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An Integer Construction of Infinitesimals:
Toward a Theory of Eudoxus Hyperreals

Alexandre Borovik, Renling Jin, and Mikhail G. Katz

Abstract A construction of the real number system based on almost homo-
morphisms of the integers Z was proposed by Schanuel, Arthan, and others.
We combine such a construction with the ultrapower or limit ultrapower con-
struction to construct the hyperreals out of integers. In fact, any hyperreal field,
whose universe is a set, can be obtained by such a one-step construction directly
out of integers. Even the maximal (i.e., On-saturated) hyperreal number system
described by Kanovei and Reeken (2004) and independently by Ehrlich (2012)
can be obtained in this fashion, albeit not in NBG. In NBG, it can be obtained via
a one-step construction by means of a definable ultrapower (modulo a suitable
definable class ultrafilter).

1 From Kronecker to Schanuel

Kronecker (see [41]) famously remarked that, once we have the natural numbers in
hand, “everything else is the work of man.” Does this apply to infinitesimals, as well?

The exposition in this section follows R. Arthan [7]. A function f from Z to Z is
said to be an almost homomorphism if and only if the function df from Z � Z to Z
defined by

df .p; q/ D f .p C q/ � f .p/ � f .q/

has bounded (i.e., finite) range, so that for a suitable integer C , we have jdf .p;
q/j < C for all p; q 2 Z. The set denoted

Z! Z (1.1)

of all functions from Z to Z becomes an abelian group if we add and negate functions
pointwise:

.f C g/.p/ D f .p/C g.p/; .�f /.p/ D �f .p/:
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It is easily checked that if f and g are almost homomorphisms, then so are f C g
and �f . Let S be the set of all almost homomorphisms from Z to Z. Then S is a
subgroup of Z ! Z. Let us write B for the set of all functions from Z to Z whose
range is bounded. Then B is a subgroup of S . The Eudoxus reals are defined as
follows.1

Definition 1.1 The abelian group E of Eudoxus reals is the quotient group S=B .

Elements of E are equivalence classes, Œf � say, where f is an almost homomorphism
from Z to Z, that is, f is a function from Z to Z such that df .p; q/ D f .p; q/ �

f .p/ � f .q/ defines a function from Z � Z to Z whose range is bounded. We have
Œf � D Œg� if and only if the difference f � g has bounded range, that is, if and only
if jf .p/ � g.p/j < C for some C and all p in Z.

The addition and additive inverse in E are induced by the pointwise addition and
inverse of representative almost homomorphisms:

Œf �C Œg� D Œf C g�; �Œf � D Œ�f �;

where f C g and �f are defined by
.f C g/.p/ D f .p/C g.p/

and
.�f /.p/ D �f .p/

for all p in Z.
The group E of Eudoxus reals becomes an ordered abelian group if we take the

set P � E of positive elements to be

P D
°
Œf � 2 E W sup

m2N�Z
f .m/ D C1

±
:

The multiplication on E is induced by composition of almost homomorphisms.
The multiplication turns E into a commutative ring with unit. Moreover, this ring
is a field. Even more surprisingly, E is an ordered field with respect to the ordering
defined by P .

Theorem 1.2 (see Arthan [7]) E is a complete ordered field and is therefore iso-
morphic to the field of real numbers R.

The isomorphism R ! E assigns to every real number ˛ 2 R the class Œf˛� of the
function

f˛ W Z �! Z;
n 7! b˛nc;

where b � c is the integer part function.
In the remainder of the paper, we combine the above one-step construction of the

reals with the ultrapower or limit ultrapower construction to obtain hyperreal num-
ber systems directly out of the integers. We show that any hyperreal field, whose
universe is a set, can be so obtained by such a one-step construction. Following this,
working in NBG (von Neumann–Bernays–Gödel set theory with the axiom of global
choice), we further observe that by using a suitable definable ultrapower, even the
maximal (i.e., the On-saturated)2 hyperreal number system described by Kanovei
and Reeken [21, Theorem 4.1.10(i)], and more recently by Ehrlich [14], can be ob-
tained in a one-step fashion directly from the integers. As Ehrlich [14, Theorem 20]
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showed, the ordered field underlying an On-saturated hyperreal field is isomorphic
to J. H. Conway’s ordered field No, an ordered field Ehrlich describes as the absolute
arithmetic continuum (modulo NBG).

