
Notre Dame Journal of Formal Logic
Volume 50, Number 4, 2009

On the Degrees of Diagonal Sets and the
Failure of the Analogue of a Theorem of Martin

Keng Meng Ng

Abstract Semi-hyperhypersimple c.e. sets, also known as diagonals, were
introduced by Kummer. He showed that by considering an analogue of hyper-
hypersimplicity, one could characterize the sets which are the Halting problem
relative to arbitrary computable numberings. One could also consider half
of splittings of maximal or hyperhypersimple sets and get another variant of
maximality and hyperhypersimplicity, which are closely related to the study
of automorphisms of the c.e. sets. We investigate the Turing degrees of these
classes of c.e. sets. In particular, we show that the analogue of a theorem of
Martin fails for these classes.

1 Introduction

The study of computably enumerable (c.e.) sets and their Turing degrees has a long
and rich history. In this paper, we are concerned with several classes of c.e. sets,
which show up naturally in several contexts, and in their Turing degrees. In partic-
ular, these classes arose from the study of automorphisms of the lattice of c.e. sets,
as well as in the classification of the sets which are the analogues of the Halting
problem. We will first discuss the origins of these classes of sets and then state the
motivations behind our interest in these sets.

The c.e. sets we are concerned with in this paper are the analogues of max-
imal(max) and hyperhypersimple(hhs) sets, when we replace the congruence =

∗

(finite symmetric difference) by a more general congruence relation =
c.e. where

A =
c.e. B if and only if the summetric difference of A and B is computably enumer-

able. Formally, we have the following definition.

Definition 1.1 A weak array {Vx }x∈N is a sequence of uniformly c.e. sets; that
is, there is some computable f such that Vx = W f (x) for all x . A sequence of

Received March 18, 2008; accepted May 12, 2009; printed January 8, 2010
2010 Mathematics Subject Classification: Primary, 03D25; Secondary, 68Q30
Keywords: maximal, hyperhypersimple, computable numberings
c© 2010 by University of Notre Dame 10.1215/00294527-2009-022

469

http://www.nd.edu/~ndjfl
http://www.nd.edu


470 Keng Meng Ng

sets is disjoint if the sets are mutually disjoint. We say that a c.e. set A is semi-
hyperhypersimple if for every weak array of disjoint sets {Vx }x∈N, there is some x
such that Vx − A is c.e. A set A is semi-maximal if for every pair of disjoint c.e. sets
Wi ,W j , we have either Wi − A is c.e. or W j − A is c.e.

The sets in Definition 1.1 were introduced by Kummer in [11]. Kummer showed
that the semi-hhs sets arose naturally in degree theory, more specifically, in the study
of different versions of the Halting problem. Recall that F(i, x) is a computable
numbering of P := {all partial computable functions of a single variable} if F is
partial computable (in two variables) and {λx F(i, x)}i∈N = P . A Gödel numbering
is a computable numbering F where there is an effective way of getting between F
and the standard numbering of P . That is, there are computable functions a and b
such that for every i , λx F(i, x) = ϕa(i) and ϕi = λx F(b(i), x).

It is not hard to see that not every computable numbering is a Gödel numbering;
for instance, Friedberg [9] gave a numbering of P (in fact, of the c.e. sets) without
repetition, generally known as Friedberg numberings. The diagonal (i.e., a version of
the Halting problem) induced by Gödel numberings corresponds to the creative sets.
Diagonals induced by arbitrary computable numberings are therefore a natural thing
to study. Kummer then proved that the diagonal sets which are Halting problems
relative to arbitrary computable numberings can be characterized in terms of a class
of c.e. sets defined in a seemingly unrelated way.

Theorem 1.2 A c.e. set is a diagonal of some computable numbering if and only if
it is not semi-hyperhypersimple.

It was also shown in [11] that the semi- and plain versions of both maximality and
hyperhypersimplicity coincided for simple sets further demonstrating that these sets
are natural extensions of maximality and hyperhypersimplicity.

In [10], Hermann and Kummer explored the lattice theoretic properties of semi-
max and semi-hhs sets. Let L∗(A) and Lc.e.(A) denote the lattice of c.e. supersets
of A modulo the ideal of supersets B of A such that B − A is finite (and c.e., respec-
tively). They showed that A is semi-hhs if and only if Lc.e.(A) is a Boolean algebra,
generalizing the well-known result of Lachlan [12] where A is hyperhypersimple if
and only if L∗(A) is a Boolean algebra. They obtained the corollary.

Corollary 1.3 The property of being a diagonal is elementarily lattice theoretic.

This means that being the Halting problem relative to some arbitrary computable
numbering is elementarily lattice theoretic, generalizing a well-known theorem of
Harrington that being the Halting problem relative to the standard numbering is el-
ementary lattice theoretic. They also showed that a coinfinite set A is semi-max if
and only if |Lc.e.(A)| = 2; again this result is analogous to the relationship between
maximality and the cardinality of L∗(A). For these reasons, the noncomputable
semi-max sets are sometimes called D-maximal, and the noncomputable semi-hhs
sets are sometimes referred to as D-hhs in literature. These results further reinforce
the idea that the semi-maximal and semi-hyperhypersimple c.e. sets are in many
ways analogues of maximal and hyperhypersimple c.e. sets.

Besides being connected to different versions of the Halting problem, these
c.e. sets also show up in relation to the study of automorphisms of c.e. sets, as well
as their connection with the hemi-maximal and Hermann sets. A splitting of a c.e. set



On the Degrees of Diagonal Sets 471

A is a pair A0, A1 of disjoint c.e. sets such that A0 t A1 = A. The splitting is non-
trivial if both A0, A1 are noncomputable. A hemi-maximal (hemi-hyperhypersimple)
set is half of a nontrivial splitting of a maximal (hyperhypersimple) set. Let SM,
SHHS, HM, and HHHM denote the classes of c.e. Turing degrees which contain,
respectively, a semi-max, semi-hhs, hemi-max, and hemi-hhs set. The following
shows the relationship between the various degree classes in which we have an
interest; these can be shown easily. The upward arrows follow from the proof that
every maximal set is hhs, and the other implications are in Kummer [11].

-

-

6 6

HHHS SHHS

SMHM

Harrington proved that the creative sets form a definable orbit which realizes only
sets of complete m-degrees. He proved that any two creative sets were effectively
automorphic. It was realized that simply considering effective automorphisms alone
was not enough to discover more orbits. In an influential paper [14], Soare developed
what is known today as the automorphism machinery, which gave a general method
of constructing 10

3 automorphisms via the extension lemma. He used it to show that
the maximal sets form an orbit, which contains only sets of high degree. Despite
Soare’s discovery, there are still very few known definable orbits to date, and many
known orbits are generated by the splittings of sets which are themselves known to
produce orbits. Downey and Stob [5] showed that by considering half of nontrivial
splittings of maximal sets (the hemi-maximal sets), one could get a new definable
orbit. They also showed in [8] that these sets occur in every jump class. These
results on the orbit of the hemi-maximal sets lead to an interesting question about
the relationship between orbits in Aut(E) and the Turing degree of sets realizing
these orbits. In particular, the hemi-maximal sets give us an example of a definable
orbit which is relatively large in the sense that it contains representatives in every
possible jump class. Is it possible for there to be an orbit which contains a member
of every noncomputable c.e. Turing degree? In [6] Downey and Harrington showed
that there can be no such fat orbit.

The semi-max and semi-hhs sets show up again in the search for orbits. Interest-
ingly enough, semi-maximality together with strong r-separability gives us a class of
sets which forms a new orbit. A Hermann set is a noncomputable semi-maximal set
which is strongly r-separable in the sense that every c.e. set disjoint from it can be
separated by a computable set in an infinite way. Clearly every maximal, hemi-max,
and Hermann set is semi-maximal. Cholak, Downey, and Hermann [2] showed that
the Herman sets form an orbit, again with representatives from every jump class.
These sets play a central role in a recent paper of Cholak, Downey, and Harring-
ton [3], where they showed that not every orbit is elementarily definable. In particu-
lar, they constructed an orbit which is as complicated as can be.

Various degree theoretic results about the hemi-maximal sets were obtained by
Downey and Stob in [8; 5; 7]. They showed that every high c.e. degree contains a



472 Keng Meng Ng

hemi-maximal set and that HM was downward dense. The latter proof is a straight-
forward modification of the Friedberg maximal set construction. The reason why we
cannot combine permitting with a maximal set construction M is due to the follow-
ing: when we are required to move a marker, say mi with current value mi [s] = p,
for the sake of improving its e-state, we might not have permission from the given set.
On the other hand, if we merely wanted to make M hemi-maximal, we could move
the marker mi by dumping the value p into the other half of the splitting. The only
trouble we get by doing this is that we are not able to enumerate p into A anymore.
This is not an issue if we only needed to make A noncomputable. This is character-
istic of proofs involving sets with hemi- (and even semi-) properties and provides a
way of exploiting the hemi- (or semi-) properties. Downey and Stob showed further
that not every c.e. degree is in HM, that these degrees can be found in every jump
class, and that they are nowhere dense in the low c.e. degrees. These results refute
a number of conjectures. As a corollary it follows that there is an orbit containing
sets of every high degree and yet does not only contain sets of high degree (unlike
the orbit of the maximal sets). It also shows that the degrees of sets in an orbit are
not necessarily closed upward.

Our interest in these sets is generated by Martin’s results. Martin, in a classic
paper [13], showed the coincidence of several classes of degrees. He showed that the
c.e. degrees containing a maximal set were exactly the high degrees, that is, those
degrees a such that a′

= 0′′. These were also exactly the c.e. degrees containing
a hyperhypersimple set, as well as the degrees containing a dense simple set. Our
work here is to contribute to the understanding of the Turing degrees of such sets.
The combined work of Kummer [11] and Cholak, Downey, and Hermann [2] showed
that the degrees in SM and SHHS also satisfy the same degree theoretic facts listed
above for HM. The similarity in the Turing degree structures led Kummer [11] to
ask if his result was a strict improvement, that is, whether or not HM = SHHS. On
the other hand, it is also natural to suggest that an analogue of the classic theorem
of Martin holds, also asked by Kummer in [11]. In this paper we will answer these
questions by demonstrating that the classes HHHS and SM are incompatible.

