Thin Ultrafilters

O. Petrenko and I. V. Protasov

Abstract

A free ultrafilter \mathcal{U} on ω is called a T-point if, for every countable group G of permutations of ω, there exists $U \in \mathcal{U}$ such that, for each $g \in G$, the set $\{x \in U: g x \neq x, g x \in U\}$ is finite. We show that each P-point and each Q-point in ω^{*} is a T-point, and, under CH , construct a T-point, which is neither a P-point, nor a Q-point. A question whether T-points exist in ZFC is open.

1 Introduction

Let G be a group with the identity e. A subset T of G is called thin if the intersection $g T \cap T$ is finite for every $g \in G, g \neq e$. For thin subsets, its modifications, applications, and references, see Lutsenko and Protasov [6], Protasov [14]. We begin with the following generalization of thin subsets.

Let X be a set, $s: X \rightarrow X$ be an arbitrary mapping. We say that a subset T of X is s-thin if the set

$$
\{x \in T: s x \neq x, s x \in T\}
$$

is finite. Clearly, each finite subset of X is s-thin.
Given a subset S of the set X^{X} of all selfmappings of X, we say that T is S-thin if T is s-thin for each $s \in S$. We say that an ultrafilter U on X is S-thin if there is an S-thin subset of X which is a member of \mathcal{U}.

Let δ be a family of subsets of X^{X}. We say that an ultrafilter U on X is thin with respect to δ if U is S-thin for each $S \in \mathscr{S}$. Every ultrafilter on X is thin with respect to the family of all finite subsets of X^{X} (see Proposition 2.5).

A free ultrafilter \mathcal{U} on $\omega=\{0,1, \ldots\}$ is called a T-point if \mathcal{U} is thin with respect to the family of all countable groups of permutations of ω (in words, if for every countable group G of permutations of ω there exists a G-thin subset $T \subseteq \omega$ such that $T \in \mathcal{U}$). We show that T-points generalize the classical ultrafilters on ω : P points and Q-points.

Received February 5, 2011; accepted June 9, 2011; printed April 5, 2012
2010 Mathematics Subject Classification: Primary 54D35, 54D80
Keywords: ultrafilter, thin set, P-point, Q-point, T-point
© 2012 by University of Notre Dame 10.1215/00294527-1626536

Recall that a free ultrafilter \mathcal{U} on ω is

1. selective if, for every partition \mathcal{P} of ω, either some block of \mathscr{P} is a member of \mathcal{U}, or there is $U \in U$ such that $|U \cap P| \leqslant 1$ for each $P \in \mathscr{P}$;
2. P-point if, for every partition \mathcal{P} of ω, either some block of \mathcal{P} is a member of \mathcal{U}, or there is $U \in \mathcal{U}$ such that $U \cap P$ is finite for each $P \in \mathcal{P}$;
3. Q-point if, for every partition \mathcal{P} of ω into finite subsets, there is $U \in \mathcal{U}$ such that $|U \cap P| \leqslant 1$ for each $P \in \mathscr{P}$.
In Sections 2 and 3, we prove that each P-point and each Q-point is a T-point, and, under the Continuum Hypothesis (CH), construct a T-point which is neither P-point nor Q-point. We do not know if T-points exist in ZFC without additional set-theoretical assumptions. In Section 4, we use thin subsets to show that each nonempty open subset of the corona of a countable G-space contains a homeomorphic copy of ω^{*}. In Section 5, we give a "thin" characterization of selective ultrafilters.

For a discrete space X, we identify the Stone-Čech compactification βX of X with the set of all ultrafilters of X, and denote $X^{*}=\beta X \backslash X$. We use the universal property of βX stating that each mapping $f: X \rightarrow K$, where K is a compact Hausdorff space, extends to the continuous mapping $f^{\beta}: \beta X \rightarrow K$.

2 Thin Subsets and Ultrafilters

Example 2.1 Let G be an infinite group of cardinality κ. By Chou's lemma [1], there exists a subset $X \subset G$ such that $|X|=\kappa$ and $|g X \cap X| \leqslant 3$ for each $g \in G$, $g \neq e$. Moreover, by [7], there exists $Y \subset G$ such that $|Y|=\kappa, G=Y Y^{-1} \cup Y^{-1} Y$ and $|g Y \cap Y| \leqslant 2$ for each $g \in G, g \neq e$. Since every subset of a G-thin subset is G-thin, we conclude that there are $2^{2^{\kappa}}$ ultrafilters on G having a G-thin subset among its members. On the other hand, if \mathcal{U} is an idempotent in the semigroup G^{*} of all free ultrafilters on G (see [3, Chapter 5]) then, for every $U \in \mathcal{U}$ there exist $g \in U$ and $V \in \mathcal{U}$ such that $V \subseteq U$ and $g V \subseteq U$. It follows that U has no G-thin members.

Example 2.2 For infinite cardinals $\kappa, \mu, \mu \leqslant \kappa$, we denote by S_{κ} the group of all permutations of κ and put

$$
S_{\kappa, \mu}=\left\{g \in S_{\kappa}:|\operatorname{supp} g|<\mu\right\}
$$

where supp $g=\{x \in \kappa: g x \neq x\}$. Clearly, each subset of κ is $S_{\kappa, \aleph_{0}}$-thin, and each $S_{\kappa, \aleph_{1}}$-thin subset of κ is finite.

