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Superhighness

Bjørn Kjos-Hanssen and André Nies

Abstract We prove that superhigh sets can be jump traceable, answering a
question of Cole and Simpson. On the other hand, we show that such sets can-
not be weakly 2-random. We also study the class superhigh♦ and show that it
contains some, but not all, of the noncomputable K -trivial sets.

1 Introduction

An important noncomputable set of integers in computability theory is ∅′, the halting
problem for Turing machines. Over the last half century many interesting results
have been obtained about ways in which a problem can be almost as hard as ∅′. The
superhigh sets are the sets A such that

A′
≥tt ∅′′

;

that is, the halting problem relative to A computes ∅′′ using a truth-table reduction.
The name comes from comparison with the high sets, where instead arbitrary Tur-
ing reductions are allowed (A′

≥T ∅′′). Superhighness for computably enumerable
(c.e.) sets was introduced by Mohrherr [10]. She proved that the superhigh c.e. de-
grees sit properly between the high and Turing complete (A ≥T ∅′) ones.

Most questions one can ask on superhighness are currently open. For instance,
Martin [9] (1966) famously proved that a degree is high if and only if it can compute
a function dominating all computable functions, but it is not known whether super-
highness can be characterized in terms of domination. Cooper [5] showed that there
is a high minimal Turing degree, but we do not know whether a superhigh set can
be of minimal Turing degree. We hope the present paper lays the groundwork for a
future understanding of these problems.

We prove that a superhigh set can be jump traceable. Let superhigh♦ be the class
of c.e. sets Turing below all Martin-Löf random (ML-random) superhigh sets (see
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[12, Section 8.5]). We show that this class contains a promptly simple set and is a
proper subclass of the c.e. K -trivial sets. This class was recently shown to coincide
with the strongly jump traceable c.e. sets, improving our result [11].

Definition 1.1 Let {8X
n }n∈N denote a standard list of all functions partial com-

putable in X , and let W X
n denote the domain of 8X

n . We write J X (n) for 8X
n (n),

and Jσ (n) for 8σn (n) where σ is a string. Thus X ′
= {e : J B(e) ↓} represents the

halting problem relative to X .
X is jump-traceable by Y (written X ≤JT Y ) if there exist computable functions

f (n) and g(n) such that for all n, if J X (n) is defined (J X (n) ↓) then J X (n) ∈ W Y
f (n)

and for all n, W Y
f (n) is finite of cardinality ≤ g(n).

The relation ≤JT is transitive and indeed a weak reducibility [12, 8.4.14]. Further
information on weak reducibilities, and jump traceability, may be found in the recent
book by Nies [12], especially in Sections 5.6 and 8.6, and 8.4, respectively.

Definition 1.2 A is JT-hard if ∅′ is jump traceable by A. Let Shigh =

{Y : Y ′
≥tt ∅′′

} be the class of superhigh sets.

Theorem 1.3 Consider the following five properties of a set A.
1. A is Turing complete;
2. A is almost everywhere dominating;
3. A is JT-hard;
4. A is superhigh;
5. A is high.

We have (1)⇒(2)⇒(3)⇒(4)⇒(5), all implications being strict.

Proof Implications: (1)⇒(2): Dobrinen and Simpson [6]. (2)⇒(3): Simpson [14],
Lemma 8.4. (3)⇒(4): Simpson [14], Lemma 8.6. (4)⇒(5): Trivial, since each
truth-table reduction is a Turing reduction.