Theorem 3.1 There is a c.e. set A which is semi-maximal, and for all c.e. B ≡T A,
B is not hemi-hyperhypersimple.

Theorem 4.1 There is a c.e. set A which is hemi-hyperhypersimple, and for all
c.e. B ≡T A, B is not semi-maximal.

As a corollary we have that none of the implications in the previous diagram can
be reversed and that the analogues of Martin’s theorem fail in both cases (semi- and
hemi-). Despite the fact that all the results known so far about the Turing degrees of
these classes suggest that Martin’s results can be generalized to these classes, we are
able to demonstrate otherwise.

Corollary 1.4 While the degrees of maximal and hyperhypersimple sets are the
same, when we prefix hemi- or semi-, they are not the same.

In Section 3 we will construct a c.e. degree in SM but not in HHHS. The idea of
streaming is introduced and explained in Section 3 and forms the central ingredient
in the proof of the main result in Section 4.



On the Degrees of Diagonal Sets 473

2 Preliminaries

Our notation is standard and follows Soare [15]. The reader is assumed to have
familiarity with standard tree arguments. In this paper our construction trees grow
downward. In Section 3 the construction is a fairly standard tree argument, with
modules replacing the subrequirements. The construction in Section 4, however, is
a little different in the following sense. In usual tree arguments, once a follower is
appointed and later abandoned, it is never reused. In this case we will need to reuse
certain followers which have been discarded. This will be coordinated by the top
nodes in the spirit of ∅′′′-arguments. How and when this is carried out is explained
in further detail in Section 4.

We will drop the stage number from the notations if the context is clear. Within
a stage s of the construction, several actions may take place and will change the
value of an expression P when evaluated at different points within stage s. We will
use P[s] and also sometimes Ps to denote the value evaluated at the instance within
stage s when it is mentioned. We adopt the convention of using uppercase Greek
letters to denote functionals and lowercase Greek letters for their use. That is, γe(x)
refers to the use of 0Ue

e (x), whereas δe(x) refers to the use of 1A
e (x). The use refers

to the largest bit of the oracle accessed during the computation. Since we are only
concerned with reductions which are total, we may assume that the use functions
are nondecreasing. That is, γe(x) ≤ γe(x + 1) for every x . Also the use of any
convergent computation at s is less than s.

3 A Semi-maximal Set Whose Degree Does Not Contain a Hemi-hyperhypersimple
Set

Theorem 3.1 There is a c.e. set A >T ∅′ which is semi-maximal, and for all
c.e. B ≡T A, B is not hemi-hyperhypersimple.

3.1 Requirements We build a c.e set A satisfying the following requirements:

Re : If Xe ∩ Ye = ∅, then one of Xe ∩ Ā or Ye ∩ Ā is c.e.
Qe : If 0Ue

e = A and 1A
e = Ue, and Ue ∩ Ve = ∅,

then Ue t Ve is not hyperhypersimple.

We let 〈0e,1e, Xe, Ye,Ue, Ve〉e∈N be an effective list of all tuples 〈0,1, X, Y,U, V 〉

such that 0,1 are Turing functionals, and X, Y,U, V are c.e. sets. It is clear that A
built this way is of neither computable nor of high degree.

The strategy for requirement Qe builds the disjoint weak array {Ti }i∈N witnessing
the fact that Ue t Ve is not hyperhypersimple. The i th module of Qe ensures that
Ti ∩Ue t Ve 6= ∅, and we will try to ensure that all of the Qe-modules are successful.

3.2 Description of strategy In this section, we discuss the strategy for each re-
quirement in isolation. Hence, we will drop the subscript and write R or Q when
discussing the respective strategies.

The basic strategy used to build a set A which is not of hemi-hyperhypersimple
degree can be found in [5; 7]; we describe it here briefly for the benefit of the
reader. The strategy for requirement Q builds {Ti }i∈N and wants to ensure that
Ti ∩ U t V 6= ∅ through the i th module, which we will call Mi . The action for
each Mi is the following: it starts by picking a follower xi targeted at A and waits



474 Keng Meng Ng

for l0(s) > xi and l1(s) > γ (xi , s), where l denote the respective lengths of agree-
ment. Once that happens, we would enumerate into Ti all the numbers y ≤ γ (xi , s)
such that y 6∈ Us t Vs , and y is not already in some other T j . We would now freeze
A�δ(γ (xi ))[s] to preserve the computations in both directions. The picture below sum-
marizes the situation.

�
�
�
�
�
�
�
��A

A
A
A
A
A
A
AU A

U

xi δ(γ (xi ))[s]

γ (xi , s)

0 1

�
�
�
�
�
�
�
��A

A
A
A
A
A
A
AU

0 1

-� T j

x j

-� Ti

Note that Mi would be satisfied temporarily, for it would have made Ti [s] ∩ Us t Vs
6= ∅. Mi would not need to do anything else until all the numbers we put in Ti had
also entered V (they could not have entered U due to the A-restraint we imposed).
When that happens, we would then put xi into A and freeze A�xi . Now some time
in the future, U would have to respond with a change below γ (xi , s). Since U and
V are disjoint, this cannot be a number we had placed in Ti at s. Hence, it has to
be a number < γ (x j , s) which would be impossible since we always hold A�xi . To
summarize, the action of Mi is to

1. pick a follower xi large enough; wait for l0 and l1(s) to grow;
2. satisfy Ti [s] ∩ Us t Vs 6= ∅ temporarily and impose A-restraint;
3. if ever Ti [t] ∩ Ut t Vt = ∅, enumerate xi into A and impose A-restraint; if

we ever enter this state, we would have a global win on the requirement Q.

Since each module only imposes finite A-restraint and enumerates at most once, it
is easy to see that all modules of the requirements Q0,Q1, . . . can be arranged in
the style of a finite injury method if we only wanted to build such a set A with no
additional property. However, the presence of the R-type requirements forces us to
have to be careful about the choice of followers xi for a Q-module, as described
below.

We will now discuss the plan to satisfy a single requirement R. Suppose we were
trying to construct a maximal set: one maintains a set of markers a0[s], a1[s], . . .
which are all pointing at elements in Ās . We try to maximize the state of each
marker ai by letting ai [s + 1] occupy the location of some a j [s] for some j > i if
such an action increases the state of the marker ai .

Things would be very bad for the Q-requirements, if we had to do the above,
for each movement of a marker ai is accompanied by the enumeration of all the
values ai [s], ai+1[s], . . . , a j−1[s] into A. Fortunately for us, we are allowed to have
infinitely many elements in Ā whose states are never maximized. All we need is to
ensure that either X ∩ Ā or Y ∩ Ā is c.e. Note that the set X ∩ Ā is 2-c.e. since a
number might first enter X , then later enter A. What we want to do is to prevent the
latter from happening infinitely often without our permission on one of the two sides
X ∩ Ā or Y ∩ Ā.



On the Degrees of Diagonal Sets 475

More precisely, it is perfectly all right for us to have an alternating sequence of
numbers n0 < n1 < n2 < · · · such that n2k ∈ Y ∩ Ā and n2k+1 ∈ X ∩ Ā. What we
do is that each time a new n2k+2 shows up (i.e., enters Y ), we will freeze all numbers
strictly between n2k and n2k+2 (i.e., keep them out of A). We claim this does the job
for R: if we only freeze finitely many intervals, then Y ∩ Ā is finite. If we freeze
infinitely many intervals, then X ∩ Ā is c.e., because if some (X ∩ Ā)(n) flips from
0 to 1 after n is frozen, then it can never flip back to 0.

As a side note, we remark that the strategy used to build a hemi-maximal (hemi-
hyperhypersimple) set is very similar to the strategy used to build a semi-maximal
(semi-hyperhypersimple) set except that we are not allowed any injuries to each sepa-
rate requirement. For example, in the above, we are allowed to make A-enumerations
within a frozen interval, and provided this happens finitely often our semi-maximal
requirement is still satisfied. If we were instead trying to make A hemi-maximal by
building the other half C of the splitting of a maximal set A tC , then once we freeze
an A-interval (x1, x2) (which means we dump the entire interval (x1, x2) into C to
maximize some states), then we cannot allow A to change within the frozen interval
(x1, x2) anymore.

3.3 Interaction between strategies and the streaming procedure The construc-
tion is to take place on a subtree of 2<ω, and we think of the construction tree as
growing downward. To implement the above strategy at an R-node α, we use a
process called streaming. This term will be used throughout this proof and the next
and is a crucial ingredient in helping Q-requirements in their selection of followers.
We maintain a list Sα of numbers which are streamed by α where α is an R-node.
The way to think about streaming is the following. One pictures N as a collection
of infinite points on a line, and at the beginning Sα = ∅. We think of Sα as acting
as a sort of a gate or barrier situated at the node α. As more numbers get streamed
(i.e., enter Sα), these numbers on the line fall through the gate and drop down to the
Q-nodes extending α_∞ (which stands for infinitely many α-expansionary stages),
who can then pick an appropriate follower from this list. Here α_∞ and α_ f are
the two immediate successors of α on the tree, and an α-expansionary stage s is a
stage where more numbers are streamed by α. At each α-expansionary stage we
ensure that there are new, fresh numbers waiting for the gate to open. If there are
infinitely many α-expansionary stages, then the gate allows infinitely many numbers
through. If a Q-node extends α_0 ∞ and α_1 ∞, then it only appoints a follower x if
x falls through both gates Sα0 and Sα1 . More specifically, the rule for streaming is
the following. Each time a new large number enters Y and is not yet in A, we put
it in Sα . Furthermore, all Q-modules of a lower priority believing that α streams
infinitely many numbers (i.e., α-outcome ∞) will pick their x-followers from Sα ,
while Q-modules believing that α streams finitely many numbers (i.e., α-outcome
f ) will pick followers larger than max Sα[s] and be initialized each time Sα grows.
This restriction ensures that numbers which are missed out during α-streaming are
never later enumerated into A. This corresponds to “freezing the interval” between
two streamed numbers, as mentioned previously.

And if β is an Rk-node below α_∞, then β will only stream numbers which
have already been streamed by α. This ensures that Q-nodes below β_∞ get a
continuous stream of numbers which they may use as followers. It follows similarly



476 Keng Meng Ng

(now taking into account the growth of Sα) that

|Sβ | < ∞ ⇒ Yk ∩ Ā is c.e.
|Sβ | = ∞ ⇒ Xk ∩ Ā is c.e.

