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Abstract Elementary Classes with
Löwenheim-Skolem Number Cofinal with ω

Gregory M. Johnson

Abstract In this paper we study abstract elementary classes with finite charac-
ter and Lowenheim-Skolem number κ , where κ is cofinal with ω. We generalize
results obtained by Kueker for κ = ω. In particular, we show that K is closed
under L∞,κ -elementary equivalence and obtain sufficient conditions for K to be
L∞,κ -axiomatizable. In addition, we provide an example to illustrate that if κ is
uncountable regular then K is not closed under L∞,κ -elementary equivalence.

1 Introduction

Kueker [7] recently showed that an abstract elementary class with Löwenheim-
Skolem number κ implies closure under L∞,κ+ -elementary equivalence. In addition,
Kueker proved that the assumption of finite character along with Löwenheim-Skolem
number ω implies closure under L∞,ω-elementary equivalence and noted the ne-
cessity of finite character. In this paper we investigate finite character for abstract
elementary classes (K, ≺K) of uncountable Löwenheim-Skolem number κ . We
show that if the cofinality of κ is ω then K is closed under L∞,κ -elementary equiv-
alence, and we obtain versions of some of Kueker’s other results on categoricity
and axiomatizability. On the other hand, if κ is a regular uncountable cardinal, we
show that an example due to Morley has finite character but is not closed under
L∞,κ -elementary equivalence.

Abstract elementary classes were introduced in the 1980s by Shelah [9] as gen-
eralizations of elementary classes. They consist of a class of models along with a
notion of strong substructure and were proposed as the broadest possible class of
structures to potentially have a feasible model theory.

Definition 1.1 For a given vocabulary L , an abstract elementary class (AEC),
(K, ≺K), is a family of L-structures K, together with a binary relation ≺K satisfying
the following axioms:
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(1) Closure under isomorphism If M ∈ K and N ∼= M, then N ∈ K;
if M ≺K N and (N , M) ∼= (N ′, M′),

then M′
≺K N ′.

(2) ≺K is a strong substructure If M ≺K N , then M ⊆ N ;
if M ∈ K, then M ≺K M;
if M0 ≺K M1 and M1 ≺K M2, then M0 ≺K M2.

(3) Löwenheim-Skolem axiom There is an infinite cardinal number L S(K) such
that for every M ∈ K and for every subset A ⊆ M
there is some M′

≺K M such that A ⊆ M′ and
|M′

| ≤ max{|A|, L S(K)}.
(4) Union axiom Let {Mi }i<δ be a continuous ≺K-chain. Then

(i)
⋃

i<δ Mi ∈ K,
(ii) for each j < δ, M j ≺K

⋃
i<δ Mi ,

(iii) if Mi ≺K N for all i < δ,
then

⋃
i<δ Mi ≺K N .

(5) Coherence axiom If M0, M1, M2 ∈ K, M0 ≺K M2, M1 ≺K M2,
and M0 ⊆ M1, then M0 ≺K M1.

Shelah proved in [9] that if a class of L-structures satisfies the axioms of an AEC
then the union axiom can be generalized to unions of ≺K-directed families. We refer
to a set of models S as a ≺K-directed family if for any M0, M1 ∈ S there exists
M2 ∈ S such that M0, M1 ≺K M2.

Lemma 1.2 ([9]) Let (K, ≺K) be an AEC and let S be a ≺K-directed family of
models from K. Further, let N =

⋃
S. Then the following hold:

(1) N ∈ K.
(2) M ≺K N for all M ∈ S.
(3) Given a model A ∈ K, if M ≺K A for all M ∈ S, then N ≺K A.

In the study of AECs, we frequently restrict ourselves to AECs with two additional
“nice” properties.

Definition 1.3 Let (K, ≺K) be an abstract elementary class.
(1) (K, ≺K) has the amalgamation property if and only if for all models M, N1,

N2 ∈ K such that M ≺K N1 and M ≺K N2 there is a model N ∈ K and
K-embeddings f1 and f2 such that fi maps Ni into N and f1(M) = f2(M).

(2) (K, ≺K) has the joint embedding property if and only if for all models M1,
M2 ∈ K there is a model N ∈ K and K-embeddings fi of Mi into N .

