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A Nonstandard Counterpart of WWKL

Stephen G. Simpson and Keita Yokoyama

Abstract In this paper, we introduce a system of nonstandard second-order
arithmetic ns-WWKL0 which consists of ns-BASIC plus Loeb measure property.
Then we show that ns-WWKL0 is a conservative extension of WWKL0 and we
do Reverse Mathematics for this system.

1 Introduction

In [4] Keisler characterized the “big five” subsystems of second-order arithmetic
RCA0, WKL0, ACA0, ATR0, and 51

1-CA0 in terms of systems of nonstandard arith-
metic (for the details of these systems, see [6]). In [11] we introduced systems
of nonstandard second-order arithmetic corresponding to RCA0, WKL0, and ACA0
within which we can do nonstandard analysis. In this paper we introduce a non-
standard counterpart of the system WWKL0. WWKL0 is an appropriate system for
some measure theory. It consists of RCA0 plus “weak weak König’s lemma” (see
[1; 12; 13] and [6, Section X.1]). We use some properties of Loeb measure to give a
nonstandard characterization of WWKL0.

2 Systems of Nonstandard Second-Order Arithmetic

We first introduce the language of nonstandard second-order arithmetic.

Definition 2.1 The language of nonstandard second-order arithmetic L∗

2 is defined
by the following:
standard number variables: x s, ys, . . .,
nonstandard number variables: x∗, y∗, . . .,
standard set variables: X s, Y s, . . .,
nonstandard set variables: X∗, Y ∗, . . .,
function and relation symbols: 0s, 1s,=s,+s, ·s, <s,∈s,

0∗, 1∗,=∗,+∗, ·∗, <∗,∈∗,
√

.
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Here, 0s, 1s,=s,+s, ·s, <s,∈s denote “the standard structure” of second-order arith-
metic; 0∗, 1∗,=∗,+∗, ·∗, <∗,∈∗ denote “the nonstandard structure” of second-order
arithmetic; and

√
denotes an embedding from the standard structure to the nonstan-

dard structure.
The terms and formulas of the language of nonstandard second-order arithmetic

are as follows. Standard numerical terms are built up from standard number variables
and the constant symbols 0s and 1s by means of +

s and ·
s. Nonstandard numerical

terms are built up from nonstandard number variables, the constant symbols 0∗ and
1∗ and

√
(t s) by means of +

∗ and ·
∗, where t s is a numerical term. Standard set

terms are standard set variables and nonstandard set terms are nonstandard set vari-
ables and

√
(X s) whenever X s is a standard set term. Atomic formulas are t s

1 =
s t s

2,
t s
1 <

s t s
2, t s

1 ∈
s X s, t∗1 =

∗ t∗2 , t∗1 <∗ t∗2 , and t∗1 ∈
∗ X∗ where t s

1, t s
2 are standard

numerical terms, t∗1 , t∗2 are nonstandard numerical terms, X s is a standard set term,
and X∗ is a nonstandard set term. Formulas are built up from atomic formulas by
means of propositional connectives and quantifiers. A sentence is a formula without
free variables.

Let ϕ be an L2-formula. We write ϕs for the L∗

2-formula constructed by adding
s to all occurrences of bound variables, relations, and operations of ϕ. Similarly, we
write ϕ∗ for the L∗

2 formula constructed by adding ∗. We sometimes omit s and ∗ for
relations and operations. We write t s

√

for
√
(t s) and X s

√

for
√
(X s). We sometimes

write Ex (respectively, EX ) for a finite sequence of variables x1, . . . , xk (respectively,
X1, . . . , Xk).