Example 2.3 Let $S \subset \omega^{\omega}$ be a countable family of finite-to-one mappings. To construct a countable S-thin subset of ω, we enumerate $S=\left\{s_{n}: n \in \omega\right\}$, put $F_{n}=\left\{s_{i}: i \leqslant n\right\}, n \in \omega$, choose an arbitrary element $x_{0} \in \omega$ and suppose that we have chosen the elements $\left\{x_{i}: i \leqslant n\right\}$ such that the subsets $\left\{F_{i} x_{i}: i \leqslant n\right\}$ are pairwise disjoint. Since each mapping from F_{n+1} is finite-to-one, we can choose $x_{n+1} \in \omega$ such that $F_{n+1} x_{n+1} \cap F_{i} x_{i}=\varnothing$ for every $i \leqslant n$. After ω steps, we get an S-thin subset $X=\left\{x_{n}: n \in \omega\right\}$.

Example 2.4 We point out a countable subset $S \subset \omega^{\omega}$ such that each S-thin subset of ω is finite. For each $n \in \omega$, we define $\sigma_{n} \in \omega^{\omega}$ by $\sigma_{n}(x)=n$ for each $x \in \omega$, and put $S=\left\{\sigma_{n}: n \in \omega\right\}$. Let X be a nonempty S-thin subset of $\omega, n \in X$. Since X is σ_{n}-thin, we see that X is finite.

In what follows we use the 4 -set lemma [3, Lemma 3.33]. Let X be a set, $f: X \rightarrow X$. Then there exists a partition

$$
X=X_{0} \cup X_{1} \cup X_{2} \cup X_{3}
$$

such that $X_{0}=\{x \in X: f(x)=x\}$ and $f\left(X_{i}\right) \cap X_{i}=\varnothing$ for every $i \in\{1,2,3\}$.
Proposition 2.5 Let κ be a cardinal, $\mathcal{U} \in \beta \kappa$. For every finite subset $F \subset \kappa^{\kappa}$, there exists an F-thin subset $T \in \mathcal{U}$.

Proof Using the 4 -set lemma, for every $f \in F$, we choose $T_{f} \in \mathcal{U}$ such that either $f \mid T_{f} \equiv i d$ or $f\left(T_{f}\right) \cap T_{f}=\varnothing$. Put $T=\bigcap_{f \in F} T_{f}$.

Let X be a topological space, μ be an infinite cardinal. A point $x \in X$ is called a P_{μ}-point if the intersection of any μ neighborhood of x is a neighborhood of x. In the case $X=\omega^{*}$ and $\mu=\aleph_{0}$, we get a P-point in ω^{*}.

Proposition 2.6 Let κ, μ be infinite cardinals, U be a P_{μ}-point in $\kappa^{*}, S \subset \kappa^{\kappa}$ be a family of finite-to-one mappings, $|S|=\mu$. Then there exists an S-thin subset $T \in \mathcal{U}$.

Proof Using the 4-set lemma, for each $s \in S$, we pick a subset $T_{s} \in \mathcal{U}$ such that either $s \mid T_{s} \equiv i d$ or $s\left(T_{s}\right) \cap T_{s}=\varnothing$. Since U is a P_{μ}-point in κ^{*} and $|S|=\mu$, we can choose a subset $T \in \mathcal{U}$ such that $T \backslash T_{s}$ is finite for each $s \in S$. Since the set $s^{-1}\left(T \backslash T_{s}\right)$ is finite, T is s-thin for each $s \in S$.

Proposition 2.7 Let G be a countable group of permutations of $\omega, \mathcal{U} \in \omega^{*}$. If \mathcal{U} is a Q-point then there exists a G-thin subset $T \in \mathcal{U}$.

Proof Enlarging G, we may suppose that G acts transitively on ω. We enumerate $G=\left\{g_{n}: n \in \omega\right\}, g_{0}=e$, put $F_{n}=\left\{g_{0}^{ \pm 1}, \ldots, g_{n}^{ \pm 1}\right\}$ and denote by F_{n}^{m} the product of m copies of F_{n}.

We fix an arbitrary $a \in \omega$, put

$$
X_{0}=\{a\}, X_{n+1}=F_{n+1}^{n+1} a \backslash F_{n}^{n} a, n \in \omega,
$$

and claim that, for each $n>0$,

$$
\begin{equation*}
F_{n-1} X_{n} \subseteq X_{n-1} \cup X_{n} \cup X_{n+1} \tag{*}
\end{equation*}
$$

For $n=1$, (*) is evident so let $n \geqslant 2$. Since

$$
\begin{aligned}
& X_{n-1} \cup X_{n} \cup X_{n+1}= \\
& \quad\left(F_{n-1}^{n-1} a \backslash F_{n-2}^{n-2} a\right) \cup\left(F_{n}^{n} a \backslash F_{n-1}^{n-1} a\right) \cup\left(F_{n+1}^{n+1} a \backslash F_{n}^{n} a\right)=F_{n+1}^{n+1} a \backslash F_{n-2}^{n-2} a,
\end{aligned}
$$

it suffices to verify that

$$
F_{n-1}\left(F_{n}^{n} a \backslash F_{n-1}^{n-1} a\right) \subseteq F_{n+1}^{n+1} a \backslash F_{n-2}^{n-2} a .
$$