2 Passing It through an Ultraproduct

Let now Z D ZN be the ring of integer sequences with operations of componentwise
addition and multiplication. We define a rescaling to be a sequence � D h�n W n 2 Ni
of almost homomorphisms �n W Z �! Z. Rescalings are thought of as acting on Z,
hence the name. A rescaling � is called bounded if each of its components, �n, is
bounded.

Rescalings factorized modulo bounded rescalings form a commutative ring E with
respect to addition and composition. Quotients of E by its maximal ideals are hyper-
real fields. Thus, hyperreal fields are factor fields of the ring of rescalings of integer
sequences. This description is a tautological translation of the classical construction,
due to E. Hewitt [19], but it is interesting for the sheer economy of the language used.
We will give further details in the sections below.

3 Cantor, Dedekind, and Schanuel

The strategy of Cantor’s construction of the real numbers3 can be represented
schematically by the diagram

R WD
�
N! .Z � Z/˛

�
ˇ
; (3.1)

where the subscript ˛ evokes the passage from a pair of integers to a rational number;
the arrow ! alludes to forming sequences; and subscript ˇ reminds us to select
Cauchy sequences modulo equivalence. Meanwhile, Dedekind proceeds according
to the scheme

R WD
�
P .Z � Z/˛

�

; (3.2)

where ˛ is as above, P alludes to the set-theoretic power operation, and  selects his
cuts. For a history of the problem, see P. Ehrlich [13].

An alternative approach was proposed by Schanuel, and developed by
N. A’Campo [1], R. Arthan [6], [7],4 T. Grundhöfer [18], R. Street [40], O. Deiser
[12, pp. 112–27], and others, who follow the formally simpler blueprint

R WD .Z! Z/� ; (3.3)
where � selects certain almost homomorphisms from Z to itself, such as the map

a 7! brac (3.4)
for real r , modulo equivalence. (Think of r as the “large-scale slope” of the map.)5
Such a construction has been referred to as the Eudoxus reals.6 The construction of
R from Z by means of almost homomorphisms has been described as “skipping the
rationals Q.”

We will refer to the arrow in (3.3) as the space dimension, so as to distinguish it
from the time dimension occurring in the following construction of an extension of
N:

.N! N/�cof ; (3.5)

where �cof identifies sequences f; g W N! N which differ on a finite set of indices:®
n 2 N W f .n/ D g.n/

¯
is cofinite.7 (3.6)
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Figure 1 Zooming in on infinitesimal �

Here the constant sequences induce an inclusion

N! .N! N/�cof :

Such a construction is closely related to (a version of ) the �-calculus of Schmieden
and Laugwitz [37]. The resulting semiring has zero divisors. To obtain a model
which satisfies the first-order Peano axioms, we need to quotient it further. Note that
up to this point the construction has not used any nonconstructive foundational mate-
rial such as the axiom of choice or the weaker axiom of the existence of nonprincipal
ultrafilters.

4 Constructing an Infinitesimal-Enriched Continuum

The traditional ultrapower construction of the hyperreals proceeds according to the
blueprint

.N! R/U;
where U is a fixed ultrafilter on N. Replacing R by any of the possible constructions
of R from Z, one in principle obtains what can be viewed as a direct construction of
the hyperreals out of the integers Z. Formally, the most economical construction of
this sort passes via the Eudoxus reals.

An infinitesimal-enriched continuum can be visualized by means of an infinite-
magnification microscope as in Figure 1.

To construct such an infinitesimal-enriched field, we have to deal with the problem
that the semiring .N ! N/�cof constructed in the previous section contains zero
divisors.

To eliminate the zero divisors, we need to quotient the ring further. This is done
by extending the equivalence relation by means of a maximal ideal defined in terms
of an ultrafilter. Thus, we extend the relation defined by (3.6) to the relation declaring
f and g equivalent if ®

n 2 N W f .n/ D g.n/
¯
2 U; (4.1)

where U is a fixed ultrafilter on N, and we add negatives. The resulting modification
of (3.5), called an ultrapower, will be denoted

IIIN WD .N! N/� (4.2)

and is related to Skolem’s [39] construction in 1934 of a nonstandard model of arith-
metic. We refer to the arrow in (4.2) as time to allude to the fact that a sequence that
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increases without bound for large time will generate an infinite “natural” number in
IIIN. A “continuous” version of the ultrapower construction was exploited by Hewitt
[19] in constructing his hyperreal fields in 1948.