A model for L∗

2 is a triple M = (V s
M, V ∗

M,
√

M) such that
(s) V s

M = (Ms
M, Ss

M,=
s
M,+

s
M, ·

s
M, 0s

M, 1s
M, <

s
M,∈

s
M) is a model for

{=
s,+s, ·s, 0s, 1s, <s,∈s

},

and
(∗) V ∗

M = (M∗

M, S∗

M,=
∗

M,+
∗

M, ·
∗

M, 0∗

M, 1∗

M, <
∗

M,∈
∗

M) is a model for

{=
∗,+∗, ·∗, 0∗, 1∗, <∗,∈∗

};

that is, V s
M and V ∗

M are models for L2, and
√

M is a function from Ms
M ∪ Ss

M to
M∗

M ∪ S∗

M. We usually omit the subscript M.
In Section 4 we will do nonstandard analysis within nonstandard second-order

arithmetic without fixing models. When we do nonstandard analysis, we need to
mention the standard universe and the nonstandard universe. In such a context, we
use V s to denote the standard universe and V ∗ to denote the nonstandard universe,
without mentioning models. We sometimes say that “ϕ holds in V s” (abbreviated
V s

|H ϕ) if ϕs holds, and we say that “ϕ holds in V ∗” (abbreviated V ∗
|H ϕ) if ϕ∗

holds. Here V s and V ∗ do not refer to fixed models. We use this notation only in
order to make our nonstandard arguments more accessible.

We next introduce some typical axioms of nonstandard second-order arithmetic.

Definition 2.2

embedding principle (EMB): ∀ Ex s∀ EX s(ϕ( Ex s, EX s)s ↔ ϕ( Ex s
√

, EX s
√

)∗)

where ϕ(Ex, EX) is any atomic L2-formula with exactly the displayed free vari-
ables.

end extension principle (E): ∀x∗
∀ys(x∗ < ys

√

→ ∃zs(x∗
= zs

√

)).
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6i
j overspill principle (6i

j -OS):

∀ Ex∗∀ EX∗(∀ys
∃zs(zs

≥ ys
∧ ϕ(zs

√

, Ex∗, EX∗)∗)

→ ∃y∗(∀ws(y∗ > ws
√

) ∧ ϕ(y∗, Ex∗, EX∗)∗))

where ϕ(y, Ex, EX) is any6i
j L2-formula with exactly the displayed free variables.

6i
j equivalence principle (6i

j -EQ): (ϕs
↔ ϕ∗) where ϕ is any 6i

j L2-sentence.

6i
j transfer principle (6i

j -TP): ∀ Ex s∀ EX s(ϕ( Ex s, EX s)s ↔ ϕ( Ex s
√

, EX s
√

)∗)

where ϕ(Ex, EX) is any 6i
j L2-formula with exactly the displayed free variables.

Now we define the base system of nonstandard second-order arithmetic.

Definition 2.3 (The system ns-BASIC) The axioms of ns-BASIC are the following:
standard structure: (RCA0)

s

basic axioms: EMB,E
nonstandard axioms: 60

1 -OS, 61
2 -EQ, 60

0 -TP.

Theorem 2.4 (Conservativity) ns-BASIC is a conservative extension of RCA0,;
that is, ns-BASIC ` ψ s implies RCA0 ` ψ for any L2-sentence.

Proof This is a straightforward consequence of Tanaka’s self-embedding theo-
rem [9] and Harrington’s theorem [6, Theorem IX.2.1]. �

Within ns-BASIC, a standard set As is said to be the standard part of a nonstandard
set B∗ (abbreviated B∗ � Ms

= As) if ∀x s(x s
∈ As

↔ x s
√

∈ B∗). By 60
0 -TP,

we can show ∀X s(X s
√

� Ms
= X s). The existence of the standard part of any

nonstandard set provides a nonstandard counterpart of WKL0.

Definition 2.5 (The system ns-WKL0) ns-WKL0 consists of ns-BASIC plus stan-
dard part principle (ST) which asserts

∀X∗
∃Y s

∀x s(x s
∈ Y s

↔ x s
√

∈ X∗).

Theorem 2.6 (Conservativity) ns-WKL0 is a conservative extension of WKL0; that
is, ns-WKL0 ` ψ s implies WKL0 ` ψ for any L2-sentence..