Clearly, $F_{n-1}\left(F_{n}^{n} a \backslash F_{n-1}^{n-1} a\right) \subseteq F_{n-1} F_{n}^{n} a \subseteq F_{n+1}^{n+1} a$. If $F_{n-1}\left(F_{n}^{n} a \backslash F_{n-1}^{n-1} a\right)$ $\cap F_{n-2}^{n-2} a \neq \varnothing$, then $F_{n}^{n} a \backslash F_{n-1}^{n-1} a \cap F_{n-1} F_{n-2}^{n-2} a \neq \varnothing$, contradicting $F_{n-1} F_{n-2}^{n-2} \subseteq F_{n-1}^{n-1}$.

Then we put

$$
Y_{0}=\bigcup_{n \in \omega} X_{3 n}, Y_{1}=\bigcup_{n \in \omega} X_{3 n+1}, Y_{2}=\bigcup_{n \in \omega} X_{3 n+2} .
$$

Since G acts transitively on ω, we have $\omega=\bigcup_{n \in \omega} X_{n}$ so $\omega=Y_{0} \cup Y_{1} \cup Y_{2}$. Since $X_{n} \cap X_{m}=\varnothing$ for all distinct m, n and \mathcal{U} is a Q-point, there exist $T \in \mathcal{U}$ and
$i \in\{1,2,3\}$ such that $T \subseteq Y_{i}$ and $\left|T \cap X_{n}\right| \leqslant 1$ for each $n \in \omega$. We take an arbitrary $g_{m} \in G$. If $t \in T \cap X_{n}, n \geqslant m+1$ and $g_{m} t \in T$ then, by (*), $g_{m} t \in X_{n}$ so $g_{m} t=t$. Hence, T is G-thin.

3 T-Points

Theorem 3.1 Every P-point and every Q-point in ω^{*} are T-points.
Proof Apply Propositions 2.6 and 2.7.
Shelah produced a ZFC-model in which there are no P-points in ω^{*} [16]. On the other hand, there is also a model in which there are no Q-points [10]. But it is unknown [2, Question 25] if there is a model in which there are no P-points and Q-points. By [4] and [8], if $\mathrm{c} \leqslant \boldsymbol{\aleph}_{2}$ there is either a P-point or a Q-point (and, by Theorem 3.1, a T-point).

Recall that the ultrafilters \mathcal{U}, \mathcal{V} on ω are of the same type if there is a bijection $f: \omega \rightarrow \omega$ such that, for any $X \subseteq \omega, X \in \mathcal{U}$ if and only if $f(X) \in \mathcal{V}$. If \mathcal{V} is an ultrafilter, and $\left(U_{n}\right)_{n \in \omega}$ is a sequence of ultrafilters on ω, a subset $A \subseteq \omega$ is a member of the ultrafilter \mathcal{V} - $\lim \mathcal{U}_{n}$ if and only if $\left\{n \in \omega: A \in \mathcal{U}_{n}\right\} \in \mathcal{V}$.
Theorem 3.2 Let $\left\{U_{n}: n \in \omega\right\}$ be a family of P-points in ω^{*} of distinct types, \mathcal{V} be an arbitrary ultrafilter from ω^{*}. Then \mathcal{V} - $\lim \mathcal{U}_{n}$ is a T-point.

Proof Let $G=\left\{g_{m}: m \in \omega\right\}$ be a countable group of permutations of ω. Since the ultrafilters $\left\{U_{n}: n \in \omega\right\}$ are of distinct types, for each $m, n, k \in \omega, n \neq k$, we can choose $U_{m, n, k} \in \mathcal{U}_{n}$ and $V_{m, n, k} \in \mathcal{U}_{k}$ such that

$$
g_{m} U_{m, n, k} \cap V_{m, n, k}=\varnothing
$$

Since \mathcal{U}_{n} is a P-point, there exists $U_{n} \in \mathcal{U}_{n}$ such that $U_{n} \backslash U_{m, n, k}$ and $U_{n} \backslash V_{m, k, n}$ are finite for all $m, n, k, k \neq n$. Thus, $g_{m} U_{n} \cap U_{k}$ is finite for all $m, n, k, n \neq k$.

Since $g_{m}^{\beta}\left(U_{n}\right)$ is a P-point, $g_{m}^{\beta}\left(U_{n}\right)$ is not in the closure of the set $\left\{U_{k}\right.$: $k \in \omega, k \neq n\}$. Hence, we can choose inductively the sets $\left\{W_{n}: n \in \omega\right\}$ such that $W_{n} \subseteq U_{n}, W_{n} \in U_{n}$ and

$$
g_{m} W_{n} \cap W_{k}=\varnothing
$$

for all $m \leqslant n<k<\omega$.
Using the 4 -set lemma, for every $n \in \omega$, we choose a decreasing family $\left\{U_{n, m} \in U_{n}: m \in \omega\right\}$ such that $U_{n, m} \subseteq W_{n}$ and either $g_{m} \mid U_{n, m} \equiv i d$ or $g_{m} U_{n, m} \cap U_{n, m}=\varnothing$. Since U_{n} is a P-point, we can choose $T_{n} \in U_{n}$ such that $T_{n} \subseteq W_{n}$ and $T_{n} \backslash U_{n, m}$ is finite for every $m \in \omega$.

