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On the Indecomposability of !n

Jared R. Corduan and François G. Dorais

Abstract We study the reverse mathematics of pigeonhole principles for finite
powers of the ordinal !. Four natural formulations are presented, and their rela-
tive strengths are compared. In the analysis of the pigeonhole principle for !2,
we uncover two weak variants of Ramsey’s theorem for pairs.

1 Introduction

In the set-theoretic literature, one finds two formulations of the indecomposability of
an ordinal ˛.

Additive indecomposability: If ˇ0 C � � � C ˇk�1 D ˛, then ˇi D ˛ for some
i < k.

Combinatorial indecomposability: If B0 [ � � � [ Bk�1 D ˛, then Bi has order-
type ˛ for some i < k.

Prima facie, combinatorial indecomposability is stronger since additive indecom-
posability corresponds to the special case where the parts B0; : : : ; Bk�1 are required
to be nonoverlapping (possibly empty) intervals. However, the additively indecom-
posable ordinals and the combinatorially indecomposable ordinals are precisely the
ordinal powers of !, so the two properties are actually equivalent.

The fact that ! is combinatorially indecomposable is also known as the infinite
pigeonhole principle. In reverse mathematics, the infinite pigeonhole principle was
first studied by Hirst [11], who showed that it was equivalent to the …0

1-bounding
principle (B…0

1). The additive indecomposability of the ordinal powers !˛ was also
studied by Hirst [10], but the formally stronger combinatorial indecomposability of
!˛ was not directly explored.

In this paper, we analyze the combinatorial indecomposability of !n for
2 � n < !. One difficulty with the analysis is that “Bi has order-type !n” has
several different interpretations in second-order arithmetic. In Section 2, we analyze
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the reverse mathematics of four natural interpretations which are all equivalent
assuming arithmetic comprehension (ACA0) but diverge assuming only recursive
comprehension (RCA0).

The analysis of the case n D 2 has led us to two combinatorial principles related
to Ramsey’s theorem for pairs (RT2k), which has been intensely studied in reverse
mathematics (see Seetapun and Slaman [14], Cholak, Jockusch, and Slaman [1],
Hirschfeldt and Shore [9], Dzhafarov and Hirst [5], Dzhafarov and Jockusch [6]).

RT2
k For every finite coloring c W N2 ! ¹0; : : : ; k � 1º, there are a color d < k

and an infinite setH such that c.x; y/ D d for all x; y 2 H with x < y.

These two weaker principles are the weak Ramsey theorem for pairs,

WRT2
k For every finite coloring c W N2 ! ¹0; : : : ; k�1º, there are a color d < k

and an infinite setH such that ¹y 2 N W c.x; y/ D dº is infinite for every x 2 H ;

and the hyperweak Ramsey theorem for pairs,

HWRT2
k For every finite coloring c W N2 ! ¹0; : : : ; k � 1º, there are a color

d < k and an increasing function h W N ! N such that, for all 0 < i1 < i2, the
rectangle

Œh.i1 � 1/; h.i1/ � 1� � Œh.i2 � 1/; h.i2/ � 1�

contains a pair with color d .

In Section 3 we compare HWRT22 to other known combinatorial principles. In par-
ticular, we show that HWRT22 is strictly weaker than WRT22. In addition, we give a
direct proof that RCA0 C I†02 C HWRT22 is…1

1-conservative over RCA0 C I†02.
Conventions. A standard reference for subsystems of second-order arithmetic and
their use in reverse mathematics is Simpson [15]. Formal definitions of the basic
systems RCA0 and ACA0 can be found there. Another standard reference for induc-
tion principles used in this paper is Hájek and Pudlák [8]. While this last reference
focuses on first-order arithmetic, it is generally straightforward to relativize their def-
initions and results to the second-order setting.

Our general approach is model-theoretic rather than proof-theoretic. Throughout
the paper N will denote the first-order part of the model currently under considera-
tion; we will use ! to denote the set of standard natural numbers. Every result in this
paper indicates in parentheses the base system over which the result is formulated.
Some of the results are parameterized by a standard natural number, which is also
indicated in parentheses.

In Section 3, for the purpose of forcing, we will find it convenient to use a func-
tional interpretation of the basic system RCA0. Such an interpretation was described
by Kohlenbach [13], but we use the equivalent system described by Dorais [3]. Basic
structures are of the form N D .N;N1;N2; : : :/, where each Nk is a set of functions
Nk ! N which together form an algebraic clone: each Nk contains all the constant
functions, the projections �i .x1; : : : ; xk/ D xi , and if f 2 N` and g1; : : : ; g` 2 Nk ,
then the superposition f .g1.x1; : : : ; xk/; : : : ; g`.x1; : : : ; xk// belongs to Nk .

On top of this basic structure, we require closure under primitive recursion: there
are distinguished 0 2 N (zero) and � 2 N1 (successor) such that for any f 2 Nk�1

and g 2 NkC1 there is a unique h 2 Nk such that

h.0; Nw/ D f . Nw/ and h
�
�.x/; Nw

�
D g

�
h.x; Nw/; x; Nw

�
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for all x; Nw 2 N. Note that the uniqueness requirement on h is crucial since this is
the only form of induction in this system.

Using primitive recursion, we can define the usual arithmetic operations such as
addition, multiplication, truncated subtraction (x P�y D max.x � y; 0/) together
with the usual identities between them. We will also assume the dichotomy axiom
x P�y D 0 _ y P� x D 0, which is necessary to show that the relation x � y defined
by x P� y D 0 is a linear ordering of N.

Finally, in addition to the basic axioms described above, we will consider the
second-order uniformization axiom: For every f 2 NkC1 such that 8 Nw 9x
f .x; Nw/ D 0, there is a g 2 Nk such that 8 NwŒf .g. Nw/; Nw/ D 0�. This axiom
ensures closure under general recursion, which is essentially equivalent to recursive
comprehension.

Every functional structure N corresponds to a set-based structure .NIS I 0; 1;C; �/
for second-order arithmetic as described in [15], where S consists of all subsets of
N whose characteristic function is in N1. The latter structure is a model of RCA0
if and only if the uniformization axiom holds in N. Conversely, given a traditional
model .NIS I 0; 1;C; �/ of RCA0, we can define Nk to be the class of all functions
Nk ! N whose coded graph belongs to S , and the resulting structure is a functional
model which satisfies uniformization. Since our choice to adopt functional models
is a matter of convenience, we will freely use this translation between functional
models and traditional models.

2 Combinatorial Indecomposability

In this section, we describe four different interpretations of the statement that “!n is
combinatorially indecomposable” and examine their strength over RCA0. We will
state the indecomposability principles in terms of a canonical representation of the
ordinal !n, namely the lexicographic ordering of Nn, which is defined by letting
.x0; : : : ; xn�1/ < .y0; : : : ; yn�1/ when

x0 D y0 ^ � � � ^ xi�1 D yi�1 ^ xi < yi

holds for some i < n. We also use the term lexicographic to describe functions from
f W Nn ! Nn which preserve the lexicographic ordering.

Usually, “X has order-type !n” is interpreted as saying that the given ordering X
is order-isomorphic to !n. Using this interpretation, combinatorial indecomposabil-
ity corresponds to the following principle.

Iso-Indecn
k For every finite coloring c W Nn ! ¹0; : : : ; k � 1º there is a color

d < k such that the set

Ad D
®
.x1; : : : ; xn/ 2 Nn W c.x1; : : : ; xn/ D d

¯
is lexicographically isomorphic to Nn.