Nonimplications: (2)6⇒(1) was proved by Cholak, Greenberg, and Miller [3].
(3)6⇒(2): By Cole and Simpson [4], (3) coincides with (4) on the 10

2 sets. But there
is a superhigh degree that does not satisfy (2): one can use Jockusch-Shore Jump
Inversion for a super-low but not K -trivial set, which exists by the closure of the
K -trivials under join and the existence of a pair of super-low degrees joining to ∅′.
(4)6⇒(3): We prove in Theorem 2.1 below that there is a jump traceable superhigh
degree. By transitivity of ≤JT and the observation that ∅′

6≤JT ∅, no jump traceable
degree is JT-hard. (5) 6⇒(4): Binns, Kjos-Hanssen, Lerman, and Solomon [2] proved
this using a syntactic analysis combined with a result of Schwartz [13]. �

Historically, the easiest separation (1)(5) is a corollary of Friedberg’s Jump Inversion
Theorem [7] from 1957. The separation (1)(4) follows similarly from Mohrherr’s
Jump Inversion Theorem for the tt-degrees [10] (1984), and the separation (4)(5) is
essentially due to Schwartz [13] (1982). The classes (2) and (3) were introduced
more recently, by Dobrinen and Simpson [6] (2004) and Simpson [14] (2007).

Notion (3), JT-hardness, may not appear to be very natural. However, Cole and
Simpson [4] gave an embedding of the hyperarithmetic hierarchy {0(α)}α<ωC K

1
into

the lattice of 50
1 classes under Muchnik reducibility making use of the notion of

bounded limit recursive (BLR) functions. We will see that JT-hardness coincides
with BLR-hardness.
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Notation We write
∀n f (n) = limcomp

s f̃ (n, s)

if for all n, f (n) = lims f̃ (n, s), and, moreover, there is a computable function
g : ω → ω such that for all n, {s | f̃ (n, s) 6= f̃ (n, s + 1)} has cardinality less than
g(n).

2 Superhighness and Jump Traceability

In this section we show that superhighness is compatible with the lowness property
of being jump traceable and deduce an answer to a question of Cole and Simpson.

Theorem 2.1 There is a superhigh jump-traceable set.

Proof Mohrherr [10] proves a jump inversion theorem in the tt-degrees: For each
set A, if ∅′

≤tt A, then there exists a set B such that B ′
≡tt A. To produce B,

Mohrherr uses the same construction as in the proof of Friedberg’s Jump Inver-
sion Theorem for the Turing degrees. Namely, B is constructed by finite extensions
B[s] � B[s + 1] � · · · . Here B[s] is a finite binary string and σ � τ denotes that σ
is an initial substring of τ . At stages of the form s = 2e (even stages), one searches
for an extension B[s + 1] of B[s] such that J B[s+1](e) ↓. If none is found one lets
B[s + 1] = B[s]. At stages of the form s = 2e + 1 (odd stages) one appends the bit
A(e); that is, one lets B[s + 1] = B[s]_〈A(e)〉. Thus two types of oracle questions
are asked alternately for varying numbers e:

(1) Does a string σ � B[s] exist so that Jσ (e) ↓, that is, B � σ implies e ∈ B ′?
(If so, let B[s + 1] be the first such string that is found.)

(2) Is A(e) = 1?
This allows for a jump trace Ve of size at most 4e. First, V0 consists of at most
one value, namely, the first value Jσ (e) found for any σ extending the empty string.
Next, V1 consists of the first value for 8τ1(1) found for any τ extending 〈0〉, 〈1〉,
σ_〈0〉, σ_〈1〉, respectively, in the cases: 0 6∈ A, and 0 6∈ B ′; 0 ∈ A and 0 6∈ B ′;
0 6∈ A and 0 ∈ B ′; and 0 ∈ A and 0 ∈ B ′. Generally, for each e there are four
possibilities: either e is in A or not, and either the extension σ of B[s] is found or
not. Ve consists of all the possible values of J B(e) depending on the answers to these
questions.

Hence, B is jump traceable, no matter what oracle A is used. Thus, letting
A = ∅′′ results in a superhigh jump-traceable set B. �

Question 2.2 Is there a superhigh set of minimal Turing degree?

This question is sharp in terms of the notions (1)–(5) of Theorem 1.3: minimal Turing
degrees can be high (Cooper [5]) but not JT-hard (Barmpalias [1]).