At last, we put

$$
T=\bigcup_{n \in \omega}\left(T_{n} \cap U_{n, n}\right)
$$

and note that $T \in \mathcal{V}$ - $\lim \mathcal{U}_{n}$. By the construction, T is G-thin.
Let X be a topological space. A point $p \in X$ is called a weak P-point if $p \notin c l_{X} Y$ for any countable subset $Y \subseteq X \backslash\{p\}$. In contrast to P-points, the weak P-points in ω^{*} exist in ZFC (see [5], [9]). To prove this statement, Kunen introduced the following delicate notion.

A point $p \in X$ is called an OK-point if, for any countable family $\left\{U_{n}: n \in \omega\right\}$ of neighborhoods of p, there exists an uncountable family \mathcal{F} of neighborhoods of p
such that, for each $n \geqslant 1$ and each subfamily $\mathscr{F}^{\prime} \subseteq \mathscr{F}$ of size $n, \bigcap \mathcal{F}^{\prime} \subseteq U_{n}$. Every OK-point is a weak P-point and OK-points in ω^{*} exist in ZFC.

An ultrafilter $U \in \omega^{*}$ is called an NWD-point if, for every injective mapping $f: \omega \rightarrow \mathbb{R}$, there exists $U \in \mathcal{U}$ such that $f(U)$ is nowhere dense in \mathbb{R}. To see that every P-point is an NWD-point, we can use the following simple topological characterization: an ultrafilter $\mathcal{U} \in \omega^{*}$ is a P-point if and only if, for every Hausdorff topology τ on ω, there exists $U \in U$ such that U has at most one limit point in (X, τ).

Proposition 3.3 Under CH, there exists a T-point in ω^{*} which is neither a weak P-point nor an NWD-point nor a Q-point. For every ultrafilter $\mathcal{V} \in \omega^{*}$, there exists a T-point $\mathcal{U} \in \omega^{*}$ and a mapping $f: \omega \rightarrow \omega$ such that $\mathcal{V}=f^{\beta}(U)$.
Proof Using CH, we can construct a family $\left\{U_{n}: n \in \omega\right\}$ of P-points of distinct types such that each \mathcal{U}_{n} is not a Q-point. Let \mathcal{V} be an arbitrary ultrafilter from ω^{*}. By Theorem 3.2, $\mathcal{W}=\mathcal{V}$ - $\lim \mathcal{U}_{n}$ is a T-point. Clearly, \mathcal{W} is neither a weak P-point nor a Q-point.

We identify ω with \mathbb{Q} and, for each $n \in \omega$, choose an injective sequence $\left(a_{n m}\right)_{m \in \omega}$ converging to n. Then we take a family $\left\{U_{n}: n \in \omega\right\}$ of P-points of distinct types such that $\left\{a_{n m}: m \in \omega\right\} \in \mathcal{U}_{n}$ and each U_{n} is not a Q-point. At last, we take an ultrafilter \mathcal{V} on \mathbb{Q} such that every member of \mathcal{V} is not nowhere dense in \mathbb{Q}. Then \mathcal{W} is not an NWD-point.

To prove the second statement, we choose an arbitrary family $\left\{U_{n}: n \in \omega\right\}$ of P points of distinct types. Since the set $\left\{U_{n}: n \in \omega\right\}$ is discrete in ω^{*}, we can choose a disjoint family $\left\{U_{n} \in U_{n}: n \in \omega\right\}$. We define a mapping $f: \bigcup_{n \in \omega} U_{n} \rightarrow \omega$ by $f(x)=n$ if and only if $x \in U_{n}$, and extend f on ω arbitrarily. Then $\mathcal{V}=f^{\beta}(\mathcal{W})$.

Question 3.4 Let U be a T-point in $\omega^{*}, S \subset \omega^{\omega}$ be a countable family of finite-to-one mappings. Does there exist an S-thin subset $T \in \mathcal{U}$?

Question 3.5 Let U be a T-point in $\omega^{*}, f: \omega \rightarrow \omega$ be a finite-to-one mapping. Is $f^{\beta}(U) a T$-point?
Question 3.6 Is every weak P-point (OK-point, NWD-point) a T-point?
Let G be a countable group of permutations of ω. We say that an ultrafilter $\mathcal{U} \in \omega^{*}$ is a T_{G}-point if, for every bijection $f: \omega \rightarrow \omega$, there exists $U \in \mathcal{U}$ such that $f(U)$ is G-thin. It is easy to see that a T-point is a T_{G}-point for every countable group of permutations of ω. On the other hand, if G is a group of all permutations of ω with finite support then each $U \in \omega^{*}$ is a T_{G}-point.

Question 3.7 Given a countable subgroup G of S_{ω}, does there exist a T_{G}-point which is not a T-point? Does there exist a T_{G}-point in ZFC ?