The traditional ultrapower approach to constructing the hyperreals is to start with
the field of real numbers R and build the ultrapower

.N! R/� ; (4.3)

where the subscript � is equivalent to that of (4.2) (see, e.g., Goldblatt [17]). For
instance, relative to Cantor’s procedure (3.1), this construction can be represented by
the scheme �

N! .N! .Z � Z/˛/ˇ
�
�
I

however, this construction employs needless intermediate procedures as described
above. Our approach is to follow instead the “skip the rationals” blueprint

IIR WD .N! ZN/�� ; (4.4)

where the image of each a 2 N is the sequence ua 2 ZN with general term uan, so
that ua D huan W n 2 Ni. Thus a general element of IIR is generated (represented) by
the sequence

ha 7! .n 7! uan/ W a 2 Ni: (4.5)

Here one requires that for each fixed element n0 2 N of the exponent copy of N, the
map

a 7! uan0

is an almost homomorphism (space direction), while � in (4.4) alludes to the ultra-
power quotient in the time direction n. For instance, we can use almost homomor-
phisms of type (3.4) with r D 1

n
. Then the sequenceD

a 7!
�
n 7!

ja
n

k�
W a 2 N

E
(4.6)

generates an infinitesimal in IIR since the almost homomorphisms are “getting flatter
and flatter” for large time n.

Theorem 4.1 Relative to the construction (4.4), we have a natural inclusion
R � IIR. Furthermore, IIR is isomorphic to the model �R of the hyperreals obtained
by quotienting RN by the chosen ultrafilter, as in (4.3).

Proof Given a real number r 2 R, we choose the constant sequence given by
uan D brac. (The sequence is constant in time n.) Sending r to the element of IIR
defined by the sequence ˝

a 7! .n 7! brac/ W a 2 N
˛

yields the required inclusion R ,! IIR. The isomorphism IIR ! �R is obtained by
letting

Un D lim
uan
a

for each n 2 N, and sending the element of IIR represented by (4.5) to the hyperreal
represented by the sequence hUn W n 2 Ni.
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Denoting by �x the infinitesimal generated by the integer object (4.6), we can then
define the derivative of y D f .x/ at x following Robinson as the real number
f 0.x/ infinitely close (or, in Fermat’s terminology, adequal)8 to the infinitesimal
ratio �y

�x
2 IIR.

Applications of infinitesimal-enriched continua range from aid in teaching cal-
culus (see Ely [15], Katz and Katz [22], [23], Katz and Tall [31]) to the Bolzmann
equation (see L. Arkeryd [4], [5]); modeling of timed systems in computer science
(see H. Rust [36]); mathematical economics (see R. Anderson [3]); and mathematical
physics (see Albeverio et al. [2]). A comprehensive reappraisal of the historical an-
tecedents of modern infinitesimals has been undertaken in recent work by Błaszczyk,
Katz, and Sherry [8], Borovik and Katz [9], Bråting [10], Kanovei [20], Katz and
Katz [24]–[27], Katz and Leichtnam [28], Katz and Sherry [29], [30], and others.
A construction of infinitesimals by “splitting” Cantor’s construction of the reals is
presented in Giordano and Katz [16].

5 Formalization

In this and the next sections we formalize and generalize the arguments in the pre-
vious sections. We show that by a one-step construction from Z-valued functions
we can obtain any given (set) hyperreal field. We can even obtain a universal hyper-
real field which contains an isomorphic copy of every hyperreal field, by a one-step
construction from Z-valued functions.

We assume that the reader is familiar with some basic concepts of model theory.
Consult Chang and Keisler [11] or Keisler [32] for concepts and notation undefined
here.

