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The Field of LE-Series
with a Nonstandard Analytic Structure

Ali Bleybel

Abstract In this paper we prove that the field of Logarithmic-Exponential
power series endowed with the exponential function and a class of analytic
functions containing both the overconvergent functions in the t-adic norm and
the usual strictly convergent power series is o-minimal.

1 Introduction

The real field with restricted analytic functions and exponentiation is the structure

Ran,exp := (R, <, 0, 1, +, −, ·, ( f̃ ) f ∈R{ξ,m},m∈N, exp)

where R{ξ, m} := R{ξ1, . . . , ξm} is the ring of all power series in ξ1, . . . , ξm that
converge in a neighborhood of [−1, 1]

m and where f̃ equals f on the box [−1, 1]
m

and is zero outside.
In [2] and [5] it was shown that Ran,exp admits quantifier elimination and is o-

minimal. On the other hand, the field of Logarithmic-exponential series R((t))LE is
a generalized power series field which turns out to be a nonstandard model of the
theory of the real field with restricted analytic functions and exponentiation.

In this paper we consider the field R((t))LE together with a nonstandard analytic
structure in the sense of [1] and the exponential function. We show that the resulting
structure is o-minimal in the language L+(exp) of rings together with symbols for
restricted analytic functions, restricted t-adically overconvergent functions and the
exponential function.
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2 The Setting

Let 0 be an Abelian ordered group. We define the field of power series k((t0)) over
a field k as the set of power series of the form

f =

∑
γ∈I

aγ tγ

with I ⊂ 0 is well ordered and aγ ∈ k. We may also write

f =

∑
γ∈0

aγ tγ

such that the set supp( f ) := {γ ∈ 0 : aγ 6= 0} is well ordered. We have the
following standard lemma (see [9]).

Lemma 2.1 (Neumann) Let G be an ordered Abelian group and let S ⊂ G
be well ordered with s > 0 for all s ∈ S. Then for all g ∈ G, the set
Sg = {(h1, . . . , hn) : n ∈ N, hi ∈ S,

∑
hi = g} is finite and {g : Sg 6= ∅} is

well ordered.

Addition on k((t0)) is defined componentwise; that is, for f =
∑

γ∈I aγ tγ and
g =

∑
γ∈J bγ tγ with I, J ⊂ G well ordered we write

f + g =

∑
γ∈I∪J

(aγ + bγ )tγ ,

where we put aγ = 0 (respectively, bγ = 0) for γ ∈ J \ I (respectively, γ ∈ I \ J ).
The product f · g is defined by

f · g =

∑
(δ,σ )∈I×J

aδbσ tδ+σ
=

∑
γ∈0

cγ tγ

where cγ =
∑

(δ,σ )∈Kγ
aδbσ , Kγ = {(δ, σ ) ∈ I × J : δ + σ = γ }. It is easily seen

by Lemma 2.1 that Kγ is finite for each γ ∈ 0 and that the set {γ ∈ 0 : cγ 6= 0} is
well ordered. Hence, f · g belongs to k((t0)).

The operations + and · defined above make k((t0)) into a field. If 0 is divis-
ible and k is real closed, then k((t0)) is real closed. The usual order on R may
be extended to R((t0)) by setting f =

∑
γ∈0 aγ tγ > 0 if and only if f 6= 0 and

aδ > 0 where δ = min(supp f ). Naturally, R((t0)) comes equipped with a valuation
ordt : R((t0))× → 0 given by ordt f = min(supp f ).

3 Analytic Structure

Let 0 be a divisible Abelian ordered group. Let An,α (α is a positive real) be the set

An,α = { f ∈ R[[ξ1, . . . , ξn]] : radius of convergence of f > α}.

We have the following definition [1].
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Definition 3.1

Rn,α(0) := An,α ⊗R R((t0))

:=

{ ∑
γ∈I

fγ tγ : fγ ∈ An,α and I ⊂ 0 is well ordered
}

Rn(0) :=

⋃
α>1

Rn,α(0)

R(0) :=

⋃
n∈N

⋃
α>1

Rn,α(0).