Proof This is a straightforward consequence of Tanaka’s self-embedding theorem
[9]. See also [11]. �

3 ns-WWKL0

In this section we define Loeb measure for trees and introduce another nonstandard
axiom LMP (Loeb measure property) and a new system ns-WWKL0. Then we show
that LMP is a nonstandard counterpart of weak weak König’s lemma.

Within RCA0, we define the measure µ for binary trees as

µ(T ) = lim
i→∞

|{σ ∈ T | lh(σ ) = i}|
2i .

Similarly, we define

µ(T ) ≥ a ⇔ ∀i
(

|{σ ∈ T | lh(σ ) = i}|
2i ≥ a

)
,
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and µ(T ) > a ⇔ ∃b > a µ(T ) ≥ b. Note that we have defined the relation
µ(T ) ≥ a or µ(T ) > a for a ∈ R even if µ(T ) does not exist. WWKL0 consists of
RCA0 plus weak weak König’s lemma (WWKL) which asserts that a binary tree T
has a path if µ(T ) > 0.

Within ns-BASIC, both V s and V ∗ satisfy RCA0 by RCA0
s
+ 61

2 -EQ. Thus, we
can develop basic parts of mathematics in both V s and V ∗ just as in RCA0. We
can define real numbers, open sets, continuous functions, complete separable metric
spaces, and so on in both V s and V ∗. For example, Ns

= {x s
| x s

= x s
} is a set

of (standard) natural numbers in V s, N∗
= {x∗

| x∗
= x∗

} is a set of (nonstandard)
natural numbers in V ∗, αs

= 〈as(i s) | i s
∈ Ns

〉 is said to be a (standard) real number
in V s (abbreviated αs

∈ Rs) if |as(i s) − as(i s
+ ks)| < 2−i s

for any i s, ks
∈ Ns,

α∗
= 〈a∗(i∗) | i∗ ∈ N∗

〉 is said to be a (nonstandard) real number in V ∗ (abbreviated
α∗

∈ R∗) if |a∗(i∗) − a∗(i∗ + k∗)| < 2−i∗ for any i∗, k∗
∈ N∗, and so on. Then

we can do nonstandard analysis in this system. From now on, we identify a standard
natural number x s

∈ Ns with a nonstandard natural number x s
√

∈ N∗ and consider
Ns

⊆ N∗. By this identification, we usually omit superscripts s and ∗ for natural
numbers. Similarly, we consider a set of standard rational numbers Qs (defined in
V s) as a subset of a set of nonstandard rational numbers Q∗ (defined in V ∗) and
omit superscripts for rational numbers since rational numbers are coded by natural
numbers.

We now define the standard part of a real number.

Definition 3.1 (Standard part) The following definition is made in ns-BASIC. Let
α∗

= 〈a∗(i) | i ∈ N∗
〉 ∈ R∗ in V ∗ and βs

= 〈bs(i) | i ∈ Ns
〉 ∈ Rs in V s. Then βs is

said to be the standard part of α∗ (abbreviated st(α∗) = βs) if

∀i ∈ Ns
|a∗(i)− bs(i)| ≤ 2−i (in V ∗).

We sometimes write st(α∗) ∈ Rs if ∃γ s
∈ Rs st(α∗) = γ s.

Similarly to the definition of standard parts, we write st(α∗) ≤ βs if

∀i ∈ Ns a∗(i) ≤ bs(i)+ 2−i (in V ∗).

Note that we have defined st(α∗) ≤ βs even if the standard part of α∗ does not exist
in Rs. We write α∗

1 ≈ α∗

2 if st(α∗

1 − α∗

2) = 0. Note that the existence of standard
parts of real numbers is equivalent to ns-WKL0 over ns-BASIC (see [3]).

Now we introduce a nonstandard axiom for Loeb measure and a new system
ns-WWKL0. Let T ∗ be a tree in V ∗, and let ω ∈ N∗

\ Ns. Then we define the
Loeb measure Lω as

Lω(T ∗) = st(|{σ ∈ T ∗
| lh(σ ) = ω}|/2ω),

and we define the relation Lω(T ∗) > αs for αs
∈ Rs as

Lω(T ∗) > a ⇔ st(|{σ ∈ T ∗
| lh(σ ) = ω}|/2ω) 6≤ a.

