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Elementary Cuts in Saturated Models
of Peano Arithmetic

James H. Schmerl

Abstract A model M D .M;C;�; 0; 1; </ of Peano Arithmetic (PA) is
boundedly saturated if and only if it has a saturated elementary end exten-
sion N . The ordertypes of boundedly saturated models of PA are characterized
and the number of models having these ordertypes is determined. Pairs .N ;M/,
where M �end N ˆ PA for saturated N , and their theories are investigated.
One result is: If N is a �-saturated model of PA and M0;M1 �end N are
such that @1 � min.cf.M0/; dcf.M0// � min.cf.M1/; dcf.M1// < �, then
.N ;M0/ � .N ;M1/.

1 Introduction

Let � be an infinite cardinal number. A linearly ordered set .A;</ is �-dense if
wheneverX; Y are (possibly empty) subsets ofA such thatX < Y and jX j; jY j < �,
then there is a 2 A such thatX < a < Y . Then .A;</ is a dense linear order without
endpoints (i.e., a model of DLO) if and only if it is @0-dense.

Consider an arbitrary structure A D .A; : : :/ in some countable language. As
usual, A is �-saturated if and only if whenever C � A, jC j < �, and ˙.v/ is a set
of unary formulas '.v/ with parameters from C that is finitely realized in A, then
˙.v/ is realized in A. Also, A is saturated if and only if it is jAj-saturated. If .A;</
is a model of DLO, then .A;</ is �-saturated if and only if .A;</ is �-dense.

Let M be a nonstandard model of PA. Define an equivalence relation on the set of
nonstandard elements of M by: x; y are equivalent if and only if either x D y C n

or y D x C n for some n < !. Let Œx� be the equivalence class to which x belongs,
and then let ŒM � be the set of all equivalence classes. The ordered set .ŒM �;</ is the
reduced ordered set of M, and it is a model of DLO. Its ordertype � is the reduced
ordertype of M, which is the unique ordertype � such that .M;</ has ordertype
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! C Z ��. For any infinite �, .M;</ is �-saturated if and only if .ŒM �;</ is �-
dense. Pabion [7] proved the following remarkable theorem concerning ordertypes
of �-saturated models.

Theorem 1.1 (Pabion’s Theorem) Let � be an uncountable cardinal and M be a
model of PA. Then M is �-saturated if and only if .M;</ is �-saturated.

In other words, M is �-saturated if and only if its reduced ordered set is �-dense.
In particular, M is saturated if and only if its reduced ordertype is �� for some un-
countable �. Here, �� , if it exists, is the unique ordertype of a �-dense ordered set of
cardinality �. Thus, if � is uncountable and M;N are elementarily equivalent, un-
countable models of PA each having reduced ordertype �� , then they are isomorphic.

We say that a model M of PA is boundedly �-saturated if, whenever b 2 C �M ,
jC j < �, ˙.v/ is a set of unary formulas '.v/ with parameters from C that is
finitely realized in M, and the formula v < b is in ˙.v/, then ˙.v/ is realized
in M. Clearly, every �-saturated model of PA is boundedly �-saturated, and if N

is boundedly �-saturated and M �end N , then M is boundedly �-saturated. An
uninteresting example is the standard model, which is boundedly �-saturated for all
�. However, if M is nonstandard and boundedly @0-saturated, then jM j � 2@0 . If
M is boundedly jM j-saturated, then it is boundedly saturated.

The following theorem gives an alternate characterization of boundedly saturated
models of PA.

Theorem 1.2 If M is a nonstandard model of PA, then M is boundedly saturated
if and only if there is a saturated N such that M �end N .

Proof Suppose N is saturated and � D jN j. Then N is �-saturated, so that if
M �end N , then M is boundedly �-saturated. Since jM j � �, then M is boundedly
saturated.

For the converse, suppose M is nonstandard and boundedly saturated of cardinal-
ity �. Then � � 2@0 . Let a 2 M be nonstandard. Then .fŒx� 2 ŒM � W x < Œa�g; </

is a saturated model of DLO of cardinality �, so that �� exists and � is uncountable
and regular. Therefore, there is a saturated N � M such that jN j D �. By a back-
and-forth construction, we will obtain an elementary map f WM� N that is onto
a proper initial segment of N .

Let N0 �end N be such that N0 Š N , the existence of which follows from the
resplendency of N . Assume that both M and N0 are well-ordered with ordertype �.
When referring to the first element of a subset of M or of N0, we will mean with
respect to these well orderings.

We will obtain an increasing sequence hfi W i < �i of elementary maps
fi W Xi � N0, where Xi � M and jXi j < �. To get started, let a 2 M be
nonstandard, b 2 N0 realizing the same type as a, X0 D fag and f0.a/ D b. If
i < � is a limit ordinal, then let Xi D

S
fXj W j < ig and fi D

S
ffj W j < ig.