As we shall see below, the elements of Rn(0) define functions from [−1, 1]
n

⊂

R((t0))n to R((t0)). We define the language L0 as

L0 := 〈 · , +, −1, 0, 1, < , R(0)〉.

Following [2], R((t0)) may be naturally equipped with an L0-structure. Let
ξ = (ξ1, . . . , ξn) be variables and let g be a formal power series in ξ1, . . . ξn ,
g ∈ R[[ξ ]],

g(ξ) =

∑
ν∈Nn

aνξ
ν .

Let Mn
= {x ∈ R((t0))n

: ordt (xi ) > 0, for i = 1, . . . , n}, and define
ĝ : Mn

→ R((t0)) by
ĝ(x) =

∑
ν∈Nn

aνxν .

Using Lemma 2.1, the last sum is a well-defined element of R((t0)).
Now let f ∈ R{ξ1, . . . , ξn}. In other words, f ∈ An,α for some α > 1. Then f̃

is interpreted on R((t0))n as follows: Let z ∈ R((t0))n such that −1 ≤ zi ≤ 1 for
i = 1, . . . , n. There exists some a ∈ [−1, 1]

n
∩ Rn such that ordt (zi − ai ) > 0 for

i = 1, . . . , n. Also, there exists a convergent power series ga ∈ R[[ξ1, . . . , ξn]] such
that for some ε > 0, if ‖x − a‖ < ε, then f (x) = ga(x − a). Then define

f̃ (z) = ĝa(z − a).

Having interpreted f̃ for f ∈ An,α , for α > 1, the interpretation of f ∈ Rn,α(0)
follows clearly.

Recall the following results (due to Denef and van den Dries as pointed by the
referee).

Theorem 3.2 (see [1] or [2]) Let 0 be a divisible ordered Abelian group. Then
R((t0)) admits quantifier elimination and is o-minimal in L0 .

Corollary 3.3 (see [1] or [2]) Let 00 and 01 be divisible ordered Abelian
groups with 00 ⊂ 01. Consider R((t0i )) with its induced L00 -structure. Then
R((t00)) � R((t01)) in L00 .

4 Axioms for the Exponential Function

There exists a set of universal axioms for the theory Tan,exp (see [2]).

Theorem 4.1 The theory Tan, exp is o-minimal and is axiomatized by Tan and the
following axioms:
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E1 exp(x + y) = exp(x) exp(y);
E2 x < y → exp(x) < exp(y);
E3 x > 0 → ∃y exp(y) = x;
E4n x > n2

→ exp(x) > xn , for each natural number n > 0;
E5 −1 ≤ x ≤ 1 → exp(x) = e(x),

where e is the function symbol in Lan representing the restricted analytic
function which is equal to the power series

∑ Xn

n!
∈ R{X} on [−1, 1].

5 Analytic Structure over the Field of Logarithmic-Exponential Series

We shall reconstruct the field of logarithmic-exponential power series while replac-
ing all Lan-embeddings by L∗

an-embeddings.

5.1 Field of exponential series The construction of the field of exponential power
series R((t))E is parallel to the classical construction in, for example, [3].

Recall that the construction procedure consists of building a chain 00 ⊂ 01 ⊂ . . .
of DAOG (divisible Abelian ordered groups) and a corresponding chain K0 ⊂ K1
⊂ . . . of ordered fields such that for each n we have Kn = R((t0n )), and Kn
is equipped with a map En : Kn → Kn+1 with En+1 extending En ; that is,
En+1|Kn = En . Now we equip each Kn with an analytic structure as in Section 3.
More precisely, we will obtain an L0n -structure,

〈Kn, · , +, −1, 0, 1, R(0n)〉,

for each n ∈ N.
Consider the language L∗

an =
⋃

n∈N L0n . Now we equip R((t))E with an
R∗

an-analytic structure where R∗
an =

⋃
n R(0n) so that R((t))E becomes an L∗

an-
structure. Each function symbol in L∗

an belongs to L0n for some n ∈ N. The
interpretation of f on R((t))E is clear from its interpretation on R((t0n )) (as in
Section 3). The L∗

an-structure R((t))E now satisfies the axioms (E1), (E2), (E4),
and (E5). Now consider the L∗

an-theory T ∗
an :=

⋃
n T0n where T0n = Th(R((t0n )).