Note that we have defined the relation Lω(T ∗) > αs even if Lω(T ∗) does not exist.

Definition 3.2 (Loeb measure property) Loeb measure property (LMP) is the
following statement: if a tree T ∗ has positive Loeb measure, that is, there exists
ω ∈ N∗

\ Ns such that Lω(T ∗) > 0, then there exists a function f s
: Ns

→ 2 such
that f s

[n] ∈ T ∗ for any n ∈ Ns.
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LMP asserts that if T ∗ has positive Loeb measure, then T ∗ � Ms has a path (even if
T ∗ � Ms does not exist in V s).

Definition 3.3 (The system ns-WWKL0) ns-WWKL0 consists of ns-BASIC plus
LMP.

The next two theorems show that LMP is a nonstandard counterpart of weak weak
König’s lemma.

Theorem 3.4 ns-WWKL0 implies (WWKL)s.

Proof We reason within ns-WWKL0. Let T s be a tree such that µ(T s) > 0. Then
there exist m ∈ Ns such that

∀i ∈ Ns |{σ ∈ T s
| lh(σ ) = i}|
2i > 2−m .

By 60
1 -OS there exists ω ∈ N∗

\ Ns such that

|{σ ∈ T s
√

| lh(σ ) = ω}|

2ω
> 2−m .

Thus, Lω(T s
√

) > 0. Hence, by LMP, T s
= T s

√

� Ms has a path in V s, and this
completes the proof. �

Theorem 3.5 (Conservativity) ns-WWKL0 is a conservative extension of WWKL0;
that is, ns-WWKL0 ` ψ s implies WWKL0 ` ψ for any sentence ψ in L2.

In order to prove this theorem, we first prove the following lemma concerning models
of WWKL0 and WKL0.

Lemma 3.6 Let (M, S) |H WWKL0 be a countable model. Then there exists an
ω-extension S̄ ⊇ S such that (M, S̄) |H WKL0 and the pair S̄ and S satisfy the
following:
(†) for any binary tree T ∈ S̄,

µ(T ) > 0 → ∃ f ∈ S ( f is a path through T ).

Note that this lemma is a generalization of the following proposition which was in-
dependently obtained by Downey, Hirschfeldt, Miller, and Nies [2, Proposition 7.4]
and Reimann and Slaman [5, Theorem 4.5].

Proposition 3.7 If X ∈ 2ω is Martin-Löf random, then for any nonempty 50
1-class

P ⊆ 2ω there exists A ∈ P such that X is Martin-Löf random relative to A.

Proof This follows easily from the special case of Lemma 3.6 where (M, S) is an
ω-model. �

Proof of Lemma 3.6 Within RCA0, we can define the notion of Turing reducibility
“A ≤T B” and the notion of Martin-Löf randomness “A is B-random” by using a
universal 50

1 formula. Within WKL0, we can show the following.

1. Let ϕ(X, Y ) be a generalized 50
1 formula with exactly the displayed free

variables; that is, ϕ is of the form ϕ(X, Y ) ≡ ∃Zψ(X, Y, Z) such that ψ is
a 50

1 formula, and let A ⊆ N. Then there exists a binary tree Tϕ(·,A) ≤T A
such that B is a path through Tϕ(·,A) if and only if ϕ(B, A). (Here we identify
a set with its characteristic function.)
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2. There is a50
1 formula2(X, Y ) such that for any A, B ⊆ N,2(B, A) implies

B is A-random and µ(T2(·,A)) > 0.
3. If B is A-random and T ≤T A is a binary tree with µ(T ) > 0, then there

exists k ∈ N such that B(k) = {n | n + k ∈ B} is a path through T .
(1) is a well-known fact within WKL0 (see [6, Lemma VIII.2.4]). Formalizing the
usual arguments for randomness, we can show (2) and (3). For (2), see [7, Theorem
3.2], and for (3), see [7, Lemma 4.12].