For results depending on the assumptions of amalgamation, joint embedding, and ar-
bitrarily large models, we use the notation (AP, etc.). In addition to these properties,
most of the AEC results that we will establish in this paper rely on the assump-
tion of finite character. Finite character was introduced by Hyttinen and Kesälä [2]
in order to indicate that the definition of strong substructure in the AEC is a local
property. The following definition formulated by Kueker [7] is not the same as the
notion introduced by Hyttinen and Kesälä, but it is equivalent under the assumption
of amalgamation.

Definition 1.4 An AEC (K, ≺K) has finite character if and only if for all models
M, N ∈ K, M ≺K N whenever M ⊆ N and for every finite tuple a0, . . . , an ∈ M
there is a K-embedding of M into N fixing a0, . . . , an pointwise.
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One tool used throughout this paper to analyze abstract elementary classes is infini-
tary logic. We will heavily apply concepts of first-order infinitary logic allowing
either infinitely many conjunctions and disjunctions or infinitely many variables (or
both). For those unfamiliar with infinitary logics, the essential definitions and results
can be found in [5] and [4].

In L∞,µ and Lχ,µ there are two schools of thought on how to define elementary
equivalence. We will use the more restrictive definition of elementary equivalence
in which (M, ā) does not add new constants to the language for ā but merely refers
to formulas from L∞,µ (or Lχ,µ) applied to elements of the sequence ā. We state
below the definitions of L∞,µ and Lχ,µ-elementary equivalence that will be used
throughout this paper.

Definition 1.5 Given L-structures M and N , let ā ⊆ M and b̄ ⊆ N be sequences
of the same length. Then (M, ā) ≡∞,µ (N , b̄) if and only if for every ϕ(x̄) ∈ L∞,µ

with lh(x̄) = δ, M |H ϕ(〈ai( j)〉 j∈δ) ↔ N |H ϕ(〈bi( j)〉) for every i ∈
δlh(ā). Note

that δ < µ necessarily, since ϕ(x̄) ∈ L∞,µ. Lχ,µ-elementary equivalence is defined
analogously.

We conclude the background section by citing several of Kueker’s recent results
that motivated this paper. Recall these results require the assumption of a countable
Löwenheim-Skolem number.

Theorem 1.6 ([7]) If (K, ≺K) has finite character, then
(1) if M ∈ K and M ≡∞,ω N , then N ∈ K,
(2) if M ∈ K and M ≺∞,ω N , then M ≺K N .

Theorem 1.7 ([7] AP, etc.) Assume (K, ≺K) has finite character. If (K, ≺K) is λ-
categorical for some λ ≥ ω, then there is a complete sentence σ ∈ Lω1,ω such that
for all L-structures M with |M| ≥ λ, M ∈ K if and only if M |H σ .

Theorem 1.8 ([7]) Assume (K, ≺K) has finite character. Assume that K contains
at most λ-many models of cardinality λ for some infinite λ. Then K = Mod(θ) for
some θ ∈ L∞,ω. If K also contains at most λ-many models of cardinality < λ, then
we can find θ ∈ Lλ+,ω.

2 The Filter

Assume κ is an infinite cardinal with cofinality ω. We will choose (and fix) a count-
able, increasing sequence of infinite cardinals 〈κi 〉i∈ω such that κ =

⋃
i∈ω κi . Any

exceptions to this assumption will be explicitly noted.
For the case of Löwenheim-Skolem number ω, Kueker defined the concept of a

countable approximation and what is meant by a property of a model to occur in
almost all countable approximations. For any set s, any countable vocabulary L ,
and any L-structure M, we use the notation Ms to denote the substructure of M
generated by (M ∩ s). If s is countable, then we call Ms a countable approximation
and if s is of size λ, then we call Ms a λ-approximation. Additionally, for any set C ,
we construct a filter on Pω1(C) in order to define the notion of almost all s ⊆ C .

Definition 2.1 Fix a set C and let X ⊆ Pω1(C).
(1) X is ω-closed if and only if X is closed under unions of countable chains.
(2) X is ω-unbounded if and only if for every s0 ∈ Pω1(C) there is an s ∈ X

such that s0 ⊆ s.
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Definition 2.2 Dω1(C) is the set of all X ⊆ Pω1(C) such that X contains an
ω-closed and ω-unbounded subset.