4 Corona

All G-spaces in this section are assumed to be discrete and transitive. Let G be a group and let X be a G-space with the action $G \times X \rightarrow X,(g, x) \mapsto g x$. By the universal property of the Stone-Čech compactification βX of X, the action of G on X extends to the continuous action of G on βX. Since the subspace $X^{*}=\beta X \backslash X$ of all free ultrafilters is G-invariant, it also has a natural structure of G-space.

We denote by E the orbit equivalence on X^{*} defined by

$$
(x, y) \in E \Leftrightarrow G x=G y
$$

and following [13], consider the smallest by inclusion, closed in $X^{*} \times X^{*}$ equivalence \check{E} on X^{*} such that $E \subseteq \check{E}$. The factor-space $\check{X}=X^{*} / \check{E}$ is called a corona of X.

For every $\mathcal{U} \in X^{*}$, we denote by \check{U} the class of \check{E}-equivalence containing \mathcal{U}, and say that two ultrafilters $U, \mathcal{V} \in X^{*}$ are corona equivalent if $\check{U}=\check{\mathcal{V}}$. To detect whether two ultrafilters are corona equivalent, we use the G-slowly oscillating functions on X.

A function $h: X \rightarrow[0,1]$ is called G-slowly oscillating if, for any $g \in G$ and $\varepsilon>0$, there exists a finite subset K of X such that

$$
|h(g x)-h(x)|<\varepsilon
$$

for every $x \in X \backslash K$.
By [12, Proposition 1], the ultrafilters $\mathcal{U}, \mathcal{V} \in X^{*}$ are corona equivalent if and only if $h^{\beta}(\mathcal{U})=h^{\beta}(\mathcal{V})$ for every G-slowly oscillating function h on X.

Given a subset A of X and a filter Φ on X, we put

$$
\bar{A}=\left\{U \in X^{*}: A \in U\right\}, \quad \bar{\Phi}=\cap\{\bar{A}: A \in \Phi\}
$$

and note that, for every nonempty closed subset Y of X^{*}, there exists a filter Φ on X such that $Y=\bar{\Phi}$. For $\mathcal{U} \in X^{*}$, we denote by ψu the filter on X such that $\overline{\psi u}=\check{U}$.

Now we suppose that G and X are countable and fix some numerations $G=\left\{g_{i}: i \in \omega\right\}, X=\left\{x_{i}: i \in \omega\right\}$. For $A \subseteq X$ and $f: \omega \rightarrow \omega$, we put

$$
\Psi_{A, f}=\bigcup_{i \in \omega} g_{i}\left(A \backslash\left\{x_{0}, \ldots, x_{f(i)}\right\}\right)
$$

Proposition 4.1 Let G be a countable group, X be a countable G-space, $u \in X^{*}$. Then the family $\left\{\Psi_{U, f}: U \in \mathcal{U}, f \in \omega^{\omega}\right\}$ forms a base for ψu.
Proof We take an arbitrary $\mathcal{V} \notin \mathscr{U}$. By [12, Proposition 1], there exists a G-slowly oscillating function $h: X \rightarrow[0,1]$ such that $h^{\beta}(\mathcal{U})=0, h^{\beta}(\mathcal{V})=1$. We choose $U \in U$ and $V \in \mathcal{V}$ such that $h(x)<\frac{1}{4}$ for every $x \in U$, and $h(x)>\frac{3}{4}$ for every $x \in V$. Since h is G-slowly oscillating, for every $i \in \omega$, there exists $f(i) \in \omega$ such that

$$
\left|h\left(g_{i} x\right)-h(x)\right|<\frac{1}{4}
$$

for each $x \in X \backslash\left\{x_{0}, \ldots, x_{f(i)}\right\}$. Then $g_{i}\left(U \backslash\left\{x_{0}, \ldots, x_{f(i)}\right\}\right) \cap V=\varnothing$ so $\Psi_{U, f} \cap V=\varnothing$ and $\mathcal{V} \notin \psi u$.

On the other hand, assume that $\Psi_{U, f} \notin \mathcal{V}$ for some $U \in \mathcal{U}, f \in \omega^{\omega}$ and $\mathcal{V} \in \check{U}$. Applying Theorem 2.1 from [11], we get a G-slowly oscillating function $h: X \rightarrow[0,1]$ such that $h^{\beta}(\mathcal{U})=0, h^{\beta}(\mathcal{V})=1$. By [12, Proposition 1], $\mathcal{V} \notin \check{U}$ and we get a contradiction.

Proposition 4.2 Let G be a countable group, X be a countable G-space. For an infinite subset T of X, the following statements are equivalent:
(1) T is G-thin;
(2) the restriction $\mid T^{*}$ of the mapping ${ }^{\vee}: X^{*} \rightarrow \check{X}$ is injective.