Let (M, S) be a countable model of WWKL0. For any countable ω-extension
S′

⊇ S such that (M, S′) |H RCA0, we write S′
⊇r S if for any A ∈ S′, there exists

B ∈ S such that B is A-random. Clearly, S ⊇r S by (2). For a binary tree T , we
write X ∈ [T ] if (the characteristic function of) X is a path through T .

Claim Let S′
⊇ S be a countable ω-extension such that (M, S′) |H RCA0 and

S′
⊇r S. Let T ∈ S′ be an infinite binary tree. Then there exists a countable ω-

extension S′′
⊇ S′ such that there exists a path through T in S′′, (M, S′′) |H RCA0

and S′′
⊇r S.

We show this claim by a forcing argument. By Harrington’s theorem, there ex-
ists an extension S̃ ⊇ S′ such that (M, S̃) is a model of WKL0 (see, e.g., [6,
Theorem IX.2.1]). We will argue in this model. Let S′

= {Ai }i<ω and let
{〈U i

m ⊆ 2<N
| m < di 〉 ∈ S′

}i<ω be an enumeration of all finite sequences of
binary trees belonging to S′. We construct a descending sequence of infinite binary
trees T = T0 ⊇ T1 ⊇ T2 ⊇ . . . such that Ti ∈ S′ and {Ti }i<ω satisfies the following:

(i) ∀m < di ([Ti+1]∩[U i
m] = ∅∨Ti+1 ⊆ U i

m) (this condition is for Harrington’s
forcing argument);

(ii) there exists Bi ∈ S such that X ∈ [Ti+1] → 2(Bi , X ⊕ A0 ⊕ · · · ⊕ Ai )
where 2 is defined in (2) (this means that Ti+1 forces ‘Bi is X ⊕ A0 ⊕ · · ·

⊕ Ai -random if X ∈ [Ti ]’).
For given Ti , we construct Ti+1 ⊆ Ti as follows. By (1), there exists a tree
T̂ ≤T Ti ⊕ A0 ⊕ · · · ⊕ Ai such that Z ∈ [T̂ ] ↔ ∃X (X ∈ [Ti ] ∧2(Z , X ⊕ A0 ⊕ · · ·

⊕Ai )). Since T̂ ∈ S′, there exists B ∈ S such that B is T̂ -random. By (2),µ(T̂ ) > 0.
Thus, there exists k ∈ M such that B(k) ∈ [T̂ ] by (3). Define Bi as Bi = B(k). By (1),
take a tree T ′

i ≤T Bi ⊕Ti ⊕ A0⊕· · ·⊕ Ai such that X ∈ [T ′

i ] ↔ 2(Bi , X)∧X ∈ [Ti ].
Then T ′

i is infinite since ∃X2(Bi , X)∧ X ∈ [Ti ], and T ′

i ∈ S′. Take C ∈ S̃ such that
C ∈ [T ′

i ] and define k ∈ M as k = min{k′
| ∀m < di (C[k′

] ∈ U i
m → C ∈ [U i

m]}.
Define τ = C[k] and define Ti+1 ∈ S′ as

Ti+1 = {σ ∈ T ′

i | σ ⊆ τ ∨ (τ ⊆ σ ∧ ∀m < di (τ ∈ U i
m → σ ∈ U i

m))}.

Then Ti+1 is infinite since C ∈ [Ti+1], and Ti+1 satisfies the desired conditions.
Now we construct an ω-extension S′′. Define a set G ⊆ M as G =

⋂
i [Ti ];

that is, a ∈ G if and only if there exists σ ∈ T such that σ(a) = 1 and
σ ∈ Ti for any i < ω. For given 60

1 formula ϕ(m, X) and d ∈ M , there ex-
ists i < ω such that ∀m < d ∀X (ϕ(m, X) ↔ X /∈ [U i

m]). Thus, for any
m < d , ϕ(m,G) is equivalent to Ti+1 ⊆ U i

m , and this means that (M, S′
∪ {G})

satisfies bounded 60
1 comprehension, which is equivalent to I60

1 . Define S′′ as
S′′

= 10
1-Def(M, S′

∪ {G}). Then (M, S′′) |H RCA0 ∧ G ∈ [T ]. To show
S′′

⊇r S, we only need to show that Bi is G ⊕ A0 ⊕ · · · ⊕ Ai -random for any
i < ω. By the normal form theorem [6, Theorem II.2.7], there exists a 60