Then we have the following lemma.

Lemma 5.1 R((t))E
|H T ∗

an .

Proof For n ∈ N and all m > n we have R((t0n )) ≺ R((t0m )) in L0n by Corol-
lary 3.3. By standard model theory, it follows that R((t0n )) ≺ R((t))E in L0n ,
and hence R((t))E

|H T0n for all n ∈ N, and consequently R((t))E
|H T ∗

an as re-
quired. �

Lemma 5.2 R((t))E admits quantifier elimination and is o-minimal in L∗
an .

Proof Consider a set M ⊂ K n defined by some L∗
an-formula ϕ. By the definition of

L∗
an there exists some n ∈ N such that ϕ ∈ L0n . Now observe that Kn is o-minimal

in L0n , and Kn ≺ Km in L0n for all m > n. It follows that Kn ≺ K =
⋃

i Ki in
L0n ; hence K is o-minimal in L0n . So M is a finite union of points and intervals. It
follows that R((t))E is o-minimal in L∗

an as desired. A similar reasoning shows that
R((t))E admits QE in L∗

an . �

Corollary 5.3 The theory T ∗
an admits QE and is o-minimal.
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5.1.1 R((t))LE as a power series field Recall that for the construction of R((t))LE

we built a chain L0 ⊂ L1 ⊂ . . . and a set of isomorphisms ηi : L i → R((t))E such
that ηi+1(z) = 8(ηi (z)) for all z ∈ L i .

By [4] we have the following.

Lemma 5.4 There exists an ordered field inclusion R((t))LE
⊂ R((t0

+

)) where 0+

is a DAOG.

Proof Let 0E,n
= η−1

n (0), where ηn is the isomorphism ηn : Ln → R((t))E ,
and 0E,n is a subgroup of the additive group of Ln . By (2.8) of [4] there exists an
isomorphism ∑

µ∈0

aµtµ 7→

∑
µ∈0E,n

aµη−1
n (tµ) : R((t0)) → R((t0

E,n
))

of ordered fields. Consider the increasing sequence

0E
= 0E,0

⊂ 0E,1
⊂ 0E,2

⊂ . . .

of subgroups of the additive group of R((t))LE, and let 0+
=

⋃
n 0E,n . Finally,

let R((t0
+

)) be the maximal ordered field with residue field R and value group 0+.
Then we obtain an ordered field inclusion R((t))LE

⊂ R((t0
+

)) as required. �

Now similarly to the case of R((t))E, we consider languages

Ln = 〈+, , · , −1, 0, 1, R(0E,n)〉.

Let L+
=

⋃
n Ln and T +

=
⋃

n Tn where Tn is the Ln-theory of R((t0
E,n

)). By
Corollary 3.3, Ln � Lm in Ln for m ≥ n; hence Ln ≺ R((t))LE for all n ∈ N so
R((t))LE

|H Tn for all n ∈ N. Hence we obtain similarly to Lemma 5.1 the following.

Lemma 5.5 R((t))LE
|H T +.

The next theorem also follows.

Theorem 5.6 R((t))LE
|H T +(exp).

Proof It is easy to see that exp satisfies axioms (E1)–(E5) of Theorem 4.1. The
theorem then follows by the above lemma. �

Theorem 5.7 R((t))LE is o-minimal and admits quantifier elimination in the lan-
guage L+.

Proof Easily follows from Corollary 5.3. �

By analogy to Theorem 2.14 of [2] we have the following theorem.

Theorem 5.8 The theory T + admits a universal axiomatization.