The most direct way of arranging the requirements on the construction tree is as
follows. There will be levels on the construction tree devoted to the R-requirements
which will have two outcomes ∞, f . We also need to put a top node τ for each Q-
requirement. Each τ has infinitely many τ -modules, which we denote by Mτ

0 , . . . .
Each module is treated as a subrequirement of τ and is assigned to the nodes on a
level below |τ |. Note that this layout is slightly different from the actual layout in
the formal construction.

We see that having two different modules Mτ
i and Mτ

j of the same Q-node τ
act on different R-guesses immediately produces a problem. Take, for instance, the
module Mτ

0 assigned to some node σ below α_∞, where α is an R-node. Now at
non-α-expansionary stages where Sα does not grow, we might have some τ -daughter
node σ ′ (assigned module Mτ

j ) below α_ f running its basic strategy. Namely, it will
pick follower x > max Sα[s] and put all the numbers z ≤ γ (x) into T j . The danger
is that at the next α-expansionary stage, we might have to stream x into Sα . If this
happens at each α-expansionary stage for j > 0, then σ would not be able to pick
any number in Sα as a follower since the array T0, T1, . . . has to be disjoint.

This obstacle is by no means an impossible one, because σ never needs to enu-
merate anything into A unless the enumeration also produces a global win for τ .
Even though σ is of lower local priority (since σ ’s position on the tree is lower than
the position of α), its global priority is higher than that of α (because σ is assigned a
module working for τ , which is above α). Hence it is all right for σ to pick a follower
not in Sα and basically ignores the streaming strategy of α. The requirement α will
only sustain a finite amount of injury coming in this fashion (at most finitely often
for each master Q-node above α).

Finally, we will explain exactly how we intend to arrange the construction. The
construction takes place on a subtree of 2<ω. Nodes of even length |α| = 2e are
assigned the requirement Re with two outcomes ∞ <left f . Nodes of odd length
|α| = 2e + 1 are assigned the requirement Qe with only a single outcome 0.

In the light of the above discussion, we observe that each Q-node τ only need
to enumerate at most once if it is not injured anymore. Furthermore, all τ -modules
ignore streaming nodes lying between τ and itself, so it is not necessary for us to
spread the τ -modules out on the nodes below τ . Rather, we will run all the τ -modules
at the node τ itself. Since each module only requires a finite amount of processing
time, we will finish off with one module before moving on to the next module. If at
any point in time τ makes an A-enumeration (via one of its modules), it will impose a
final A-restraint and be done. We will, however, still need to determine local priority
among the modules of two different Q-nodes τ1 ⊂ τ2. This is elaborated in Section
3.5 and will be used to determine which τ2-modules are allowed to injure which
τ1-modules.

Notice that the Q-strategies above cannot be modified to construct a semi-
maximal set not of semi-hyperhypersimple degree. This is because we will need to
modify the Q-strategies to diagonalize all c.e. sets, and the Q-subnodes will now
make separate enumerations into A without a global Q-win for us. This is similar to
the situation we will face in Theorem 4.1. We also cannot modify the R-strategies



On the Degrees of Diagonal Sets 477

to construct a hemi-maximal set not of hemi-hyperhypersimple degree, because the
Q-strategies now cannot enumerate inside a frozen zone (any interval frozen by R
during streaming is permanently frozen since we have to make A half of a maximal
set).

We make a note here about the theorem. The Q-requirements actually show some-
thing slightly stronger; it shows that U t V is not even finitely strongly hypersimple.
This is because almost every number is enumerated into one of the Ti (unless already
in U t V ), and each Ti is finite. A characteristic index for Ti can be easily computed.

3.4 Notations Let α <left β denote that α is strictly to the left of β under lexi-
cographic ordering. We write α ⊂ β to mean that α is a strict initial segment of β,
and α ⊆ β to mean α ⊂ β or α = β. We say that α is an S-node if α is assigned the
requirement S.

For each Qe-node α, we build a weak array {T αi }i∈N and write T α for ti∈NT αi .
The i th module of α, called the (α, i)-module, is responsible for making sure that
T αi ∩ Ue t Ve 6= ∅ provided the premises in Qe hold. We also denote the (α, i)-
module by Mα

i . For each i ∈ N, we let xαi denote the follower targeted at A that
Mα

i has picked. We also let Fαi denote the state of Mα
i . This may either be 0 (mean-

ing that the module is pending action), or it can be 1 (meaning that the module has
already ensured that T αi ∩ Ue t Ve 6= ∅ is at least temporarily satisfied). We intro-
duce a global parameter called SAT(e), for each e ∈ N. This starts off initially as
SAT(e) = 0, and when some Qe-node makes an enumeration into A, we will declare
SAT(e) = 1 to record the fact that Qe has been satisfied (via the falsification of the
premise). We will subsequently prevent all other Qe-nodes at the same level from
acting, since these nodes no longer need to act, provided that the appropriate restraint
is held.

If α is an Re-node, we let Sα denote the set of numbers streamed by α for use by
the Q-nodes extending α_∞. A stage s is α-expansionary if either s = 0 or else α
is visited by the construction at stage s, and there are at least t + 1 distinct numbers
y0, . . . , yt such that t is the previous α-expansionary stage, and for all i ,

1. yi > max Sα[s],
2. yi ∈ Ye,s ∩ Ās ,
3. for all R-nodes β such that β_∞ ⊂ α, we have yi ∈ Sβ [s].

At each such α-expansionary stage s > 0, we will stream the numbers y0, . . . , yt
into the set Sα . Each time we stream numbers into Sα , we want to put more numbers
into Sα than the previous time. Condition 1 states that we only stream numbers in
increasing order. Condition 3 ensures that Sα is a refinement of the set Sβ .

When we initialize an (α, i )-module for some Q-node α, we mean that we set
xαi ↑ and Fαi = 0. To initialize the Q-node α, we initialize all α modules and reset
the definition of the weak array {T αi }i∈N by setting T αi = ∅ for all i . To initialize
the R-node α, we set Sα = ∅.

3.5 The local priority ordering Suppose α is a Qe-node. The basic strategy of
each α-module has both a positive component (in the sense that it might change
A) and a negative component (it wants to prevent changes to A). If any α-module
changes A, then every module of α will not need to do any more work. Therefore,
conceptually it makes more sense to think of the α-modules as having only strictly
negative action. If any α-module sees a chance to change A, we will let α take over,



478 Keng Meng Ng

change A, and freeze every α-module. Hence any positive activity is an action of
the node α, having priority α (even though the module which was lucky enough to
discover this fact had very low local priority). In more complicated ∅′′′-arguments,
this would correspond to a subnode σ of some top node τ witnessing the chance of
a global win for α.

If α is a Qe-node, then we define the set of modules with a lower local α-priority
to be all the Mβ

i for some Q-node β ⊂ α and i > e. That is, these modules might
have higher “global priority,” but we want to arrange for a secondary ordering in
which we place almost all of β’s modules below α. All the modules with higher α-
priority have negative restraint which will not be injured by an A-enumeration made
by α. During the construction if α makes an enumeration into A, it will initialize all
nodes η ⊃ α since they have lower “global priority,” as well as initialize all modules
of lower local priority. On the other hand, for each Mβ

i , there are only finitely many
levels in the construction tree which have higher local priority than it (namely, the
levels up until Qi−1), so the number of injuries it sustains is finite.

3.6 The construction During the construction, when we say that γe(n)[s] ↓ or
δe(n)[s] ↓, we not only mean that the respective computations have converged, but
also that 0Ue

e (m)[s] = As(m) and, respectively, 1A
e (m)[s] = Ue,s(m) holds for all

m ≤ n. That is, the respective lengths of agreements are sufficiently long, and if a
computation converges without agreement, we treat it as being divergent.

At stage s = 0, we initialize all nodes, set SAT(e) = 0 for all e, and do nothing
else. Let s > 0. We define the stage s approximation to the true path, TPs of length
s inductively. We say that a node τ is visited at stage s if TPs ⊃ τ . Suppose that
α = TPs�d is defined. There are two cases.

Case 1 α is an Re-node: if s is not α-expansionary, let TPs(d) = f , and do noth-
ing. Otherwise, let TPs(d) = ∞ and enumerate into Sα all the yi s satisfying condi-
tions 1–3 for an α-expansionary stage above.

Case 2 α is a Qe-node: let TPs(d) = 0. If SAT(e) = 1, do nothing. Otherwise, if
there is some i such that Fαi = 1, δe(γe(xαi ))[s] ↓, and T αi [s] ∩ Ue,s t Ve,s = ∅, we
do the following:

− xαi into A,
− set SAT(e′) = 0 for all e′ > e,
− initialize all nodes β such that |β| > |α|,
− initialize Mβ

i for each Q-node β ⊂ α and i > e (i.e., initialize all modules of a
lower local priority),

− set SAT(e) = 1, indicating that Qe is satisfied.

Finally, if neither of the above applies, we look for the smallest i such that Fαi = 0,
and we take actions for Mα

i . There are two possibilities.

(a) xαi ↑ is currently undefined: check if there is some x 6∈ As satisfying
(i) x > δe(γe(x?))[s] (which we wait for convergence), where x? = largest

follower picked by any α-module so far,
(ii) x > any number used or mentioned prior to the end of stage s−, where

s−
≤ s is the stage where α was last initialized,

(iii) x ∈ Sβ [s] for all R-nodes β such that β_∞ ⊆ α, and
(iv) x > max Sβ [s] for all R-nodes β such that β_ f ⊆ α or β <left α.



On the Degrees of Diagonal Sets 479

If there is such x , we set xαi ↓= x for the least such x and initialize all Qe′ -
nodes ⊃ α, for e′

≥ i (i.e., initialize all nodes ⊃ α which do not have higher
local priority. This is important because we do not want the future actions of
these nodes to injure Mα

i ).
(b) xαi ↓ is currently defined: check if δe(γe(xαi ))[s] ↓. If so, we enumerate all y

satisfying y ≤ γe(xαi )[s], y 6∈ Ue,s t Ve,s , and y 6∈ T α[s] into T αi . Initialize
all Qe′ -nodes ⊃ α, for e′

≥ i . Set Fαi = 1 to indicate that we have temporarily
satisfied Mα

i .
This concludes the inductive definition of TPs . Finally, initialize all nodes
β >left TPs and go to the next stage.