0 formula
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θ(n, X, Y ) such that RCA0 ` 2(X, Y ) ↔ ∀nθ(n, X [n], Y [n]). We show that
(M, S′′) |H ∀nθ(n, Bi [n],G ⊕ A0 ⊕ · · · ⊕ Ai [n]). For any n ∈ M , there exists
Cn ∈ S̃ such that Cn ∈ [Ti+1] and Cn ⊕ A0 ⊕ · · · ⊕ Ai [n] = G ⊕ A0 ⊕ · · · ⊕ Ai [n].
Since (M, S̃) |H ∀X (X ∈ [Ti+1] → 2(Bi , X ⊕ A0 ⊕ · · · ⊕ Ai )), we have
(M, S̃) |H θ(Bi [n],Cn ⊕ A0 ⊕ · · · ⊕ Ai [n]). Thus, (M, S′′) |H ∀nθ(n, Bi [n],
G ⊕ A0 ⊕ · · · ⊕ Ai [n]). Hence (M, S′′) |H 2(Bi ,G ⊕ A0 ⊕ · · · ⊕ Ai ); thus Bi is
G ⊕ A0 ⊕ · · · ⊕ Ai -random. This completes the proof of the claim.

Using the claim repeatedly, we can construct a sequence of ω-extensions
S = S0 ⊆ S1 ⊆ . . . such that Si ⊇r S and for any infinite binary tree T ∈ Si , there
exists a path A ∈ Si+1 through T . Define S̄ as S̄ =

⋃
i Si . Then (M, S̄) |H WKL0

and for any binary tree T ∈ S̄, µ(T ) > 0 → ∃ f ∈ S f is a path through T
by (3). �

Proof of Theorem 3.5 We show that WWKL0 6` ψ implies ns-WWKL0 6` ψ s. Let
(M, S) |H WWKL0 be a countable model such that (M, S) |H ¬ψ and M 6∼= ω.
By Lemma 3.6, there exists S̄ ⊇ S such that (M, S̄) |H WKL0 and S̄ and S satisfy
the condition (†). We prepare some notation for a self-embedding of a model of
second-order arithmetic. Let M<c

= {a ∈ M | a < c}, S̄<c
= {A ∩ M<c

| A ∈ S̄},
and S̄ �

√
(M) = {A ∩

√
(M) | A ∈ S̄}. Note that S̄<c

⊆ S. Then, by
Tanaka’s self-embedding theorem for WKL0 (see [9]), there exist c ∈ M and a
homomorphism

√
: M ∪ S̄ → M<c

∪ S̄<c such that
√
(M) is a semi-regular

cut of M and (
√
(M), S̄ �

√
(M)) = (

√
(M),

√
(S̄) �

√
(M)) ∼= (M, S̄). De-

fine a model M as V s
= (Ms, Ss) = (M, S), V ∗

= (M∗, S∗) = (M, S), and
M = (V s, V ∗,

√
� M ∪ S), and define a model M̄ as V̄ s

= (Ms, S̄s) = (M, S̄),
V̄ ∗

= (M∗, S̄∗) = (M, S̄), and M̄ = (V̄ s, V̄ ∗,
√
). Then we can easily check that

M |H ns-BASIC, M̄ |H ns-WKL0, and M |H ¬ψ s. We show that M |H LMP. Let
H ∈ M∗

\ Ms and let T ∗
∈ S∗ be a binary tree such that L H (T ∗) > 0. By STP in

M̄, T ∗ � Ms
∈ S̄s. Then µ(T ∗ � Ms) ≥ L H (T ∗) > 0. By the condition (†), there

exists a path As
∈ Ss through T ∗ � Ms. Thus, M |H LMP, and M |H ns-WWKL0 by

Theorem 3.4. Therefore, ns-WWKL0 6` ψ s, and this completes the proof. �

Remark 3.8 LMP is a purely nonstandard axiom; that is, for any true L2-sentence
ϕ, ns-BASIC + ϕs does not imply LMP. To show this, let (M, S) be a nonstan-
dard countable model of WKL0 + ϕ. Then we can construct S′, S′′