We use Iso-Indecn to denote .8k/Iso-Indecnk . Since a set A � N is order-
isomorphic to N if and only if it is infinite, the statement Iso-Indec1 is precisely
equivalent to B…0

1 by Hirst’s result. However, the very next case Iso-Indec22 already
implies arithmetic comprehension.

Proposition 2.1 (RCA0) Iso-Indec22 implies arithmetic comprehension.
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Proof We show that Iso-Indec22 implies that the range of an arbitrary injection
f W N! N exists. Consider the coloring c W N2 ! 2 defined by letting c.x; y/ D 1
if and only if x 2 ¹f .0/; : : : ; f .y � 1/º. Note that c.x; 0/ D 0 for every x.

Let A0 D c�1.0/ and A1 D c�1.1/. On the one hand, if h W N2 ! A1 is an
isomorphism, then h1.n; 0/ must be the .nC 1/th element of the range of f . On the
other hand, if h W N2 ! A0 is an isomorphism, then h1.n C 1; 0/ � 1 must be the
.nC 1/th element in the complement of the range of f .

Of course, it is easy to see that ACA0 proves Iso-Indecn for all n < !.

2.1 Indecomposability and induction The weakest statements of indecomposability
for !n that we will consider are the following…1

1 statements.

Elem-Indecn
k For every finite coloring c W Nn ! ¹0; : : : ; k � 1º there is a color

d < k such that

.91x1/.9
1x2/ � � � .9

1xn/Œc.x1; x2; : : : ; xn/ D d�:

We will use Elem-Indecn to denote .8k/Elem-Indecnk . Note that Elem-Indecnk is
provable in RCA0 for every k < !, but the principle Elem-Indecn is nontrivial.

The statement Elem-Indec1 says that for every finite coloring c W N ! ¹0; : : : ;
k � 1º there is a color d < k such that the set Ad D ¹x W c.x/ D dº is infinite—this
statement is equivalent to B…0

1. We can generalize this as follows.

Theorem 2.2 (RCA0; 1 � n < !)

(a) Elem-Indecn implies B…0
n.

(b) I†0nC1 implies Elem-Indecn.

Part (a) of Theorem 2.2 will follow from Proposition 2.4. Part (b) is proved in Propo-
sition 2.6.

A principle equivalent to bounding will be used in the proof of Theorem 2.2. In
[8, Section I.2(b)], Hájek and Pudlák introduced the regularity principle R� which
says that if '.x; y/ is a � formula, then

.91x/.9y < k/'.x; y/$ .9y < k/.91x/'.x; y/

holds for all k 2 N. They further show that R†0nC1, R…0
n, and B…0

nC1 are equivalent
for every n < ! (see [8, Section I.2.23(4)]).

The regularity principle is useful in handling a certain class of colorings. A func-
tion c W NmCn ! N is weakly n-stable if for all x1; : : : ; xm 2 N there is a y 2 N
such that

.81z1/ � � � .8
1zn/Œy D c.x1; : : : ; xm; z1; : : : ; zn/�:

This is very similar to saying that the iterated limit

lim
z1!1

� � � lim
zn!1

c.x1; : : : ; xm; z1; : : : ; zn/

exists for all x1; : : : ; xm 2 N. However, the usual definition of such limits requires
that intermediate limits all exist too, which is not required by weak n-stability. We
say that c is strongly n-stable if it is weakly i -stable for each 1 � i � n; this guaran-
tees the existence of all intermediate limits and corresponds to the usual meaning of
iterated limit. The two notions agree when n D 1, and they agree with the definition
of stable introduced by Cholak, Jockusch, and Slaman [1].
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If c W NmCn ! N is strongly n-stable, then the iterated limit
f .x1; : : : ; xm/ D lim

z1!1
� � � lim

zn!1
c.x1; : : : ; xm; z1; : : : ; zn/

is a total †0nC1-definable map f W Nm ! N. (More precisely, the graph of f is
†0nC1-definable. Note that the map f need not be a function of the current model.)
The converse of this fact is due to Švejdar [16].

Lemma 2.3 (RCA0 C B…0
n�1

; 1 � n < !) Every total †0nC1-definable map
f W N! N is representable in the form

f .x/ D lim
z1!1

� � � lim
zn!1

c.x; z1; : : : ; zn/;

where c W NnC1 ! N is a strongly n-stable function.

Proof Švejdar [16, Theorem 1] shows under B…0
n�1 that for every total †0nC1-

definable map f W N ! N there is a 1-stable †0n-definable (indeed, †00.†0n�1/-
definable) map f 0 W N2 ! N such that

f .x/ D lim
z1!1

f 0.x; z1/

for all x 2 N. Iterating this result, we find †0nC1�i -definable strongly i -stable maps
f .i/ W NiC1 ! N such that

f .x/ D lim
z1!1

� � � lim
zi!1

f .i/.x; z1; : : : ; zi /

for all x 2 N. The nth such map is †01-definable and hence corresponds to an actual
function c W NnC1 ! N in our model, which acts as claimed.

Proposition 2.4 (RCA0; 1 � n < !) B…0
n is equivalent to the following statement.

For any strongly .n � 1/-stable c W Nn ! ¹0; 1; : : : ; k � 1º, there is a d < k such
that

.91x1/.9
1x2/ � � � .9

1xn/Œc.x1; x2; : : : ; xn/ D d�:

Proof We will prove equivalence with R…0
n�1 instead of equivalence with B…0

n.
Let g W N! N be the total †0n-definable function given by

g.x1/ D lim
x2!1

� � � lim
xn!1

c.x1; x2; : : : ; xn/:

Therefore, by R†0n, we have that there is a d < k such that .91x1/Œg.x/ D d�. In
particular,

.91x1/.8
1x2/ � � � .8

1xn/Œc.x1; x2; : : : ; xn/ D d�;

and the conclusion follows immediately.
Let '.x; y/ be …0

n�1, and suppose that .91x/.9y < k/'.x; y/. Consider the
total †0n-definable function g such that g.x0/ D y0 if and only if there is an x such
that x0 � x, y0 < k, and '.x; y0/ ^ .8y < y0/:'.x; y/, but :'.x0; y0/ for all
x0; y0 such that x0 � x0 < x and y0 < k. Since g is a total †0n-definable function,
Lemma 2.3 ensures that there is a strongly .n � 1/-stable c W Nn ! ¹0; : : : ; k � 1º
such that

g.x1/ D lim
x2!1

� � � lim
xn!1

c.x1; x2; : : : ; xn/

for all x1. By hypothesis, there is a d < k such that
.91x1/.9

1x2/ � � � .9
1xn/Œc.x1; x2; : : : ; xn/ D d�:
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It follows that .91x/Œg.x/ D d� and hence that .91x/'.x; d/:

Note that part (a) of Theorem 2.2 will follow immediately from Proposition 2.4.
Now we prove part (b). We will need the following result, which is essentially due to
Jockusch and Stephan [12].

Lemma 2.5 (RCA0) Given a sequence of sets A D hAni1nD0 such that A00 exists,
there is an infinite set X such that .X ˚ A/00 �T A00 and, for all n, either X �� An
or X �� N n An.

Here and elsewhere, the notation X �� Y means that .81x/.x 2 X ! x 2 Y /.
A close inspection of the proof of [12, Theorem 2.1] shows that the above is provable
in RCA0.

Proposition 2.6 (RCA0; 1 � n < !) I†0nC1 implies Elem-Indecn.