3.7 Verification The true path of the construction is defined as usual to be the
leftmost path visited infinitely often during the construction.

Lemma 3.2 Each α on the true path is initialized only finitely often. If α is a
Q-node, then each of its modules is also initialized finitely often.

Proof We restrict our attention to Q-nodes on the true path. Let αe denote the
Qe-node on the true path. It will be sufficient to prove the following sentences:
ϕe : α0, . . . , αe are initialized only finitely often;
θe : only finitely many enumerations can be made into A by a node β of length

|β| ≤ |αe|;
ψe : Mαi

j is initialized only finitely often, for i ≤ e and j ≤ e + 1, by in-
duction on e; this follows from the fact that ϕ0 is clearly true and that
ϕe ⇒ θe ⇒ ψe ⇒ ϕe+1. �

Lemma 3.3 All R-nodes on the true path are satisfied.

Proof Let α be an Re-node on the true path such that Xe ∩ Ye = ∅. Let o be the
true outcome of α and s0 be a stage after which α_o is never initialized. Suppose
o = f is the true outcome of α; then we claim that Ye ∩ Ā is c.e. by specifying a
c.e. set R =

∗ Ye ∩ Ā.
Given x > x0 := max Sα[s0], we enumerate x into R if there is a stage t > s0

such that α is visited and x ∈ Ye,t ∩ Āt . Furthermore, we also require that there is
some R-node α− of maximal length such that α−_

∞ ⊂ α; for this node α−, we
require that max Sα

−

[t] > x , and x 6∈ Sα
−

[t].
We claim that this enumeration describes Ye ∩ Ā. First, take x ∈ Ye ∩ Ā and

x > x0. Note that α− must exist, otherwise Ye ∩ Ā will be finite. So, the only reason
why x is never put in R after it shows up in Ye must be because x ∈ Sα

−

. There can
only be at most s0 many such x , since the last α-expansionary stage is before s0, and
consequently Ye ∩ Ā ⊆

∗ R. Next we consider an x ∈ R. Such an x is put in R at
stage t > s0, and we want to show that x does not enter A after stage t . Since x never
enters Sα

−

, it clearly cannot be enumerated by a Q-node β ⊇ α−_
∞. Neither can x

be enumerated by β >left α
−_

∞ since such an enumeration has to take place after
stage t , but at stage t we would have initialized β (since at t we visited α). Thus x
cannot enter A after stage t , so that R ⊆ Ye ∩ Ā.

Now suppose o = ∞ is the true outcome of α. We will build a c.e. set R̃ = Xe∩ Ā:
we enumerate x into R̃ if there is some stage t > s0 such that α_∞ is visited,
x ∈ Xe,t ∩ Āt , and max Sα[t] > x . We claim that R̃ = Xe ∩ Ā. The direction ⊇ is



480 Keng Meng Ng

obvious, and if some x is enumerated in R̃ at stage t , then necessarily x never enters
Sα (since Xe ∩ Ye = ∅). So for reasons similar to the ones above, x cannot enter A
after stage t . �

Lemma 3.4 Let Mα
i be a module of a Qe-node α which is not necessarily on the

true path. After Fαi is set to 1, no enumeration can be made into A below δe(γe(xαi ))
unless either α enumerates or else Mα

i is initialized in the same stage.

Proof Suppose on the contrary that β is a Q-node which does the enumeration. The
only possibility is that either β = α or we have β ⊃ α. In the latter case, if β is not
of higher local priority, it would be initialized at the same time when Fαi is set to 1.
On the other hand, if β is of higher local priority, it would initialize Mα

i whenever it
makes an enumeration. �

Lemma 3.5 All Q-nodes on the true path are satisfied.

Proof Let α be a Qe-node on the true path, where the premise is true via the sets
Ue and Ve. Let s0 be the first stage after which α is never initialized. {T αi } is a
weak array since it is never reset after s0, and it is clearly disjoint by step 2b of the
construction.

We first claim that SAT(e) never equals 1 after stage s0. Suppose the contrary.
Thus at some stage t0 we have a module Mβ

i for some Qe-node β making an A-
enumeration. We may assume that β is never initialized after t0. Also we have
at some largest stage t1 < t0, β is visited and flips Fβi to 1. By Lemma 3.4, no
enumeration in A below δe(γe(x

β
i ))[t1] can be made until β enumerates xβi at stage

t0. After β’s action at t0, no number below xβi can ever enter A.
Because of the enumeration made by β, we now have the disagreement A(xβi ) =

1 6= At1(x
β
i ) = 0

Ue
e (xβi )[t1]. Since we know that 0Ue

e = A, there must be a change,
say Ue(p), in Ue below γe(x

β
i )[t1] after β’s action at t0. But β’s action at stage t0 was

due to the fact that it saw T βi [t0] ∩ Ue,t0 t Ve,t0 = ∅, which means that p 6∈ T βi [t0].
Clearly, p 6∈ Ue,t1 t Ve,t1 , which means that the only reason why it was not put into
T βi at stage t1 must be because we already have p ∈ T β [t1]. Hence xβi > δe(p)[t1]
by condition 2(a)(i) of the construction so that p 6∈ Ue, giving a contradiction.

Since SAT(e) is never 1 after s0, α is not blocked from action each time it is
visited after s0. Fix an i , and we need to show that Mα

i eventually succeeds in
making T αi ∩ Ue t Ve 6= ∅. It will be sufficient to argue that each module state Fαi
eventually settles down to 1. This is because we never put anything into T αi unless
Fαi = 0, so not every number in lim T αi can enter Ue t Ve lest SAT(e) is set to 1.

Now we argue inductively that lim Fαi = 1; assume all Mα
i ′ are eventually in state

1 for i ′ < i . If Fαi = 0 at a sufficiently large stage then Mα
i will receive attention at

each visit to α; in fact, all we do at each subsequent visit to α is to give it attention
until Fαi becomes 1. Now a follower will eventually be picked for xαi , because
conditions 2(a)(i), (ii), and (iv) specify lower bounds for xαi which do not increase
until xαi is picked. Condition (iii) will be satisfied eventually since Sβ increases at
each visit to α, and since each β only streams numbers into Sβ , which are not yet in
A. Once xαi receives a definition, it will never be canceled. Fαi will be set to 1 when
δe(γe(xαi )) ↓ (and subsequently never goes back to 0). �



On the Degrees of Diagonal Sets 481

4 A Hemi-hyperhypersimple Set Whose Degree Does Not Contain a Semi-maximal
Set

Theorem 4.1 There is a c.e. set A which is hemi-hyperhypersimple, and for all
c.e. B ≡T A, B is not semi-maximal.

4.1 Requirements We build disjoint c.e. sets A and C satisfying the following
requirements:

Se : {V e
x }x∈N is disjoint ⇒ ∃x such that V e

x − (A t C) is finite;

Qe : if 0Ue
e = A and 1A

e = Ue, build disjoint c.e. sets
X, Y such that both X − Ue and Y − Ue are not c.e.

We satisfy requirement Qe via the following subrequirements:

Qe,2k : if the Qe-premises hold, ensure that X − Ue 6= Wk ;
Qe,2k+1 : if the Qe-premises hold, ensure that Y − Ue 6= Wk .

Here we let 〈0e,1e,Ue〉e∈N be an effective list of all tuples 〈0,1,U 〉 such that
0,1 are Turing functionals and U is a c.e. set. Also {V e

x }x∈N stands for the eth
uniformly c.e. sequence. We assume a listing where {V e

x }x∈N is a disjoint sequence
for every e. As usual, we use uppercase Greek letters to denote functionals and
lowercase Greek letters for their corresponding use. The Q-requirements ensure that
A is noncomputable. Also, C is automatically noncomputable; otherwise A has high
degree and thus there will be a maximal set U ≡T A.

4.2 Description of an isolated strategy We first describe a single strategy used to
meet Qe and make A not of semi-maximal degree. In this section, we may occasion-
ally drop the subscripts since we are describing strategies in isolation. The first try
would be to proceed in roughly the same fashion as the Q-strategies in Theorem 3.1.
We now build disjoint c.e. sets X, Y and monitor the lengths of agreement at Qe.
The subrequirement Qe,2k (similarly Qe,2k+1) will ensure that for some p, we have
(X − Ue)(p) 6= Wk(p). To do this, we appoint a follower x for the Qe,2k-strategy
and wait for the nested length of agreement to exceed x . We would then enumer-
ate all p ≤ γ (x, s) into X , provided p 6∈ Y , and freeze A�δ(γ (x)) to preserve the
computations both ways. We will have a similar diagram as before.

�
�
�
�
�
�
�
��A

A
A
A
A
A
A
AU A

U

x δ(γ (x))[s]

γ (x, s)

0 1

�
�
�
�
�
�
�
��A

A
A
A
A
A
A
AU

0 1

-� Y

x ′

-� X

Again, note that Qe,2k would be satisfied temporarily until the opponent makes
(X − Ue)�γ (x,s)= Wk�γ (x,s) true. That is, every number we had put in X and not
in Ue would also have entered Wk . When that happens, we put x into A and freeze
A�x . The resulting U -change will cause a disagreement with Wk that lasts forever.



482 Keng Meng Ng

If we followed exactly this, then the atomic strategy of each Qe,2k is the same as
before; however, the reader will observe a significantly different effect on the rest of
the construction: a single Q-module in Theorem 3.1 will make an A-enumeration
for a Q-win. In this case, however, the Q-subrequirements may each enumerate a
finite number of times without getting a global Q-win. Hence some modification to
the atomic strategy will have to be made.

As the reader might recall, the streaming strategies in Theorem 3.1 work only be-
cause each streaming node ignores the A-enumerations made by Q-modules which
are of a higher global priority than it. This is obviously a problem here, since now
there can be infinitely many such enumerations of higher global priority. Fortunately,
this time we do not need to make A semi-maximal, but hemi-hyperhypersimple. In-
formally this helps because instead of being allowed only two states (in or out
of some c.e. set), we are now allowed three or more different states (being in
V0, V1, V2, . . . ).

