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A Note on Induction, Abstraction,
and Dedekind-Finiteness

G. Aldo Antonelli

Abstract  The purpose of this note is to present a simplification of the system
of arithmetical axioms given in previous work; specifically, it is shown how the
induction principle can in fact be obtained from the remaining axioms, without
the need of explicit postulation. The argument might be of more general in-
terest, beyond the specifics of the proposed axiomatization, as it highlights the
interaction of the notion of Dedekind-finiteness and the induction principle.

1 Introduction

In previous work we introduced a formalization of arithmetic employing an ab-
straction operator assigning numbers to predicates, supplemented by a cardinality
quantifier—referred to as the “Frege” quantifier (see [3]). This theory, which for
the purposes of this note will be called AFQ (Arithmetic with the Frege Quantifier),
comprises a system of arithmetical axioms in which the natural numbers are identi-
fied with cardinals the set of whose predecessors is Dedekind-finite. The axioms also
explicitly include a principle of induction formulated in the form “Every bounded set
of natural numbers has a maximum.” However, it turns out that such an axiom is su-
perfluous, in that the principle of induction (in its usual form) can be derived from
the remaining axioms. The purpose of this note is to prove this.

Before we get into the details of the derivation of the induction principle, it is
useful to review the main ideas behind the proof, as they appear to be of some inde-
pendent interest. Suppose that, in the Frege-Russell tradition, we identify cardinals
with first-order representatives of equinumerosity classes. There are then at least two
ways in which we can go about selecting, among the cardinals, those that are to be
identified with the natural numbers. On the more straightforward approach, we can
identify the natural numbers with the Dedekind-finite cardinals, that is, with repre-
sentatives of equinumerosity classes whose members are Dedekind-finite. But in a
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slight variation of this approach, we can also identify the natural numbers with car-
dinals the set of whose predecessors in the ordering relation is Dedekind-finite (call
such cardinals “predecessor-finite””). Here the ordering relation between cardinals o
and f is defined in the standard way by saying that « < B if and only if there are
sets x and y in the classes represented by « and 8, respectively, such that there is an
injection from x into y but not the other way around.

The identification of the natural numbers with predecessor-finite cardinals de-
livers the principle of induction in quite a straightforward way. In fact, suppose
that P is any property that holds at zero and is preserved by the successor opera-
tion, but still fails at some natural number m™*. Then the set of predecessors of m*
is not Dedekind-finite, and in fact one can explicitly define an injection of the set
{n : n < m*} into a proper subset of itself. These ideas are best encapsulated in the
following semi-formal result. The result is “semi-formal” because we don’t specify
the (weak) arithmetical system in which the proof is to be carried out.

Theorem 1.1 If every bounded class of natural numbers is Dedekind-finite, then
induction holds.

Proof  Assume that induction fails in order to show that there is a bounded set S of
natural numbers and an injection f from S into a proper subset of S. In particular,
if induction fails, there is aclass Q € N suchthat0 € Qandne Q - n+1¢€ Q
forevery n € N, but m* ¢ Q for some m* € N. Let

S={n:n<m*},

so that S is bounded. Then there is an injection f : § — S’, where S’ is a proper
subset of S. In fact, define f as follows, for eachn € S:

n ifn e Q;
n—1 ifn ¢ Q.

Since 0 € Q, the function is well defined. Observe thatn — 1 < f(n) < n. In
particular, rng( /) is a subset of S. Moreover, since m* ¢ Q, f(m*) < m*, so
rng(f) is a proper subset S’ of S. It remains to show that f is injective. Let
0 <i < j <m*inorder to show f(i) # f(j). We distinguish two cases:
1. Bothi = j —1andi € Q. By hypothesisi € Q — i + 1 € Q, so also
j € O,whence f(i)=i<j= f(j).
2. Eitheri < j —2ori ¢ Q. If the former, then f(i) <i < j—2 < f(j);if
the latter, f(i) <i <j—1=< f(j).

In either case, (i) # f(J). O

The main idea of the proof can be found, albeit in a different context, in Floyd and
Beigel [5, pp. 59-60], where a very similar argument is used to show that, over very
weak assumptions, the pigeonhole principle implies the axiom of induction. But
apparently it has so far escaped attention that one can similarly show that induction
follows almost directly from the Dedekind-finiteness of bounded sets of naturals.

In fact, the proof applies more broadly, in that only the more general notion of
cardinal number is needed, so that one can show that if every bounded set of cardinals
is Dedekind-finite, induction holds. We will come back to the issue of that status
of induction in an account of arithmetic at the end, but first, let us show how to
reproduce the proof within the context of our theory.

fn) =
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2 Arithmetic with the Frege Quantifier