Let A and B be two models in a language L with base sets A and B , respectively.
The model B is called an L-elementary extension of the model A, or A is an L-
elementary submodel of B, if there is an embedding e W A ! B called an L-
elementary embedding, such that for any first-order L-sentence '.a1; a2; : : : ; an/
with parameters a1; a2; : : : ; an 2 A, '.a1; a2; : : : ; an/ is true in A if and only if
'.e.a1/; e.a2/; : : : ; e.an// is true in B.

Let A and B be two models in language L with base sets A and B , respectively.
Let

L0 D L [ ¹PR W 9m 2 N; R � Amº:

That is, L0 is formed by adding to L anm-dimensional relational symbolPR for each
m-dimensional relation R on A for any positive integer m. Let A0 be the natural L0-
model with base set A; that is, the interpretation of PR in A0 for each R � Am is R.
The model B is called a complete elementary extension of A if B can be expanded
to an L0-model B0 with base set B such that B0 is an L0-elementary extension of A0.

It is a well-known fact that if B is an ultrapower of A or a limit ultrapower of A,
then B is a complete elementary extension of A.

In this section we always view the set R as the set of all Eudoxus reals.
An ordered field is called a hyperreal field if it is a proper complete elementary

extension of R. Let
L0 D ¹C; �;6; 0; 1; PRºR2R;

where R is the collection of all finite-dimensional relations on R. We do not distin-
guish between R and the R0-model R D .RIC; �;6; 0; 1; R/R2R. By saying that
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�R is a hyperreal field we will sometimes mean that �R is the base set of the hy-
perreal field, but at other times we mean that �R is the hyperreal field viewed as an
L0-model. We will spell out the distinction when it becomes necessary.

Recall that S is the set of all bounded functions from Z to Z. For a pair of almost
homomorphisms f; g W Z! Z, we will write f �� g if and only if f � g 2 S . Let
I be an infinite set. If F.x; y/ is a two-variable function from Z � I to Z and i is a
fixed element in I , we write F.x; i/ for the one-variable function Fi .x/ D F.x; i/

from Z to Z.

Definition 5.1 Let I be any infinite set. We set
A.Z � I;Z/
D
®
F 2 ZZ�I

W 8i 2 I; F.x; i/ is an almost homomorphism
¯
:

Let U be a fixed nonprincipal ultrafilter on I . For a pair of functions f; g W I ! J

for some set J , we set
f �� g if and only if

®
i 2 I W f .i/ D g.i/

¯
2 U:

Let Œf �� D ¹g 2 I J W g �� f º.

Definition 5.2 For any F;G 2 A.Z � I;Z/ we will write
F ��� G if and only if

®
i 2 I W F.x; i/ �� G.x; i/

¯
2 U:

It is easy to check that ��� is an equivalence relation on A.Z � I;Z/. For each
F 2 A.Z � I;Z/ let

ŒF ��� D
®
G 2 A.Z � I;Z/ W G ��� F

¯
:

For each F.x; y/ 2 A.Z � I;Z/ we can consider ŒF .�; y/�� as a function of y from
I to R. Thus the map

ˆ W A.Z � I;Z/=��� ! RI=U
such that ˆ.ŒF ��� / D ŒŒF �� �� is an isomorphism from A.Z � I;Z/=��� to RI=U.
Hence A.Z�I;Z/=��� can be viewed as an ultrapower ofR. Therefore, the quotient

IIRI D A.Z � I;Z/=���
is a hyperreal field constructed in one step from the set of Z-valued functions
A.Z � I;Z/.

If the set I is N, then A.Z � N;Z/=��� is exactly the hyperreal field IIR men-
tioned in the previous sections. Since I can be any infinite set, we can construct
a hyperreal field of arbitrarily large cardinality in one step from a set of Z-valued
functions A.Z � I;Z/.

6 Limit Ultrapowers and Definable Ultrapowers

If we consider a limit ultrapower instead of an ultrapower, we can obtain any
(set) hyperreal field by a one-step construction from a set of Z-valued functions
A.Z� I;Z/ j G . The reader could consult Keisler [32] for the notations, definitions,
and basic facts about limit ultrapowers. The main fact that we need here is the
following theorem (see Keisler [32, Theorem 3.7]).