⊆ P (M) such
that S ⊆ S′

⊆ S′′, (M, S′′) is a model of WKL0, and S′
= 10

1-Def(M; {X}) for
some X ∈ S′ (for this construction, see, e.g., [8]). Note that S′

6⊆r S′′; thus,
S 6⊆r S′′. By Tanaka’s self-embedding theorem, there exist c ∈ M and a homo-
morphism

√
: M ∪ S′′

→ M<c
∪ S′′<c such that

(
√
(M), S′′ �

√
(M)) = (

√
(M),

√
(S′′) �

√
(M)) ∼= (M, S′′).

Then M = ((M, S), (M, S),
√

� M ∪ S) is a model of ns-BASIC + (WKL0)
s
+ ϕs.

Since S 6⊆r S′′
= S′′ �

√
(M) = S �

√
(M), M is not a model of LMP.

4 Reverse Mathematics for Nonstandard Measure Theory

4.1 Nonstandard Reverse Mathematics In this section we do Reverse Mathemat-
ics for some basic propositions of nonstandard measure theory and nonstandard in-
tegral theory. We reason within ns-BASIC. For m ∈ N∗ we define �m ⊆ [0, 1] in
V ∗ as �m = {i/2m

∈ Q∗
| 0 ≤ i < 2m

}. We mainly consider the case m ∈ N∗
\ Ns.
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We define the image and the inverse image of st for nonstandard finite sets A∗
⊆ �m

and standard open sets As
⊆ [0, 1] as

st(A∗) := {x ∈ Rs
| ∃x∗

∈ A∗ x = st(x∗)},

st−1
m (As) := {x∗

∈ �m | ∃x s
∈ As x s

= st(x∗)},

(As)�m := {x∗
∈ �m | ∃as, bs

∈ Rs as
≤ st(x∗) ≤ bs

∧ [as, bs
] ⊆ As

}.

Here, [as, bs
] ⊆ As means that ∀x s

∈ [as, bs
] x s

∈ As. Note that st−1
m (As) and

(As)�m are “external sets”; that is, they are not in V ∗.

Definition 4.1 (The Loeb measure) The following definition is made in ns-BASIC.
Let m ∈ N∗. We define the Loeb measure Lm(A∗) for a (nonstandard) finite set
A∗

⊆ �m as
Lm(A∗) = st(card(A∗)2−m).

We also define Loeb measure for external sets st−1
m (As) or (As)�m as follows:

Lm(st−1
m (As)) = sup{Lm(B∗) | B∗

⊆al st−1
m (As)},

Lm((As)�m ) = sup{Lm(B∗) | B∗
⊆al (As)�m },

where B∗ ranges over nonstandard finite subsets of �m in V ∗, and C ⊆al D means
that L(X∗) = 0 for any nonstandard finite set X∗

⊆ C \ D (C and D may be
external). In fact, we cannot prove the existence of Lm(st−1

m (As)) or Lm((As)�m )

within ns-BASIC, but the relations Lm(st−1
m (As)) ≤ αs and Lm((As)�m ) ≤ αs can

be expressed by L∗

2-formulas, as for the definition of the measure µ.

Lemma 4.2 The following are equivalent over ns-BASIC.

1. ns-WWKL0.
2. There exists m ∈ N∗

\ Ns such that

∀A∗
⊆ �m (Lm(A∗) > 0 → ∃x∗

∈ A∗
∃x s

∈ [0, 1] st(x∗) = x s).

3. For any m ∈ N∗
\ Ns, we have

∀A∗
⊆ �m (Lm(A∗) > 0 → ∃x∗

∈ A∗
∃x s

∈ [0, 1] st(x∗) = x s).