In order to provide an axiomatization of arithmetic, AFQ introduces a first-order
language whose formulas are built-up from predicates and Boolean operators using
only an abstraction operator Num and a cardinality quantifier F (the Frege quanti-
fier). The abstraction operator Num binds a single variable in a formula ¢(x) (pos-
sibly including parameters) to return a singular term Num x ¢(x), whose intended
referent is the number of objects (in the given domain of quantification) satisfying
the formula ¢(x). For convenience, Num x ¢(x) is also written Num, ¢(x). The
quantifier F simultaneously binds variables in two formulas ¢(x) and ¥ (x) (also
possibly including parameters) giving a formula F x (¢(x), ¥ (x)), whose intended
reading is that “there are no more ¢’s than ¥’s,” or (in the words of [4]) “for every
¢ there is a (distinct) ¥.” The resulting language can be given a standard interpreta-
tion by assuming that F x (¢(x), ¥ (x)) holds if the cardinality of the set {x : ¢(x)}
is less than or equal to the cardinality of {x : i (x)}. But it can also be given a
general interpretation by assuming that models come equipped with a collection of
injections between subsets of the domain and stipulating that F x (¢(x), ¥ (x)) holds
if there is an injection in the collection witnessing the cardinality claim. The class of
injections is assumed to satisfy six closure conditions, denoted by Cc1-Cc6 in [3];
these conditions are not replicated here, but we just mention that they express natural
requirements, such as closure under composition. Moreover, it is immediate to see
that the ordinary quantifier Vx ¢(x) can then be expressed by saying that there is an
injection of the complement of ¢ into the empty set: F x (—¢(x), x # x) (and dually
for 3).

With the help of these two devices, the Frege quantifier and the abstraction
operator, one can then proceed to lay down a set of arithmetical axioms and show
that first-order Peano arithmetic, PA, is interpretable in the resulting theory AFQ
(on the general semantics for the Frege quantifier and hence, a fortiori, on the
standard one as well). For instance, among the axioms there is one that formalizes
Hume’s Principle, HP, by saying that Numy ¢(x) = Numjy ¥ (x) if and only if
both F x(¢(x), ¥ (x)) and F x (¥ (x), ¢(x)) hold (the correctness of the stipulation
being guaranteed by the Schroder-Bernstein theorem). In fact, the equinumeros-
ity (i.e., Hirtig’s) quantifier lx(¢(x), ¥ (x)) is definable by the conjunction of
F x(¢(x), ¥ (x)) and F x(¥(x), ¢(x)). And in a similar vein, one can express the
notion of Dedekind-finiteness in a natural fashion by saying that the extension of
some formula ¢(x) is finite, written Fin  ¢(x), if and only if for every y such that
¢(y), there is no injection of ¢(x) into p(x) A x # y.

An important principle available in AFQ is the so-called infinitary axiom, which
plays a role similar to that of comprehension principles in second-order systems for
arithmetic. The axiom says that if a formula 6(x, y) defines an injection of ¢ into ,
then F x (¢(x), ¥ (x)) holds; that is, an injection is available in the model to witness
the cardinality claim about ¢ and /.

The abstraction operator Num provides (in the context of HP) a general notion of
“cardinal number.” But of course what is needed in order to interpret arithmetic is the
more restrictive notion of “natural number.” AFQ comprises an implicit definition of
natural numbers by means of an axiom, using a primitive one-place predicate N, to
the effect that N (x) holds if and only if x = Num,(N(y) A y < x) and, moreover,
the predicate N(y) A y < x is Dedekind-finite.
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As mentioned, the original formulation of AFQ also includes an explicit version
of induction. However, this characterization of the natural numbers as predecessor-
finite cardinals is sufficient to yield the standard principle of induction, in the form,

@(0) A VxVy((p(x) A Succ(x, y)) — @(y)) — Vxe(x), (*)

where Succ(x, y) abbreviates the formula that states that y is the successor of x (the
reader is referred to [3] for this and other details).

The proof of this fact amounts to showing that the crucial arithmetical facts more
or less tacitly employed in the proof of Theorem 1.1 are available in AFQ, so that the
function f in Theorem 1.1 is definable. Once this is established, a crucial application
of the “infinitary axiom” ensures that f is available to witness the quantifier F in
the statement of Dedekind-finiteness. We begin by recording such facts in a few
relatively easy lemmas.

Lemma 2.1 Suppose N(x), N(y), and x <y, where this last claim is witnessed
by a function f. Then if f is not surjective, it follows that x < y.

Proof  Since N(x) and N(y), the function f can be taken to map the predecessors
of x into the predecessors of y. If x < y fails, then there is a g mapping the
predecessors of y into the predecessors of x. Then the composition 7 = g o f,
which exists by one of the closure conditions, Cc6, maps the predecessor of x into a
proper subset of itself, making the set of predecessors of x Dedekind-infinite, against
the hypothesis that N (x). O

Lemma 2.2 Where N (x) and N(y), Succ(x, y) implies x < y.

Proof This is Corollary 7.6 in [3], but it also follows immediately from Lemma
2.1, since Succ(x, y) implies x < y with a non-surjective witnessing function. [J

Lemma 2.3 Where N (x): x # 0 — 3!ySucc(y, x).