For the case of a successor ordinal, suppose we already have fi W Xi � N0.
Let a 2 M be the first element of MnXi , and then, by the saturation of N0, let
b 2 N0 be such that fi [ fha; big is an elementary map. Next, let b0 2 N0 be the
first element in fy 2 N0 W y < fi .x/; x 2 Xignffi .x/ W x 2 Xi [ fagg, and then,
by the bounded saturation of M, let a0 2 M be such that fi [ fha; bi; ha0; b0ig is an
elementary map. Let XiC1 D Xi [ fa; a0g and fiC1 D fi [ fha; bi; ha0; b0ig. Then
f D

S
ffi W i < �g is as required.
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Thus, if M is boundedly saturated and jM j D �, then �� exists. As is well known,
�� exists if and only if � is regular and 2� � � whenever � < �. We assume until
the end of Section 4 that

� is an uncountable cardinal and �� exists.
In particular, � is regular.

2 Boundedly Saturated Models

This section begins with a generalization of Pabion’s Theorem to boundedly �-
saturated models. The proof involves nothing beyond the proof of Pabion’s Theo-
rem. I recommend that the reader look at the proof of Pabion’s Theorem in [6] and
then verify that, with the obvious adjustments, it also proves Theorem 2.1. A linearly
ordered set .A;</ is boundedly �-dense if whenever X; Y are nonempty subsets of
A such that X < Y and jX j; jY j < �, then there is a 2 A such that X < a < Y .

Theorem 2.1 Let � be an uncountable cardinal, and let M be a model of PA.
Then M is boundedly �-saturated if and only if its reduced ordered set is boundedly
�-dense.

If M is a model of PA, then its cofinality cf.M/ is the least cardinality � of an
unbounded subset X � M . More generally, if N is a model of PA and I � N a
cut (that is, a nonempty, proper initial segment closed under successors), then cf.I /
is the least cardinality � of a cofinal X � I , and its downward cofinality dcf.I / is
the least cardinality � of a downward cofinal X � NnI (that is, such that whenever
I < y 2 N , then there is x 2 X such that x < y). If dcf.I / D � and cf.I / D �,
we will refer to I as a .�; �/-cut. If I is a .�; �/-cut for some �, then it is balanced,
and it is unbalanced otherwise.

It follows from Theorem 1.2 of Section 1 that all boundedly saturated models of
PA having cardinality � have reduced ordertype �� ��, where � D cf.M/. We will
look at the seemingly wider class of models of PA having reduced ordertype �� �  ,
where j j � �, or, what is equivalent, having reduced ordertype �� �.��C �/, where
�; � � � are regular cardinals.

Theorem 2.2 If M is a nonstandard model of PA, then the following are equiva-
lent:

(1) M is boundedly saturated and jM j D �;
(2) there is an ordertype  such that 0 < j j � � and M has reduced order type

�� �  ;
(3) there is a regular infinite cardinal � � � such that M has reduced ordertype

�� ��.

Proof .3/) .2/ is trivial.

.2/ , .1/ follows from Theorem 2.1 since an ordered set has ordertype �� �  for
some  where 0 < j j � � if and only if it is boundedly �-dense and has cardinality
�.

.2/ ) .3/ Suppose that M has reduced ordertype �� �  . Then jM j D � and M

has reduced ordertype �� �.��C �/, where � D dcf.!/ and � D cf.M/. Let a 2M
be nonstandard. Then the cut I D fy 2 M W y < a � n; n < !g is a .�;@0/-cut.
Thus, the initial segment fŒx� 2 ŒM � W Œx� < Œa�g of ŒM � has cofinality �, so � D �.
Thus, M has reduced ordertype �� ��.
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3 How Many Boundedly Saturated Models?

Theorem 2.2 characterizes the boundedly saturated models of PA having cardinality
� as those having ordertype �� ��, where � � � is regular. The following theorem
gives the number of models up to isomorphism having ordertype �� ��.

Theorem 3.1 Suppose that T is a consistent completion of PA.
(1) Up to isomorphism, there are exactly 2@0 models of T having reduced order-

type �� �!.
(2) If � � � is an uncountable regular cardinal, then, up to isomorphism, there

is exactly one model of T having reduced ordertype �� ��.