Proof We consider the following axioms in the language L+(−1, ( n
√

)n=2,3,...):
(1) axioms for ordered fields,
(2) an axiom for each power series identity, and
(3) for each n the axiom saying that each positive element has an nth-root,

(x > 0 → (( n
√

x)n
= x ∧

n
√

x > 0)) ∧ (x ≤ 0 →
n
√

x = 0),

together with the defining axiom for −1. These axioms are universal and they
axiomatize the theory T + as required.
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�

We shall denote R((t))LE by K. Using quantifier elimination we obtain, as in [2],
Corollary 2.15.

Corollary 5.9 For each function f : Kn
→ K there are L+(−1, ( n

√
)n=2,3,...)-

terms τ1(x1, . . . , xn), . . . , τk(x1, . . . , xn) such that f is piecewise given by the terms
τ1, . . . , τk .

Proof Cf. [2], Corollary 2.15. �

6 Quantifier Elimination

In this section we prove that R((t))LE admits quantifier elimination in L+(exp, log).
We use the following test of quantifier elimination [10]:
(*) A theory T in a language L has quantifier elimination if and only if T has

the Shoenfield property.

Shoenfield property A theory T has the Shoenfield property if and only if, for any
two models, M1, M2 |H T , such that M2 is ‖M1‖

+-saturated and any L-embedding
σ : N → M2 with N ⊂ M1, there is an L-embedding σ ∗

: M1 → M2 extending f .

Let M1, M2 |H T +(exp) such that M2 is ‖M1‖
+-saturated as in (∗) above, and let

σ : N → M2 be an L+(exp, log) embedding. An L+-embedding σ : M → N
is called log-preserving if log(σ (x)) = σ(log x) for all x ∈ M . For M |H T +,
L ⊂

+ M (L is an L+-substructure of M) and y ∈ M \ L , we denote by L〈y〉 the
L+-definable closure of L ∪ {y} in M .

Theorem 6.1 Let K be a model of T +(exp) and F0 an L+-substructure of K such
that F0 is log-closed and F0 |H T +. Let L be a |K |

+-saturated model of T +(exp)
and σ0 : F0 → L a log-preserving embedding. Then σ0 can be extended to a log-
preserving embedding of K into L.

Proof Similar to the proof of Theorem 4.1 of [2]. �

Corollary 6.2 T +(exp) admits quantifier elimination in L+(exp, log).

Proof Using the Shoenfield test of quantifier elimination and the previous theorem,
we proceed similarly to (4.5) of [2]. �

7 Model Completeness of T+(exp) in L+(exp)

Quantifier elimination as stated above is of no direct use to us, since it would be
extremely complicated to replicate the proofs of [2], [5] or others in our context
where the base field is a non-Archimedean real closed field. However, there is some
progress in the mathematics literature of our understanding of Noetherian varieties in
definably complete structures; that is, the base field is assumed definably complete.

To be able to exploit finiteness results in this context toward the proof of o-
minimality one has to use model completeness of the theory. However, finiteness
results are only known for algebraic-exponential varieties over a definably com-
plete field. Hence, we must show that T +(exp) is model complete in the language
L+(exp) (i.e., there is no symbol for log).
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Proposition 7.1 Let ϕ(x) be an L+(exp, log)-formula. Then ϕ(x) is equivalent to
an existential L+(exp)-formula.

Proof By quantifier elimination in L+(exp, log) we may assume that ϕ(x) is quan-
tifier free. Assume that ϕ(x) is purely logarithmic (no occurrences of exponential
in a subformula of ϕ(x)). So ϕ(x) is a Boolean combination of atomic formulas
of the form τi (x)�i 0, where τi (x) = ti ( f1(x), . . . , fk(x), log g1(x), . . . , log gl(x)),
and where f j (x), g j (x) are simpler L+(exp, log)-terms, and �i ∈ {=, <}. We may
assume that all the atomic subformulas occurring in such Boolean combination are
positive (no atomic subformula is preceded by a negation). For instance, the subfor-
mula ¬(τi (x) = 0) is to be replaced by τi (x) < 0 ∨ 0 < τi (x).