Proof  Existence is proved by induction in [3], but that strategy is of course not
available to us here. However, it is not difficult to establish the lemma directly.
If x # 0then {p : p < x} is not empty, so choose such a p < x, and let
¥y = Num;[N(z) Az < x Az # p]. Then Succ(y, x) as desired. As for uniqueness,
it follows from the fact that Succ is an injection, which is proved as Proposition 7.7,
part (2), in [3]. O

Lemma 2.4 Where N (i) and N(j), ifi < j and Succ(k, j) theni < k; that is,
in more readable notation, ifi < j theni < j — 1.

Proof In standard fashion, in AFQ, i < j isjustan abbreviationfori < jAj £i.
From i < j we have Fx(x < i,x < j) expressing the existence of an injec-
tion f from the predecessors of i into those of j. If, moreover, j £ i, then there
must be p < j such that p ¢ rng f—otherwise, f is onto and f~! witnesses
Fx(x < j,x < i) (existence of inverses is guaranteed by one of the closure condi-
tions, Cc3). Now if Succ(k, j), we also have

Ix(x <k,x <jAx#p)

by the closure conditions Ce4 and Cc5. Therefore, to establishi < k suffices to show
Fx(x <i,x <j Ax# p),but f itself witness the truth of this last statement. [
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Lemma2.5  If N(j), Succ(k, j), Succ(l,k), andi < j, theni = kvi <I; that
is, in more readable notation, ifi < j then eitheri = j —1lori < j —2.

Proof  Assume that j is the successor of k and k the successor of /. If i < j then
by Lemma 2.4 also i < k, and the function witnessing this claim either is or is not
onto. Therefore, either i = k or (by Lemma 2.1) i < k, where the latter implies
i <1, again by Lemma 2.4. So eitheri = k ori </, as desired. O

We are now ready to state and prove the main result.

Theorem 2.6 The principle of induction in the form (x) holds in every general
model of the axioms A.1-A.4 and B.1 (i.e., omitting the induction principle B.2).

Proof  We follow the outline given in the proof of Theorem 1.1. Suppose ¢(0) and
Vy((¢(x) ASucc(x, y)) — ¢(¥)), but —@(m™*) for some m*. Let 6(x, y) abbreviate
the formula,

x <m* Al(x =y A@(x))V (Succ(y, x) A =p(x))].

Using the lemmas just proved one can show that 6 defines an injection of the pre-
decessors of m* into a proper subset of itself. By the infinitary axiom one con-
cludes F x(x < m*, x < m* — 1), which contradicts the fact that m* is predecessor-
finite. O

3 Conclusion: The Status of Induction

The proper status of induction has been debated at length, from the early conflicting
views of Frege, Russell, and Poincare, to [6]. To the extent that the characterization
of arithmetic as the theory of predecessor-finite cardinals is regarded as natural, the
induction principle would also seem to be, if not analytical of, at least conceptually
bundled with, the notion of natural number.

Indeed, what are the alternatives? Any approach to the formalization of arith-
metic that falls broadly in the Frege-Russell tradition must implement some device
in order to select, from among the cardinals, those that are to serve as natural num-
bers. There appear to be at least a couple of ways to accomplish this, for instance,
by either identifying the natural numbers with Dedekind-finite cardinals or with the
“predecessor-finite”” ones. And as we have seen, the latter option quite readily deliv-
ers a notion of natural number that satisfies the induction schema.

Even explicitly positing a schema (equivalent to the principle of) induction
amounts to selecting a subclass of cardinals. The standard Frege-Russell definition
of the natural numbers as the smallest class of cardinals containing zero and closed
under successor achieves just that, at the cost of a highly impredicative restriction.
The two alternatives mentioned in this note would appear to fare marginally better.
Let us consider again these two options. The original version of AFQ as published
in [3] adopted explicitly the following principle as axiom B.2:

BddMax: Every bounded set of natural numbers has a maximum.

This can be seen to imply the standard version of induction over quite weak assump-
tions (in fact, within the context of AFQ, it does not require the infinitary axiom).
Alternatively, one could posit the version implicit in Theorem 1.1:

BddFin: Every bounded set of natural numbers is Dedekind-finite.
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The marginal advantage of both of these over the Russellian approach is that only
quantification over bounded sets is required, as opposed to the employment of ab-
solutely unrestricted quantification over classes. It is not clear whether this fact
translates into any clearly identifiable mathematical advantages. But if one has to
implement a selection device for the cardinals, then—we submit—one might as well
use the notion of predecessor-finite. Then no separate stipulation such as BddMax
or BddFin is needed.

The resulting approach is far from current construals of neo-Fregeanism, inter-
preted as the claim that arithmetic is derivable in second-order logic from Hume’s
Principle alone. It is far from these because, first of all, AFQ is a first-order theory,
albeit one employing a nonstandard quantifier; and second because Hume’s Principle
plays a secondary role in AFQ. Rather than granting a privileged status to HP, which
is hardly a logical principle (see [2]) AFQ abides by a more general interpretation of
logicism, according to which cardinality itself already has a plausible claim at being
a logical notion, and does not require a reduction to HP to show that it does. On this
view, it is the Frege quantifier, rather than HP, that carries the logicist banner. This
is a topic that exceeds the scope of the present note, but the interested reader might
usefully consult [1] for the purpose.
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