4.3 Interaction between two conflicting strategies The construction will take
place on a finite branching tree. For the rest of this section and the next, we con-
sider a Q-node τ of a higher priority than an S-node σ . σ has a rightmost finitary
outcome (call it f for the time being, although this has a different label in the formal
construction) and two infinitary outcomes to the left (it will be clear later why we
have two). The subrequirements of a Q-node τ will be assigned to nodes extend-
ing τ . These subrequirement nodes are called τ -daughter nodes. The main difficulty
here analogous to the one we outlined in Theorem 3.1 was the following: it might be
that while σ is waiting for numbers to show up in the array {Vx }, some τ -daughter
node in the region ⊃ σ_ f picks a follower x and enumerates all p ≤ γ (x) into
X . We say that the number x is X-used. This can happen for various different x ;
that is, a number of different x might become X -used or Y -used while σ is waiting.
Suppose next, some number shows up in {Vx } causing σ to wake up and apply some
streaming strategy which takes us to one of the left outcomes, call it i . We cannot
control which numbers enter V0, V1, . . . , and it may be the case that after streaming,
the only surviving numbers left are all X -used (or all Y -used). Then the τ -daughter
nodes ⊃ σ_i will only have numbers which have already been X -used to choose
from, and so the τ -daughter nodes working for, say Qe,2k+1, will be unable to ap-
point a suitable follower. In the light of this discussion, it is clear now what we need
to incorporate into the construction:

(F1) First, we need to “recycle followers” from right to left as described in the
following scenario: a number x had been appointed a follower by some α ⊃ σ_ f .
When x undergoes σ -streaming, and assuming it survives the streaming, it will be
available for nodes ⊃ σ_i to choose from. In this case, α relinquishes control of x
(assuming α hasn’t enumerated x in yet), and when α is next visited it will appoint
another follower larger than x . x will now be available to nodes ⊃ σ_i (of the
correct type, of course) for the rest of the construction. x might be recycled again
a second time if there is another S-node which does the above, but in any case x
always migrates from the right to the left.

(F2) Each time σ applies a streaming strategy, it needs to make sure that there are
at least two numbers z1 6= z2 such that z1 is not yet X -used and z2 is not yet Y -used,



On the Degrees of Diagonal Sets 483

and both z1, z2 survive the streaming. This ensures that both types of τ -daughter
nodes ⊃ σ_i are able to appoint followers when they are visited.

How should we carry out streaming at σ then in order to have (F2)? We will have
a single finitary outcome and two infinite outcomes corresponding to two different
streaming strategies (B0 and B1). We will see that three outcomes is enough. The
outer streaming strategy B0 will look for two numbers z1 6= z2 such that z1 is not yet
X -used and z2 is not yet Y -used, and both z1, z2 are in V1 t V2. It will then kill all
other numbers 6= z1, z2 by dumping them in C . The inner streaming strategy B1 will
be active (and carries out its own actions) while B0 is waiting for new numbers to
show up in V1 t V2, and B1 is reset each time B0 finds new numbers for streaming.
B1’s actions are the following: it looks for two numbers z1 6= z2 such that z1 is not
yet X -used and z2 is not yet Y -used, and either z1 or z2 is in V2. It then dumps all
other numbers which have not yet been B0-streamed. Since B1 is active only when
B0 fails to find the required numbers, it follows that each time B1 acts with z1, z2,
and if z1 ∈ V2, then either z2 hasn’t appeared in V0 ∪ V1 ∪ V2 or else already we have
z2 ∈ V0.

It is clear that if B0 finds infinitely many numbers, then V0 − (A t C) is finite,
since B0 kills every number which does not survive streaming. If B0 gets stuck at
some stage but B1 manages to find infinitely many numbers, then V1 − (A t C) is
finite because every number which survives B1-streaming is either already in V2 or
it never enters V1 (else together with its companion will be streamed by B0). Last, if
both B0 and B1 get stuck, then V2 − (A t C) is finite.

4.4 Technical considerations It should be clear that the above works for σ , and
also that the τ -daughter nodes below σ on the true path will always have followers
of the correct type to choose from. This ensures (F2). Also, it shows us that we
can actually prove something slightly stronger. We do not actually need to consider
full infinite arrays in the S-requirements but only that the S-requirements consider
triples 〈V0, V1, V2〉 of disjoint c.e. sets. This is the best we can do, since if we only
consider pairs 〈V0, V1〉 of disjoint c.e. sets in the S-requirements, then the set A t C
produced would be both r -maximal and hyperhypersimple, and hence maximal. The
problem with only having a pair of disjoint c.e. sets is that we have too few states to
play with.

There are various technical difficulties in arranging for (F1). For instance, the
number x in the diagram in Section 4.2 is X -used but not Y -used. However, if some
number ≤ x ′ enters A in future, then x cannot be used by any τ -daughter node
anymore, because upon recovery of the computations, we may now have δ(p) > x
for some p ∈ Y . To make things less messy and improve readability in the formal
construction, we propose to organize the construction in the following manner.

Followers appointed by a node assigned the even requirements Qe,2k will have
to be even numbers, while followers appointed by the odd nodes assigned Qe,2k+1
are odd numbers. This eliminates the need to flag a number as being X -used or Y -
used. To keep track of whether or not a number x is suitable for use by τ -children,
we will flag x as being τ -confirmed when the nested length of agreement is > x ,
and x is currently appointed a follower by some τ -daughter node α. Instead of
enumerating numbers into X (or Y if x is odd) only when α is next visited, we will
instead enumerate the appropriate numbers into X immediately when x receives τ -
confirmation (when τ is visited). This τ -confirmation will tell an S-node σ ⊃ τ



484 Keng Meng Ng

which numbers to consider for streaming; if a number can no longer be used for
streaming then the τ -confirmation on it must be removed to avoid confusing the
streaming node σ . To illustrate the interaction between confirmation and streaming,
we present the following example.

Example 4.2 Suppose τ ⊂ σ where τ is a Q-node, and σ is an S-node and suppose
α is a τ -daughter node such that α ⊃ σ_ f . α starts by appointing a follower x (of
the correct parity). At the next τ -expansionary stage s when τ is visited, we will have
δ(γ (x))[s] ↓, and by convention is less than s. We will declare x as τ -confirmed,
and perform the following two actions:

1. enumerate all corresponding p ≤ γ (x) into X (or Y depending on the parity
of x),

2. cancel all current followers y where x < y < s.
This confirmation tells the rest of the nodes below τ that x can be used as a follower
by any τ -daughter node of the correct parity. This is true as long as A�δ(γ (x)) does
not change, and even when σ plays an infinite outcome to the left of f , as long as x
survives the streaming, x will be released by α and can continue to be used by other
τ -daughter nodes. On the other hand, when A�δ(γ (x)) changes, then it has to be due
to an A�x -change (because of (2) above). So confirmation on x can be removed, and
x will no longer be considered.

The reader may also recognize this strategy as being similar to the cancelation and
confirmation strategy used in the construction of a contiguous c.e. degree as pre-
sented in [1] and [4]. Note that the requirements actually imply that there cannot be
three disjoint elements in L∗(A t C) so that the lattice of supersets only consists of
four elements. Hence A t C is quasi-maximal. Define a set to be k + 1-maximal if
it is the intersection of two k-maximal sets, where 1-maximal sets are the maximal
sets. Then by nesting more streaming strategies in the S-requirements, one could
modify the proof below to show that for any k ≥ 1, there is a hemi-k + 1-maximal
set whose degree does not contain a semi-k-maximal set. There are several possible
classes of sets which one may investigate, defined by various finite restrictions on
the weak arrays.

4.5 Construction tree layout The construction is organized on a finite branching
tree, which grows downward. For each requirement R, we say that α is an R-node
if α is assigned the requirement R. The assignment of nodes is as follows.

Nodes of length |α| = 2〈e, 0〉 are assigned the requirement Qe with two outcomes
∞ <left f . The left outcome ∞ stands for infinitely many α-expansionary stages in
which the lengths of agreement increase, while outcome f stands for the guess that
there are only finitely many α-expansionary stages. In the region below α_ f , there
will be no need for any action to be taken for the subrequirements of Qe. Nodes of
length |α| = 2〈e, k +1〉 will be assigned the requirement Qe,k with a single outcome
2, since the action of each Qe,k is finitary. The reason why we choose the number 2
is to keep it consistent with the “finitary” outcome of the Se-nodes; see below.

We say that τ is a top node if τ is a Qe-node for some e. If α ⊃ τ where α is a
Qe,k-node and τ is a Qe-node, we say that α is a daughter node of τ . In this case,
we also refer to τ as the top node of α, denoted by τ = τ(α). Furthermore, if k
is even we call α a (τ, X)-daughter node; otherwise, we say it is a (τ, Y )-daughter
node. α and β are called sibling nodes if they have the same top. Note that we also



On the Degrees of Diagonal Sets 485

label τ -daughter nodes α ⊃ τ_ f even though α never needs to act; this is to keep
the construction tree layout and labeling of nodes clear and less confusing.

Nodes of odd length |α| = 2e+1 are assigned the requirement Se. The node α has
3 outcomes, labeled 0 <left 1 <left 2. Outcome n stands for ‘V e

n − (A t C) is finite’.
Let α <left β denote that α is strictly to the left of β under the usual lexicographic
ordering. We write α ⊆ β to mean α ⊂ β or α = β. As mentioned above, Qe-nodes
are referred to as top nodes. A Qe,i -node will be referred to as a Q-node, while
an Se-node is known as an S-node (when we do not want to be specific about the
index e).

4.6 Notations At the Qe-node τ , we build the disjoint c.e. sets Xτ and Yτ . We
will only concern ourselves with the τ -computations which converge correctly both
ways, so we monitor the nested length of agreement via lτ [s], defined as the largest
x < s such that

1. for all y < x, we have 0Ue
e (y)[s] ↓= As(y), and

2. for all z ≤ γe(x − 1, s), we have 1A
e (z)[s] ↓= Ue,s(z).

In particular, if x < lτ [s] at a stage s, then δe(γe(x))[s] ↓, and by restraining
A �δe(γe(x))[s], we will be able to preserve the computations below 1A

e (γe(x))[s].
Hence, Ue cannot change below γe(x)[s] before we remove the restraint on A; oth-
erwise we would get a τ -win by continuing to hold the same restraint on A. We
sometimes write γτ , δτ , 0τ ,1τ in place of γe, δe, 0e,1e to avoid cumbersome no-
tations.

