
Notre Dame Journal of Formal Logic
Volume 51, Number 1, 2010

Embeddings of Computable Structures

Asher M. Kach, Oscar Levin, and Reed Solomon

Abstract We study what the existence of a classical embedding between com-
putable structures implies about the existence of computable embeddings. In
particular, we consider the effect of fixing and varying the computable presenta-
tions of the computable structures.

1 Introduction

Throughout the field of effective algebra, there are a plethora of instances where
classical behavior and effective behavior diverge. A particular example, and the
subject of this paper, is within the context of embeddings of algebraic structures. For
example, there are computable presentations S1 and S2 of computable structures such
that S1 classically embeds into S2 but for which there is no computable embedding
α : S1 → S2. Indeed, such examples exist within most natural classes of algebraic
structures (e.g., linear orders, directed graphs, groups, fields, etc.). However, if the
computable presentations of S1 and S2 are sufficiently altered, often computable
embeddings exist. The following notions capture whether computable embeddings
exist after altering the presentations of S1 and/or S2.

Definition 1.1 A class C of computable presentations of computable structures
is said to have the strong embedding property if for all S1, S2 ∈ C such that S1
classically embeds into S2, there is a computable embedding α : S1 → S2.

Definition 1.2 A class C of computable presentations of computable structures
is said to have the weak domain embedding property if for all S1, S2 ∈ C such
that S1 classically embeds into S2, there is a computable presentation S′

1
∼= S1 and a

computable embedding α : S′

1 → S2.

Definition 1.3 A class C of computable presentations of computable structures is
said to have the weak range embedding property if for all S1, S2 ∈ C such that S1

Received October 26, 2009; printed April 26, 2010
2010 Mathematics Subject Classification: Primary, 03C57; Secondary, 03D45
Keywords: computable embedding, strong embedding property, weak domain embed-

ding property, weak range embedding property, weak embedding property
c© 2010 by University of Notre Dame 10.1215/00294527-2010-004

55

http://www.nd.edu/~ndjfl
http://www.nd.edu

56 Kach, Levin, and Solomon

classically embeds into S2, there is a computable presentation S′

2
∼= S2 and a com-

putable embedding α : S1 → S′

2.

Definition 1.4 A class C of computable presentations of computable structures
is said to have the weak embedding property if for all S1, S2 ∈ C such that S1
classically embeds into S2, there are computable presentations S′

1
∼= S1 and S′

2
∼= S2

and a computable embedding α : S′

1 → S′

2.

Fixing a class C of computable presentations of computable structures, it is immedi-
ate that the pictured implications hold.

weakstrong

weak domain

weak range

A purpose of this paper is to show that no other implications exist. First, we provide
examples of structures which fail to have even the weak embedding property: the
class of computable ordered abelian groups and the class of computable trees in the
language of undirected graphs in Section 2 and Section 3, respectively (other exam-
ples of the failure of the weak embedding property are already known). In Section 4,
we exhibit a class of algebraic structures that has the weak embedding property but
neither the weak domain embedding property nor the weak range embedding prop-
erty. We then demonstrate, in Section 5 and Section 6, respectively, that the class
of computable equivalence structures and the class of computable Boolean algebras
have the weak range embedding property but not the weak domain embedding prop-
erty. In Section 7, we exhibit a class of algebraic structures that has the weak domain
embedding property but not the weak range embedding property. For a class of
structures which has both the weak domain embedding property and the weak range
embedding property but not the strong embedding property, we turn to computable
algebraically closed fields in Section 8. Finally, in Section 9, we conclude with some
additional examples and open questions.

2 Ordered Abelian Groups

Here we demonstrate that the class of computable ordered abelian groups does not
have the weak embedding property. Before doing so, we note that the class of com-
putable trees (viewed as posets), the class of computable linear orders, and any class
known to be universal with respect to common computable model theoretic notions
(e.g., partial orders, lattices, 2-step nilpotent groups, and integral domains) also fail
to have the weak embedding property (see [1], [3], and [3], respectively).

We recall a result about linear orders that will be exploited in our study of ordered
abelian groups. We use η to denote the order type of the rationals.

Theorem 2.1 ([3]) There is a computable nonscattered intrinsically hyperarith-
metically scattered linear order; that is, there is a computable nonscattered linear
order Lη such that for all hyperarithmetic presentations η′ ∼= η and L′

η
∼= Lη, there

is no hyperarithmetic embedding α : η′
→ L′

η.

We also recall the following algebraic terminology.

Embeddings of Computable Structures 57

Definition 2.2 Elements x and y in an ordered abelian group G are archimedean
equivalent, written x ≈ y, if there are m, n ∈ N such that m|x | ≥ |y| and n|y| ≥ |x |.
Here |x | denotes whichever of x and −x is positive if x 6= 0 and zero if x = 0.

Definition 2.3 A subset U of an ordered abelian group G is a set of unique
archimedean representatives for G provided 0 6∈ U ; for any u 6= v ∈ U , we have
u 6≈ v; and for all 0 6= g ∈ G, there is some u ∈ U such that u ≈ g.