We will give a more refined version of Theorem 3.1 for which some definitions are
needed. Suppose M is a model of PA. For a 2 M , the gap containing a is the set
gap.a/ consisting of those b 2M such that for any elementary cut I �end M , a 2 I
if and only if b 2 I . The set of gaps is a partition of M into convex sets. If M has a
last gap, then M is short, and M is tall if it is not short. The gaptype of gap.a/ is the
set of types realized by elements of gap.a/. If M is boundedly @0-saturated, then
the set of its gaptypes is a partition of the set of its 1-types, and there are 2@0 distinct
gaptypes. (This last fact follows from Theorem 4.5 or can be seen as a consequence
of [6, Exercise 3.6.9].)

Theorem 3.2 Suppose M0;M1 are boundedly saturated models of PA having
cardinality �. Then, M0 Š M1 if and only if M0 � M1 and one of the following
holds:

(1) M0;M1 are short and their last gaptypes are the same;
(2) M0;M1 are tall and cf.M0/ D cf.M1/.

Proof Clearly, if M0 ŠM1, then M0 �M1 and either (1) or (2) holds. We prove
the converse. Suppose that M0 �M1.

Right now, we will prove the converse only in the special case that cf.M0/ D

cf.M1/ D �. In this case, it is clear that both M0 and M1 are saturated, and then that
M0 ŠM1. All the remaining cases will follow immediately from Theorem 3.3.

Theorem 3.2 answers the question of how many boundedly saturated models M of
T there are, where jM j D � and cf.M/ D �. We next consider the number of pairs
.N ;M/, where M �end N and N is saturated. Some more definitions are needed.

If M �end N , we will say that the elementary cut M is short or tall if M is short
or tall. We will also say that the elementary cut M is coshort if NnM has a first
gap and that it is cotall otherwise. Clearly, if M is short, then cf.M/ D @0, and
if M is coshort, then dcf.M/ D @0. (In fact, if a 2 N , then Scl.a/ \ gap.a/ is a
countable set that is both cofinal and downward cofinal in gap.a/. Here, Scl.a/, the
Skolem closure of a, is the set of those x 2 N that are definable in N using only the
parameter a.)

There are various ways that the term “�-homogeneous” is defined in the liter-
ature. We will be using the one where a structure A is �-homogeneous if, when-
ever  < � and hai W i < i, hbi W i < i are sequences from A such that
tp.hai W i < i/ D tp.hbi W i < i/ (or, equivalently, f0 D fhai ; bi i W i < g is a
partial elementary map), then there is an automorphism f of A such that f � f0.
If A has cardinality � and is �-homogeneous, then it is homogeneous. As is well
known, every saturated structure is homogeneous.
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Theorem 3.3 Suppose M0;M1 �end N ˆ PA are such that N is saturated of
cardinality �. Then .N ;M0/Š .N ;M1/ if one of the following hold:

(1) M0;M1 are short and their last gaps have the same gaptype;
(2) M0;M1 are coshort and the first gaps of NnM0 and NnM1 have the same

gaptype;
(3) M0;M1 are tall and cf.M0/ D cf.M1/ < �;
(4) M0;M1 are cotall and dcf.M0/ D dcf.M1/ < �.

Proof If M0 is standard, then it is short and so only (1) applies. Since M1 has the
same gaptype as M0, it also is standard, so .N ;M0/ Š .N ;M1/. So now assume
that both M0;M1 are nonstandard.

In each case, the idea is to use the homogeneity of N to obtain an automorphism
f that extends a particular partial elementary map f0 with jdom.f0/j < � that is
chosen so as to assure that f ŒM0� DM1.

(1) Let a be in the last gap of M0, and then let b in the last gap of M1 realize the
same type as a does. Let f0 D fha; big.

(2) Let a be in the first gap of NnM0, and then let b in the first gap of NnM1

realize the same type as a. Let f0 D fha; big.
For (3) and (4), let p.x/ be a minimal type realized in N . (See Chapter 3.2 and
especially Theorem 3.2.10 of [6].)

(3) Let � D cf.M0/ D cf.M1/ < �. Let hai W i < �i and hbi W i < �i be
increasing sequences of elements realizing p.x/ that are cofinal in M0 and
M1, respectively. Let f0 D fhai ; bi i W i < �g.

(4) Let � D dcf.M0/ D dcf.M1/ < �. Let hai W i < �i and hbi W i < �i be
decreasing sequences of elements realizing p.x/ that are downward cofinal
in NnM0 and NnM1, respectively. Let f0 D fhai ; bi i W i < �g.

Note that Theorem 3.3 fails to cover the situation when cf.M0/ D cf.M1/ D

dcf.M0/ D dcf.M1/ D � ; that is, both M0;M1 are balanced cuts. Theorem 4.6
implies that there are at least 2@0 different isomorphism types of .N ;M/, where
M �end N is a .�; �/-cut.

Question 3.4 Up to isomorphism, how many pairs .N ;M/, where M �end N

and M is balanced, are there?