Theorem 6.1 If A and B are two models of the same language, then B is a
complete elementary extension of A if and only if B is a limit ultrapower of A.
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Given any (set) hyperreal field �R, let U be the ultrafilter on an infinite set I , and
let G be the filter on I � I such that �R is isomorphic to the limit ultrapower
.RI=U/ j G . We can describe the limit ultrapower .RI=U/ j G in one step from the
set of Z-valued functions A.Z � I;Z/ j G . For each F 2 A.Z � I;Z/, let

eq.F / D
®
.i; j / 2 I � I W ŒF .x; i/�� D ŒF .x; j /��

¯
:

Let
A.Z � I;Z/ j G D

®
F 2 A.Z � I;Z/ W eq.F / 2 G

¯
:

Notice that A.Z�I;Z/ j G is a subset of A.Z�I;Z/. Hence .A.Z�I;Z/ j G /=���
can be viewed as a subset of A.Z � I;Z/=��� . Again, for each

F 2 A.Z � I;Z/=���
let

ˆ.ŒF ��� / D
�
ŒF ��

�
�
:

Then ˆ is an isomorphism from�
A.Z � I;Z/

ˇ̌
G
�
=���

to .RI=U/ j G . Therefore, .A.Z � I;Z/ j G /=��� as an elementary subfield of
A.Z � I;Z/=��� is isomorphic to the hyperreal field �R.

Theorem 6.2 An isomorphic copy of any (set) hyperreal field �R can be obtained
by a one-step construction from a set of Z-valued functions A.Z�I;Z/ j G for some
filter G on I � I .

7 Universal and On-Saturated Hyperreal Number Systems

We call a hyperreal field IIR universal if any hyperreal field, which is a set or a proper
class of NBG, can be elementarily embedded in IIR. Obviously a universal hyperreal
field is necessarily a proper class. We now want to construct a definable hyperreal
field with the property that any definable hyperreal field that can be obtained in NBG
by a one-step construction from a collection of Z-valued functions can be elementar-
ily embedded in it. In a subsequent remark we point out that in NBG we can actually
construct a definable hyperreal field so that every hyperreal field (definable or nonde-
finable) can be elementarily embedded in it. Moreover, the universal hyperreal field
so constructed is isomorphic to the On-saturated hyperreal field described in [14].

Notice that NBG implies that there is a well-ordering 6V on V where V is the
class of all sets. A classX � V is called�0-definable if there is a first-order formula
'.x/ with set parameters in the language ¹2;6º such that for any set a 2 V , a 2 X
if and only if '.a/ is true in V . Trivially, every set is �0-definable. We work within
a model of NBG with set universe V plus all �0-definable proper subclasses of V .
By saying that a class A is definable we mean that A is �0-definable.

Let † be the class of all finite sets of ordinals; that is, let, † D On<! . Notice
that † is a definable proper class. Let P be the collection of all definable subclasses
of †. Notice that we can code P by a definable class.9 Using the global choice, we
can form a nonprincipal definable ultrafilter F � P such that for each ˛ 2 On, the
definable class

Ǫ D ¹s 2 † W ˛ 2 sº

is in F . Again F can be coded by a definable class. Let A0.Z � †;Z/ be the
collection of all definable class functions F from Z � † to Z such that for each
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s 2 †, F.x; s/ is an almost homomorphism from Z to Z. For any two functions F
and G in A0.Z �†;Z/, we write F���G if and only if the definable class®

s 2 † W F.x; s/ �G.x; s/ 2 S
¯

is in F . Let ŒF ��� be the collection of all definable classes G in A0.Z �†;Z/ such
that F���G. Then ��� is an equivalence relation on A0.Z �†;Z/. Let

IIR0 D A0.Z �†;Z/=��� :
By the arguments employed before, we can show that IIR0 is isomorphic to the de-
finable ultrapower of R modulo F . Hence IIR0 is a complete elementary extension
of R. Therefore, IIR0 is a hyperreal field. By slightly modifying the proof of [11,
Theorem 4.3.12, p. 255] we can prove the following theorem.

Theorem 7.1 IIR0 is a class hyperreal field, and any definable hyperreal field �R
admits an elementary imbedding into IIR0.

Proof We only need to prove the second part of the theorem. For notational con-
venience we view IIR0 as R†=F instead of A0.Z �†;Z/=��� in this proof.