A set of unique archimedean representatives U is a positive set of unique
archimedean representatives if x > 0 for every x ∈ U .

Our choice to exclude 0 from any set of unique archimedean representatives is not
necessarily standard but is chosen to simplify the statements of upcoming results.

It is easy to see that there is always a set of positive unique archimedean repre-
sentatives computable from 0′ if G is computably presented.

Proposition 2.4 If G is a computably presented ordered abelian group, then there
is a 50

1 (and thus computable from 0′) set of unique archimedean representatives.

It is also easy to check that a set U of positive unique archimedean representatives
for an ordered abelian group G forms a linear order (using the ordering inherited
from G). With a little more work, it is possible to demonstrate the reverse: given
any linear order L, there is an ordered abelian group GL such that for any set U of
positive unique archimedean representatives, 〈U, ≤〉 ∼= L. The group GL can be
⊕xi ∈L Zxi , that is, the group whose elements are formal sums zi1 xi1 +· · ·+ zik xik for
zi1 , . . . , zik ∈ Z, and whose order is generated by

zi1 xi1 + · · · + zik xik > 0 if and only if zi j > 0

where xi j is L-maximal among xi1 , . . . , xik . Then for any two sums g, h ∈ GL, we
have g < h if and only if h − g > 0.

It follows that the set of generators {xi : i ∈ L} is a set of positive unique
archimedean representatives with order type L. Also, if L is computable, then GL

is computable.

Theorem 2.5 The class of computable ordered abelian groups fails to have the
weak embedding property.

Proof It suffices to exhibit computable ordered abelian groups G1 and G2 such
that G1 classically embeds into G2 but for which there is no computable embed-
ding α : G′

1 → G′

2 for any computable G′

1
∼= G1 and G′

2
∼= G2. We take G1 to

be any computable presentation of Gη and G2 to be any computable presentation
of GLη , where Lη is a computable nonscattered linear order that is intrinsically hy-
perarithmetically scattered. As Lη is nonscattered, there is a classical embedding
from η into Lη. This induces an embedding from G1 into G2: xi j in G1 is mapped
to xik in G2 exactly when i j in η is mapped to ik in Lη. However, there cannot
be computable presentations G′

1
∼= G1 and G′

2
∼= G2 and a computable embedding

α : G′

1 → G′

2. We reason as follows.
Suppose there were such computable presentations G′

1 and G′

2 and a com-
putable embedding α : G′

1 → G′

2. Then 0′ could compute a set of positive unique
archimedean representatives U ′

1 for G′

1 and U ′

2 for G′

2. Then 0′′ could, for each
x ∈ U ′

1, uniformly find the element y ∈ U ′

2 such that y ≈ α(x). However, the map
x 7→ y would give a hyperarithmetic embedding (indeed, an embedding computable
in 0′′) of a 0′ copy of η into a 0′ copy of Lη, contradicting Theorem 2.1. �

58 Kach, Levin, and Solomon

Remark 2.6 A similar argument can be used to establish the corresponding result
for ordered fields. That is, the class of computable ordered fields does not have the
weak embedding property.

3 Trees in the Language of Undirected Graphs

Here we demonstrate that the class of computable trees, that is, acyclic connected
undirected graphs in the language of undirected graphs, does not have the weak
embedding property. The context only necessitates slightly modifying the coding
modules used in demonstrating that the class of computable directed graphs does not
have the weak embedding property (see [3]).

Definition 3.1 If T ⊆ 2<ω is a subtree of 2<ω (in the usual sense), let T̂ be
the computable tree (as an undirected graph) whose universe contains {σ : σ ∈ T }

and three additional elements x, y, w for each nonroot σ ∈ T with edge relations
precisely E(σ−, x), E(x, y), E(y, σ), and E(x, w) if σ = σ− a 0 or E(y, w) if
σ = σ− a 1.

Here we use σ− to denote the string of length |σ | − 1 that is an initial segment
of σ .

We illustrate this definition with an example, with T pictured on the left and T̂
pictured on the right. The tree T̂ is T with each nonroot vertex replaced by a set
of four edges, with the location of the dead end depending on whether the last digit
in σ is zero or one.

0 1

0

With this coding widget, the proof mirrors the proof for computable directed graphs
(see [3]).

Theorem 3.2 The class of computable trees fails to have the weak embedding prop-
erty.