4 Theories of Pairs, I

In this and the next section we consider the possible theories of pairs .N ;M/, where
N is a saturated model of PA and M �end N . We begin with a simple lemma.

Lemma 4.1 Suppose that N is saturated and I �end N is an unbalanced cut.
Then, ! is uniformly definable in .N ; I /.

Proof Just observe that a 2 ! if and only if there is no x such that I \ f.x/n W
n < ag is cofinal in I or f.x/n W n < agnI is downward cofinal in NnI . This
definition is independent of N and I . (The referee has pointed out that by slightly
modifying this proof we can show that cfN .I / D !. See [6, p. 181] for the defini-
tion.)

Theorem 4.2 There are sentences �1; �2; �3 such that whenever M �end N

ˆ PA, where N is saturated and M is unbalanced, then
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(1) .N ;M/ ˆ �1 iff M is short;
(2) .N ;M/ ˆ �2 iff cf.M/ D @0;
(3) .N ;M/ ˆ �3 iff dcf.M/ D @0.

Proof (Essentially from Smoryński [8], Theorem 2.11) Since M is unbalanced, by
Lemma 4.1, ! is uniformly definable in .N ;M/. Thus, there are �2; �3 such that
whenever M �end N is unbalanced, then .N ;M/ ˆ �2 if and only if cf.M/ D @0,
and .N ;M/ ˆ �3 if and only if dcf.M/ D @0. Also, there is then a uniform way
to define satisfaction in M, from which it is easy to get a sentence �1 such that
.N ;M/ ˆ �1 if and only if M is short.

At first glance, it might appear that Theorem 4.2 should have a part (4) asserting that
.N ;M/ ˆ �4 if and only if M is coshort. However, this is not so. The following
theorem is a very slight variant of Theorem 6.1 of Kossak and Kotlarski [4]; the proof
in [4] also proves Theorem 4.3.

Theorem 4.3 (Kossak and Kotlarski) Suppose that N is recursively saturated.
Let b; c 2 N be such that b > Scl.0/ and gap..c/i / > gap..c/iC1/ for all
i < !, and then let M0 D inf.gap.b// and M1 D inff.c/i W i < !g. Then
.N ;M0/ � .N ;M1/.

Corollary 4.4 Suppose that N is saturated, and M0;M1 �end N are such that
dcf.M0/ D dcf.M1/ D @0. Then .N ;M0/ � .N ;M1/.

Proof Since N is saturated, there is b 2 N such that either b > Scl.0/
and either M0 D inf.gap.b// or gap..b/i / > gap..b/iC1/ for all i < ! and
M0 D inff.b/i W i < !g. There is c 2 N that determines M1 in an analogous way.
Apply Theorem 4.3 to get that .N ;M0/ � .N ;M1/.

Theorem 4.5 Suppose that N ˆ PA is saturated. Then there are 2@0 different
theories of .N ;M/, where M �end N is short.

Proof There are recursive sequences h'i .v/ W i < !i and h�i .v/ W i < !i of for-
mulas such that whenever T is a consistent completion of PA and I � !, then there is
a unique complete 1-type pI .v/ � T [f'i .v/ W i < !g[f�i .v/ W i 2 I g[f:�i .v/ W
i 2 !nI g. Moreover, each pI .v/ is a minimal type and, whenever I ¤ J , then
pI .v/, pJ .v/ are independent (that is, they cannot be realized in the same gap of a
model of T ).

Here is a sketch of the construction of the 'i .v/ and �i .v/, leaving to the reader
the verification that they are as required. Let h˛i .x; y/ W i < !i be a recursive list
of all 2-ary formulas in the language of PA, and let hti .x/ W i < !i be a recursive
list of all Skolem terms in the single variable x. We define 'i .v/; �i .v/ inductively
on i . We use the following notation: if J � i < !, '.v/ is any formula, and
�0.v/; �1.v/; : : : ; �i�1.v/ have already been defined, then we let

'J;i .v/ D '.v/ ^
^
j2J

�j .v/ ^
^
j2inJ

:�j .v/ :

Let '0.v/ be v D v. Suppose we already have 'i .v/ and �0.v/; : : : ; �i�1.v/.
We first obtain 'iC1.v/. Let 'iC1.v/ be such that PA proves

8vŒ'iC1.v/� 'i .v/� (1)
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and

8uvŒ'iC1.u/ ^ 'iC1.v/ ^ u < v� ti .u/ < v� ; (2)

and such that for all J � i , PA proves

8w9v > wŒ'
J;i
iC1.v/� (3)

and

8v0 < v1 < v2
�� ^
k<2

'
J;i
iC1.vk/

�
�

�
˛i .v0; v1/$ ˛i .v1; v2/

��
: (4)

Next, define �i .v/ to be the formula^
J�i

�
'
J;i
iC1.v/� “jfu W u < v ^ 'J;iiC1.v/gj is even”

�
: (5)

Let I � !. It follows from sentences (1) and (3) that pI .v/ is a consistent type. Sen-
tence (4) guarantees that this type is 2-indiscernible and, hence, complete. Because
of sentence (3), this type is unbounded and, therefore, minimal. (See [6, Chap. 3].)
From (2) we get that distinct I; J � ! yield independent minimal types.