Proof Let N be a model of RCA0 C I†0nC1, and let c0 W Nn ! ¹0; 1; : : : ; k � 1º
be a coloring in N. Let M be the model of RCA0 whose second-order part consists
of all �0nC1-definable sets with parameters from N.

Given Nx 2 Nn and i < k, let A Nx;i D ¹y 2 N W c0. Nx; y/ D iº, and let
A D hAni

1
nD0 effectively enumerate all such A Nx;i . Since A00 �T c000 2 M, by

Lemma 2.5 there is an infinite set X1 such that .c0 ˚ X1/
00 �T c000 and, for all

Nx and i , either X1 �� A Nx;i or X1 �� N n A Nx;i . We now define a new coloring
c1 W Nn�1 ! ¹0; 1; : : : ; k � 1º by

c1.z1; z2; : : : ; zn�1/ D lim
x2X1

c0.z1; z2; : : : ; zn�1; x/;

which is computable from .c0 ˚X1/
0. Note also that c01 �T c000 .

If n � 3, we now repeat this process for the coloring c1. For this construction to
work, use the fact that c001 �T .c0˚X1/000 �T c0000 2M in order to apply Lemma 2.5
as above. We are left with an infinite set X2 such that .c1˚X2/00 �T c001 �T c0000 and
which defines a coloring

c2.z1; : : : ; zn�2/ D lim
x2X2

c1.z1; : : : ; zn�2; x/;

which is computable in .c1 ˚X2/0.
Continuing this process as necessary we end with a set Xn�1 such that

.cn�2 ˚Xn�1/
00 �T c

00
n�2 2M and

cn�1.z1/ D lim
x2Xn�1

cn�2.z1; x/

exists for all z1. Since c0n�1 �T c00n�2 �T c
.n/
0 2M, there is a d for which there are

infinitely many z such that c1.z/ D d . Unraveling the definition of all the colorings
we see that

.91x1/ � � � .9
1xn/Œc0.x1; : : : ; xn/ D d�

holds in M. Therefore the same holds in N since this is an arithmetical statement
with parameters in N.
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2.2 Indecomposability and embeddings We now consider an indecomposabil-
ity principle between Elem-Indecn and Iso-Indecn. Much of the strength of
Iso-Indecn comes from the isomorphism requirement. This can be relaxed by
asking instead that one of the pieces of the partition contain a lexicographically iso-
morphic copy of Nn. Indeed, this is generally how combinatorial indecomposability
is understood for nonordinal order types (see Fraïssé [7]). This leads us to our next
formulation of combinatorial indecomposability:

Lex-Indecn
k For every finite coloring c W Nn ! ¹0; : : : ; k � 1º, there is a lexico-

graphic embedding h W Nn ! Nn such that c ı h is constant.

We will use Lex-Indecn to denote .8k/Lex-Indecnk . Again, we see that Lex-Indec1

is equivalent to B…0
1. The main result of this section is that RCA0 C Lex-Indec32 is

equivalent to ACA0. Additionally, we show that Lex-Indecnk implies Elem-Indecnk .
Note that Lex-Indec2k is weaker than Iso-Indec2k , since it follows from Ramsey’s
theorem for pairs, which is known to be weaker thanACA0 (see Seetapun and Slaman
[14]; see also [1]).

To begin our analysis of Lex-Indecn, we will first establish three facts about
the behavior of lexicographic embeddings in RCA0. Except when explicitly stated
otherwise, we will write hi for the i th coordinate of a lexicographic embedding
h W Nn ! Nn.

Lemma 2.7 (RCA0; 1 � n < !) If h W Nn ! Nn is a lexicographic embedding,
then

x1 � h1.x1; x2; : : : ; xn/ < h1.x1 C 1; 0; : : : ; 0/

for all x1; : : : ; xn 2 N.

Proof We prove the lemma by (external) induction on 1 � n < !. The case n D 1
is trivial.

Suppose that the result is true for some n. Work in RCA0. Let h W NnC1 ! NnC1
be a lexicographic embedding. For convenience, we will index our coordinates for
NnC1 from zero to n instead of 1 to nC1. Thus h0 W NnC1 ! N is the first coordinate
of h.

We show that
h0.x0; x1; : : : ; xn/ < h0.x0 C 1; 0; : : : ; 0/

for all x0; x1; : : : ; xn 2 N; the fact that x0 � h0.x0; x1; : : : ; xn/ then follows by in-
duction. Suppose, for the sake of contradiction, that h0.x0; x1; : : : ; xn/ D h0.x0C1;
0; : : : ; 0/ D y0, say. Then the function Qh W Nn ! Nn such that

Qhi .z1; : : : ; zn/ D hi .x0; x1 C 1C z1; z2; : : : ; zn/

is a lexicographic embedding. By the induction hypothesis,

z1 � Qh1.z1; 0; : : : ; 0/ D h1.x0; x1 C 1C z1; 0; : : : ; 0/ � h1.x0 C 1; 0; : : : ; 0/

for all z1 2 N, which is clearly impossible.

Lemma 2.8 (RCA0; 1 � n < !) If h W Nn ! Nn is a lexicographic embedding
and 1 � j < i � n, then

lim
xi!1

hj .x1; : : : ; xi�1; xi ; 0; : : : ; 0/

exists and is bounded above by hj .x1; : : : ; xi�1 C 1; 0; : : : ; 0/.
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Proof We proceed by induction on j < i . By the induction hypothesis, find Qxi
such that

hk.x1; : : : ; xi�1; xi ; 0; : : : ; 0/ D hk.x1; : : : ; xi�1; Qxi ; 0; : : : ; 0/

for all xi � Qxi and 1 � k < j . Note that we must then have

hj .x1; : : : ; xi�1; xi ; 0; : : : ; 0/ � hj .x1; : : : ; xi�1; x
0
i ; 0; : : : ; 0/

� hj .x1; : : : ; xi�1 C 1; 0; 0; : : : ; 0/

for all x0i � xi � Qxi . It follows immediately that

lim
xi!1

hj .x1; : : : ; xi�1; xi ; 0; : : : ; 0/

exists and is bounded above by hj .x1; : : : ; xi�1 C 1; 0; 0; : : : ; 0/.

Lemma 2.9 (RCA0; 1 � n < !) If h W Nn ! Nn is a lexicographic embedding
and 1 � i � n, then

lim
xi!1

hi .x1; : : : ; xi�1; xi ; 0; : : : ; 0/ D1

for all x1; : : : ; xi�1 2 N.

Proof By Lemma 2.8, we can find Qxi such that

hj .x1; : : : ; xi�1; xi ; 0; : : : ; 0/ D hj .x1; : : : ; xi�1; Qxi ; 0; : : : ; 0/

for all xi � Qxi and all 1 � j < i . Note that the function Qh W Nn�iC1 ! Nn�iC1
defined by

Qhk.y1; : : : ; yn�iC1/ D hiCk�1.x1; : : : ; xi�1; Qxi C y1; y2; : : : ; yn�iC1/

is then a lexicographic embedding and the result follows immediately by applying
Lemma 2.7 to Qh.

Theorem 2.10 (RCA0) Lex-Indec32 implies arithmetic comprehension.

Proof We show how to compute the range of a function f W N ! N using
Lex-Indec32. For each z, let f Œz� D ¹f .0/; : : : ; f .z/º. Consider the coloring
c W N3 ! ¹0; 1º defined by

c.x; y; z/ D
°
0 when .8w � x/.w 2 f Œy�$ w 2 f Œz�/,
1 otherwise.