Cole and Simpson [4] introduced the following notion. Let A be a Turing oracle.
A function f : ω → ω is boundedly limit computable by A if there exist an A-
computable function f̃ : ω × ω → ω such that limcomp

s f̃ (n, s) = f (n).
We write

BLR(A) = { f ∈ ωω | f is boundedly limit computable by A}.

We say that X ≤BLR Y if BLR(X) ⊆ BLR(Y ). In particular, A is BLR-hard if
BLR(∅′) ⊆ BLR(A).
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It is easy to see that ≤BLR implies ≤JT (Lemma 6.8 of Cole and Simpson [4]).
The following partial converse is implicit in some recent papers as pointed out to the
authors by Simpson.

Theorem 2.3 Suppose that A ≤JT B where A is a c.e. set and B is any set. Then
BLR(A) ⊆ BLR(B).

Proof Since A ≤JT B, by Remark 8.7 of Simpson [14], the function h given by

h(e) = J A(e)+ 1 if J A(e) ↓, h(e) = 0 otherwise,

is B ′-computable, with computably bounded use of B ′ and unbounded use of B. This
implies that h is BLR(B). Let ψ A be any function partial computable in A. Let g be
defined by

g(n) = ψ A(n)+ 1 if ψ A(n) ↓, g(n) = 0 otherwise.

Letting f be a computable function with ψ A(n) ' J ( f (n)) for all n, we can use the
B-computable approximation to h with a computably bounded number of changes
to get such an approximation to g. So g is BLR(B). By Lemma 2.5 of Cole and
Simpson [4], it follows that BLR(A) ⊆ BLR(B). �

Corollary 2.4 For c.e. sets A, B we have A ≤JT B ↔ A ≤BLR B.

Corollary 2.5 JT-hardness coincides with BLR-hardness: for all B,
∅′

≤JT B ↔ ∅′
≤BLR B.

By Corollary 2.5 and Theorem 1.3((3)⇒(4)), BLR-hardness implies superhighness.
Cole and Simpson asked [4, Remark 6.21] whether conversely superhighness implies
BLR-hardness. Our negative answer is immediate from Corollary 2.5 and Theorem
1.3((4)6⇒(3)).

3 Superhighness, Randomness, and K -Triviality

We study the class Shigh♦ of c.e. sets that are Turing below all ML-random super-
high sets. First we show that this class contains a promptly simple set.

For background on diagonally noncomputable functions and sets of PA degree see
[12, Ch 4]. Let λ denote the usual fair-coin Lebesgue measure on 2N; a null class is
a set S ⊆ 2N with λ(S) = 0.

Fact 3.1 (Jockusch and Soare [8]) The sets of PA degree form a null class.

Proof Otherwise, by the zero-one law the class is conull. So by the Lebesgue Den-
sity Theorem there is a Turing functional 8 such that 8X (w) ∈ {0, 1} if defined,
and

{Z : 8Z is total and diagonally noncomputable }

has measure at least 3/4.
Let the partial computable function f be defined by f (n) is the value i ∈ {0, 1}

such that for the smallest possible stage s, we observe by stage s that 8Z (n) = i
for a set of Zs of measure strictly more than 1/4. For each n, such an i and stage
s must exist. Indeed, if for some n and both i ∈ {0, 1} there is no such s, then
8Z (n) is defined for a set of Zs of measure at most 1

4 +
1
4 =

1
2 6≥

3
4 , which is

a contradiction. Moreover, we cannot have f (n) = J (n) for any n, because this
would imply that there is a set of Zs of measure strictly more than 1/4 for which
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8Z is not a total d.n.c. function. Thus f is a computable d.n.c. function, which is a
contradiction. �

Theorem 3.2 (Simpson) The class Shigh of superhigh sets is contained in a 60
3

null class.