Since the sequences h'i .v/ W i < !i and h�i .v/ W i < !i are recursive, there is
a formula ı0.v/ in the language of .N ; !/ that defines the set of those a 2 N that
realizes some pI .v/.

Now, let a 2 N realize pI .v/, and let M �end N be short with gap.a/ being
its last gap. Since ! is uniformly definable in .N ;M/, there is a formula ı1.v/ in
the language of .N ;M/ (independent of M and I ) that defines a in .N ;M/. Thus,
there is a formula ˇ.x/ (also in the language of .N ;M/ and independent of M and
I ) that defines I in .N ;M/.

Theorems 3.2(1) and 4.2(1) suggest the question of whether there are short
M0;M1 �end N , where N is saturated of cardinality �, such that .N ;M0/ �

.N ;M1/ and .N ;M0/ 6Š .N ;M1/. The almost equivalent question for countable
recursively saturated N was originally asked by Smoryński [8] and recently repeated
in [5].

Theorem 4.6 Suppose that N ˆ PA is saturated. Then there are 2@0 different
theories of .N ;M/, where M �end N and M is balanced.

Proof By Theorem 4.5 (or, according to [3] and [8]), there are 2@0 different
theories of .N 0;M 0/, where M0 �end N 0 � N . For each such .N 0;M 0/, let
.N 00;M 00/ � .N 0;M 0/ be saturated of cardinality � D jN j so that M 00 is a
.�; �/-cut. Then N 00 Š N , so we can arrange that M00 �end N D N 00.

The case of unbalanced cuts will be considered in the next section.

5 Theories of Pairs, II

The main result of this section is Theorem 5.5 concerning unbalanced elementary
cuts. This section comprises two subsections, the first of which discusses some pre-
liminary combinatorial results and the second of which contains the main result and
its proof.
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5.1 Some combinatorics For this subsection, let N be a fixed �-saturated model
of PA. Also, let � < � be a regular, uncountable cardinal. Let M0;M1 be .not
necessarily elementary/ cuts of N such that cf.M0/ D dcf.M1/ D �. In the next
subsection, where we apply the results of this subsection, we will be interested only
in elementary cuts M0;M1. By not requiring the cuts M0;M1 to be elementary in
this subsection, we will avoid having to repeat some arguments.

Suppose k < !. If H � N , then ŒH �k D fhx0; x1; : : : ; xk�1i 2 H k W

x0 < x1 < � � � < xk�1g. If S � N k , then H is homogeneous for S if either
ŒH �k � S or ŒH �k \ S D ¿.

More generally, suppose that S is a set of relations on N ; that is, for every S 2 S

there is k < ! such that S � N k . Then, H � N is homogeneous for S if H
is homogeneous for each S 2 S . If H is homogeneous for S , then a function
� W S � f0; 1g is an S-character of H if, for each S 2 S such that S � N k ,
�.S/ D 1 if and only if ŒH �k � S . If H is an infinite homogeneous set for S , then
it has a unique S-character.

Lemma 5.1 Let ˛ � � be a limit ordinal. For each � < ˛, let S� be a definable
relation on N , and then for each � � ˛, let S� D fS� W � < �g. For each � < ˛,
let X� �cof M0 be a homogeneous set for S� such that whenever � < � < ˛,
then the S�-character for X� is the same as the S�-character for X�. Then, there
is X �cof M0 such that X is homogeneous for S˛ and, whenever � < ˛, then the
S�-character of X is the same as S�-character of X� .

Proof Using the �-saturation of N , get an increasing sequence hz� W � < �i that
is cofinal in M0 such that for each � < � and � < ˛ there is x 2 X� such that
z� < x < z�C1. Making use of �-saturation, we can get X D fx� W � < �g such
that

(1) z� < x� < z�C1 for all � < �;
(2) X is homogeneous for S˛;
(3) for each � < ˛, the S�-character of X is the same as the S�-character of X� .

The x�s must satisfy a set of � formulas in the variables v� (� < �) allowing the
parameters z� .� < �/. The set of formulas is easily seen to be finitely satisfiable.
By the �-saturation of N , such x�s can then be obtained. This X is as required.