Suppose that h W N3 ! N3 is a lexicographic embedding such that c ı h is constant.
First, note that c ı h must have constant value zero.

To determine whether x is in the range of f , use the following procedure:
First find y such that h1.x; y; 0/ D h1.x; y C 1; 0/. Answer yes if
x 2 f Œh2.x; y C 1; 0/�; otherwise answer no.

This procedure will never return false positive answers, so suppose that x D f .s/

and we check that the algorithm answers yes on input x. The existence of a y such
that h1.x; y; 0/ D h1.x; y C 1; 0/ is guaranteed by Lemma 2.8. Given such a y we
can then use Lemma 2.9 to find z such that s � h3.x; y; z/. Since

h1.x; y; 0/ D h1.x; y; z/ D h1.x; y C 1; 0/;

we then have
h2.x; y; 0/ � h2.x; y; z/ � h2.x; y C 1; 0/:



On the Indecomposability of !n 381

Since c.h.x; y; z// D 0 and x � h1.x; y; z/ by Lemma 2.7, we know that
x 2 f Œh2.x; y; z/� $ x 2 f Œh3.x; y; z/�. Since s � h3.x; y; z/ we know
that x 2 f Œh3.x; y; z/�, and since h2.x; y; z/ � h2.x; y C 1; 0/ we conclude that
x 2 f Œh2.x; y C 1; 0/�.

We end this section by proving that Lex-Indecnk implies Elem-Indecnk . In light of
Theorems 2.10 and 2.2, this is really only interesting in the case n D 2.

Proposition 2.11 (RCA0; 1 � n < !) For every positive integer k, Lex-Indecn
k

implies Elem-Indecn
k
.

Proof By (external) induction on n, we show that for any coloring c W Nn ! ¹0;
: : : ; k � 1º, if there is a lexicographic embedding h W Nn ! Nn such that c ı h is
constant with value d < k, then

.91x1/ � � � .9
1xn/Œc.x1; : : : ; xn/ D d�:

The result is trivial for n D 1. Suppose that the result is true for some n. Work
in RCA0. Let c W NnC1 ! ¹0; : : : ; k � 1º be a coloring, and let h W NnC1 ! NnC1
be a lexicographic embedding h W NnC1 ! NnC1 such that c ı h is constant with
value d < k. For convenience, we will index our coordinates for NnC1 from zero to
n instead of 1 to nC 1. Thus h0 W NnC1 ! N is the first coordinate of h.

Let w0 2 N be given; we want to show that

.9x0 � w0/.9
1x1/ � � � .9

1xn/Œc.x0; x1; : : : ; xn/ D d�: (�)

By Lemma 2.7, we have w0 � h0.w0; w1; : : : ; wn/ < h0.w0 C 1; 0; : : : ; 0/ for all
w1; : : : ; wn 2 N. By I†01, let

x0 D max
®
h0.w0; w1; : : : ; wn/ W w1; : : : ; wn 2 N

¯
D max

®
h0.w0; w1; 0; : : : ; 0/ W w1 2 N

¯
;

and pick w1 such that x0 D h0.w0; w1; 0; : : : ; 0/.
Define the coloring c0 W Nn ! ¹0; : : : ; k � 1º by

c0.x1; : : : ; xn/ D c.x0; x1; : : : ; xn/;

and define the function h0 W Nn ! Nn by

h0i .z1; : : : ; zn/ D hi .w0; w1 C z1; z2; : : : ; zn/:

Then h0 is a lexicographic embedding such that c0 ı h0 is constant with value d . By
the induction hypothesis applied to h0 and c0,

.91x1/ � � � .9
1xn/Œc

0.x1; : : : ; xn/ D d�:

Since x0 � w0, this implies (�).

Corollary 2.12 (RCA0) Lex-Indec2 implies B…0
2.

Proof Elem-Indec2 implies B…0
2 by Theorem 2.2.
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2.3 Indecomposability and games Another formulation of combinatorial indecom-
posability is obtained by interpreting the conclusion of Elem-Indecnk in Hintikka’s
game-theoretic semantics. This process leads to the following game.

Definition 2.13 Given a finite coloring c W Nn ! ¹0; : : : ; k�1º, the game Gn.c/

between player˚ and player	 is played as follows.
� To start the game, player˚ chooses a color d < k.
� Then, player	 and player˚ alternately play

player	 a1 a2 � � � an
player˚ b1 b2 � � � bn

such that ai � bi for i D 1; : : : ; n.
Player˚ wins this play if c.b1; b2; : : : ; bn/ D d , otherwise player	 wins.

Of course, player	 can never have a winning strategy for this game.

Proposition 2.14 (RCA0; 1 � n < !) For every finite coloring c W Nn ! ¹0; : : : ;
k � 1º, player	 does not have a winning strategy in the game Gn.c/.

Proof Suppose that .�d /d<k is such that �d W N<n ! N is a winning strategy for
player	 in Gn.c/ when player˚’s first move is d . Define b1; : : : ; bn by

bm D max
d<k

�d .b1; : : : ; bm�1/

for m D 1; : : : ; n. Then, for every d 2 ¹0; : : : ; k � 1º, b1; b2; : : : ; bn is a valid
sequence of play for player ˚ against player 	’s strategy �d , which means that
c.b1; b2; : : : ; bn/ ¤ d . Therefore, c.b1; : : : ; bn/ … ¹0; : : : ; k � 1º—a contradic-
tion.

If the game Gn.c/ is determined, then player˚ must have a winning strategy, which
leads to the following principle.

Game-Indecn
k For every finite coloring c W Nn ! ¹0; : : : ; k � 1º, player ˚ has

a winning strategy in the game Gn.c/.

As usual, we use Game-Indecn to denote .8k/Game-Indecnk . Again, it is easy to
see that Game-Indec1 is equivalent to B…0

1.
It turns out that Game-Indecnk is equivalent to a strong version of Lex-Indecnk .

A strong lexicographic embedding h W Nn ! Nn is a lexicographic embedding with
the additional property that

x1 D y1; : : : ; xi D yi ) hi .x1; : : : ; xn/ D hi .y1; : : : ; yn/

holds for i D 1; : : : ; n. Characterizing Game-Indecn as the existence of such strong
lexicographic embedding relates Game-Indecn to WRT2k and RT2k .

Proposition 2.15 (RCA0; 1 � n < !) Given a finite coloring c W Nn ! ¹0; : : : ;
k � 1º, player ˚ has a winning strategy in Gn.c/ if and only if there is a strong
lexicographic embedding h W Nn ! Nn such that c ı h is constant.

Proof Suppose that � W N�n ! N is a winning strategy for player ˚. Let d < k

be player ˚’s color choice. For i D 1; : : : ; n, define the function hi W Ni ! N by
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primitive recursion as follows:
hi .a1; : : : ; ai�1; 0/ D �

�
h1.a1/; : : : ; hi�1.a1; : : : ; ai�1/; 0

�
;

hi .a1; : : : ; ai�1; aC 1/ D �
�
h1.a1/; : : : ; hi�1.a1; : : : ; ai�1/;

hi .a1; : : : ; ai�1; a/C 1
�
:

(The definition of hi depends on the prior definition of h1; : : : ; hi�1, but since n is
standard this is not problematic.) Then the function

h.a1; : : : ; an/ D
�
h1.a1/; : : : ; hn.a1; : : : ; an/

�
is a strong lexicographic embedding such that c ı h is constant with value d .