Given a definable hyperreal field �R, recall that L is the language of ordered
fields, and

L0 D L [ ¹PR W R is a finite-dimensional relation on Rº:
Let ƒ�R be all quantifier-free L0-sentences '.r1; r2; : : : ; rm/ with parameters
ri 2

�R such that '.r1; r2; : : : ; rm/ is true in �R. Since �R is a definable class, ƒ�R
is a definable class (under a proper coding). Let � be the size ofƒ�R; that is, � is the
cardinality of �R if �R is a set and � D On if �R is a definable proper class. Let j
be a definable bijection from � to ƒ�R.

For each r 2 �R we need to find a definable function Fr W † ! R such that the
map r 7! ŒFr �� is an L0-elementary embedding. We define these Fr simultaneously.

Let s 2 †. If s \ � D ;, let Fr .s/ D 0. Suppose s \ � 6D ;, and let s0 D s \ �.
Notice that if � D On, then s D s0. Let 's.r1; r2; : : : ; rm/ D

V
˛2s0 j.˛/. Since

9x1; x2; : : : ; xm's.x1; x2; : : : ; xm/

is true in �R, it is also true in R. Let .a1; a2; : : : ; am/ 2 Rm be the 6V -leastm-tuple
such that 's.a1; a2; : : : ; am/ is true in R. If r … ¹r1; r2; : : : ; rmº, let Fr .s/ D 0. If
r D ri for i D 1; 2; : : : ; m, then let Fr .s/ D ai . Since 's is quantifier-free, the
functions Fr are definable classes in NBG.

We now verify that ˆ W �R ! IIR0 such that ˆ.r/ D ŒFr �� is an L0-elementary
embedding.

Let '.r1; r2; : : : ; rm/ be an arbitrary L0-sentence with parameters r1; r2; : : : ;
rm 2

�R.
Suppose that '.r1; r2; : : : ; rm/ is true in �R. Since '.x1; x2; : : : ; xm/ defines an

m-ary relation R' on R, we have that the L0-sentence

� DW 8x1; x2; : : : ; xm
�
'.x1; x2; : : : ; xm/$ R'.x1; x2; : : : ; xm/

�
is true in R. Hence � is true in �R and in IIR0. One of the consequences of this is
that R'.r1; r2; : : : ; rm/ is true in �R, and hence it is in ƒ�R. Let ˛ 2 � be such that
j.˛/ D R'.r1; r2; : : : ; rm/. If ˛ 2 s, then

's D R'.r1; r2; : : : ; rm/ ^
^

ˇ2s0;ˇ 6D˛

j.ˇ/:
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Hence R'.Fr1.s/; Fr2.s/; : : : ; Frm.s// is true in R by the definition of the Fr ’s.
Since � is true in R, we have that '.Fr1.s/; Fr2.s/; : : : ; Frm.s// is true in R. Thus®

s 2 † W '
�
Fr1.s/; Fr2.s/; : : : ; Frm.s/

�
is true in R

¯
� Ǫ :

Since Ǫ is a member of F , we have that '.ŒFr1 �� ; ŒFr2 �� ; : : : ; ŒFrm �� / is true in
R†=F .

Suppose that '.r1; r2; : : : ; rm/ is false in �R. Then :'.r1; r2; : : : ; rm/ is true in
�R. Hence by the same argument we have that

:'.ŒFr1 �� ; ŒFr2 �� ; : : : ; ŒFrm �� / is true in R†=F ;

which implies that

'.ŒFr1 �� ; ŒFr2 �� ; : : : ; ŒFrm �� / is false in R†=F :

Hence ˆ.r/ D ŒFr �� is an L0-elementary embedding from �R to IIR0.

Remark 7.2 We have shown that every definable hyperreal field can be elemen-
tarily embedded into IIR0. If we want to show that IIR0 is universal, we need to
elementarily embed every (definable or nondefinable) hyperreal field �R into the de-
finable hyperreal field IIR0. Notice that there are models of NBG with nondefinable
classes. The proof of Theorem 7.1 may not work when �R is a nondefinable class
because the bijection j may not be definable and Fr may not be definable. If Fr is
not definable, ŒFr �� may not be an element in IIR0.