Proof (1) \Rightarrow (2) We choose distinct $\mathcal{U}, \mathcal{V} \in X^{*}$ such that $T \in \mathcal{U}, T \in \mathcal{V}$ and show that $\check{U} \neq \check{\mathcal{V}}$. Let $F_{n}=\left\{g_{0}, \ldots, g_{n}\right\}, n \in \omega$. Since T is G-thin, there is an increasing function $h \in \omega^{\omega}$ such that

$$
F_{n} x \cap F_{n} y=\varnothing
$$

for all distinct $x, y \in T \backslash\left\{x_{0}, \ldots, x_{h(n)}\right\}$. Put $t(0)=h(0)$ and define inductively a function $t \in \omega^{\omega}$ such that, for each $n \in \omega, t(n) \geqslant h(n)$ and

$$
\left(F_{n+1}^{-1} F_{n}\left\{x_{0}, \ldots, x_{h(n+1)}\right\}\right) \cap\left(T \backslash\left\{x_{0}, \ldots, x_{t(n+1)}\right\}\right)=\varnothing
$$

Then, for any $n, m \in \omega$ and $x \in T \backslash\left\{x_{0}, \ldots, x_{t(n)}\right\}, y \in T \backslash\left\{x_{0}, \ldots, x_{t(m)}\right\}$,

$$
g_{n} x=g_{m} y \Rightarrow x=y
$$

We choose disjoint $U \in \mathcal{U}, V \in \mathcal{V}$ such that $U \subseteq T, V \subseteq T$. By the construction of t,

$$
\Psi_{U, t} \cap \Psi_{V, t}=\varnothing
$$

and, applying Proposition 4.1 , we get $\check{U} \neq \check{\mathcal{V}}$.
(2) \Rightarrow (1) Suppose that T is not G-thin and choose $g \in G$ such that T is not g thin. Then the set $A=\{x \in T: g x \neq x, g x \in T\}$ is infinite. We take an arbitrary ultrafilter $U \in X^{*}$ such that $A \in U$. Since $g x \neq x$ for all $x \in A, g U \neq \mathcal{U}$. Clearly, $T \in g U$ but $\check{U}=(g \check{U})$ so ${ }^{\imath} \mid T^{*}$ is not injective.

Corollary 4.3 Let G be a countable group, X be a countable G-space. Every nonempty open subset of \check{X} contains a homeomorphic copy of ω^{*}.

Corollary 4.4 Let G be a countable group, X be a countable G-space, T be an infinite G-thin subset of X. If $U \in X^{*}$ and $T \in \mathcal{U}$ then \mathcal{U} is an isolated point in \check{U}.

Question 4.5 Let G be a countable group, X be a countable G-space, $U \in X^{*}$. Has \mathcal{U} a G-thin member provided that \mathcal{U} is an isolated point in \check{U} ? If not then characterize $U \in X^{*}$ which are isolated in \check{U}.

Remark 4.6 Let μ be a left invariant Banach measure on an infinite group G, A be a subset of G such that $\mu(A)>0$. We consider G as a left regular G-space and show that A is not G-thin. Let $\mu(A)>\frac{1}{n}, g_{0}, \ldots, g_{n}$ be distinct elements of G. Since $\mu(G)=1$ and μ is additive, there exist distinct $i, j \in\{0, \ldots, n\}$ such that $\mu\left(g_{i} A \cap g_{j} A\right)>0$, so $\mu\left(g_{j}^{-1} g_{i} A \cap A\right)>0$ and A is not $g_{j}^{-1} g_{i}$-thin. By [13, Lemma 4.3], there exists a Banach measure μ on \mathbb{Z} such that if $\mathcal{U} \in \mathbb{Z}^{*}$ and $\mu(U)=0$ for some $U \in \mathcal{U}$ then, for every $\mathcal{V} \in \mathscr{U}$, there exists $V \in \mathcal{V}$ such that $\mu(V)=0$. Let \mathcal{W} be an ultrafilter on \mathbb{Z} such that $\mu(W)>0$ for each $W \in \mathcal{W}$. Then the corona class \mathscr{W} has no G-thin ultrafilters.

Remark 4.7 Let G be a countable group, \mathcal{U}, \mathcal{V} be right cancelable ultrafilters from G^{*} (see [8, Chapter 3]). Then $\mathcal{W}=\mathcal{U V}$ is right cancelable and, by [3, Theorem 8.11], G-orbit of \mathcal{W} is discrete, so \mathcal{W} is isolated in its orbit. On the other hand, \mathcal{W} is a limit point of the G-orbit of \mathcal{V}, so $\mathcal{V} \in \mathscr{W}$ and \mathcal{W} is not isolated in \mathscr{W}.

Remark 4.8 We can use G-thin subsets also to extend onto G-spaces the Chou's theorem on the number of invariant means (Banach measures) on an amenable group [1].

Let X be a discrete G-space, $C(X)$ be the set of all bounded functions from X to \mathbb{R} with sup norm. A continuous linear functional $m: C(X) \rightarrow \mathbb{R}$ is called an invariant mean if

1. $m(f) \geqslant 0$ for all $f \geqslant 0$ and $m(1)=1$;
2. $m\left(f_{g}\right)=m(f)$ for each $g \in G$, where $f_{g}(x)=f(g x)$.