Lemma 5.1 has a dual version.

Lemma 5.2 Let ˛ � � be a limit ordinal. For each � < ˛, let S� be a definable
relation on N , and then for each � � ˛, let Su D fS� W � < �g. For each � < ˛,
let X� � N be a homogeneous set for S� such that whenever � < � < ˛, then
M1 D inf.X�/ and the S�-character for X� is the same as the S�-character for
X�. Then, there is X � N such that X is homogeneous for S˛ , M1 D inf.X/ and,
whenever � < ˛, then the S�-character of X is the same as S�-character of X� .

Proof This lemma can proved in the same way that Lemma 5.1 was. However,
instead, we will “reflect” to deduce it from Lemma 5.1.

Let d > M1. For each relation S � N n let S 0 D fhx0; x1; : : : ; xn�1i 2 Œ0; d �n W
hd � x0; d � x1; : : : ; d � xn�1i 2 Sg. In particular, if A � N , then A0 D fx � d W
d � x 2 Ag. For each � � ˛, let S 0� D fS

0
� W � < �g. Let M �1 D .NnM1/

0.
Thus, M �1 is a cut of N and cf.M �1 / D �. Also, X 0� �cof M

�
1 is homogeneous for

S 0� and the S 0�-character for X 0� is the same as the S 0�-character for X 0� whenever
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� < � < ˛. Apply Lemma 5.1 to get Y �cof M
�
1 that is homogeneous for S 0˛ such

that the S 0�-character of Y is the same as the S 0�-character of X 0� . Then, X D Y 0 is
as required.

Lemma 5.3 Suppose n < ! and R � N n is definable. Let S be a set of definable
relations on N such that jS j < �. Let X �cof M0 be homogeneous for S . Then
there is H �cof M0 that is homogeneous for S [ fRg such that the S-character of
H is the same as the S-character of X .

Proof The proof is by induction on n. If n D 0, then let H D X . If n D 1, then
let H D X \ R or let H D XnR, whichever is a cofinal subset of M0. Now let
n > 1 and assume that the lemma holds for all smaller values.

We can assume that X D fx˛ W ˛ < �g, where x˛ < xˇ whenever ˛ < ˇ < �.
Inductively, we will obtain hy˛ W ˛ < �i such that for every ˛ < �:

(1) x˛ � y˛ 2M0;
(2) whenever � < ˛, the y� < y˛ .

Having y˛ , let R˛ D fha1; a2; : : : ; an�1i 2 N n�1 W hy˛; a1; a2; : : : ; an�1i 2 Rg.
Along with the y˛s, we will also obtain hY˛ W ˛ < �i such that for every ˛ < �,

(3) y˛ < Y˛ and Y˛ �cof M0;
(4) fy� W � � ˛g[Y˛ is homogeneous for S and the S-character of fy� W � � ˛g
[ Y˛ is the same as the S-character of X ;

(5) whenever � � ˛, then Y˛ is homogeneous for R� and the fR�g-character of
Y˛ is the same as the fR�g-character of Y� .

˛ D 0: Let y0 D x0 and apply the inductive hypothesis to get Y0. Pick
some y˛ 2 Yˇ such that y˛ > max.yˇ ; x˛/. Since Yˇ is homogeneous for
S [fR� W � � ˇg, we can apply the inductive hypothesis to get Y˛ �cof M such that
y˛ < Y˛ , Y˛ is homogeneous for S [ fR� W � � ˛g and the .S [ fR� W � � ˇg/-
character of Y˛ is the same as the .S [ fR� W � � ˇg/-character of Yˇ .

˛ is a limit ordinal: For each � < ˛, Y� �cof M0, Y� is homogeneous for
S [ fS� W � � �g and the S-character of Y� is the same as the S-character
of X . Furthermore, if � < � < ˛, then the R�-character of Y� is the same as
the R�-character of Y�. Thus, we can apply Lemma 5.1 to get Y �cof M0 that
is homogeneous for S [ fR� W � < ˛g such that whenever � < ˛, then the
.S [ fR� W � � �g/-character of Y is the same as the .S [ fR� W � � �g/-character
of Y� . Pick some y˛ 2 Y such that y > x˛ . We can now apply the inductive hypoth-
esis to get Y˛ �cof M such that y˛ < Y˛ , Y˛ is homogeneous for S [ fR� W � � ˛g

and, for every � < ˛, the .S [ fR� W � � ˇg/-character of Y˛ is the same as the
.S [ fR� W � � �g/-character of Y� .