It is a straightforward proof to show that Dω1(C) satisfies the definition of a filter
on Pω1(C). Additionally, we note that Dω1(C) is defined in such a way to guar-
antee ω1-completeness and closure under diagonalization for sets indexed by finite
sequences. These properties are crucial to most of the results obtained using the filter,
and analogues of them will need to hold when defining filters in higher cardinalities.

The filter Dω1(C) has a game theoretic characterization that is useful in proving
many results regarding countable approximations and is integral to the generaliza-
tion of the filter to higher cardinalities. Given a set C and a collection of subsets
X ⊆ Pω1(C), we define the ω-length game Gω(X) by having player IX and IIX
alternately choose single elements ai ∈ C . We say player IIX wins the game if
{ai }i∈ω ∈ X .

Theorem 2.3 ([6]) Fix a set C and let X ⊆ Pω1(C). X ∈ Dω1(C) if and only if
player II has a winning strategy in the game Gω(X).

A set C is large enough to approximate M if and only if M ⊆ C . A property of one
or more models and/or formulas is said to hold almost everywhere (a.e.) if and only
if it holds for all s ∈ X for some X ∈ Dω1(C).

The crux of generalizing Kueker’s results to Löwenheim-Skolem number κ is
defining an appropriate filter and demonstrating that it upholds the appropriate prop-
erties. To do this, we must first define the particular generalizations of the game
Gω(X) to cardinality κ that will be used.

Definition 2.4 Let C be a set and X ⊆ Pκ+(C). We define
(1) Gκ(X) as the ω-length game in which players IX and IIX alternately choose

si ∈ Pκ(C); we say that player IIX wins the game Gκ(X) if and only if⋃
i∈ω si ∈ X ;

(2) G∗
κ(X) as the ω-length game in which players I∗X and II∗X alternately choose

si ∈ Pκ(C) such that |s2n|, |s2n+1| ≤ κn ; we say that player II∗X wins if and
only if

⋃
i∈ω si ∈ X .

Theorem 2.5 Let C be a set and X ⊆ Pκ+(C). Player IIX has a winning strategy
in the game Gκ(X) if and only if player II∗X has a winning strategy in the game
G∗

κ(X).

Proof First assume player IIX has a winning strategy in Gκ(X). We define
player II∗X ’s winning strategy by playing two parallel games. For each n ∈ ω,
at stage n suppose player I∗X has chosen s∗

2n ∈ Pκ(C) such that |s∗

2n| ≤ κn in
G∗

κ(X). Let player IX choose s2n = s∗

2n at stage n in Gκ(X). Player IIX uses
his winning strategy to choose s2n+1 ∈ Pκ(C). Finally, let player II∗X choose
s∗

2n+1 =
⋃

{s2i+1 : i ≤ n, |s2i+1| ≤ κn}. Since player IIX used his winning strategy
in Gκ(X),

⋃
i∈ω si ∈ X . By construction,

⋃
i∈ω si =

⋃
i∈ω s∗

i . Hence, player II∗X
has a winning strategy in G∗

κ(X).
Conversely, assume player II∗X has a winning strategy in G∗

κ(X). We again define
player IIX ’s winning strategy by playing parallel games. At stage n, suppose player
IX has chosen s2n ∈ Pκ(C). Let player I∗X choose s∗

2n = {s2i : i ≤ n, |s2i | ≤ κn}.
Player II∗X uses his winning strategy to choose s∗

2n+1 ∈ Pκ(C) such that |s∗

2n+1| ≤ κn .
Player IIX then chooses s2n+1 = s∗

2n+1. Again by construction,
⋃

i∈ω si =
⋃

i∈ω s∗

i .
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Since player II∗X used his winning strategy,
⋃

i∈ω si ∈ X . Thus, player IIX has a
winning strategy in Gκ(X). �

Remark 2.6 It can also be shown that player IIX having a winning strategy in the
game Gκ(X) is equivalent to player IIX having a winning strategy in the κ-length
game where players I and II choose a single element at a time. It can additionally be
shown that these are equivalent to player IIX having a winning strategy in the game
Gκ+(X) defined analogously to the game Gκ(X). The proofs of these equivalences
can be found in [3].