We assume that X is an infinite G-space, $|X|=|G|$, and there exists a G-thin subset T of X such that $|X|=|T|$. Let \mathcal{U}, \mathcal{V} be distinct free ultrafilters on X such that $T \in \mathcal{U}, T \in \mathcal{V}$ and $|U|=|V|=|T|$ for all $U \in \mathcal{U}, V \in \mathcal{V}$. We enumerate $G=\left\{g_{\alpha}: \alpha<\kappa\right\}$. Since T is G-thin and $T \in \mathcal{U}, T \in \mathcal{V}$, we can choose inductively the families $\left\{U_{\alpha}: \alpha<\kappa\right\},\left\{V_{\alpha}: \alpha<\kappa\right\}$ of members of \mathcal{U} and \mathcal{V} such that $g_{\alpha} U_{\alpha} \cap g_{\gamma} V_{\gamma}=\varnothing$ for all $\alpha, \gamma<\kappa$. Since $\left(\bigcup_{\alpha<\kappa} g_{\alpha} U_{\alpha}\right) \cap\left(\bigcup_{\alpha<\kappa} g_{\alpha} V_{\alpha}\right)=\varnothing$, we have

$$
c l_{\beta X}\left\{g^{\beta}(\mathcal{U}): g \in G\right\} \cap c l_{\beta X}\left\{g^{\beta}(\mathcal{V}): g \in G\right\}=\varnothing
$$

and repeating the Chou's argument, we conclude that if X admits an invariant mean then there are $2^{2^{\kappa}}$ distinct invariant means on X. In particular (see Example 2.2), if X, G are countable and X is amenable then X admits 2^{c} distinct invariant means.

5 Ballean Context

A ball structure is a triple $\mathscr{B}=(X, P, B)$, where X, P are nonempty sets and, for any $x \in X$ and $\alpha \in P, B(x, \alpha)$ is a subset of X which is called a ball of radius α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X$ and $\alpha \in P$. The set X is called the support of \mathscr{B}, P is called the set of radii. Given any $x \in X, A \subseteq X, \alpha \in P$ we put

$$
B^{*}(x, \alpha)=\{y \in X: x \in B(y, \alpha)\}, B(A, \alpha)=\bigcup_{a \in A} B(a, \alpha)
$$

Following [15], we say that a ball structure $\mathscr{B}=(X, P, B)$ is a ballean if

1. for any $\alpha, \beta \in P$, there exist $\alpha^{\prime}, \beta^{\prime}$ such that, for every $x \in X$,

$$
B(x, \alpha) \subseteq B^{*}\left(x, \alpha^{\prime}\right), B^{*}(x, \beta) \subseteq B\left(x, \beta^{\prime}\right)
$$

2. for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that, for every $x \in X$,

$$
B(B(x, \alpha), \beta) \subseteq B(x, \gamma) .
$$

A subset $Y \subseteq X$ is called bounded if $Y \subseteq B(x, \alpha)$ for some $x \in X$ and $\alpha \in P$. We say that a subset $T \subseteq X$ is thin (or pseudodiscrete in terminology from [15]) if, for every $\alpha \in P$, there exists a bounded subset $Y \subseteq X$ such that

$$
B(x, \alpha) \cap B\left(x^{\prime}, \alpha\right)=\varnothing
$$

for all distinct $x, x^{\prime} \in T \backslash Y$.
Every G-space X determines the ballean $\left(X, \mathscr{F}_{G}, B\right)$, where \mathscr{F}_{G} is the family of all finite subsets of G containing the identity e and $B(x, F)=F x$ for all $x \in X, F \in \mathcal{F}_{G}$. It is easy to verify that a subset T of a transitive G-space X is G-thin if and only if T is thin in the ballean $\left(X, \mathscr{F}_{G}, B\right)$. A metric space (X, d) can be considered as the ballean $\left(X, \mathbb{R}^{+}, B_{d}\right)$, where $B_{d}(x, r)=\{y \in X: d(x, y) \leqslant r\}$ for all $x \in X, r \in \mathbb{R}^{+}$. Recall that a metric d on X is an ultrametric if $d(x, y) \leqslant \max d(x, z), d(z, y)$ for all $x, y, z \in X$.

Theorem 5.1 For an ultrafilter $\mathcal{U} \in \omega^{*}$, the following statements are equivalent:
(1) U is selective;
(2) for every metric d on ω, there exists a thin subset T of (ω, d) such that $T \in U$;
(3) for every ultrametric d on ω, there exists a thin subset T of (ω, d) such that $T \in \mathcal{U}$.

Proof $\quad(1) \Rightarrow(2) \quad$ We fix $x_{0} \in \omega, r>0$ and put

$$
\begin{gathered}
X_{0}=\left\{x_{0}\right\}, X_{n+1}=B_{d}\left(x_{0},(n+1) r\right) \backslash B_{d}\left(x_{0}, n r\right), n \in \omega \\
Y_{0}=\bigcup_{n \in \omega} X_{2 n}, Y_{1}=\bigcup_{n \in \omega} X_{2 n+1}
\end{gathered}
$$