So the atomic formula τi (x)�i 0 is equivalent to

ti ( f1(x), . . . , fk(x), y1, . . . , yl) = 0 ∧

l∧
j=1

y j = log g j (x).

Replacing the occurrence of the logarithm by an existential subformula we obtain
τi (x) = 0 is equivalent to

ti ( f1(x), . . . , fk(x))�i 0 ∧

l∧
j=1

∃ξ j g j (x) = ξ j .

In the same way we can unravel each term (getting rid of the logarithm at the expense
of adding more existential quantifiers). Since there are no occurrences of negative
subformulas in the formulas above, the existential quantifiers can be pulled back and
we obtain an existential L+(exp) as required.

Now if ϕ(x) is not purely logarithmic the same reasoning applies. We leave the
details to the reader. �

This proposition easily yields the following theorem.

Theorem 7.2 The theory T +(exp) is model complete in the language L+(exp).

Proof Since every L+(exp)-formula is equivalent to an L+(exp, log)-formula and
thus to an existential L+(exp)-formula it follows that T +(exp) is model complete.

�

8 o-Minimality

In this section we prove the o-minimality of the field of LE-series in the language
L+(exp). We first recall the definition of definable completeness.

Definition 8.1 Consider a language L = (+, −, · , <, 0, . . . ) expansion of the
language of ordered rings and let M be an L-structure. We say that M is definably
complete if every definable subset X ⊂ M of the domain M of M which is bounded
above has a least upper bound.

We have the following result [8].

Proposition 8.2 The following statements are equivalent:
(i) M is definably complete.

(ii) M has the intermediate value property.
(iii) M is definably connected.
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(iv) Intervals in M are definably connected.
(v) If f : A → Mn is a definable continuous function and A is a closed and

bounded subset of Mm , then the set f (A) is closed and bounded.
(vi) If F : A → M is a definable continuous function and A is a closed and

bounded subset of Mn , then f attains a maximum and a minimum in A.

Proof See [7] and [8]. �

Using model completeness proven in Section 7 we have the following equivalence.

Proposition 8.3 Let L be an expansion of the language of ordered rings and let
M be an L-structure such that M is model complete and definably complete. The
structure M is o-minimal in L if and only if every definable variety can be written
as a union of finitely many definably connected components.

By a “variety” we mean a Boolean combination of sets of the form V ( f ) for one or
finitely many definable functions f : Mn

→ M (where M is the underlying universe
of M).

Proof The “if only” implication is obvious. Assume that every variety of Mn is a
union of finitely many connected components. By model completeness each defin-
able set X ⊂ M is the projection of a definable variety V ⊂ Mn for some n. Since
V is the union of finitely many definably connected components it easily follows
that its projection along any of the coordinate axes is also composed of finitely many
definably connected components (not necessarily varieties). Hence it follows that X
is a finite union of intervals and points as required. �

Now we let K be the field of LE-series R((t))LE and M be the structure K with
language L+(exp). We show that K is definably complete in the language L+(exp).

Lemma 8.4 The structure K is definably complete in L+(exp).

Proof By Proposition 8.2 it suffices to show property (v); that is, for any definable
continuous function f : A ⊂ Km

→ Kn , if A is definable, closed and bounded (i.e.
definably compact) then so is f (A).

Write f (x1, . . . , xm) = ( f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)). By Theorem 5.8
there are L+(−1, ( n

√
)n=2,3,..., exp, log)-terms τ1(x), . . . , τk(x) such that each fi is

given piecewise by terms τ1(x1, . . . , xm), . . . , τk(x1, . . . , xm). Observe that each
L+(−1, ( n

√
)n=2,3,..., exp, log)-term τ(x) can be constructed inductively using

L+(−1, ( n
√

)n=2,3,...)-terms τ ′(x) and

L(exp, log) terms τ ′′(x).