Proof Fix a subtree (in the usual sense) T ⊆ 2<ω that is infinite, computable, and
has no computable paths. It suffices to take T1 to be any computable presentation of
the tree {0n

: n ∈ ω} (in the language of undirected graphs) and T2 to be any com-
putable presentation of T̂ . As T has an infinite path, classically the tree T1 will em-
bed into the tree T2. We establish the lack of a computable embedding α : T ′

1 → T ′

2
for computable presentations T ′

1
∼= T1 and T ′

2
∼= T2 by showing that both T1 and T2

are computably categorical.
Of course, it is immediate that T1 is computably categorical. We show T2 is

computably categorical by describing a computable isomorphism π : T ′

2 → T2 for
any computable presentation T ′

2
∼= T2. Nonuniformly, we may assume knowledge of

the vertices in T2 and T ′

2 corresponding to the root of T . Note that given any vertex
v ∈ T ′

2, it is possible to effectively determine to which widget v belongs, which
vertex of that widget v is, and to which edge in T that widget corresponds. This is

Embeddings of Computable Structures 59

done by searching through T ′

2 for the path from v back to the vertex λT ′

2
and then

counting by threes from λT ′

2
back to v. Once this edge in T is found, it is a simple

task to locate the corresponding widget in T2. We can then effectively define π on
all four vertices in v’s widget, including v. As this procedure can be carried out
effectively for any v ∈ T ′

2, we see that π is a computable isomorphism.
Finally, there cannot be a computable embedding α : T1 → T2. If there were

such a computable embedding sending the root vertex of T1 to the root vertex of T2,
a computable path through T could be recursively defined as follows. The zeroth bit
of the computable path through T under construction is zero if there is an element
w ∈ T2 with E(α(0), w) and one if there is an element w ∈ T2 with E(α(00), w).
As (exactly) one of these must exist, it suffices to search. Iterating this, searching
for w satisfying either E(α(03k+1), w) or E(α(03k+2), w), yields the kth bit of the
computable path under construction.

More generally, if the root vertex of T1 was not sent to the root vertex of T2, only
finitely much (nonuniform) information is necessary to recover a computable path
in T from the sequence recursively defined. Of course, this information corresponds
to removing some number of digits (if α(T1) travels through the root vertex of T2) or
adding some number of digits (if α(T1) misses the root vertex of T2). �

4 A Class of Posets

Here we demonstrate the existence of a class of computable algebraic structures hav-
ing the weak embedding property but neither the weak domain embedding property
nor the weak range embedding property (and so not the strong embedding property).
The class will consist of all computable presentations of two isomorphism types of
posets.

Definition 4.1 Define Q1 to be the computable partial order with universe
X ∪ Y ∪ U , where X = {xi }i∈ω, Y = {yi }i∈ω, and U = {ui }i∈ω and order

1. the X elements form an ω-chain x0 ≺ x1 ≺ . . . ,
2. the Y elements form an ω∗-chain y0 � y1 � . . . sitting above the X elements

(i.e., xi ≺ y j for all i, j), and
3. the U elements form an antichain and the only order relations they satisfy

are xi ≺ u j if i ≤ j .
So the element u0 sits above x0 and is incomparable with everything else; the ele-
ment u1 sits above x1 and x0 and is incomparable with everything else; and so on.

Definition 4.2 Define Q2 to be the computable partial order with domain
X ∪ Y ∪ U ∪ V ∪ W where X = {xi }i∈ω, Y = {yi }i∈ω, U = {ui }i∈ω, V = {vi }i≥2,
and W = {wi }i≥2 and order

1. the X elements form an ω-chain x0 ≺ x1 ≺ . . . ;
2. the Y elements form an ω∗-chain y0 � y1 � . . . sitting above the X elements

(i.e., xi ≺ y j for all i, j);
3. the U elements form an antichain and the only order relations they satisfy

are xi ≺ u j if and only if i ≤ j ;
4. the V elements form an antichain and the order relations vi satisfies with X

and Y elements are x j ≺ vi for all j , and y j ≺ vi if j ≥ i ; that is, we make
vi � yi and then only include additional order relations that are forced by
transitivity;

60 Kach, Levin, and Solomon

5. the W elements form an antichain and the only order relations wi satisfies are
vi ≺ wi , x j ≺ wi for all j , and y j ≺ wi if j ≥ i ; that is, we place wi � vi
and only include additional order relations forced by transitivity.

So the poset Q2 looks like Q1 except above each element yi with i ≥ 2 we have
added a new chain yi ≺ vi ≺ wi of length two.

The isomorphism types of these posets were chosen to have various effectiveness
properties, which we proceed to demonstrate.

Lemma 4.3 In every computable presentation P ′

1 of Q1, the set of X elements
in P ′

1 is computably enumerable.

Proof An element a ∈ P ′

1 is an X element if and only if there are two incomparable
elements above it. �

Lemma 4.4 There is a computable presentation P1 of Q1 such that the set of Y
elements in P1 is immune.

Proof The idea is essentially the same as when making a copy of (ω + ω∗, ≤) in
which the ω∗ part is immune. The requirements are

Re : We infinite → We ∩ (X ∪ U) 6= ∅

where X∪U refers to the X and U elements in the copy we are building. We build P1
by starting to build the X and U elements, placing xs and us at stage s if they are not
already built by that stage. We also place potential Y elements and use markers yi,s
to denote the current yi element at stage s. We need to make sure that each yi,s has
a limit for each s, so we need a requirement to protect them.

Ni : yi,s has a limit.