Proof A function f is called diagonally noncomputable (d.n.c.) relative to ∅′ if
∀x ¬ f (x) = J∅′

(x). Let P be the 50
1(∅

′) class of {0, 1}-valued functions that are
d.n.c. relative to ∅′. By Fact 3.1 relative to ∅′, the class {Z : ∃ f ≤T Z⊕∅′

[ f ∈ P]}

is null. Then, since GL1 is conull, the class

K = {Z : ∃ f ≤tt Z ′
[ f ∈ P]}

is also null. This class clearly contains Shigh.
To show that K is 60

3 , fix a 50
2 relation R ⊆ N3 such that a string σ is extended

by a member of P if and only if ∀u ∃v R(σ, u, v). Let (9e)e∈N be an effective listing
of truth-table reduction procedures. It suffices to show that {Z : 9e(Z ′) ∈ P} is a
50

2 class. To this end, note that

9e(Z ′) ∈ P ↔ ∀x ∀t ∀u ∃s > t∃v R(9Z ′

e �x [s], u, v). �

A direct construction of a 60
3 null class containing Shigh appears in Nies [11].

Question 3.3 Is Shigh itself a 60
3 class?

Corollary 3.4 There is no superhigh weakly 2-random set.

Proof Let R be a weakly 2-random set. By definition, R belongs to no 50
2 null

class. Since a 60
3 class is a union of 50

2 classes of no greater measure, R belongs to
no 60

3 null class. By Theorem 3.2, R is not superhigh. �

To put Corollary 3.4 into context, recall that the 2-random set �∅′

is high, whereas
no weakly 3-random set is high (see [12, 8.5.21]).

Corollary 3.5 There is a promptly simple set Turing below all superhigh ML-
random sets.

Proof By a result of Hirschfeldt and Miller (see [12, Theorem 5.3.15]), for each
null 60

3 class S there is a promptly simple set Turing below all ML-random sets in
S. Apply this to the class K from the proof of Theorem 3.2. �

Next we show that Shigh♦ is a proper subclass of the c.e. K -trivial sets. Since some
superhigh ML-random set is not above ∅′, each set in Shigh♦ is a base for ML-
randomness, and therefore K -trivial (for details of this argument, see [12, Section
5.1]). It remains to show strictness. In fact, in place of the superhigh sets we can
consider the possibly smaller class of sets Z such that G ≤tt Z ′, for some fixed set
G ≥tt ∅′′. Let MLR = {R : R is ML-random}.

Theorem 3.6 Let S be a 50
1 class such that ∅ ⊂ S ⊆ MLR. Then there is a

K -trivial c.e. set B such that

∀G ∃Z ∈ S [B 6≤T Z ∧ G ≤tt Z ′
].

Corollary 3.7 There is a K -trivial c.e. set B and a superhigh ML-random set Z
such that B 6≤T Z. Thus the class of c.e. sets Turing below all ML-random superhigh
sets is a proper subclass of the c.e. K -trivials.
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Proof of Theorem 3.6 We assume fixed an indexing of all the 50
1 classes. Given an

index for a50
1 class P we have an effective approximation P =

⋂
t Pt where Pt is a

clopen set ([12, Section 1.8]).
To achieve G ≤tt Z ′ we use a variant of Kučera coding. Given (an index of) a

50
1 class P such that ∅ ⊂ P ⊆ MLR, we can effectively determine k ∈ N such that

2−k < λP . In fact, k ≤ K (i) + O(1) ≤ 2 log i + O(1) where i is the index for P
(see [12, 3.3.3]). At stage t let

y0,t , y1,t , (1)

respectively, be the leftmost and rightmost strings y of length k such that [y]∩Pt 6= ∅.
Then y0 is left of y1 where ya = limt ya,t . Note that the number of changes in these
approximations is bounded by 2k .