It follows that we may restrict to the case

f (x1, . . . , xm) = g(h1(x1, . . . , xm), . . . , hl(x1, . . . , xm))

where either

(i) g is an L+(−1, ( n
√

)n=2,3,...)-definable function and h1,. . . ,hl are L(exp, log)-
definable functions or

(ii) g is an L(exp, log)-definable function and h1,. . . ,hl are L+(−1, ( n
√

)n=2,3,...)-
definable functions.
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Clearly, by o-minimality of K in either L+ or L(exp), K is definably complete in
both languages. Consider the case (i) for definiteness.

Then there exists, by the above argument, a partition of A into L(exp)-definable
pieces A1, . . . , Ak such that on each Ai for i = 1, . . . , k the functions h1, . . . , hl are
given by terms (this can be done by partitioning A into definable pieces on each of
which h1 is given by an L(exp, log)-term and then refining the obtained partition to
obtain a partition of A into pieces on each of which h1 and h2 are given by terms, and
so on). The pieces must be bounded (since A is) but they are not necessarily closed.
Consider a piece Ai for some i ∈ {1, . . . , k}, and let Fr(Ai ) := Āi \ A◦

i be the
frontier of Ai , where Āi and A◦

i are the closure and the interior of Ai , respectively.
If Fr(Ai ) ⊂ Ai , then Ai is closed and bounded and its image B by (h1, . . . , hl ) is
closed and bounded; hence g(B) is closed and bounded as required.

Otherwise, assume Fr(Ai ) 6⊆ Ai . Then Fr(Ai ) is also finitely partitioned into
L(exp)-definable pieces. Let us assume that f (Fr(Ai )) is closed and bounded.
Even though Ai may not be closed, the fact that f is continuous forces f (Ai ) to
be bounded. Then also f ( Āi ) must be closed by continuity of f and the fact that
f (Fr(Ai )) is closed and bounded.

More precisely, assume that f (Ai ) is a nonclosed set. Let (xn)n be a sequence
in Ai such that f (xn) → b, where b 6∈ f (Ai ) is a limit point of f (Ai ). Let C̄ be
the closure of C = {xn|n ∈ N}. If C̄ ⊂ Ai then necessarily b ∈ f (Ai ), contrary to
hypothesis. Then there exists a limit point a of C which lies in Fr(Ai ) and hence,
by the continuity of f , b = f (a) ∈ f (Fr(Ai )) ⊂ f ( Āi ). Thus f ( Āi ) is closed and
bounded as required.

To show that f (Fr(Ai )) is closed and bounded we consider the partition of
Fr(Ai ) into pieces induced by the partition A1, . . . , Ak . Then we apply to
each piece (A j ∩ Fr(Ai )) the same reasoning as above, assuming this time that
f (Fr(A j ∩ Fr(Ai ))) is closed and bounded. Hence, by induction, we are led to
consider the case of a piece which is equal to its frontier, hence closed and bounded.
Finally set A = Ā1 ∪· · ·∪ Āk (since A is closed) and then the required result follows.
The case (ii) is treated similarly. Hence K is definably complete in L+(exp). �

Hereafter we borrow some results and definitions from [6]. In the following “defin-
able” means L+, Lan,exp, or L+(exp)-definable. Let X ⊂ Y ⊂ Kn with Y definable.

Definition 8.5 X is nowhere dense (in Y ) if intY (clY X) = ∅. X is definably
meager (in Y ) if there exists a definable increasing family (A(t))t∈K of nowhere
dense subsets of Y such that X ⊂

⋃
t∈K A(t).

Definition 8.6 Y is definably Baire if every nonempty open definable subset of Y
is not definably meager (in Y ).

For more results and discussions about the notion of definably Baire structure we
refer the reader to [6]. Here we state the following result needed for the proof of
o-minimality.

Proposition 8.7 Let Y ⊂ Km be definable. The following are equivalent:

1. Y is Baire;
2. for all X ⊂ Y , if X is meager then intX = ∅;
3. every x ∈ Y has a definable neighborhood which is Baire;
4. every residual subset of Y is dense;
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5. every open definable nonempty subset of Y is not meager in itself;
6. every meager closed definable subset of Y has empty interior.