The action of Ni is just to restrain lower priority requirements from changing yi,s .
The action of Re is to wait for a stage s at which some yi,s ∈ We for i > e (to respect
the higher priority Ni requirements). Then we move the current y j,s element for
j ≥ i down to the X part (so each becomes some xk element) and add appropriate U
elements to them. We add new y j,s+1 elements to P1 and declare Re satisfied. The
interaction involves only finite injury to the Ni requirements and no injury to the Re
requirements. �

Lemma 4.5 In every computable presentation P ′

2 of Q2, the set of Y elements in P ′

2
is computably enumerable.

Proof Let T be the five element partial order with elements ei for 1 ≤ i ≤ 5 and
order relations e1 ≺ e2 ≺ e3 and e1 ≺ e4 ≺ e5. Thus, T looks like a “V”. Notice
that if T is embedded into P ′

2, then the e1 element must lie on the ω + ω∗ chain
formed by the X and Y elements. Furthermore, the e2, e3, e4, and e5 elements must
lie in Y ∪ V ∪ W .

Then a ∈ P ′

2 is a Y element if and only if either
1. a = y0 (determined nonuniformly); or
2. a = y1 (determined nonuniformly); or
3. there are at least two elements of P ′

2 above a, and there is an embedding of T
into P ′

2 such that at least two elements in the image of the embedding lie
below a.

Embeddings of Computable Structures 61

The first half of the third condition guarantees that a is not a V or W element and the
second half of third condition guarantees that a is not an X or U element. �

Lemma 4.6 There is a computable copy P2 of Q2 such that the set of X elements
in P2 is immune.

Proof The idea is just like the proof of Lemma 4.4 except we move potential X
elements (with their corresponding potential U elements) up to the Y part (and the U
elements become V elements) and we add new W elements. Thus, the idea is just
like making a copy of (ω + ω∗, ≤) in which the ω part is immune. �

Notice that Q1 classically embeds into Q2, but Q2 does not classically embed
into Q1. Furthermore, any embedding of Q1 into Q2 has to send X elements to X
elements, Y elements to Y elements, and U elements to U elements.

Theorem 4.7 The class of computable presentations of Q1 and Q2 has the weak
embedding property but neither the weak domain embedding property nor the weak
range embedding property.

Proof For the weak embedding property, the only case where anything needs to be
shown is when S1 is a computable copy of Q1 and S2 is a computable copy of Q2.
Taking S′

1 to be Q1 and S′

2 to be Q2 suffices.
For the weak domain embedding property, let P2 be the copy from Lemma 4.6.

Suppose for a contradiction that there is a computable copy P ′

1 of Q1 and a com-
putable embedding α : P ′

1 → P2. This embedding must send the X elements of P ′

1
into the X elements of P2. Therefore, a ∈ P2 is an X element of P2 if and only if
there is a b ∈ P ′

1 such that a ≺ α(b) and b is an X element of P ′

1. Therefore, the set
of X elements in P2 is computably enumerable, giving the desired contradiction.

For the weak range embedding property, let P1 be the copy from Lemma 4.4.
Suppose for a contradiction there is a copy P ′

2 of Q2 and a computable embedding
α : P1 → P ′

2. Such an embedding has to map the Y elements of P1 into the Y
elements of P ′

2, and the X ∪ U elements of P1 into the X ∪ U elements of P ′

2.
Since the set of Y elements in P ′

2 is computably enumerable, the embedding α gives
a computably enumerable description of the Y elements in P1. That is, a ∈ P1 is
a Y element of P1 if and only if α(a) is a Y element in P ′

2. This is the desired
contradiction. �

5 Equivalence Structures

Here we demonstrate that the class of computable equivalence structures has the
weak range embedding property (and so the weak embedding property) but not the
weak domain embedding property (and so not the strong embedding property). We
refer the reader to [2] for background on computable equivalence structures.

Lemma 5.1 (implicit in [2]) If E is a computable equivalence structure with un-
bounded character (i.e., finite classes of arbitrarily large size) and (at most) finitely
many infinite equivalence classes, then there is a decomposition E ∼= S1 ⊕ S2
(where ⊕ denotes disjoint union) and a computable function g : ω × ω → ω such
that, for all x,

1. g(x, s) ≤ g(x, s + 1),
2. G(x) := lims g(x, s) is finite,

62 Kach, Levin, and Solomon

3. G(x) > x,
4. S1 and S2 are computable,
5. S1 has a class of size k if and only if k is in the range of G, and
6. S1 has no infinite classes and at most one class of any fixed finite size.

Proposition 5.2 The class of computable equivalence structures has the weak
range embedding property.

Proof Fixing computable presentations E1 and E2 of computable equivalence struc-
tures such that E1 classically embeds into E2, we exhibit a computable presentation
E ′

2
∼= E2 and a computable embedding α : E1 → E ′

2. The manner in which we con-
struct the computable presentation E ′

2 depends primarily on whether E2 has bounded
or unbounded character and finitely many or infinitely many infinite classes.

If E2 has infinitely many infinite classes, it suffices to take E ′

2 = E2 ⊕ E∞ where
E∞ is a computable equivalence structure with infinitely many infinite classes and no
finite classes. Then E1 computably embeds into E ′

2 by embedding each equivalence
class in E1 into one of the infinitely many additional infinite equivalence classes.