If α is a τ -daughter node, we use xα[s] to denote the stage s follower that α has
appointed, which might be put into A some time in the future to force changes in
Ue. If α is a (τ, X)-daughter node, then it appoints even followers (i.e., even values
for xα), while if α is a (τ, Y )-daughter node then it appoints odd followers. This
restriction is to help in streaming at S-nodes—an S-node σ will make sure that there
is a continuous stream of numbers both even and odd for use by nodes below.

A stage s is τ -expansionary if either s = 0 or else τ is visited by the construction
at stage s, and

1. lτ [s] > lτ [s−
] where s− is the previous τ -expansionary stage, and

2. lτ [s] > xα[s] for every α ⊇ τ_∞.

Note that in (2) above, we wait for lτ to exceed xα for every α ⊇ τ_∞ includ-
ing those α which are not daughters of τ . Undefined values count as 0. At τ -
expansionary stages, we will take the least x = xα in (2), enumerate all numbers
y such that x < y < s into C , and declare x as τ -confirmed. The purpose of
τ -confirming a number x is to ensure that x can be used as a follower by any (τ, X)-
daughter node (supposing x is even, similarly for x odd) so long as it is not yet killed.
This feature is necessary so that S-nodes below τ can run their streaming strategies
compatible with τ .

Suppose that σ is an Se-node. There are two parameters, Bσ0 and Bσ1 , correspond-
ing to the outcomes 0 and 1, respectively. These contain numbers which have been
successfully streamed by σ . By convention, we fix Bσ2 = N. If α is any node, then
we let Availα[s] := ∩{Bσi [s] | σ is an S-node such that σ_i ⊆ α}. This represents
all the numbers which are currently available to α. We say that two numbers are of
different parity if one of them is even and the other is odd. At any time there is a
basic restraint that applies to σ . Denote this by rσ [s] :=, the least number larger than



486 Keng Meng Ng

1. max{xβ [t] | (β ⊂ σ ∨ β <left σ ) and t ≤ s} (all current and past followers),
2. s− where s− is the previous stage such that TPs− <left σ .

That is, any number handled by σ has to be at least larger than rσ . We say that a
number z is σ -good at stage s if the following hold:

1. z ∈ As t Cs ∩ Availσ ,
2. z is τ -confirmed for every top node τ such that τ_∞ ⊆ σ ,
3. z > rσ [s].

The stage s approximation to the true path is denoted by TPs and will be defined
during the construction. The idea is that σ will only consider numbers which are
σ -good for the purpose of streaming. If a number is larger than rσ but is not σ -good,
then it is useless for streaming, and σ will get rid of these numbers.

We state now what it means to initialize a node α at stage s. If α is a top node,
then we set Xα = Yα = ∅ and remove all α-confirmations. If α is a daughter node,
then we set xα =↑. If α is an S-node, then we set Bα0 = Bα1 = ∅. To remove all
confirmations on a number z means to remove any τ -confirmation currently on z for
every top node τ . To dump a number n at a stage s means to enumerate n into C
unless n ∈ As t Cs .

4.7 The construction At stage s = 0, we initialize all nodes and do nothing else.
Let s > 0. We define the stage s approximation to the true path, TPs of length < s
inductively. During any time (in a stage s), if the construction encounters halt, we
will immediately cease all further action, end the current stage s, and go to stage
s + 1. As usual, we say that a node α is visited at stage s if TPs ⊃ α. Suppose that
α = TPs�d is defined. We want to state the action for α and specify the outcome
taken by α. There are three cases.

Case 1 α is a Qe-node: If s is not α-expansionary, let TPs(d) = f and do nothing.
Otherwise, let TPs(d) = ∞ and do the following in order.

1. For every β >left α
_

∞, we do the following: if β is a Q-node, we remove
all confirmations on xβ if it is defined. If β is an S-node, then we remove all
confirmations on z for every z ∈ Bβ0 t Bβ1 .

2. Initialize every β >left α
_

∞.
3. Pick the smallest number z such that z = xβ for some β ⊇ α_∞, and

z is not α-confirmed. If z exists and is even, we enumerate all y satisfying
y ≤ γe(z)[s] and y 6∈ Xα,s tYα,s into Xα . If z exists and is odd we enumerate
all such y into Yα instead. Finally, declare z as α-confirmed.

4. If δe(max Xα t Yα)[s] ≥ s−, then halt where s− is the previous α-
expansionary stage.

Case 2 α is a Qe,2k-node: Let TPs(d) = 2. If α is a Qe,2k+1-node, then exactly the
same steps described below are to be taken, except that we replace X by Y and even
with odd. If α ⊃ τ(α)_ f , do nothing for α. Otherwise there are three subcases;
pick the one that applies and take the actions described.

1. xα is currently undefined: we need to pick a new follower for xα by the
following. Check if there is some even number x 6∈ As t Cs satisfying
(a) for every top node τ such that τ_∞ ⊆ α, either x is currently τ -

confirmed or else x > δτ (max Xτ t Yτ )[s],
(b) x > max{xβ [t] | β ⊂ α ∨ β <left α and t ≤ s},



On the Degrees of Diagonal Sets 487

(c) x > s−, where s− is the previous stage such that TPs− <left α.
(d) x ∈ Availα .

If there is such x , we set xα ↓= x for the least such x . In any case, initialize
all nodes β ⊃ α and halt.

2. xα is currently defined, but xα 6∈ As t Cs : as we will see later in
Lemma 4.3(8), xα must be τ(α)-confirmed. This is the waiting phase.
See if (Xτ(α) − Ue)�γe(xα)= Wk �γe(xα). If they are not equal, do nothing.
Otherwise, we do the following.
(a) Enumerate xα into A.
(b) For every z > xα , remove all confirmations on z.
(c) Initialize all nodes β ⊃ α and halt.

3. xα is currently defined, and xα ∈ As t Cs : do nothing, since α has been
successful.

Case 3 α is an Se-node: First, we get rid of all the numbers which are not α-good.
More specifically, for every z1 < z′ < z2 such that z1 and z2 are α-good, z1 is larger
than max Bα0 t Bα1 , and z′ is not α-good, dump z′. Next there are three subcases; pick
the first in the list that applies. Let s? = max{s, 1+ the largest number mentioned so
far}.

1. there are α-good numbers z1, z2 of different parity such that zi ∈ (V e
1 t V e

2 )
and max Bα0 < zi < s for both i : for every number z 6= z1, z2 (Any choice
for z1 and z2 is fine.) such that max{Bα0 , rα} < z < s?, we dump z. Add
z1, z2 to Bα0 , and let TPs(d) = 0. Initialize all nodes β >left α

_0 and set
Bα1 = ∅.

2. there are α-good numbers z1, z2 of different parity such that max Bα0 t Bα1
< zi < s for both i , and zi ∈ V e

2 for some i : for every number z 6= z1, z2
such that max{Bα0 t Bα1 , rα} < z < s?, we dump z. Add z1, z2 to Bα1 . Next,
we review the quality of numbers in Bα1 ; namely, for every z ∈ Bα1 such that
z is no longer α-good and z > rα , we will dump z. Let TPs(d) = 1. Initialize
all nodes β >left α

_1.
3. otherwise: do nothing, and let TPs(d) = 2.

This concludes the inductive definition of TPs . If the construction encounters halt
during stage s, then take TPs to be whatever that was defined so far. Go to the next
stage. Note that in step 3(a) we require both of z1, z2 to be in V e

1 t V e
2 while in step

3(b) we only require one of z1, z2 to be in V e
2 .

4.8 Verification The true path TP of the construction is defined as usual to be
the leftmost path visited infinitely often during the construction. That is, for every
n, TP�n is visited infinitely often and TPs <left TP�n only finitely often. We say
that a number z is currently in use by α at some stage s if z = xα[s] (if α is a Q-
node) or z ∈ Bα0 t Bα1 [s] (if α is an S-node). During the verification process we
will occasionally refer to a certain step in the construction; to reduce confusion we
will prepend “S” to the step number. For instance, we write S2(a)(ii) to refer to step
2(a)(ii) of the construction.

The following lemma lists a few facts about the construction. (4) says that any
number which is confirmed must be currently in use. (5) tells us that if xα is con-
firmed, then that confirmation cannot be removed until α is initialized. (8) says



488 Keng Meng Ng

that if some Q-node picks a follower at a τ -expansionary stage, then at the next τ -
expansionary stage this follower will receive τ -confirmation (i.e., there is no delay).
(11) describes a key fact about confirmation—once a number x is τ -confirmed, then
A�δτ (γτ (x)) will be held until the confirmation is removed.

Lemma 4.3 In the following, τ is a top node, and σ is an S-node.

1. Enumerations into A are made only by Q-nodes; enumerations into C are
made only by S-nodes.

2. A ∩ C = ∅.
3. If α <left β or α_2 ⊆ β, and z1, z2 are in use by α, β, respectively, then

z1 < z2.
4. If z is currently τ -confirmed and z 6∈ As t Cs , then z must currently be in use

by some α ⊇ τ_∞.
5. If xα ↓ and is currently τ -confirmed, then τ_∞ ⊆ α. Furthermore, this
τ -confirmation on xα cannot be removed unless α is initialized (either by the
same action or before).

6. If a z ∈ Bσi for some z and i < 2, and z is currently τ -confirmed, then either
τ_∞ ⊆ σ or τ ⊇ σ_i .

7. If τ is a top node, then at any time there can be at most one β ⊇ τ_∞ with
a follower xβ that is not τ -confirmed.

8. Suppose τ_∞ ⊆ α and α appoints a follower which is currently not τ -
confirmed. Then the follower will be τ -confirmed at the next τ -expansionary
stage, provided that α is not initialized in the meantime.

9. The true path of the construction exists.
10. Each node on the true path is initialized finitely often.
11. Once a number z is τ -confirmed at s, then A �δτ (γτ (z))[s] does not change

unless either z is enumerated or the τ -confirmation on z is removed (either
by the same action or before).

Proof (1)+(2)+(3) The first two are trivial. For (3), observe that z2 will be con-
sidered by β only after α has started using z1. If α is a Q-node, then it is clear. If α
is an S-node, use the fact that α only enumerates a new z in Bα0 t Bα1 at stage s, if
z < s.

(4) We argue by induction on the stage number. More specifically, we break down
each stage s into separate actions by the different nodes on TPs (this is assumed to
be the case in the rest of the verification).