Proof Cf. [6], Lemma 2.5. �

Lemma 8.8 Let V ⊂ Kn be an L+(exp)-definably connected variety. Then
there exist N ∈ N , N ≥ n, and L+- and L(exp)-definably connected varieties
V1, V2, . . . , Vk ⊂ KN and U ⊂ KN , respectively, such that V is the image of
(V1 ∪ · · · ∪ Vk) ∩ U by the projection KN

→ Kn .

Proof Let τ1(x1, . . . , xn), . . . , τs(x1, . . . , xn) be the L+(exp) terms used in the de-
scription of V . We separate the occurrences of the exponential and the other L+

terms in the standard way; for instance, if

τ(x1, . . . , xn) = t1(σ1(x), . . . , σl(x), exp(σl+1(x)), . . . , exp(σl+k(x)))

where t1 is an L+-term and σ1, . . . , σl+k are L+(exp)-terms of lower complexity
(i.e., they have less exp occurrences) then the set {x ∈ Kn

|τ1(x) = 0} is the pro-
jection on Kn of the intersection of the sets Y1 = {(x, y, z) ∈ Kn+2k

|t1(x) = 0,
y1 − σl+1(x) = 0, . . . , yk − σl+k(x) = 0} and Y2 = {(x, y, z) ∈ Kn+2k

|z1 =

exp(y1), . . . , zk = exp(yk)}. Y1 is a finite union of L+-definably connected sets
and Y2 is L(exp)-definably connected as required. The general case is treated simi-
larly. �

Definition 8.9 A definably complete structure K is a Baire structure if K is defin-
ably Baire as a definable subset of K itself.

Lemma 8.10 K := R((t))LE is an L+(exp)-definably complete Baire structure.

Proof Suppose not; then there exists an L+(exp)-definable increasing family
(A(t))t∈K of nowhere dense subsets of Kn for some n > 0 such that

⋃
t A(t) = Kn .

Then, by Lemma 8.8, A(t) is the projection of the L+-definable and L(exp)-
definable subsets B(t) ⊂ Km and C(t) ⊂ Km , respectively. There exists a
ball B(c, r) of center c ∈ Km and radius r > 0 such that B(t) ∩ B(c, r) or
C(t) ∩ B(c, r) is nowhere dense. Otherwise, by o-minimality of K in L+, B(t)
contains a ball B(c1, r1) of center c1 ∈ Km and radius r1 > 0. Similarly, by
o-minimality of K in L(exp), C(t) contains a ball B(c2, r2) of center c2 ∈ Km

and radius r2 > 0. By our hypothesis, we can choose B(c2, r2) ⊂ B(c1, r1) or
B(c1, r1) ⊂ B(c2, r2). So there exists a ball B(c, r) = B(c1, r1) ∩ B(c2, r2) for
some c and r as above such that, for t > t0, B(c, r) ⊂ B(t) ∩ C(t) so there exists
a ball B ′ which is the image of B(c, r) by the projection Km

→ Kn such that
B ′

⊂ A(t), contradicting the hypothesis. Hence B(t) ∩ B(c, r) or C(t) ∩ B(c, r)
is nowhere dense for all t and for some c, r as above. Let us say B(t) ∩ B(c, r) is
nowhere dense for all t ∈ K. Hence

⋃
t B(t) ∩ B(c, r) = B(c, r), contradicting

the fact that K is definably Baire in L+. If C(t) ∩ B(c, r) is nowhere dense for all
t ∈ K, a similar reasoning also leads to a contradiction. �

Theorem 8.11 The structure R((t))LE is o-minimal in the language L+(exp).

Proof By Theorem 9.9 of [6] the theory T +(exp) is o-minimal since it is definably
complete and Baire by Lemma 8.10 (obviously T +(exp) is consistent since it has a
model). �
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