Recall that (8e)e∈N is an effective listing of the Turing functionals. The following
will be used in a “dynamic forcing” construction to ensure that B 6= 8Z

e , and to
make B K -trivial. Let cK be the standard cost function for building a K -trivial set,
as defined in [12, 5.3.2]. Thus cK(x, s) =

∑
x<w≤s 2−Ks (w).

Lemma 3.8 Let Q be a 50
1 class such that ∅ ⊂ Q ⊂ MLR. Let e,m ≥ 0. Then

there is a nonempty 50
1 class P ⊂ Q and x ∈ N such that either

(a) ∀Z ∈ P ¬8Z
e (x) = 0, or

(b) ∃s cK(x, s) ≤ 2−m
∧ ∀Z ∈ Ps

s 8
Z
e,s(x) = 0,

where (P t )t∈N is an effective sequence of (indices for) 50
1 classes such that

P = limcomp
t P t with at most 2m+1 changes.

The plan is to put x into B in case (b). The change in the approximations P t is due
to changing the candidate x when its cost becomes too large.

To prove the lemma, we give a procedure constructing the required objects.

Procedure C( Q, e, m).

Stage s.

(a) Choose x ∈ N[e], x ≥ s.
(b) If cK(x, s) ≥ 2−m , goto (a).
(c) If {Z ∈ Qs : ¬8Z

e,s(x) = 0} 6= ∅ let Ps
= {Z ∈ Q : ¬8Z

e (x) = 0} and
goto (b). (In this case we keep x out of B and win.) Otherwise, let Ps

= Q
and goto (d). (We will put x into B and win.)

(d) End.
Clearly we choose a new x at most 2m times, so the number of changes of P t is
bounded by 2m+1.

To prove the theorem, we build at each stage t a tree of 50
1 classes Pα,t , where

α ∈ 2<ω. The number of changes of Pα,t is bounded computably in α.

Stage t . Let P∅,t
= S.

(i) If P = Pα,t has been defined let, for b ∈ {0, 1},

Qαb,t
= Pα,t ∩ [yb,t ],

where the strings yb,t are as in (1).
(ii) If Q = Qβ,t is newly defined let e = |β|, let m equal nβ (the code number

for β) plus the number of times the index for Qβ has changed so far. From
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now on define Pβ,t by the procedure C(Q, e,m) in Lemma 3.8. If it reaches
(d), put x into B.

Claim 1 (i) For each α the index Pα,t reaches a limit Pα . The number of changes
is computably bounded in α.

(ii) For each β the index Qβ,t reaches a limit Qβ . The number of changes is com-
putably bounded in β.

The claim is verified by induction, in the form Pα → Qαb
→ Pαb. This yields a

computable definition of the bound on the number of changes.
Clearly (i) holds when α = ∅.

Case Qαb: we can compute by inductive hypothesis an upper bound on the index
for Pα , and hence an upper bound k0 on k such that 2−k < λPα . If N bounds the
number of changes for Pα then Qαb changes at most N2k0 times.

Case Pβ , β 6= ∅: Let M be the bound on the number of changes for Qβ . Then
we always have m ≤ M + nβ in (ii), so the number of changes for Pβ is at most
M2M+nβ+1.

Claim 2 (i) Let e = |β| > 0. Then B 6= 8e(Z) for each Z ∈ Pβ .

This is clear, since eventually the procedure in Lemma 3.8 has a stable x to diago-
nalize with.

Given G, define Z ≤T ∅′
⊕ G as follows. For e > 0, let β = G �e. Use ∅′ to find

the final Pβ and to determine yβ,b,t (b ∈ {0, 1}) for P = Pβ as the strings in (1). Let
yβ,b = lim yβ,b,t . Note that yγ ≺ yδ whenever γ ≺ δ. Define Z so that yG(e) ≺ Z .

For G ≤tt Z ′ define a function f ≤T Z such that G(e) = limcomp
s f (e, s) (i.e.,

a computable bounded number of changes). Given e, to define f �e [s] search for
t > s such that yα,t ≺ Z for some α of length e, and output α. �
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