Conversely, suppose that h W Nn ! Nn is a strong lexicographic embedding such
that c ı h is constant with value d . Define the strategy � W N�n ! N as follows. Let
d be the initial color choice for � , and then define �.a1; : : : ; ai / D hi .a1; : : : ; ai ; 0;
: : : ; 0/. Then, by definition of strong lexicographic embedding, we always have

h.a1; : : : ; an/ D
�
�.a1/; : : : ; �.a1; : : : ; an/

�
;

which ensures that � is a winning strategy for player˚.

Corollary 2.16 (RCA0) Game-Indec2
k
is equivalent to WRT2

k
.

Corollary 2.17 (RCA0) RT2
k
implies Game-Indec2

k
.

Proposition 2.18 (RCA0; 1 � n < !) Suppose that f W N1Cn ! N is a weakly
n-stable function. Then there is a coloring c W N1C2n ! ¹0; 1º such that if player˚
has a winning strategy in the game G1C2n.c/, then there are an infinite set H and a
function f1 W H ! N such that

.81z1/ � � � .8
1zn/Œf1.x/ D f .x; z1; : : : ; zn/�

holds for every x 2 H .

Proof Let c W N1C2n ! ¹0; 1º be defined by

c.x; y1; : : : ; yn; z1; : : : ; zn/ D
°
1 when f .x; Ny/ D f .x; Nz/,
0 otherwise.

Suppose that � W N�1C2n ! N is a winning strategy for player ˚ in G1C2n.c/.
First note that since f is weakly n-stable, the color 1 must be player˚’s first move.

Now, knowing that player˚’s first move is 1, let

H D
®
�.w/ W w 2 N

¯
D
®
x 2 N W .9w � x/Œx D �.w/�

¯
:

This is clearly an infinite set. For x 2 H , define f1.x/ as follows: let w � x be
least such that x D �.w/; then let

y1 D �.w; 0/; y2 D �.w; 0; 0/; : : : ; yn D �.w; 0; : : : ; 0/I

finally, set f1.x/ D f .x; y1; : : : ; yn/. The remainder of player ˚’s strategy �
witnesses that

.91z1/ � � � .9
1zn/Œf1.x/ D f .x; z1; : : : ; zn/�:

Since f is n-stable, it follows that

.81z1/ � � � .8
1zn/Œf1.x/ D f .x; z1; : : : ; zn/�;

as required.
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Corollary 2.19 (RCA0 C B…0
2n�1

; 1 � n < !) Suppose that f W N1Cn ! N is
a weakly n-stable function. Then there is a coloring c W N1C2n ! ¹0; 1º such that
if player ˚ has a winning strategy in the game G1C2n.c/, then there is a function
f1 W N! N such that

.81z1/ � � � .8
1zn/Œf1.x/ D f .x; z1; : : : ; zn/�

for every x.

Proof The function Nf W N1Cn ! N defined by
Nf .x; z1; : : : ; zn/ D hf .0; z1; : : : ; zn/; : : : ; f .x; z1; : : : ; zn/i

is also weakly n-stable by B…0
2n�1; apply Proposition 2.18 to Nf .

Here is a partial converse of Proposition 2.18 for strongly n-stable functions.

Proposition 2.20 (RCA0; 1 � n < !) If f .i/ W N1Ci ! N are such that

f .i�1/.x; y1; : : : ; yi�1/ D lim
yi!1

f .i/.x; y1; : : : ; yi�1; yi /

for i D 1; : : : ; n, then player˚ has a winning strategy in the game G1C2n.c/, where
c W N1C2n ! ¹0; 1º is the coloring associated to f .0/ as in Proposition 2.18.

Player˚’s strategy is to simply pick sufficiently large natural numbers with the value
prescribed by the functions f .i/.

When n D 1, Propositions 2.18 and 2.20 are exact converses for stable f .
In general, these two propositions show that every particular instance of �1Cn-
comprehension corresponds to player ˚ having a winning strategy in a particular
instance of the game G1C2n.

3 The Hyperweak Ramsey Theorem

In the last section, we left open some of the questions regarding the various state-
ments of indecomposability for !2. Not too surprisingly, these principles are closely
related to Ramsey’s theorem for pairs. We have shown in Corollary 2.16 that
Game-Indec2k is equivalent to the principle WRT2k from the introduction. The other
principle from the introduction, namely, HWRT2k , turns out to be a close relative of
Lex-Indec2k . In its general form, the hyperweak Ramsey theorem is as follows.

HWRTn
k For every finite coloring c W Nn ! ¹0; : : : ; k � 1º, there are a color

d < k and an increasing function h W N ! N such that, for all 0 < i1 < � � � < in,
the box

Œh.i1 � 1/; h.i1/ � 1� � � � � � Œh.in � 1/; h.in/ � 1�

contains an n-tuple with color d .

The main result of this section is the following.

Theorem 3.1 Every countable model of RCA0 C I†02 has an !-extension that
satisfies RCA0 C I†02 C HWRT22.

It follows immediately that RCA0 C I†02 C HWRT22 is …1
1-conservative over

RCA0 C I†02.
The principle HWRT2k can be reformulated as follows.
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Proposition 3.2 (RCA0) The principle HWRT2k is equivalent to the following
statement.

— For every finite coloring c W N2 ! ¹0; : : : ; k � 1º, there are a color d < k

and an increasing function g W N! N such that
g.i/�1[
xDg.i�1/

®
y 2 N W c.x; y/ D d

¯
(1)

is infinite for every i � 1.

Proof The fact that HWRT2k implies this statement is clear. For the converse, let
d < k and g W N ! N be as in the statement. For each i � 1 let fi .z/ be the first
y � z such that c.x; y/ D d for some g.i �1/ � x � g.i/�1. Define the sequence
0 < i0 < i1 < i2 < � � � so that g.i`C1/ > fi0.g.i`//; : : : ; fi`.g.i`// for each `. Then
h.`/ D g.i`/ is as required.

If c W N2 ! ¹0; : : : ; k � 1º is a coloring and h W N2 ! N2 is a lexicographic
embedding such that c ı h is constant with value d < k, then the first coordinate
function g.i/ D h1.i; 0/ is such that each of the sets (1) is infinite.

Corollary 3.3 (RCA0) Lex-Indec2k implies HWRT2k .

The principle HWRT22 is also related to the principle ADS of Hirschfeldt and
Shore [9]. A coloring c W ŒN�2 ! ¹0; : : : ; k � 1º is transitive if, for all x < y < z, if
c.x; y/ D c.y; z/, then c.x; z/ D c.x; y/ D c.y; z/.
ADS Every transitive coloring c W ŒN�2 ! ¹0; 1º has an infinite homogeneous
set.
For every transitive coloring c W ŒN�2 ! ¹0; 1º there is a unique linear ordering �
such that, for all x < y,

c.x; y/ D

²
0 when x � y,
1 when x � y.

ThusADS is equivalent to the statement that every linear ordering ofN has an infinite
ascending or descending sequence, hence the name. The principle SADS is the
restriction of ADS to stable transitive colorings.

Proposition 3.4 (RCA0) HWRT22 implies SADS.

Proof Let c W ŒN�2 ! ¹0; 1º be a stable transitive coloring. By HWRT22, there
are a color and an increasing function h W N ! N such that, for all 0 < i < j , the
rectangle

Œh.i � 1/; h.i/ � 1� � Œh.j � 1/; h.j / � 1�

contains a pair with color d . Let � be the linear ordering of N which agrees
with color d , and for each i let m.i/ be the �-minimal element of the interval
Œh.i � 1/; h.i/ � 1�. Note that m.i/ is necessarily �-below all but finitely many
elements of N. Therefore, we can define the sequence i0 D 0 < i1 < i2 < � � � so
that each ikC1 is the least i > ik such that c.m.ik/;m.i// D d . By transitivity, the
sequence ¹m.ik/º1kD0 is an infinite c-homogeneous set.