If E2 does not have infinitely many infinite classes, we must break into two cases:
when E2 has bounded character and when E2 has unbounded character. In consid-
ering these cases, we will without loss of generality assume that E2 has no infi-
nite classes. For if E2 has a positive but finite number of infinite classes, we can
(nonuniformly) select representatives of the infinite classes in E2 and representatives
of the appropriate corresponding classes in E1. This allows us to compute the em-
bedding (as described below) on all the other classes independent of these finitely
many classes.

If E2 has bounded character and no infinite classes, let k be the largest size such
that E2 has infinitely many classes of size k (such a k must exist). Then E1 also has
only finitely many classes of size larger than k as it classically embeds into E2 by
hypothesis. It is then possible to (nonuniformly) map the classes of size larger than k
in E1 to appropriate classes in E2. For the remaining classes in E1, it is possible to
map them to classes of size k in E2.

If E2 has unbounded character and no infinite classes, it is easy when E1 has
bounded character. It suffices to map each class in E1 to a class of size at least k,
where k is an integer witnessing that E1 has bounded chracter. When E1 has un-
bounded character, it is slightly more difficult. Fix a (classical) decomposition
E2 ∼= S1 ⊕S2 and a computable function g as in Lemma 5.1. We build E ′

2 = S′

1 ⊕S′

2
where S1 ∼= S′

1 and S2 = S′

2; the structure E1 will computably embed into S′

1.
The construction of S′

1 is dynamic and depends on both the presentation E1 and
the function g. For each new class in E1 (say, of size n at stage s) that appears, we
choose a column x (with x large) and start a new class in S′

1 of size g(x, s). The
computable embedding α : E1 → S′

1 maps this new class in E1 to this new class
in S′

1. As the stage s increases, we grow (as necessary) this class in S′

1 to have size
g(x, s). If the size of the class in E1 grows beyond the current value of g(x, s), we
choose a new large column y and grow the class of S′

1 to have size g(y, s). In this
fashion, we have this class of S′

1 always is larger than or equal to the class in E1 and
has size g(z, s) for some column z.

Additionally, at each stage s, we assure that there is a class of size g(z, s) for all
z < s. This is done by adding additional elements to the class built for g(z, s − 1) as
necessary if it exists and building a fresh class otherwise.

Embeddings of Computable Structures 63

As each class in E1 is finite, it is not difficult to see that each class in S′

1 will
eventually choose a permanent column x to follow. Indeed, the column x can change
only when the class in E1 grows. Also, it will be the case that S1 ∼= S′

1 as each class
in S′

1 is associated to a value g(z, s − 1) and each column z is associated to a class
(either explicitly or implicitly at the end of each stage). Finally, the construction
explicitly gives the computable embedding α : E1 → S′

1.
Having exhausted all possible cases, we conclude that the class of computable

equivalence structures has the weak range embedding property. �

Proposition 5.3 The class of computable equivalence structures fails to have the
weak domain embedding property.

Proof It suffices to construct computable equivalence structures E1 and E2 with
unbounded character and no infinite classes (so E1 classically embeds into E2) such
that for all E ′

1
∼= E1, there is no computable embedding α : E ′

1 → E2.
Toward stating the requirements, we view each function ϕe(x, y) as computing the

characteristic function of a binary relation on ω × ω and let Ae denote the resulting
computable structure. Of course, the function ϕe may not be total, in which case Ae
is not really a computable structure and we can safely disregard it. We view each
function ϕi (x) as a candidate embedding of Ae into E2. Again, the function ϕi may
not be total, in which case ϕi is not really a computable embedding and we can safely
disregard it.

Throughout, if E is an equivalence structure and a ∈ E , we denote the equivalence
class of a by [a]E and the size of this class by |[a]E |.

We meet the requirements:

R〈e,i〉 : If Ae ∼= E1, then ϕi is not an embedding of Ae into E2.

The strategy to meet a single requirement R〈e,i〉 is as follows. Fix an element
a ∈ Ae (i.e., fix a number) and wait for ϕi (a) to converge. Once it converges,
we want to force either |[a]Ae | > |[ϕi (a)]E2 | (assuring ϕi is not an embedding) or
|[a]Ae | 6= |[k]E1 | for all k ∈ E1 (assuring Ae 6∼= E1).

To make progress on the first option, we freeze the size of [ϕi (a)] in E2. That
is, we refrain from ever putting another element into the class of ϕi (a). However,
this might not be enough as it might currently be the case that |[a]Ae | ≤ |[ϕi (a)]E2 |.
So, we need to force the size of [a]Ae to grow. To do this, we add elements to
the equivalence classes in E1 to guarantee that E1 has no classes of any size n with
|[a]Ae | ≤ n ≤ |[ϕi (a)]E2 | (using the current values of these classes). That is, for any
class in E1 with a size currently in this range, we add elements to the class so that it
becomes strictly larger than [ϕi (a)]E2 .