Since \mathcal{U} is selective, there exist $T \in \mathcal{U}$ and $i \in\{0,1\}$ such that $T \subseteq Y_{i}$ and either $\left|T \cap X_{n}\right| \leqslant 1$ for each $n \in \omega$ or $T=X_{m}$ for some $m \in \omega$. In the first case, $B_{d}(x, r) \cap B_{d}\left(x^{\prime}, r\right)=\varnothing$ for all distinct $x, x^{\prime} \in T$. In the second case, T is bounded. Thus, in both cases T is thin in (ω, d).
$(2) \Rightarrow(3) \quad$ Evident.
(3) \Rightarrow (1) Let $\left\{P_{n}: n \in \omega\right\}$ be a partition of ω. We define an ultrametric d on ω by the rule:

$$
d(x, y)=\left\{\begin{array}{l}
0, \text { if } x=y \\
1, \text { if } x \neq y, x, y \in P_{n} \\
\max \{n, m\}, \text { if } x \in P_{n}, y \in P_{m}, n \neq m
\end{array}\right.
$$

Then we choose a thin subset T of (ω, d) such that $T \in \mathcal{U}$. By the definition of thin subset, there exists a bounded subset Y of (ω, d) such that $B_{d}(x, 1) \cap B_{d}\left(x^{\prime}, 1\right)=\varnothing$ for all distinct $x, x^{\prime} \in T \backslash Y$. If T is bounded then some block P_{n} is a member of \mathcal{U}. Otherwise, $T \backslash Y \in \mathcal{U}$ and $\left|(T \backslash Y) \cap P_{n}\right| \leqslant 1$ for each $n \in \omega$. Hence, \mathcal{U} is selective.

References

[1] Chou, C., "On the size of the set of left invariant means on a semi-group," Proceedings of the American Mathematical Society, vol. 23 (1969), pp. 199-205. Zbl 0188.19006. MR 0247444. 80, 85
[2] Hart, K. P., and J. van Mill, "Open problems on $\beta \omega$," pp. 97-125 in Open Problems in Topology, North-Holland, Amsterdam, 1990. Zbl 0718.54001. MR 1078643. 82
[3] Hindman, N., and D. Strauss, Algebra in the Stone-Čech Compactification. Theory and Applications, vol. 27 of de Gruyter Expositions in Mathematics, Walter de Gruyter \& Co., Berlin, 1998. Zbl 0918.22001. MR 1642231. 80, 81, 85
[4] Ketonen, J., "On the existence of P-points in the Stone-Čech compactification of integers," Fundamenta Mathematicae, vol. 92 (1976), pp. 91-94. Zbl 0339.54035. MR 0433387. 82
[5] Kunen, K., "Weak P-points in N*," pp. 741-49 in Topology, Vol. II (Proceedings of the Fourth Colloquium, Budapest, 1978, edited by Á. Csaśzár, vol. 23 of Colloquia Mathematica Societatis János Bolyai, North-Holland, Amsterdam, 1980. Zbl 0435.54021. MR 588822. 82
[6] Lutsenko, I., and I. V. Protasov, "Sparse, thin and other subsets of groups," International Journal of Algebra and Computation, vol. 19 (2009), pp. 491-510. Zbl 1186.20024. MR 2536188. 79
[7] Lutsenko, I., "Thin systems of generators of groups," Algebra and Discrete Mathematics, vol. 9 (2010), pp. 108-14. Zbl 1209.20033. MR 2808784. 80
[8] Mathias, A. R. D., " 0 \# and the p-point problem," pp. 375-84 in Higher Set Theory (Proceedings of the Conference at Mathematisches Forschungsinstitut, Oberwolfach, 1977), edited by G. H. Müller and D. S. Scott, vol. 669 of Lecture Notes in Mathematics, Springer, Berlin, 1978. Zbl 0383.03037. MR 520195. 82, 85
[9] van Mill, J., "An introduction to $\beta \omega$," pp. 503-67 in Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984. Zbl 0555.54004. MR 776630. 82
[10] Miller, A. W., "There are no Q-points in Laver's model for the Borel conjecture," Proceedings of the American Mathematical Society, vol. 78 (1980), pp. 103-106. Zbl 0439.03035. MR 548093. 82
[11] Protasov, I. V., "Normal ball structures," Matematichnī Studī̀. Pratsī L'vīvs 'kogo Matematichnogo Tovaristva, vol. 20 (2003), pp. 3-16. Zbl 1053.54503. MR 2019592. 84
[12] Protasov, I. V., "Coronas of balleans," Topology and its Applications, vol. 149 (2005), pp. 149-60. Zbl 1068.54036. MR 2130861. 84
[13] Protasov, I. V., "Dynamical equivalences on G^{*}," Topology and its Applications, vol. 155 (2008), pp. 1394-1402. Zbl 1146.22005. MR 2427410. 84, 85
[14] Protasov, I. V., "Selective survey on subset combinatorics of groups," Ukraïns 'kiŭ Matematichniĭ Vīsnik, vol. 7 (2010), pp. 220-57. MR 2768154. 79
[15] Protasov, I., and M. Zarichnyi, General Asymptology, vol. 12 of Mathematical Studies Monograph Series, VNTL Publishers, L'viv, 2007. Zbl 1172.54002. MR 2406623. 86
[16] Shelah, S., Proper Forcing, vol. 940 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1982. Zbl 0495.03035. MR 675955. 82

Department of Cybernetics
Kyiv University
Volodymyrska 64
Kyiv 01033
UKRAINE
opetrenko72@gmail.com
i.v.protasov@gmail.com