When z receives its τ -confirmation, it must clearly be in use by some Q-node
⊇ τ_∞. Assume that z is currently in use by some α ⊇ τ_∞ and now it is β
which gets to act at stage s. If β ⊃ α or β >left α, then β’s action will have no effect
on α and its parameters. If β <left α then α would have been initialized earlier in the
stage and z cannot be in use by α. Hence we may assume β ⊆ α in the following
three cases.

1. β is a top node: to have any effect on α we must have β_ f ⊆ α, and all
confirmation on z is removed.

2. β is a Q-node: if β = α then z remains in use by α. So, β ⊂ α and therefore
when β acts, we must have xβ ↓ (use the fact that we always halt in S2(a)).
By (3) we have xβ < z, and so if β is to initialize α at s, it has to also remove
all confirmation on z.



On the Degrees of Diagonal Sets 489

3. β is an S-node: if β = α then the only consideration is when z ∈ Bα1 and
β plays outcome 0. We must have max{Bα0 , rα} < z < s holds at s, and
hence we will either dump z, or we add z to Bα0 (and so z continues to be in
use by α). If β ⊂ α then α has to be initialized when β acts at s (else β’s
action has no effect on the induction), and so τ_∞ ⊆ β (otherwise τ will
get initialized and all τ -confirmations are removed). Furthermore, we have
i = α(|β|) > 0, and β plays outcome< i after acting at s. We first claim that
max{Bβi−1, rβ} < z < s? holds at s. Note that z is in use by α, so it must be
that at the point when α appoints z as a follower (if α is a Q-node) or when
α streams z (if α is an S-node), z has to be larger than the stage number of
the previous visit to the left of α. A second fact to pay attention to is that if β
puts z′ into Bβj at stage t , then z′ < t . These two facts give z > max Bβi−1[s].
The fact that z > rβ [s] follows by chasing the definition. Finally since the
bounds on z are as such, we must have z is either dumped or continues to be
in use by β after β acts at s.

(5) Note that in order for a number z to become τ -confirmed, z has to be first
appointed a follower by some Q-node β ⊇ τ_∞. Thus we cannot have τ <left α
nor can we have τ_ f ⊆ α. On the other hand, it is clear that we cannot have
τ ⊃ α nor τ >left α. To see this, assume τ ⊃ α or τ >left α and consider the
following. If α appoints this number z as a follower after z receives τ -confirmation,
then α will initialize τ when appointing z and remove the confirmation on z. Else
α has to appoint z before z receives τ -confirmation. However, when z later receives
τ -confirmation we must also have z = xβ for some β ⊇ τ_∞, which is not possible
by (3). This shows the first part.

We can only remove this τ -confirmation on z = xα if τ itself is initialized (in
which case α is initialized as well) or directly through the actions of some node η
later on. We show that when η acts and removes τ -confirmation on z, the same action
also initializes α. Suppose η is a top node. Now η will remove all confirmations on z
under S1(a). If z = xβ then it must be that β = α by (3), and so α will be initialized
immediately in S1(b). If z ∈ Bβ0 t Bβ1 then we must have β ⊂ α once again by (3)
and considering the stage where α appointed z relative to when β streams z. Hence
α will also be initialized immediately in S1(b). If η is a Q-node, then it is easy. η
being an S-node is impossible.

(6) We cannot have τ <left σ
_i nor can we have τ_ f ⊆ σ due to similar reasons

as in (5). Also we cannot have τ >left σ
_i because only numbers < s are placed in

Bσi at stage s.

(7) Suppose the contrary, and fix a stage s, τ , and β1, β2 ⊇ τ_∞ such that both
xβ1 and xβ2 are not τ -confirmed at s. Assume that s is the least stage where this
holds for τ . Since we always halt when a Q-node appoints a follower, it follows
that this current incarnation of xβ1 and xβ2 are appointed at different τ -expansionary
stages, say s1 < s2 ≤ s, respectively. By (5), it follows that xβ1 is not τ -confirmed
when τ acts at s2. Furthermore, xβ1 cannot be given τ -confirmation at s2, which
means that some z < xβ1 has to be given τ -confirmation instead. This contradicts
the minimality of s.



490 Keng Meng Ng

(8) Suppose that xα is appointed at stage s, and s+ is the next τ -expansionary stage.
At s+ we would τ -confirm xα unless some z < xα is given τ -confirmation instead,
contradicting (7).

(9)+(10) We argue simultaneously by induction. Suppose α ∈ TP exists and is
initialized finitely often. If α is an S-node then it is clear that one of its outcomes is
visited infinitely often. We consider α to be a top node. It is a problem only if there
are infinitely many α-expansionary stages. We need to see that there are infinitely
many α-expansionary stages where we do not encounter halt at α. Suppose s is
large enough such that the construction halts at α (if s does not exist then we are
done).

Let s+ > s be the next α-expansionary stage. At stage s+ we claim that there
cannot be a number z receiving τ -confirmation under S1(c): if there was, then we
must have z = xη[s+

] for some η ⊇ α_∞. Since we encountered a halt at stage s,
it follows that η can only have appointed z as its follower before stage s, which means
that by (5) and (8), z would be already τ -confirmed by the stage s+, a contradiction.
Hence z doesn’t exist, and one can conclude that the value max XαtYα is unchanged
between s and s+. We have δe(max Xα t Yα)[s] < s, so we will be done if we can
show that As�s= As+�s , because then the construction does not halt at S1(d) at s+.
Between s and s+, which Q-node β can possibly enumerate below s? Since α is
not initialized (we assume s is large enough), it follows that β >left α

_
∞. This is

not possible too, since β is initialized at s, and consequently picks its follower larger
than s.

Suppose now α is a Q-node. Since α is initialized finitely often, it follows that
eventually if xα ↓, then it will be final. Hence we would be done if we can show
that α does not halt in S2(a) infinitely often. It will also follow that α initializes α_2
finitely often. To complete the induction, we will need to show that if α is visited at
a sufficiently large stage s in which xα ↑, it will be able to find a suitable follower
for appointment.

Let σ be the maximal S-node such that σ_i ⊆ α for some i < 2. If σ does
not exist, then it is clear that α has no problems appointing a follower at s because
Availα = N. The main trouble that α faces in choosing followers comes from the
restriction in Availα , because it has to conform to streaming strategies from above.
Since σ played outcome i < 2 when it was visited at s, it follows that there are some
σ -good numbers z1, z2 which are newly added to Bσi . Our task therefore is to show
that both z1 and z2 satisfy the conditions in S2(a) to be appointed a follower of α—in
that case α could then appoint one of z1, z2 of the correct parity.

Certainly z1, z2 6∈ Cs because there are no S-nodes between σ and α. Also
z1, z2 6∈ As since α is not initialized. Clearly, we have z1, z2 satisfies S2(a)(iv). As
for S2(a)(ii) and S2(a)(iii), observe that the bounds reach a limit since α is on the
true path, so if s is large enough then z1, z2 will be larger than the required lower
bounds in S2(a)(ii) and S2(a)(iii). Finally, we show that z1, z2 satisfy S2(a)(i) for τ .
If τ ⊂ σ then z1, z2 are τ -confirmed since they are σ -good, and this confirmation
cannot be removed as we travel from σ down to α (because z1, z2 are newly streamed
and thus cannot be in use by anyone yet). So we may assume that σ_i ⊂ τ_∞ ⊆ α.
The fact that we did not halt at τ as we travel from σ down to α means that we have
δτ (max Xτ tYτ ) < s−, where s− is the previous stage where σ_i is visited. We have
z1, z2 > max Bσi [s−

] which implies that z1, z2 ≥ s− > δτ (max Xτ t Yτ ) because



On the Degrees of Diagonal Sets 491

we would have dumped all the useless numbers < s− when σ acted at s−. Hence,
both z1 and z2 are available for α to choose from at stage s.

(11) Any A-change has to be effected by some Q-node β which enumerates
xβ < δτ (γτ (z))[s]. What are the possible positions of β relative to τ? It is not
hard to see that β >left τ

_
∞ is impossible. If β ⊂ τ or β <left τ , then β’s action

(when it enumerates xβ ) also initializes τ . Therefore, we must have β ⊇ τ_∞. By
(5) and (8), it follows that, at the instance when β enumerates xβ , it must be that
y = xβ is already τ -confirmed. So we have that both y and z are τ -confirmed. If
y = z then it is trivial so we assume y 6= z. If y receives τ -confirmation after z
does, and since τ is not initialized between the confirmations of z and y, it follows
that y > δτ (γτ (z))[s] because y = xβ has to satisfy S2(a)(i). Hence we must
have y receives τ -confirmation before z. But then y < z (for similar reasons),
and we are done because β will remove all confirmation on z at the same time it
enumerates y. �

The Q-strategies succeed Fix a Qe,2k-node α on the true path, and let τ = τ(α).
Also assume that 0Ue

e = A and1A
e = Ue. Hence there are obviously infinitely many

τ -expansionary stages, and so α ⊇ τ_∞. Clearly Xτ ∩Yτ = ∅. A similar argument
as the one below will follow for (τ, Y )-daughter nodes. By Lemma 4.3(10) it follows
that xα will receive a final definition xα = x , at stage s0, where x is even.

Lemma 4.4 Suppose α, τ, e, k, and x are as above, and suppose further that
x ∈ A t C. Then there is some number p such that p ∈ Ue ∩ Xτ ∩ Wk .

Proof It is not hard to see that after α appoints x as its follower, x cannot be dumped
by any S-node nor can it be enumerated into A by any Q-node (other than α it-
self): the only nontrivial case to consider is when we have some S-node σ such that
σ_i ⊆ α which dumps x (for i = 1 or 2). In this case, by Lemma 4.3(5) and
(8), it follows that when σ is next visited after s0, we must have that x is σ -good.
Furthermore, x stays σ -good forever and so σ cannot possibly dump x after s0.