Having taken this action, the requirement R〈e,i〉 is satisfied (provided it is not
later injured) as the only way to have Ae ∼= E1 is if [a]Ae grows to a size larger
than the size of [ϕi (a)]E2 . However, if it does this, then ϕi cannot be extended to
an embedding. Notice that our action to meet R〈e,i〉 imposes two restraints on the
construction:

1. the class [ϕi (a)]E2 cannot grow—which causes no problem since we want the
classes in E2 to be finite and we can add other large classes to make E2 have
unbounded character; and

2. all future classes created in E1 must have size greater than |[ϕi (a)]E2 |—which
also causes no problem since we want E1 to have unbounded character.

64 Kach, Levin, and Solomon

To combine multiple requirements, we use a standard finite injury construction.
In terms of building E1 and E2, at each stage we add a new class of large size to
each structure. We will never change the size of an E2 class, so although we mention
freezing the size of such classes, they are really always frozen in the sense that they
never grow.

Each requirement R〈e,i〉 has a parameter b〈e,i〉. When the requirement first acts
(or first acts after being initialized), it sets the value of this parameter large. It then
waits for an element a ∈ Ae such that |[a]Ae | ≥ b〈e,i〉 and ϕi (a) converges. (Notice
that once b〈e,i〉 settles down, if Ae ∼= E1, then there must be Ae classes satisfying
this size restriction since E1 has unbounded character.) If the current values satisfy
|[a]Ae | > |[ϕi (a)]E2 |, it freezes [ϕi (a)]E2 and wins. Otherwise, it does the following:

1. increases the sizes of the appropriate E1 classes so that there are no classes of
size between |[a]Ae | and |[ϕi (a)]E2 |;

2. freezes [ϕi (a)]E2 ;
3. let m be large (in particular, larger than the size of any of the current classes

in E1 including the ones that were just expanded) and declares that all new E1
classes must have size at least m; and

4. initializes all lower priority requirements.
The initialization will force all lower priority requirements to do their diagonalization
with classes of size greater than m, so the classes that were just expanded will not be
expanded again by a lower priority requirement. Therefore, each E1 class can only
grow finitely often and hence will be finite in the limit. �

6 Boolean Algebras

Here we demonstrate that the class of computable Boolean algebras has the weak
range embedding property (and so the weak embedding property) but not the weak
domain embedding property (and so not the strong embedding property). We refer
the reader to [4] or [6] for background on countable Boolean algebras.

Proposition 6.1 The class of computable Boolean algebras has the weak range
embedding property.

Proof Fix computable presentations B1 and B2 of computable Boolean algebras
such that B1 classically embeds into B2. The manner in which we construct the
computable presentation B ′

2 depends on whether B2 is superatomic or not.
If B2 is superatomic, then B1 is superatomic as it classically embeds into B2.

There are therefore computable ordinals α1 and α2 and positive integers m1 and m2
such that B1 ∼= IntAlg(α1 · m1) and B2 ∼= IntAlg(α2 · m2). If α1 = α2, it suffices to
take B ′

2 to be the join of B1 with (m2 − m1)-many additional α1-atoms. If α1 < α2,
it suffices to take B ′

2 to be B1 ⊕ B2. Of course, as B1 classically embeds into B2, it
is impossible to have α1 > α2 or α1 = α2 and m1 > m2.

If B2 is not superatomic, then either B2 ∼= IntAlg(ωC K
1 · (1 + η)) or there is a

computable ordinal µ such that B2 ∼= B2 ⊕ IntAlg(ωµ
· (1 + η)). This follows from

aspects of Ketonen invariants for countable Boolean algebras. Specifically, it is a
direct consequence of the fact that the measure σ for B2 has a minimal ordinal µ
in its range (see [4] or [6] for significant background on measures and why this is
the case) and that µ ≤ ωC K

1 as B2 is computable. In the former case, it suffices to
take B ′

2 to be a presentation of IntAlg((ωC K
1 ·(1+η))·(1+η)) where the outer (1+η)

Embeddings of Computable Structures 65

is nicely presented. In the latter case, it suffices to take B ′

2 to be a presentation where
IntAlg(ωµ

· (1 + η)) is nicely presented. Here, by nicely we mean a copy into which
the computable atomless algebra computably embeds. For both cases this suffices
as B1 computably embeds into the countable atomless algebra and the countable
atomless algebra computably embeds into B ′

2. �

Proposition 6.2 The class of computable Boolean algebras fails to have the weak
domain embedding property.

Proof It suffices to take the countable atomless algebra for B1 and the standard
computable presentation of the Harrison algebra for B2. More specifically, with L a
computably copy of the Harrison ordering ωC K

1 ·(1+η) having no infinite computable
descending sequences, take B2 to be the computable presentation obtained from
IntAlg(L). If there were a computable embedding α : B1 → B2 (note that B1
is computably categorical so the choice of presentation does not matter), then there
would necessarily be a computable descending chain in L. We reason as follows.