It was shown by Chong, Lempp, and Yang [2] that SADS implies B…0
1.

Corollary 3.5 (RCA0) HWRT22 implies B…0
1.
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3.1 Forcing preliminaries The forcings we will be interested in are forcings with
finite conditions. That is, our poset Q of forcing conditions is a †01-definable set,
and so are the order relation � and the incompatibility relation ?. We will first
develop the general theory of such forcings before we deal with actual examples to
prove Theorem 3.1.

Our approach to forcing follows that of Dorais [3]. In particular, we work within
the functional interpretation of RCA0 presented in the introduction. For the rest of
this section we show how to adapt the forcing machinery of [3] to forcings with finite
conditions.

We first develop the basic machinery necessary to define the internal forcing lan-
guage. The base level of this are the forcing names, which are the terms of the forcing
language. A partial k-ary name is a †01-definable set F � Q � NkC1 (with ground
model parameters) such that
� if .p; Nx; y/ 2 F and q � p, then .q; Nx; y/ 2 F ;
� if .p; Nx; y/; .p; Nx; y0/ 2 F , then y D y0.

We say that F is a p-local if for every q � p and every Nx 2 N there are y 2 N and
r � q such that .r; Nx; y/ 2 F .

Before we discuss the syntax of the forcing language, we will discuss the seman-
tics of these names. A filter G � Q is …0

n-generic (over N) if for every set D � Q
which is…0

n definable over N, there is a p 2 G such that either p 2 D or else p has
no extension inD at all.

If G is …0
1-generic and F is a p-local k-ary name for some p 2 G, then the

evaluation FG is the total k-ary function defined by

FG. Nx/ D y , .9q 2 G/
�
.q; Nx; y/ 2 F

�
:

The basic projections, constants, and indeed all ground model functions F have
canonical names LF defined by

.p; Nx; y/ 2 LF , y D F. Nx/;

which invariably evaluate to F . The generic extension NŒG� is the !-extension of
N whose functions consist of the evaluations of all names that are p-local for some
p 2 G.

In a typical language, the basic terms are composed to form the class of all terms.
This is not so for the forcing language since composition and other operations can be
done directly at the semantic level. If F is a partial `-ary name and F1; : : : ; F` and
are partial k-ary names, then the superpositionH D F ı .F1; : : : ; F`/ is defined by

.p; Nx; z/ 2 H , 9 Ny
�
.p; Nx; y1/ 2 F1 ^ � � � ^ .p; Nx; y`/ 2 F` ^ .p; Ny; z/ 2 F

�
:

This is a partial k-ary name, and if each of F;F1; : : : ; F` is p-local, then so is H .
Primitive recursion can be handled in a similar way. Given a partial .k�1/-ary name
F0 and a .k C 1/-ary name F , the k-ary name H is defined by .p; Nx; y; z/ 2 H iff
there is a finite sequence hz0; : : : ; zyi with z D zy such that .p; Nx; z0/ 2 F0 and
.p; Nx; i; zi ; ziC1/ 2 F for every i < y. This is again a partial k-ary name, and
if F0; F are p-local, then so is H . Other recursive operations can be handled via
Proposition 3.8.

The formulas of the forcing language are defined in the usual manner as the small-
est family which is closed under the following formation rules.
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� If F is a partial k-ary name, F 0 is a partial k0-ary name, and Nv D v1; : : : ; vk ,
Nv0 D v01; : : : ; v

0
k0

are variable symbols, then .F. Nv/ D F 0. Nv0// is a formula.
� If ' is a formula, then so is :'.
� If ' and  are formulas, then so is .' ^  /.
� If ' is a formula and v is a variable symbol, then .8v/ is also a formula.

Free and bound variables are defined in the usual manner. The sentences of the
forcing language are formulas without free variables. Although not present in the
formal language, we will freely use _,!,$, and 9 as abbreviations:

.' _  / � :.:' ^ : /; .' !  / � :.' ^ : /;

.' $  / � .' !  / ^ . ! '/; .9v/' � :.8v/:':

Because our language lacks �, bounded quantifiers are defined by

.8v � F /' � .8v/.v P�F D 0! '/; .9v � F /' � .9v/.v P�F D 0 ^ '/:

Bounded formulas are those whose quantifiers are all of this form, where the name
F does not depend on the quantified variable v. The usual arithmetic hierarchy is
then built from these in the usual manner by alternation of quantifiers.

We are now ready to define the forcing relation. The definition for atomic sen-
tences is motivated by the above definition of the forcing extension. The remaining
cases follow the classical definition of forcing. The definition of p 
 � is by induc-
tion on the complexity of the sentence � . Assume that all names occurring in the
sentences below are p-local:
� p 
 .F D F 0/ iff, for all q � p and y; y0 2 N, if .q; y/ 2 F and
.q; y0/ 2 F 0, then y D y0;
� p 
 .' ^  / iff p 
 ' and p 
  ;
� p 
 .8v/'.v/ iff p 
 '. Lx/, for all x 2 N;
� p 
 :' iff there is no q � p such that q 
 '.

The meaning of the forcing relation for the abbreviations defined above can be com-
puted as usual:
� p 
 .F ¤ F 0/ iff, for all q � p and y; y0 2 N, if .q; y/ 2 F and
.q; y0/ 2 F 0, then y ¤ y0;
� p 
 .' _  / iff for every q � p there is an r � q such that either r 
 ' or
r 
  ;
� p 
 .' !  / iff for every q � p such that q 
 ', there is an r � q such

that r 
  ;
� p 
 .9v/'.v/ iff for every q � p there are an r � q and an x 2 N such that
r 
 '. Lx/.

Moreover, this is a classical forcing:
� p 
 ::' iff p 
 '.

Lemma 3.6 For every bounded formula '. Nv/ of the forcing language, there is a
partial name T'. Nv/ such that '. Nv/ is p-local if and only if T'. Nv/ is p-local, and then
p 
 .8Nv/Œ'. Nv/$ T'. Nv/ D 0�:

Proof We define T'. Nv/ by induction on the complexity of '. Nv/:
� TFDF 0. Nv/ D jF. Nv/ � F

0. Nv/j;
� T:'. Nv/ D 1 P�T'. Nv/;
� T'^ . Nv/ D T'. Nv/C T . Nv/;
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� T.8w�F /'. Nv/ D
P
w�F. Nv/ T'. Nv;w/.

The fact that T'. Nv/ is p-local when ' is p-local follows from the fact that p-local
names are closed under superposition and primitive recursion.

The following fact is then easy to check by induction on n.

Proposition 3.7 (RCA0; 1 � n < !) If �.v1; : : : ; vk/ is a p-local …0
n-formula of

the forcing language, then the relation p 
 �. Lx1; : : : ; Lxk/ is …0
n, uniformly in the

parameter p.

Note, however, that the †0n forcing relation is not generally †0n.
It follows that if G is a …0

n-generic filter over N, then for every …0
n-sentence �

which is p-local for some p 2 G, there is a condition q 2 G such that either q 
 �

or q 
 :� . Working through the inductive definitions, we see that in this scenario

NŒG� � �G , q 
 � for some q 2 G,

where �G is the standard formula obtained by replacing all names of � by their
evaluations.