We can now define the set Dκ+(C), which will be our filter, based on the game the-
oretic characterization of the filter Dω1(C) from Theorem 2.3. A further discussion
on the properties of this filter can be found in [1].

Definition 2.7 Given a set C , define the set Dκ+(C) such that

Dκ+(C) = {X ⊆ Pκ+(C) : IIX has a winning strategy in Gκ(X)} .

Remark 2.8 By Theorem 2.5, if a set X is in Dκ+(C) then player IIX has a winning
strategy in both the game Gκ(X) as well as the game G∗

κ(X).

Note that unlike Kueker’s filter on Pω1(C), it is not true that each X ∈ Dκ+(C)
contains a κ-closed and κ-unbounded subset. However, the converse is true. In fact,
if X contains merely an ω-closed and κ-unbounded subset then X ∈ Dκ+(C). The
notion of κ-unbounded is the obvious analogue of ω-unbounded defined before.

Theorem 2.9 Let C be a set and X ⊆ Pκ+(C). If X contains an ω-closed and
κ-unbounded subset, then X ∈ Dκ+(C).

Proof Using κ-unboundedness, ω-closure, and the cofinality of κ , it can easily be
demonstrated that player IIX always has a winning strategy in the game Gκ(X). �

We proceed to show some other desirable properties that Dκ+(C) exhibits. First we
show that it is closed under κ-many intersections.

Lemma 2.10 Dκ+(C) is κ+-complete.

Proof Let Xα ∈ Dκ+(C) for each α ∈ κ and let Y =
⋂

α∈κ Xα . In order to show
that player II∗Y has a winning strategy in the game G∗

κ(Y ), we play κ-many concurrent
games and employ the winning strategies of players II∗Xα

. It is important to note how
the gameplay proceeds. At the time player I∗Y plays his first move, we start the first
κ0-many games, G∗

κ(Xα) for α < κ0. When player I∗Y plays his second move, the
first κ0-many games continue and the games G∗

κ(Xα) start for κ0 ≤ α < κ1. We
continue to stagger the beginning of each game G∗

κ(Xα) in this manner.
At stage n, if α < κn then we assume player I∗Xα

has chosen
⋃

i≤2n si for his
move and player II∗Xα

responds with his winning strategy. For simplicity sake, we
denote player II∗Xα

’s response as sα
2n+1. Player II∗Y then responds to player I∗Y with⋃

α<κn
sα

2n+1.
By construction, s =

⋃
i∈ω si =

⋃
i∈ω sα

i for all α ∈ κ . Since players II∗Xα
used

their winning strategies once the game started, s ∈ Xα for all α ∈ κ . Thus s ∈ Y as
desired. �

Remark 2.11 From Lemma 2.10 and the observation that Dκ+(C) is upward
closed, it follows that Dκ+(C) is a filter on Pκ+(C).



366 Gregory M. Johnson

Finally we state that our filter is closed under the diagonalization of sets indexed by
finite sequences. The proof is omitted but follows easily from Lemma 2.10. This
result is potentially of future use when considering AECs with finite character.

Lemma 2.12 Dκ+(C) is closed under diagonalization for sets indexed by finite
sequences. That is, if X〈i0,...,in〉 ∈ Dκ+(C) for all n ∈ ω and for every i0, . . . , in ∈ I ,
where I ⊆ C, then X̄ ∈ Dκ+(C) where X̄ = {s ∈ Pκ+(C) : s ∈ X〈i0,...,in〉 for all
n ∈ ω and for all i0, . . . , in ∈ (I ∩ s)}.

3 Main Results

For the entirety of this section we assume (K, ≺K) is an AEC with L S(K) = κ .
Our notation and terminology for a property of a model to occur almost every-
where is analogous to those used for countable approximations. A property of
κ-approximations to one or more models is said to hold κ-almost everywhere (or
κ-a.e.) if and only if it holds for all s ∈ X for some X ∈ Dκ+(C), where C is large
enough to approximate all the structures involved.