The idea of making every hyperreal field embeddable into IIR0 is that we can make
IIR0 On-saturated by selecting a definable ultrafilter F more carefully. Notice that
NBG implies that every proper class has the same size On. Hence �R can be ex-
pressed as the union of On-many sets. If we can make sure that IIR0 is On-saturated,
that is, ˛-saturated for any set cardinality ˛, then �R can be elementarily embedded
into IIR0 although such an embedding may be nondefinable.

The ultrafilter F used in the construction of IIR0 in the proof of Theorem 7.1 is
a definable version of a regular ultrafilter. In order to make sure that IIR0 is On-
saturated, we need to require that F be a special kind of definable regular ultrafilter
called a definable good ultrafilter. The definition of a (set) good ultrafilter can be
found in [11, p. 386]. The construction of an ˛C-good ultrafilter can be found in
either [11, Theorem 6.1.4] or Kunen [33]. By the same idea of constructing F above
we can follow the steps in [33] or [11] to construct a definable class good ultrafilter
F on On. Now the ultrapower IIR0 of R modulo the definable class good ultrafilter
F is On-saturated. The proof of this fact is similar to that in [11]. However, since the
definition of a definable class good ultrafilter and the proof of the saturation property
of the ultrapower modulo a definable class good ultrafilter are long and technical,
and since the ideas are similar to what we have already presented above, we will not
include them in this paper.

Another way of constructing a definable On-saturated hyperreal field IIR0 is by
taking the union of an On-long definable elementary chain of set hyperreal fields
¹�R˛ W ˛ 2 Onº with the property that �R˛ is j˛j-saturated. However, this construc-
tion cannot be easily translated into a “one-step” construction. Moreover, if we allow
higher-order classes, we can express IIR0 as a one-step limit ultrapower following
the same idea as in the proof of [11, Theorem 6.4.10]. However, this is not possible
in NBG since all classes allowed in a model of NBG are subclasses of V . On the
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other hand, as we indicated above, the process of constructing IIR0 as a definable
ultrapower can be carried out in NBG, and done so in a “one-step” fashion.

Notes

1. The term Eudoxus reals has gained some currency in the literature (see, e.g., Arthan [7]).
Shenitzer [38, p. 45] argues that Eudoxus anticipated nineteenth century constructions
of the real numbers. The attribution of such ideas to Eudoxus, based on an interpretation
involving Eudoxus, Euclid, and Book 5 of The Elements, may be historically question-
able.

2. Recall that a model M is On-saturated if M is �-saturated for any cardinal � in On.
Here On (or ON) is the class of all ordinals (cf. Kunen [34, p. 17]). A hyperreal
number system hR; �R; S 2 Fi is On-saturated if it satisfies the following condition:
If X is a set of equations and inequalities involving real functions, hyperreal constants,
and variables, then X has a hyperreal solution whenever every finite subset of X has a
hyperreal solution (see Ehrlich [14, Section 9, p. 34]).

3. The construction of the real numbers as equivalence classes of Cauchy sequences of
rationals, usually attributed to Cantor, is actually due to H. Méray [35] who published
three years earlier than E. Heine.

4. Arthan’s “Irrational construction of R from Z” (see [6]) describes a different way of
skipping the rationals, based on the observation that the Dedekind construction can take
as its starting point any Archimedean densely ordered commutative group. The construc-
tion delivers a completion of the group, and one can define multiplication by analyzing
its order-preserving endomorphisms. Arthan uses the additive group of the ring ZŒ

p
2�,

which can be viewed as Z � Z with an ordering defined using a certain recurrence
relation.

5. One could also represent a real by a string based on its decimal expansion, but the addi-
tion in such a presentation is highly nontrivial due to carryover, which can be arbitrarily
long. In contrast, the addition of almost homomorphisms is term by term. Multiplication
on the reals is induced by composition in Z! Z (see formula (1.1)).

6. See n. 1 for a discussion of the term.

7. Note that addition is term by term in the time direction as well.

8. See A. Weil [42, p. 1146].

9. This is true because each definable subclass of † can be effectively coded by the Gödel
number of a first-order formula in the language of ¹2;6V º and a set in V . By the well-
ordering of V we can determine a unique code for each definable class in P .
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