We argue that a computable descending chain {yi }i≥1 ⊆ L can be constructed
from a computable embedding α. With some abuse of notation, we use y0 to de-
note ∞ within L. Fix a nonzero element a0 ∈ B1. Then, fix a nonzero element
b0 ∈ B1 with b0 <B1 a0. Because B2 was constructed as the interval algebra
of L, it is possible to effectively pass from α(b0) and α(a0 − b0) to the associated
finite union of clopen intervals. For y1, take the rightmost element y ∈ L such that
y <L y0 and [x, y) appears as a clopen interval in the decomposition of α(b0) or
α(a0−b0). Note that both α(b0) and α(a0−b0) must be considered as it might be the
case, for example, that α(b0) is representing the interval [x0, y0) for some x0 ∈ L .
Note also that the rightmost element y ∈ L must be taken as it might be the case, for
example, that [x, y) ⊆ α(b) for all b < b0. If so, the induction would be prevented
from continuing.

For the next step, let a1 be b0 if [x, y) was a clopen interval in α(b0) and let a1
be a0 − b0 if [x, y) was a clopen interval in α(a0 − b0). Then, fix a nonzero element
b1 ∈ B1 with b1 <B1 a1. For y2, taken the rightmost element y ∈ L such that
y <L y1 and [x, y) appears as a clopen interval in the decomposition of α(b1) or
α(a1 − b1).

Continuing in this fashion, we can inductively define the sequence {yi }i≥1. �

7 A Class of Linear Orders

Here we demonstrate the existence of a class of computable algebraic structures hav-
ing the weak domain embedding property (and so the weak embedding property) but
not the weak range embedding property (and so not the strong embedding property).
The class will consist of all computable presentations of the linear order isomorphism
types ω + ω∗ and ω + 1 + ω∗.

Theorem 7.1 There is a class of computable algebraic structures having the weak
domain embedding property but not the weak range embedding property.

Proof It suffices to consider the class of all computable presentations of the order
types ω+ω∗ and ω+1+ω∗. We verify it has the weak domain embedding property
but not the weak range embedding property.

For the weak domain embedding property, the only nontrivial case to verify is
when L1 is a computable copy of ω+ω∗ and L2 is a computable copy of ω+1+ω∗.

66 Kach, Levin, and Solomon

Take L′

1 to be a decidable copy of ω+ω∗. By (nonuniformly) fixing the limit point x
in L2, it is possible to computably embed the ω portion of L1 to the left of x and
the ω∗ portion of L1 to the right of x .

For the failure of the weak range embedding property, it suffices to take for L1 any
computable copy of ω +ω∗ in which neither the ω nor the ω∗ is a computable subset
of the universe and to take for L2 any computable copy of ω + 1 + ω∗. If there were
a computable copy L′

2 of ω + 1 + ω∗ and a computable embedding α : L1 → L′

2,
then an element a ∈ L1 would belong to the ω part if α(a) <L2 x and belong to
the ω∗ part if x <L2 α(a) (again x is the nonuniformly fixed limit point in L′

2). This
would contradict that neither ω nor ω∗ was computable in L1. �

8 Algebraically Closed Fields

Here we demonstrate that the class of algebraically closed fields has the weak range
embedding property and the weak domain embedding property (and so the weak
embedding property) but not the strong embedding property.

Proposition 8.1 The class of computable algebraically closed fields has the weak
range embedding property and the weak domain embedding property.

Proof Fix computable presentations F1 and F2 of computable algebraically closed
fields such that F1 classically embeds into F2. Let F be the common prime subfield
of F1 and F2 (so F is either Q or Zp for a prime p). The choice of F ′

1 (for the
weak domain embedding property) and F ′

2 (for the weak range embedding property)
depends on the transcendence degree of F1.

If the transcendence degree of F1 is infinite, then F1 and F2 are isomorphic.
Thus if we let F ′

1 = F2, the identity map α : F ′

1 → F2 witnesses that the weak
domain embedding property holds. Alternatively, if we let F ′

2 = F1, the identity
map α : F1 → F ′

2 witnesses that the weak range embedding property holds.
Now suppose the transcendence degree of F1 is n < ∞. To establish the weak

range embedding property, it suffices to take F ′

2 to be the computable algebraic clo-
sure of the field generated by adjoining an appropriate number of transcendental
elements to F1. For the weak domain embedding property, we take for F ′

1 a pre-
sentation of F1 in which E = F (x0, . . . , xn−1) is a computable subset. We define
a computable embedding α : F ′

1 → F2. Nonuniformly pick n algebraically inde-
pendent elements y0, . . . , yn−1 of F2 and define α(xi) = yi for 0 ≤ i ≤ n − 1.
Note that this choice determines α on E . What is more, for any element x ∈ E , we
can compute α(x) by expressing x in terms of x0, . . . , xn−1 and elements of F and
then finding the corresponding expression in F2. In general, the process for comput-
ing α(u) for u ∈ F ′

1 proceeds as follows. First, find the minimal polynomial p(t)
for u over E . This is possible as E has an effective splitting algorithm. Next, find
all the roots of p(t) in F ′

1 and all the roots of the corresponding polynomial p̂(t)
in F2. Define α(u) to be any root of p̂(t) not already in the range of α. As F2 is
algebraically closed, there will always be a suitable root for α(u), so in this fashion,
we can define α on all of F ′

1 . �

The failure of the strong embedding property within the class of computable alge-
braically closed fields is a special case of a result of Metakides and Nerode (see The-
orem 4.1 of [5]).