Note that the set {s : (M ∩ s) = Ms
} is ω-closed and κ-unbounded and thus

is in Dκ+(C) for any C ⊇ M by Theorem 2.9. Since Dκ+(C) is closed under
intersections, this observation enables us to assume Ms

= (M ∩ s) in our results.
The following application of κ-approximations is implied by the Löwenheim-

Skolem axiom but will be more helpful to us stated in this form.

Lemma 3.1 Let (K, ≺K) be an AEC with L S(K) ≤ κ .

(1) If M ∈ K, then Ms
≺K M κ-a.e.

(2) If M ∈ K and M0 ≺K M such that |M0| = κ , then M0 ≺K Ms κ-a.e.

Proof

(1) Let X = {s ∈ Pκ+(M) : Ms
≺K M, Ms

= s}. It follows from the coher-
ence and union axioms that X is ω-closed. In addition, it follows from the
Löwenheim-Skolem axiom that X is κ-unbounded. Hence, X ∈ Dκ+(M) by
Theorem 2.9 and thus Ms

≺K M κ-a.e.
(2) Note that M0 ⊆ Ms κ-a.e. From part (1) and the coherence axiom it follows

that M0 ≺K Ms κ-a.e. �

We recall the game theoretic characterization of L∞,λ-elementary equivalence since
it will be a key tool in proving Lemma 3.4.

Definition 3.2 Let M and N be two L-structures for some vocabulary L . Define
the game Gλ(M, N ) as the 2-person, ω-length game such that players I and II alter-
nately choose sequences ān

⊆ M and b̄n
⊆ N of length less than λ. We say that

player II wins the game if the map h defined as h(āi ) = b̄i for all i ∈ ω is a partial
isomorphism.

Theorem 3.3 ([5]) Let λ be an infinite cardinal. For L-structures M and N ,
M ≡∞,λ N if and only if player II has a winning strategy in the game Gλ(M, N ).

The following are essential technical lemmas needed for our major results. We re-
quire cofinality ω for the following proofs so that back-and-forth arguments can be
completed in ω-many steps.
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Lemma 3.4 Assume M ∈ K, M0 ≺K M of cardinality κ , n ∈ ω and
ā0, . . . , ān−1 ⊆ M0 are sequences of length < κ . Let N be an arbitrary L-
structure and b̄0, . . . , b̄n−1 ⊆ N be such that (M, 〈āi 〉i<n) ≡∞,κ (N , 〈b̄i 〉i<n).
Then [there is a K-embedding h of M0 into N s such that h(āi ) = b̄i for all i < n]
κ-a.e.

Proof Let Y = {s ∈ Pκ+(N ) : there is a K-embedding h of M0 into N s such that
h(āi ) = b̄i ∀i < n}. We will show player IIY has a winning strategy in Gκ(Y ).

Let X = {s ∈ Pκ+(M) : M0 ≺K Ms , Ms
= s} which is an element of Dκ+(M)

by Lemma 3.1. Thus, player IIX has a winning strategy in Gκ(X). Using this strat-
egy and the game theoretic characterization of L∞,κ -elementary equivalence we can
construct a winning strategy for player IIY .

Assume player IY has chosen t0 ∈ Pκ(N ). Let d̄0 ⊆ N be a sequence of length
< κ such that ran(d̄0) = t0. There is c̄0 ⊆ M such that (M, 〈āi 〉i<n, c̄0) ≡∞,κ

(N , 〈b̄i 〉i<n, d̄0). Assume player IX has chosen s0 = ran(c̄0) in Gκ(X). Player IIX
then uses his winning strategy to choose s1 ∈ Pκ(M). Let c̄1 ⊆ M be a se-
quence of length < κ such that ran(c̄1) = s1. There exists d̄1 ⊆ N such that
(M, 〈āi 〉i<n, c̄0, c̄1) ≡∞,κ (N , 〈b̄i 〉i<n, d̄0, d̄1). Finally, let player IIY choose
t1 = ran(d̄1) in response to player IY ’s choice of t0. Continue this process for all ti
for all i ∈ ω.