Since x ∈ A tC , α will eventually enumerate x at some stage s1 > s0. Let t < s1
be the stage when x receives τ -confirmation. Before the next τ -expansionary stage
s2 > s1, some number p < γe(x)[s1] must enter Ue. By Lemma 4.3(11) and the fact
that both t and s1 are τ -expansionary stages, we have γe(x)[t] = γe(x)[s1]. Suppose
for a contradiction that at stage t when x receives τ -confirmation, we already have
p ∈ Xτ tYτ . It is easy to see that at stage t , we must have δe(p)[t] < x (by consider-
ing when p could have been put in Xτ t Yτ ). Since x must remain τ -confirmed until
stage s1, it follows that there is no change in A�x between t and s1 and also between
s1 and s2. Thus δe(p)[s2] = δe(p)[t] < x , and since p has entered Ue by s2, it fol-
lows that Ue(p) 6= 1e(p)[s2], a contradiction to the fact that s2 is τ -expansionary.
Hence at stage t we do not already have p ∈ Xτ t Yτ , and consequently when x is
given τ -confirmation at t , we will place p in Xτ , since x is even. Finally, since α
takes S2(b) at stage s1, it follows that Wk(p) = (Xτ − Ue)(p) = 1 holds at s1. �

It is clear that if x 6∈ A t C , then Xτ − Ue 6= Wk since γe(x) settles. On the other
hand, if x ∈ A t C , then Xτ − Ue 6= Wk by Lemma 4.4.

The S-strategies succeed Fix an Se-node σ on the true path, with true outcome i ,
and assume that V e

o , V e
1 , V e

2 are pairwise disjoint. Let s0 be large enough so that σ_i



492 Keng Meng Ng

is never initialized. We say a number y is σ -excellent if there is a stage t > s0 such
that y is σ -good at every visit to σ_i after t .

Lemma 4.5 There are infinitely many even numbers in Bσi , and infinitely many odd
numbers in Bσi , which are σ -excellent.

Proof We consider the even case; a similar argument follows for the odd case. Fix
an arbitrary number M > lim rσ . We can then consider indices e and k large enough
such that Wk = ∅, Ue = A, and 0e,1e are constant on P (N) and such that the
Qe,2k-node α on the true path appoints a final follower x > M for some even x , and
α ⊃ σ_i . We show that x is the required even number. By Lemma 4.4 it follows
that x 6∈ AtC . It is also obvious that x ∈ Availσ forever. Also by Lemma 4.3(5) and
(8) it follows that x will be τ -confirmed for any τ_∞ ⊆ σ and stays τ -confirmed
forever. �

There are three cases; we first consider the case when i = 2. We claim that
V e

2 − (A t C) is finite. Suppose for a contradiction that there is some p >
max{Bσ0 t Bσ1 , lim rσ } and p ∈ V e

2 − (A t C). We may assume that max Bσ0 t Bσ1 <
z1 < p < z2 for two σ -excellent numbers z1, z2 of different parity from Lemma 4.5.
Hence p must also be σ -excellent; otherwise p will be dumped. In that case, when
the conditions become right, S3(a) or S3(b) will apply to bring us to the left of the
true outcome, a contradiction.

Now suppose that i = 1. We claim that V e
1 −(AtC) is finite. Note that |Bσ1 | = ∞.

Suppose once again for a contradiction that there are p2 > p1 > max{Bσ0 , lim rσ }

and p1, p2 ∈ V e
1 − (A t C) exists. Now p1 and p2 must both be put in Bσ1 lest they

be dumped. Furthermore, p1 and p2 have to be σ -excellent; otherwise they will also
be dumped after entering Bσ1 . We may assume that p2 is put in Bσ1 after p1 shows
up in V e

1 . Hence, when p2 was placed in Bσ1 at stage t , there must be a companion
number q of opposite parity placed in Bσ1 together with p2 such that q ∈ V e

2 [t]. If p1
and p2 are of the same parity, then p1 and q are of different parity and S3(a) would
apply instead of S3(b) at stage t . So it must be that p1 and p2 are of different parity.
In that case, when p2 eventually shows up in V e

1 , then S3(a) would apply to give
another contradiction.

Finally, consider the case i = 0. We show that V e
0 − (A t C) is finite. Again note

that |Bσ0 | = ∞. If p > lim rσ and p ∈ V e
0 , then p cannot be put in Bσ0 , and hence

would be dumped when a large enough number goes into Bσ0 .

References

[1] Ambos-Spies, K., “Contiguous r.e. degrees,” pp. 1–37 in Computation and Proof Theory
(Aachen, 1983), vol. 1104 of Lecture Notes in Mathematics, Springer, Berlin, 1984.
Zbl 0562.03022. MR 775707. 484

[2] Cholak, P., R. Downey, and E. Herrmann, “Some orbits for E ,” Annals of Pure and
Applied Logic, vol. 107 (2001), pp. 193–226. Zbl 0969.03051. MR 1807845. 471, 472

[3] Cholak, P. A., R. Downey, and L. A. Harrington, “The complexity of orbits of com-
putably enumerable sets,” Bulletin of Symbolic Logic, vol. 14 (2008), pp. 69–87.
Zbl 1142.03022. MR 2395047. 471

http://www.emis.de/cgi-bin/MATH-item?0562.03022
http://www.ams.org/mathscinet-getitem?mr=775707
http://www.emis.de/cgi-bin/MATH-item?0969.03051
http://www.ams.org/mathscinet-getitem?mr=1807845
http://www.emis.de/cgi-bin/MATH-item?1142.03022
http://www.ams.org/mathscinet-getitem?mr=2395047


On the Degrees of Diagonal Sets 493

[4] Downey, R. G., “10
2 degrees and transfer theorems,” Illinois Journal of Mathematics,

vol. 31 (1987), pp. 419–27. Zbl 0629.03017. MR 892177. 484

[5] Downey, R. G., and M. Stob, “Automorphisms of the lattice of recursively enumerable
sets: Orbits,” Advances in Mathematics, vol. 92 (1992), pp. 237–65. Zbl 0758.03020.
MR 1155466. 471, 473

[6] Downey, R., and L. Harrington, “There is no fat orbit,” Annals of Pure and Applied
Logic, vol. 80 (1996), pp. 277–89. Zbl 0858.03043. MR 1402299. 471

[7] Downey, R., and M. Stob, “Splitting theorems in recursion theory,” Annals of Pure and
Applied Logic, vol. 65 (1993), pp. 1–106. Zbl 0792.03028. MR 1253607. 471, 473

[8] Downey, R., and M. Stob, “Jumps of hemimaximal sets,” Zeitschrift für mathematische
Logik und Grundlagen der Mathematik, vol. 37 (1991), pp. 113–20. Zbl 0739.03026.
MR 1155129. 471

[9] Friedberg, R. M., “Three theorems on recursive enumeration. I. Decomposition. II.
Maximal set. III. Enumeration without duplication,” The Journal of Symbolic Logic,
vol. 23 (1958), pp. 309–16. Zbl 0088.01601. MR 0109125. 470

[10] Herrmann, E., and M. Kummer, “Diagonals and D-maximal sets,” The Journal of
Symbolic Logic, vol. 59 (1994), pp. 60–72. Zbl 0799.03046. MR 1264963. 470

[11] Kummer, M., “Diagonals and semihyperhypersimple sets,” The Journal of Symbolic
Logic, vol. 56 (1991), pp. 1068–74. Zbl 0747.03019. MR 1129168. 470, 471, 472

[12] Lachlan, A. H., “On the lattice of recursively enumerable sets,” Transactions
of the American Mathematical Society, vol. 130 (1968), pp. 1–37. Zbl 0281.02042.
MR 0227009. 470

[13] Martin, D. A., “Classes of recursively enumerable sets and degrees of unsolvability,”
Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966),
pp. 295–310. Zbl 0181.30504. MR 0224469. 472

[14] Soare, R. I., “Automorphisms of the lattice of recursively enumerable sets. I. Max-
imal sets,” Annals of Mathematics. Second Series, vol. 100 (1974), pp. 80–120.
Zbl 0253.02040. MR 0360235. 471

[15] Soare, R. I., Recursively Enumerable Sets and Degrees. A Study of Computable Func-
tions and Computably Generated Sets, Perspectives in Mathematical Logic. Springer-
Verlag, Berlin, 1987. Zbl 0623.03042. MR 882921. 473

Department of Mathematics
University of Wisconsin
480 Lincoln Drive
Madison WI 53706-1388
USA
selwynng@math.wisc.edu

http://www.emis.de/cgi-bin/MATH-item?0629.03017
http://www.ams.org/mathscinet-getitem?mr=892177
http://www.emis.de/cgi-bin/MATH-item?0758.03020
http://www.ams.org/mathscinet-getitem?mr=1155466
http://www.emis.de/cgi-bin/MATH-item?0858.03043
http://www.ams.org/mathscinet-getitem?mr=1402299
http://www.emis.de/cgi-bin/MATH-item?0792.03028
http://www.ams.org/mathscinet-getitem?mr=1253607
http://www.emis.de/cgi-bin/MATH-item?0739.03026
http://www.ams.org/mathscinet-getitem?mr=1155129
http://www.emis.de/cgi-bin/MATH-item?0088.01601
http://www.ams.org/mathscinet-getitem?mr=0109125
http://www.emis.de/cgi-bin/MATH-item?0799.03046
http://www.ams.org/mathscinet-getitem?mr=1264963
http://www.emis.de/cgi-bin/MATH-item?0747.03019
http://www.ams.org/mathscinet-getitem?mr=1129168
http://www.emis.de/cgi-bin/MATH-item?0281.02042
http://www.ams.org/mathscinet-getitem?mr=0227009
http://www.emis.de/cgi-bin/MATH-item?0181.30504
http://www.ams.org/mathscinet-getitem?mr=0224469
http://www.emis.de/cgi-bin/MATH-item?0253.02040
http://www.ams.org/mathscinet-getitem?mr=0360235
http://www.emis.de/cgi-bin/MATH-item?0623.03042
http://www.ams.org/mathscinet-getitem?mr=882921
mailto:selwynng@math.wisc.edu

	1. Introduction
	2. Preliminaries
	3. A Semi-maximal Set Whose Degree Does Not Contain a Hemi-hyperhypersimple Set
	3.1. Requirements
	3.2. Description of strategy
	3.3. Interaction between strategies and the streaming procedure
	3.4. Notations
	3.5. The local priority ordering
	3.6. The construction
	3.7. Verification

	4. A Hemi-hyperhypersimple Set Whose Degree Does Not Contain a Semi-maximal Set
	4.1. Requirements
	4.2. Description of an isolated strategy
	4.3. Interaction between two conflicting strategies
	4.4. Technical considerations
	4.5. Construction tree layout
	4.6. Notations
	4.7. The construction
	4.8. Verification

	References