Let H0 D fy˛ W ˛ < � and ŒY˛�n�1 � R˛g and H1 D fy˛ W ˛ < � and
y˛ 62 H0g. Then H0 [ H1 D fy˛ W ˛ < �g �cof M0. Let H 2 fH0;H1g so that
H �cof M0. Then, it is clear thatH is homogeneous for S[fRg and the S-character
of H is the same as the S-character of X .

Lemma 5.3 easily implies the following dual version of it using the same type of
reflection that was used to deduce Lemma 5.2 from Lemma 5.1.

Lemma 5.4 Suppose n < ! and R � N n is definable. Let S be a set of definable
relations on N such that jS j < �. Let X � N such that inf.X/ D M1 and X
is homogeneous for S . Then there is H � N such that inf.H/ D M1, H is is
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homogeneous for S [ fRg and the S-character of H is the same as the S-character
of X .

5.2 Unbalanced elementary cuts The following theorem is the main result of this
section. Note that it is concerned with unbalanced cuts with uncountable cofinali-
ties. Unbalanced cuts having a countable cofinality were considered in Theorem 4.2,
Corollary 4.4, and Theorem 4.6.

Theorem 5.5 Suppose that N is a saturated model of PA of cardinality �

and M0;M1 �end N are unbalanced such that cf.M0/; cf.M1/; dcf.M0/;

dcf.M1/ � @1. Then .N ;M0/ � .N ;M1/.

Theorem 5.5 is a consequence of the even stronger Theorem 5.6 for which some
definitions are needed. Consider two structures A D .A; : : :/ and B D .B; : : :/ for
the same finite relational language. Thus, whenever X � A and Y � B , then AjX
and BjY are substructures of A and B, respectively. A function f W X � Y is a
partial isomorphism from A to B if X � A, Y � B and f is an isomorphism from
AjX to BjY .

Given an ordinal ˛, we define the game G
˛
.A;B/, which is the Ehrenfeucht-

Fraïssé game of length ˛. This game is played between Players I and II who
each make ˛ moves, playing alternately. In the �th round of play, Player I goes
first, choosing either some a� 2 A or some b� 2 B , and then Player II makes a
choice from the other set to produce the pair ha� ; b�i 2 A � B . If, after ˛ moves,
f D fha� ; b�i W � < ˛g is a partial isomorphism, then II wins. Otherwise, I wins.
We define A �˛ B if Player II has a winning strategy for G

˛
.A;B/. We mention

three basic facts:
(1) A � B iff A �n B for each n < !;
(2) A Š B iff A �� B for some (every) � � jAj; jBj;
(3) A �1;! B iff A �! B.

When considering this game for models of PA, we will modify the language of PA
to consist of just two 3-ary relation symbols denoting C and � in order to render
models of PA as relational structures.

Theorem 5.6 Suppose that N0;N1 are �-saturated models of PA such that
N0 � N1. Suppose that M0 �end N0 and M1 �end N1 are elementary cuts
such that @1 � � D min.cf.M0/; dcf.M0// � min.cf.M1/; dcf.M1// < �. Then
.N ;M0/ �� .N ;M1/.

Proof Let � be the least possible, so � is regular. Without loss of generality, we
can assume that � � cf.M0/; dcf.M1/ < �.

Some more definitions are needed.
We will be concerned with expansions of models N of PA having the form

.N ; a�/�<˛ , where ˛ is an ordinal and each a� 2 N . A subset I � N is in-
discernible for .N ; a�/�<˛ if and only if it is homogeneous for the set of all
relations on N definable using only parameters from fa� W � < ˛g. If I is an
infinite set of indiscernibles for .N ; a�/�<˛ , then we let ˚.I; ha� W � < ˛i/ be
the set of formulas '.x0; x1; : : : ; xm�1Iu/, where u is a tuple of variables form
fu� W � < ˛g such that for some (equivalently: every) c0 < c1 < � � � < cm�1 from I ,
M ˆ '.c0; c1; : : : ; cm�1I a/. (Here it is to be understood that a is the tuple obtained
from u by replacing each u� with a� .)
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We will prove Theorem 5.6 by exhibiting Player II’s winning strategy for the game
G�..N0;M0/; .N1;M1//. When Player II makes her ˛th move (so as to produce the
pair ha˛; b˛i/, she also chooses sets I˛ and J˛ so that the following hold:

(1) I˛ �cof M0 is indiscernible for .N0; a�/��˛;
(2) J˛ � N1 is such that inf.J˛/ DM1 and J˛ is indiscernible for .N1; b�/��˛;
(3) ˚.I˛; ha� W � � ˛i/ D ˚.J˛; hb� W � � ˛i/;
(4) whenever � < ˛, then ˚.I� ; ha� W � � �i/ � ˚.I˛; ha� W � � ˛i/;
(5) jI˛j; jJ˛j < �.