Let c̄ =
⋃

i∈ω c̄i ⊆ M and let d̄ =
⋃

i∈ω d̄i ⊆ N . Since cof(κ) = ω, it is not
necessarily true that (M, 〈āi 〉i<n, c̄) ≡∞,κ (N , 〈b̄i 〉i<n, d̄). However, we can say
that (M, 〈āi 〉i<n, c̄) ≡∞,ω (N , 〈b̄i 〉i<n, d̄) since L∞,ω-formulas only have finitely
many free variables. Since player IIX used his winning strategy, ran(c̄) = s ∈ X .
Thus M0 ≺K Ms and Ms

= s = ran(c̄).
Let t = ran(d̄). Define g : Ms

→ N by g(c̄i ) = d̄i for all i ∈ ω. Then g
is an isomorphism of Ms onto a substructure N t of N such that N t

= t . If we
let N0 = g(M0) then N0 ≺K N t because ≺K is preserved under isomorphism. In
addition, g(āi ) = b̄i for all i < n. If we let h = g � M0 then h is a K-embedding
of M0 into N t such that h(āi ) = b̄i for all i < n. Thus t ∈ Y and player IIY has a
winning strategy. �

Lemma 3.5 Assume (K, ≺K) has finite character. Let M ∈ K, M0 ≺K M
where |M0| ≤ κ and ā ⊆ M such that ran(ā) = M0. Let N be an arbi-
trary L-structure and let b̄ ⊆ N be a sequence of the same length as ā. If
(M, ai0 , . . . , ain ) ≡∞,κ (N , bi0 , . . . , bin ) for all i0, . . . , in ∈ |ā| and for all n ∈ ω

then ran(b̄) = N0 where N0 ≺K N s κ-a.e. and M0 ∼= N0.

Proof Let Y bi0 ,...,bin = {s ∈ Pκ+(N ) : there exists a K-embedding h : M0 → N s

such that h(aik ) = bik ∀k ≤ n}. Lemma 3.4 implies that Y bi0 ,...,bin ∈ Dκ+(N )

for all finite sequences 〈bi0 , . . . , bin 〉 ⊆ b̄. Thus Z =
⋂

Y bi0 ,...,bin ∈ Dκ+(N ) by
κ+-completeness.

Define the map g : M0 → N as g(ai ) = bi for all i ∈ κ . As in the previous
proof we can state that (M, ā) ≡∞,ω (N , b̄) and thus g is an isomorphism of M0
onto some substructure N0 ⊆ N where ran(b̄) = N0. Fix s ∈ Z . For any finite
sequence 〈bi0 , . . . , bin 〉 ⊆ N0 the map h ◦ g−1 is a K-embedding of N0 into N s

fixing bi0 , . . . , bin . Hence, by finite character, N0 ≺K N s . Therefore, N0 ≺K N s

κ-a.e. as desired. �
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Lemma 3.6 Assume (K, ≺K) has finite character. Let M ∈ K and assume
M ≡∞,κ N for some L-structure N . Then for every subset B0 ⊆ N of cardinality
≤ κ there is a substructure N0 ⊆ N of cardinality κ such that B0 ⊆ N0 and
N0 ≺K N s κ-a.e.

Proof Let X = {s ∈ Pκ+(M) : Ms
≺K M and Ms

= s}. By Lemma 3.1
X ∈ Dκ+(M) and thus player IIX has a winning strategy in Gκ(X).

Enumerate B0 as 〈b̄2i 〉i∈ω such that b̄2i ⊆ b̄2(i+1) and |b̄2i | < κ for all i ∈ ω.
This is possible since the cofinality of κ is ω.

Let ā0 ⊆ M be such that (M, ā0) ≡∞,κ (N , b̄0). Let player IX choose
s0 = ran(ā0) in Gκ(X). Player IIX will then use his winning strategy to choose
s1 ∈ Pκ(M). Let ā1 ⊆ M be such that ran(ā1) = s1. Let b̄1 ⊆ N be such that
(M, ā0, ā1) ≡∞,κ (N , b̄0, b̄1). Continue in this manner for all n ∈ ω.