Embeddings of Computable Structures 67

Proposition 8.2 The class of computable algebraically closed fields fails to have
the strong embedding property.

Proof It suffices to take for F1 the natural copy of the algebraic closure of Q(xi)i∈ω

and for F2 a copy of the same having no infinite computably enumerable set of
algebraically independent elements (such exist by Theorem 3.1 of [5]). Then there
cannot be a computable embedding α : F1 → F2 as else the hypotheses on F2
would be violated. �

9 Other Examples and Open Questions

The classes of computable algebraic structures already discussed served to demon-
strate that no nontrivial implications hold between the strong embedding property,
the weak embedding property, the weak domain embedding property, and the weak
range embedding property. There are many other examples that could have been
used to make some of these separations. We state additional examples here, none of
which are deep.

Proposition 9.1 If S is a computably categorical structure, then the class of com-
putable presentations of S has the strong embedding property.

The class of computable presentations of the order type ω has the weak domain
embedding property and the weak range embedding property (and so the weak em-
bedding property) but not the strong embedding property.

Unfortunately, the classes in Section 4 and Section 7 are not as natural as one might
hope. We therefore ask the following.

Question 9.2 Is there a natural class of computable structures C having the weak
domain embedding property (and so the weak embedding property) but not the weak
range embedding property (and so not the strong embedding property)?

Is there a natural class of computable structures C having the weak embedding
property but neither the weak domain embedding property nor the weak range em-
bedding property (and so not the strong embedding property)?

References

[1] Binns, S., B. Kjos-Hanssen, M. Lerman, J. H. Schmerl, and R. Solomon, “Self-
embeddings of computable trees,” Notre Dame Journal of Formal Logic, vol. 49 (2008),
pp. 1–37. Zbl pre05657679. MR 2376778. 56

[2] Calvert, W., D. Cenzer, V. Harizanov, and A. Morozov, “Effective categoricity of equiv-
alence structures,” Annals of Pure and Applied Logic, vol. 141 (2006), pp. 61–78.
Zbl 1103.03037. MR 2229930. 61

[3] Kach, A. M., and J. S. Miller, “Embeddings of computable linear orders,” In preparation.
56, 58

[4] Ketonen, J., “The structure of countable Boolean algebras,” Annals of Mathematics.
Second Series, vol. 108 (1978), pp. 41–89. Zbl 0418.06006. MR 0491391. 64

[5] Metakides, G., and A. Nerode, “Effective content of field theory,” Annals of Mathematical
Logic, vol. 17 (1979), pp. 289–320. Zbl 0469.03028. MR 556895. 66, 67

http://www.emis.de/cgi-bin/MATH-item?pre05657679
http://www.ams.org/mathscinet-getitem?mr=2376778
http://www.emis.de/cgi-bin/MATH-item?1103.03037
http://www.ams.org/mathscinet-getitem?mr=2229930
http://www.emis.de/cgi-bin/MATH-item?0418.06006
http://www.ams.org/mathscinet-getitem?mr=0491391
http://www.emis.de/cgi-bin/MATH-item?0469.03028
http://www.ams.org/mathscinet-getitem?mr=556895

68 Kach, Levin, and Solomon

[6] Pierce, R. S., “Countable Boolean algebras,” pp. 775–876 in Handbook of Boolean
Algebras, vol. 3, North-Holland, Amsterdam, 1989. Zbl 0671.06001. MR 991610. 64

Acknowledgments

The first author was partially supported by the Marsden Fund of New Zealand via a Post-
Doctoral Fellowship. The authors thank Wesley Calvert, Carl Jockusch, Joe Miller, and
Russell Miller for helpful discussions.

Department of Mathematics, Statistics, and Operations Research
Victoria University of Wellington
Wellington
NEW ZEALAND
asher.kach@msor.vuw.ac.nz

Department of Mathematics and Statistics
Coastal Carolina University
Conway SC 29526
USA
olevin@coastal.edu

Department of Mathematics
University of Connecticut
Storrs CT 06269
USA
solomon@math.uconn.edu

http://www.emis.de/cgi-bin/MATH-item?0671.06001
http://www.ams.org/mathscinet-getitem?mr=991610
mailto:asher.kach@msor.vuw.ac.nz
mailto:olevin@coastal.edu
mailto:solomon@math.uconn.edu

	1. Introduction
	2. Ordered Abelian Groups
	3. Trees in the Language of Undirected Graphs
	4. A Class of Posets
	5. Equivalence Structures
	6. Boolean Algebras
	7. A Class of Linear Orders
	8. Algebraically Closed Fields
	9. Other Examples and Open Questions
	References
	Acknowledgments