We will check that Player II can always make her ˛th move. Only the case in which
Player I picks some a˛ 2 M0 will be considered: the dual case when he picks
b˛ 2M1 instead can be handled by using the dual lemmas.

˛ D 0: Let I � N0 and J � N1 be such that I is indiscernible for N0, J is indis-
cernible for N1, I �cof M0, inf.J / D M1, and ˚.I I¿/ D ˚.J I¿/. To get such I
and J , first let p.x/ be a minimal type realized in N0, and then let I D fa 2M0 W a

realizes p.x/g and J D fb 2 N1nM1 W b realizes p.x/g.
Player I plays a0. By repeated applications of Lemmas 5.3 followed by one appli-

cation of Lemma 5.1, we can get I0 �cof M0 that is indiscernible for .N0; a0/ such
that jI0j < � and ˚.I;¿/ � ˚.I0; ha0i/. Here are the details.

Let S0 be the set of relations on N that are ¿-definable. Thus, I is homogeneous
for S . Let fSi W i < !g be the set of those relations on N that are definable using
only the parameter a0, and then let Sj D S [ fSi W i < j g for j < !. Let X0 D I .
Inductively, use Lemma 5.3 to get XjC1 �cof M0 that is homogeneous for SjC1
such that the Sj -character of XjC1 is the same as the Sj -character of Xj . Then use
Lemma 5.1 to get I0 �cof M0 that is homogeneous for S [ fSj W j < !g such that
for each j < !, the Sj -character of I0 is the same as the Sj -character of Xj . In
particular, the S-character of I0 is the same as the S-character of I . Clearly, I0 is
indiscernible for .N ; a0/. By replacing I0 by a subset of itself, if needed, we can get
jI0j < �.

Let J0 � J be such that jJ0j < � and inf.J0/ DM1. Since N1 is �-saturated, it is
easy get b0 such that J0 is indiscernible for .N1; b0/ and ˚.I0; ha0i/ D ˚.J0; hb0i/.

˛ D ˇ C 1: Player I plays a˛ . By repeated applications of Lemmas 5.1 and 5.3,
we can get I˛ �cof M0 that is indiscernible for .N0; a�/��˛ such that jI˛j < �

and ˚.I˛; ha� W � � ˇi/ D ˚.Iˇ ; ha� W � � ˇi/. The details, which are
much like those in the ˛ D 0 case, will be omitted. Let J˛ D Jˇ . Since N1

is �-saturated, it is easy get b˛ such that J˛ is indiscernible for .N1; b�/��˛ and
.˚.I˛; ha� W � � ˛i/ D ˚.J˛; hb� W � � ˛i/.

˛ is a limit ordinal: Player I plays a˛ . At this point we have h.a� ; b�/ W � < ˛i and
we have hI� W � < ˛i and hJ� W � < ˛i. By Lemmas 5.3 and 5.4, we can get I and J
such that I �cof M0, J � N1, inf.J / D M1, I is indiscernible for .N0; a�/�<˛ and
J is indiscernible for .N1; b�/�<˛ . By repeated applications of Lemmas 5.1 and 5.3,
we can get I˛ �cof M0 such that jI˛j < �, I˛ is indiscernible for .N0; a�/��˛ and
˚.I; ha� W � < ˛i/ � ˚.I˛; ha� W � � ˛i/. Let J˛ � J be such that inf.J˛/ D M1

and jJ˛j < �. Since N1 is �-saturated, it is easy to get b˛ such that J˛ is indiscernible
for .N1; b�/��˛ and ˚.I˛; ha� W � � ˛i/ D ˚.J˛; hb� W � � ˛i/.

This completes the verification that Player II has a winning strategy, thereby fin-
ishing the proof of the theorem.



12 J. H. Schmerl

6 Epilogue

The original purpose for writing this paper was to rectify some statements made
in [1]. The following two results are stated without proof in [1, Props. 5.1 and 5.3],
where it is said they are proved in [2]; in fact, neither appears [2].

If ˛ � � and ˇ � �C are infinite cardinals, then there is a model of PA having
reduced ordertype �� �.˛� C ˇ/.
If T is a completion of PA and T is not True Arithmetic .TA/, then T has at
least 4 pairwise nonisomorphic models having reduced ordertype �� �! .and 3 if
T D TA/.

The first of the above statements is false whenever ˛ < � as shown by Theorem 2.2.
It is “suggested” in [1] that every completion T � PA has 2� nonisomorphic

models having reduced ordertype �� �!, and it is also “suggested” that if ˇ � � is an
uncountable regular cardinal, then every completion T � PA has, up to isomorphism,
exactly one model having reduced ordertype �� � ˇ. Theorem 3.1 gives the actual
number of models in each case.
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