Proposition 3.8 (RCA0) If �. Nv;w/ is a p-local †01-formula of the forcing lan-
guage such that p 
 .8Nv/.9w/�. Nv;w/, then there is a p-local name F such that
p 
 .8Nv/�. Nv; F. Nv//.

Proof We may assume that �. Nv;w/ is actually bounded and moreover of the form
T . Nv;w/ D 0 for some p-local name T as in Lemma 3.6. Let .qn; Nxn; yn/ enumerate
the †01-definable set®

.q; Nx; y/ 2 Q � NkC1 W q � p ^ .q; Nx; y; 0/ 2 T
¯
:

Then define the name F by .qn; Nxn; yn/ 2 F iff for every m < n, we have qm ? qn,
Nxm ¤ Nxn, or ym D yn.

If G is a filter over Q, then let NŒG� be the model obtained by evaluating all G-local
names at G. Since elements of N all have canonical names, we see that NŒG� is an
!-extension of N.

Theorem 3.9 (RCA0) If G is…0
2-generic for Q over N, then NŒG� � RCA0.

This is a consequence of Proposition 3.8 and the fact that G-local names are closed
under superposition and primitive recursion.

Note that Theorem 3.9 can fail if the assumption on G is weakened to …0
1-

genericity. This is because we use only names which are p-local for some p 2 G,
which is not always sufficient to guarantee closure under recursive comprehension.
However, if NŒG� � I†01, then NŒG� can be closed under recursive comprehension
to form a model of RCA0.

3.2 Forcing construction Let P D .P;�/ be the poset of all (codes for) finite in-
creasing functions p W ¹0; 1; : : : ; jpj � 1º ! N, ordered by end extension. (This is a
variant of Cohen forcing.) Let c W N2 ! ¹0; 1º be a coloring in N for which there is
no increasing h W N! N such that the set

h.nC1/�1[
xDh.n/

®
y 2 N W c.x; y/ D 1

¯
(2)
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is infinite for every n. Let P0 D .P 0;�0/ be the subposet consisting of all p 2 P such
that

p.nC1/�1[
xDp.n/

®
y 2 N W c.x; y/ D 0

¯
(3)

is cofinite for every n < jpj � 1. The poset P0 is †02-definable over N, so our
methods do not necessarily apply for forcing with P0 over N. Instead, we force over
a †02-envelope of N: an !-extension N0 of N such that N0 � RCA0 and every
total †02-definable function over N belongs to N0. (Since N � I†02, the model N0

consisting of all total functions which are †02-definable over N is as required, but we
will need the more general notion later.)

The hypothesis that there is no increasing function h W N ! N such that the
sets (2) are all infinite clearly implies that each one of the setsD0n D ¹p 2 P0 W jpj �
nº is open dense. Since a generic filter G for P0 must meet each one of these
open dense sets, we see that g D

S
G is a well-defined increasing function

g W N ! N such that (3) is cofinite for each n. This function g is the generic real
associated to G. The generic filter G is in fact completely determined by g since
G D ¹p 2 P W p � gº. Since g will be of greater interest, we will systematically
work with g instead of G throughout the following.

The following fact is the keystone to showing that forcing with P0 over N0 leads to
a generic function g which is well behaved over the !-submodel N.
Lemma 3.10 Suppose that U � P is†01-definable over N. If every p 2 P0 is such
that for every q �0 p there is an r � q such that r 2 U , then for every q �0 p there
is an r �0 q such that r 2 U .
Proof Suppose that every q �0 p has an extension in U but there is some q �0 p
which has no extension in U \ P0. We will use such a q to construct an increasing
function h W N ! N in N such that the set (2) is infinite for every i � 1, thereby
contradicting our hypothesis that there are no such functions.

First, find h.0/ 2 N such that q0 2 P0 where q0 D q_ h.0/. By hypothesis, we
can find an extension r0 � q0 in U . It follows that r0 … P0, which means that

r0.i/�1[
xDr0.i�1/

®
y 2 N W c.x; y/ D 0

¯
is coinfinite for some 0 < i < jr0j. Since q0 2 P0, this i must be greater than or
equal to jq0j. So if we set h.1/ D max.r0/ D r0.jr0j � 1/, we necessarily have that

h.1/�1[
xDh.0/

®
y 2 N W c.x; y/ D 1

¯
is infinite.

Once h.n/ has been defined, set qn D q_ h.n/, and note that qn is necessarily in
P0 since h.n/ � h.0/. As above, we can then find an extension rn � qn in U and set
h.nC 1/ D max.rn/ D rn.jrnj � 1/. As before, we then have that

h.nC1/�1[
xDh.n/

®
y 2 N W c.x; y/ D 1

¯
is infinite.
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This construction can be carried out completely inside N. Indeed, all we need to
do at each stage is to search for an extension rn � qn in U , which can be done by
enumerating U until such an rn is found.

Proposition 3.11 If p 2 P0 and F is a p-local name for P over N, then F is also
p-local for P0 over N0.

Proof Apply Lemma 3.10 to the sets U Nx D ¹r 2 P W .9y/Œ.r; Nx; y/ 2 F �º.

Note that there are names for P over N which are p-local for P0 over N0, but not
p-local for P over N. One such name is the 2-ary name f such that f .n;m/ is the
.mC 1/th element of

g.nC1/�1[
xDg.n/

®
y 2 N W c.x; y/ D 0

¯
:

In particular, the generic function g is not …0
2-generic for P over N. It is, however,

weakly †02-generic for P over N, as we will now show.

Proposition 3.12 Let � be a p-local †02-sentence of the forcing language for P
over N. If p 2 P0 and p 
0 � , then there is a q �0 p such that q 
 � .

Proof By Lemma 3.6, we may suppose that � is of the form .9u/.8v/ŒF.u;

v/ D 0�, where F is a 2-ary p-local name for P over N. Without loss of gener-
ality, we may further assume that there is some x 2 N such that, for all y 2 N,
p 
0 F. Lx; Ly/ D 0. Applying Lemma 3.10 to the set U D ¹r 2 P W .9y; z/Œ.r; x; y;
z/ 2 F ^ z ¤ 0�º, we see that there must be a q �0 p with no extension in U at all.
This is equivalent to saying that q 
 F. Lx; Ly/ D 0 for all y 2 N. Hence, q 
 � .

Together with the generic extension N0Œg� of N0, we obtain an !-extension NŒg� of
N by evaluating all partial names in N which are g-local for P0 over N0. This is
not a generic extension, but it does satisfy RCA0. In order to iterate the forcing
construction, we will need to make sure that the generic extension N0Œg� is a †02-
envelope for NŒg�. The key to proving this is the following fact.

Proposition 3.13 Let �.u; v/ be a p-local†02-formula of the forcing language for
P over N. If p 
0 .8u/.9w/�.u;w/, then there is a p-local name F for P0 over N0

such that p 
0 .8u/�.u; F.u//.

Proof Suppose that �.u; v/ � .9w/'.u; v; w/, where '.u; v; w/ is a p-local…0
1-

formula of the forcing language for P over N. By Proposition 3.7, the relation

R D
®
.q; x; y; z/ 2 P � N3 W q 
 '. Lx; Ly; Lz/

¯
is …0

1-definable over N. Therefore R0 D R \ P0 � N3 2 N0. Fix an enumeration
hrn; xn; yn; zni of R0, and define the partial name F by .q; x; y/ 2 F iff there is an
n such that x D xn, y D yn, and q � rn but q — rm for m < n. Proposition 3.12
shows that F is a p-local name and that p 
0 .8u/�.u; F.u//, as required.