Since player IIX used his winning strategy, we know s =
⋃

i∈ω āi ∈ X . Thus
ran(ā) = M0 where M0 = Ms

≺K M.
By construction, B0 ⊆ ran(b̄) and for any i0, . . . , in ∈ κ and any n ∈ ω we know

that (M, ai0 , . . . , ain ) ≡∞,κ (N , bi0 , . . . , bin ). By Lemma 3.5 we can conclude that
ran(b̄) = N0 where N0 ≺K N s κ-a.e. and B0 ⊆ N0 as desired. �

We are now able to use κ-approximations to prove that AECs with finite character
and a Löwenheim-Skolem number of κ are closed under L∞,κ -elementary equiva-
lence.

Theorem 3.7 Assume (K, ≺K) has finite character. Let M ∈ K and N be an
arbitrary L-structure. If M ≡∞,κ N , then N ∈ K.

Proof Let S = {N0 ⊆ N : |N0| = κ, N0 ≺K N s κ-a.e.}. By Lemma 1.2 it suffices
to show that S is a family of K-structures directed under ≺K and that

⋃
S = N .

Assume N0, N1 ∈ S. By Lemma 3.6 there is a K-structure N2 such that N2 ⊆ N ,
N0 ∪ N1 ⊆ N2, |N2| = κ , and N2 ≺K N s κ-a.e. Thus N2 ∈ S and it follows that
S is a family of κ-size K-structures directed under ⊆. Furthermore, if N0, N1 ∈ S
and N0 ⊆ N1 then there will be some N s

⊆ N such that both N0 ≺K N s and
N1 ≺K N s . Therefore, N0 ≺K N1 by the coherence axiom. Hence, S is directed
under ≺K. In addition, it follows from Lemma 3.6 that

⋃
S = N and thus S is as

desired. �

Under the assumption of finite character we obtain two noteworthy corollaries. We
state them here without proof. The first corollary states that ≺K is preserved by
L∞,κ -elementary equivalence.

Corollary 3.8 Assume (K, ≺K) has finite character. Further assume M0 ≺K M
and ā ⊆ M such that ran(ā) = M0. If b̄ is a sequence of length |ā| from a model
N and (M, ai0 , . . . , ain ) ≡∞,κ (N , bi0 , . . . , bin ) for all i0, . . . , in ∈ |ā| and for all
n ∈ ω, then N0 ≺K N where ran(b̄) = N0 and M0 ∼= N0.

The final corollary to Theorem 3.7 states that L∞,κ -substructures are also K-
substructures.

Corollary 3.9 Assume (K, ≺K) has finite character. If M ∈ K and M ≺∞,κ N ,
then M ≺K N .
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As a consequence of closure under L∞,κ -elementary equivalence, we can axiomatize
(K, ≺K) by a sentence of L∞,κ if there are few models of sufficiently high cardinal-
ity. We found many axiomatizability results analogous to Kueker’s recent results
with κ = ω.

Assuming few models of some cardinality (with a condition on this cardinality)
we are able to obtain our first axiomatizability result. To prove this, we utilized a
generalization of Scott’s Theorem and a result of Kueker’s on λ-approximations [6]
to disjunct a large number of sentences incorporating the Scott sentence of each
model.

Theorem 3.10 ([3]) Assume (K, ≺K) has finite character. If K has at most λ-many
models of cardinality λ for some λ such that λ<κ

= λ, then K = Mod(σ ) for some
σ ∈ L∞,κ . If there are at most λ-many models of cardinality < λ, then we can find
σ ∈ Lλ+,κ .

We proceeded to investigate axiomatizability by exploring a.e.c.’s that were categor-
ical in some cardinality. In order to work with these a.e.c.’s, we needed to define a
notion of a λ-galois saturated model over sets that, under the assumption of a mon-
ster model, was consistent with the traditional definition λ-galois saturated model
when λ > L S(K) and extends to λ = L S(K). We use this definition to construct a
sentence of L∞,κ describing κ-galois saturation. Thus, we get the following theorem
stating that there is a complete L∞,κ -sentence closely approximating the a.e.c.

Theorem 3.11 (AP, etc. [3]) Assume (K, ≺K) has finite character. Let K be λ-
categorical for λ > κ and cof(λ) > κ . Then there is a complete sentence σ ∈ L∞,κ

such that
1. Mod(σ ) ⊆ K and σ has a model of cardinality κ+,
2. K and Mod(σ ) contain precisely the same models of cardinality ≥ λ,
3. if M, N |H σ , then M ≺K N if and only if M ≺∞,κ N .