Thus, if the †02-formula �.u; v/ defines a map over NŒg�, then this function actu-
ally belongs to the generic envelope N0Œg�. In other words, N0Œg� is a †02-envelope
for NŒg�.
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Proof of Theorem 3.1 We start with a model N0 of RCA0 C I†02. Then we find a
†02-envelope N00 for N0 as explained above. Let c W N2 ! ¹0; 1º be a coloring in
N0 for which there is no increasing h W N! N such that

h.nC1/�1[
xDh.n/

®
y W c.x; y/ D 0

¯
is infinite for every n. Then we force with P0 over N00 to obtain a generic extension
N01 D N00Œg� and at the same time an !-extension N1 D N0Œg�, where g W N ! N
is an increasing function such that

g.nC1/�1[
xDg.n/

®
y W c.x; y/ D 0

¯
is cofinite for every n. By Proposition 3.13, we then have that N01 is a †02-envelope
for N1, and hence N1 � I†02.

We can iterate this process to obtain two parallel sequences of !-extensions

N0 � N1 � N2 � � � � � N! D

[
i<!

Ni

\ \ \ \

N00 � N01 � N02 � � � � � N0! D
[
i<!

N0i

At each stage, we have that Ni , N0i are both models of RCA0 and N0i is a †02-
envelope of Ni . It follows that these facts are also true for N! and N0! . Therefore
N! � RCA0CI†02. Moreover, with careful bookkeeping to deal with every potential
counterexample c W N2 ! ¹0; 1º of HWRT22, we can make sure that N! � HWRT22.
In the end, N! is the required !-extension.

3.3 Forcing over !-models When N is an !-model of RCA0, the forcing methods
of the last section are slight overkill. Indeed, there is no risk of breaking induction by
adjoining more second-order elements to N. Nevertheless, the forcing posets used in
Section 3.2 can be used to shed some light on the situation for !-models.

Proposition 3.14 (ACA0) For every computable coloring c W N2 ! ¹0; 1º one of
the following is true.
� There is a computable increasing function h W N! N such that

h.nC1/�1[
xDh.n/

®
y 2 N W c.x; y/ D 1

¯
is infinite for every n.
� There is a 00-computable 1-generic increasing function g W N! N such that

g.nC1/�1[
xDg.n/

®
y 2 N W c.x; y/ D 0

¯
is cofinite for every n.
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Proof Suppose that there is no computable increasing function h W N ! N such
that

h.nC1/�1[
xDh.n/

®
y 2 N W c.x; y/ D 1

¯
is infinite for every n. Let P and P0 be defined as in Section 3.2. Note that
Lemma 3.10 applies to the countable coded !-model REC whose second-order part
consists of all computable sets, as computed in our ambient model of ACA0. In our
ambient model of ACA0, we have an effective listing hUni1nD0 of all computably
enumerable (†01 over REC) subsets of P.

Since P0 is †02-definable (without parameters) we have a 00-computable enumera-
tion hpi i1iD0 of P

0. Define the sequence hqni1nD0 of elements of P0 as follows.
� Let q0 be an arbitrary element of P0.
� Once qn has been defined, let qnC1 be the first pi in our enumeration such
that pi �0 qn and either pi 2 Un or else there is no extension r � pi such
that r 2 Un.

Lemma 3.10 ensures that there always is a qnC1 �0 qn as required by the second
condition. Furthermore, since each Un is computably enumerable, the requirements
for the second condition can be checked using 00 as an oracle.

It follows that the sequence hqni1nD0 is 00-computable, and hence so is g DS1
nD0 qn. Note that g is a well-defined increasing function N! N since our listing
hUni

1
nD0 includes all of the open dense sets ¹p 2 P W jpj � iº. Moreover, g is clearly

1-generic, and since every initial segment of g is in P0, we see that
g.nC1/�1[
xDg.n/

®
y 2 N W c.x; y/ D 0

¯
is cofinite for every n.

Since 1-generic degrees below 00 are low, by iterating the relativized form of Propo-
sition 3.14, we see that the following holds.

Corollary 3.15 (ACA0) There is a countable coded !-model of RCA0CHWRT22
whose second-order part consists entirely of low sets.

It was shown by Downey, Hirschfeldt, Lempp, and Solomon [4] that SRT22 has no
!-model whose second-order part consists entirely of low sets. A close inspection
of their argument shows that this can be formalized in ACA0.

Corollary 3.16 (ACA0) HWRT22 does not imply SRT22 over RCA0.

It follows that HWRT22 also does not imply WRT22 since the latter implies SRT22 over
RCA0.

4 Conclusions and Questions

In the first part of this paper, we investigated various formulations of the pigeon-
hole principle for finite ordinal powers of the ordinal !. The weakest such principle
Elem-Indecn was found to be sandwiched between two standard induction princi-
ples. Namely, Theorem 2.2 showed that

I†0nC1 // Elem-Indecn // B…0
n:
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It is known that I†0nC1 is strictly stronger than B…0
n (see [8]), but we do not know

how Elem-Indecn sits in between the two.

Question 4.1 Does Elem-Indecn lie strictly between I†0nC1 and B…0
n in the hi-

erarchy of induction principles?

Hirst’s result [11] thatElem-Indec1 is equivalent toB…0
1 suggests thatElem-Indecn

might be equivalent to B…0
n. Indeed, there is hope that some induction could be

shaved off from our proof of Proposition 2.6.
The two stronger principles Lex-Indecnk and Game-Indecnk turned out to be

equivalent to ACA0 when n � 3 and k � 2. However, for n D 2, both Lex-Indec2k
and Game-Indec2k follow from RT2k (indeed WRT2k), which is known to be strictly
weaker than ACA0 (see [14], [1]). This led us to consider two weak forms of Ram-
sey’s theorem for pairs, namely, WRT2k and HWRT2k . Another interesting possible
weakening of RT2k was considered by Dzhafarov and Hirst [5], namely the increasing
polarized theorem for pairs (IPT2k), which is sandwiched between RT2k and WRT2k .
The known implications between these principles in the case k D 2 are summarized
in the following diagram:

RT22 // IPT22 // Game-Indec22 oo //

��

WRT22 //

��

SRT22

��
Lex-Indec22 // HWRT22 //

j

::

SADS // B…0
1

Besides the nonimplications HWRT22 6! SRT22, B…0
1 6! SADS, and their con-

sequences, we do not know whether any of the remaining implications are strict.
Many of the resulting questions are special cases or refinements of the open ques-
tions from [1], [9], and [5]. For example, it is still an open question whether SRT22
implies RT22 (see [1, Question 13.6]). Of the remaining questions, we wonder the
following.

Question 4.2 Is HWRT22 strictly weaker than Lex-Indec22?

Question 4.3 Is WRT22 strictly stronger than Lex-Indec22?

Of course, a negative answer to Question 4.2 would provide a positive answer to
Question 4.3. Similarly, a negative answer to Question 4.3 would provide a positive
answer to Question 4.2. However, it is plausible that both questions have a positive
answer.

In another line of thought, we wonder how HWRT22 is related to other combi-
natorial consequences of Ramsey’s theorem for pairs. Of particular interest is the
following.

Question 4.4 How is HWRT22 related to the principle SCAC of Hirschfeldt and
Shore [9]?

Indeed, the similarity between the forcing construction from Section 3 and those used
by Hirschfeldt and Shore suggests that there might be some nontrivial ties between
these two principles.
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