Remark 3.12 It is still an open question as to whether or not σ must have a model
of cardinality κ .

Taking the sentence from Theorem 3.11 and disjuncting it with each sentence de-
scribing the models below the categoricity cardinal, we get the following axiomatiz-
ability result.

Corollary 3.13 (AP, etc. [3]) Assume (K, ≺K) has finite character. Let K be λ-
categorical for λ > κ and cof(λ) > κ . Then there is a sentence θ ∈ L∞,κ such that
K = Mod(θ).

4 Examples

In this section we will provide several examples to show that the assumptions made
in the previous section are necessary and that closure under L∞,κ -equivalence is the
best possible result.

First, we will show that if we remove the assumption of finite character, we can-
not assure closure under L∞,κ -equivalence. The following example, due to Kueker,
illustrates a very simple case of an AEC without finite character.

Example 4.1 Define the vocabulary L = {P} where P is a unary predicate symbol.
Let K = {M : M is an L-structure, |PM

| = κ , |¬PM
| ≥ κ}. In addition, define ≺K

as M ≺K N if and only if M ⊆ N and PM
= PN .
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It is a very simple exercise to verify that (K, ≺K) is an AEC satisfying (AP, etc.).
It also follows easily that (K, ≺K) fails to satisfy finite character. To see this, let
M, N ∈ K be such that M ⊆ N and there is just a single element b ∈ PN

\ PM.
For any n ∈ ω and a0, . . . , an ∈ M there is a K-embedding f : M → N fix-
ing a0, . . . , an (since |PM

\ {a0, . . . , an}| = |PN
\ {a0, . . . , an}| = κ). However,

PM
6= PN and thus M 6≺K N . Therefore, K fails to have finite character.

To demonstrate (K, ≺K) is not closed under L∞,κ -elementary equivalence, let
M, N be L-structures such that |PM

| = κ and |¬PM
| = κ+ but |PN

| = κ+ and
|¬PN

| = κ+. Thus, M ∈ K and N 6∈ K. However, M ≡∞,κ N .

Using the template of the previous example, we can construct an AEC that satisfies
finite character in order to demonstrate that L∞,κ is the best possible result.

Example 4.2 Define the vocabulary L as in Example 4.1 but this time let
K = {M : M is an L-structure, |PM

| ≥ κ, |¬PM
| ≥ κ} and define ≺K as or-

dinary substructure. It again follows easily that (K, ≺K) is an AEC satisfying (AP,
etc.). In addition, it satisfies finite character since ≺K=⊆. By Theorem 3.7 (K, ≺K)
is closed under L∞,κ -elementary equivalence; however, it is not closed under L∞,τ -
elementary equivalence for any τ < κ . Let M and N be L-structures such that
|PM

| = κ , |¬PM
| = κ , |PN

| = τ , and |¬PM
| = κ . Therefore, M ≡∞,τ N but

M ∈ K and N 6∈ K.

Finally, we will demonstrate that if κ is uncountable and regular then closure under
L∞,κ -elementary equivalence fails. Morley [8] provided the following example of
two models of size ℵ1 that are L∞,ω1 -elementary equivalent but are not isomorphic.
We will use this example to construct an AEC with L S(K) = ℵ1 that has finite
character but is not closed under L∞,ω1 -elementary equivalence. Similar examples
will work for any regular cardinal.

Example 4.3 ([8]) There exists a well-founded tree of cardinality ℵ1, M such that
(1) every element has exactly ω1 immediate successors,
(2) for every a0 ∈ M, M ∼= M � {a : a0 ≤ a},
(3) every branch is countable but there are arbitrarily long countable branches.

Define N by starting with (ω1, <) and putting a copy of M above every element
of ω1. Thus, |N | = ℵ1, M ≡∞,ω1 N by a simple back-and-forth argument, but
M 6∼= N .

Let K = {A : N is isomorphically embeddable in A} and define ≺K as ordinary
substructure. It is clear to see that (K, ≺K) is an AEC satisfying finite character and
(AP, etc.) with L S(K) = ℵ1. Observe that N ∈ K and M 6∈ K. Thus (K, ≺K) fails
to be closed under L∞,ω1 -elementary equivalence.
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