Proof Define λm : 2=m
→ �m as λ(σ) =

∑
i<m 2−i−1σ(i) where 2=m

=

{σ ∈ 2<N∗

| lh(σ ) = m}. Then λm is a natural isomorphism from 2=m to �m .
By this isomorphism, (3) ↔ (1) is trivial. (3) → (2) is also trivial, so we show
(2) → (3). Let n ∈ N∗

\ Ns, B∗
⊆ �n , and Ln(B∗) > 0. By (2), take m ∈ N∗

\ Ns

such that ∀A∗
⊆ �m Lm(A∗) > 0 → ∃x∗

∈ A∗
∃x s

∈ [0, 1] st(x∗) = x s. If n ≤ m,
define B∗

0 = {x∗
∈ �m | ∃y∗

∈ B∗y∗
≤ x∗ < y∗

+ 2−n
}, and if n > m, define

B∗

0 = {x∗
∈ �m | ∃y∗

∈ B∗ x∗
≤ y∗ < x∗

+ 2−m
}. In either case, Lm(B∗

0 ) > 0;
hence there exist x∗

∈ B∗

0 and x s
∈ [0, 1] such that st(x∗) = x s. Thus, there exists

y∗
∈ B∗ such that x∗

≈ y∗; that is, st(y∗) = x s. �

Using the notion of Loeb measure, we do Reverse Mathematics for nonstandard
measure and integral theory. Recall that we can define the Riemann integral for
a continuous function within RCA0. For a continuous function f on [0, 1] and a
splitting 1 = {0 = a0 ≤ ξ0 ≤ a1 ≤ · · · ≤ ξk−1 ≤ ak = 1} of [0, 1], we define
S( f ;1) =

∑
i<k f (ξi )(ai+1 − ai ). We define a splitting 1m as ai = i2−m for any



Nonstandard Counterpart of WWKL 237

i ≤ 2m and ξi = i2−m for any i < 2m . We write 1 ∈ �m if ai , ξi ∈ �m for all
i ≤ k. Then the Riemann integral of f is defined as∫ 1

0
f (x)dx = lim

|1|→0
S( f ;1)

where |1| = max{ai+1 − ai | i < k}. Moreover, we can define the internal measure
for open sets within RCA0. Let Q[x] be a set of rational polynomials. For an open
set U ⊆ [0, 1], we define the internal measure µ(U ) as

µ(U ) =

sup

{∫ 1

0
f (x)dx

∣∣∣∣∣ f ∈ Q[x],∀x ∈ [0, 1] \ U f (x) ≤ 0,∀x ∈ [0, 1] f (x) ≤ 1

}
.

Note that we can integrate polynomial functions within RCA0. In fact, we have only
defined the relation µ(U ) ≤ α and µ(U ) ≥ α here, as for the definition of the
measure for trees.

The following theorem shows that we can get a nonstandard approximation for
an open set or for an L1-function within ns-BASIC. Since a rational polynomial
can be coded by a natural number, we consider Qs

[x] as a subset of Q∗
[x]. Let

�Ns =
⋃

m∈Ns �m .

Theorem 4.3 Let ω ∈ N∗
\ Ns, and let � = �ω, L = Lω, and st−1

= st−1
ω . The

following are provable within ns-BASIC.

1. For any standard open set As
⊆ [0, 1] and l ∈ Ns, there exist non-

standard finite sets A∗
+, A∗

− ⊆ � such that A∗
− ⊆ (As)� ⊆ A∗

+ and
µ(As) − 2−l

≤ L(A∗
−) ≤ µ(As) ≤ L(A∗

+) ≤ µ(As) + 2−l , where µ is the
internal measure for open sets. Particularly, L((As)�) = µ(As).

2. (Nonstandard L1-function): An L1-function can be expressed by one non-
standard polynomial in the following sense. Let F s

= 〈 fi ∈ Qs
[x] | i ∈ Ns

〉

be a sequence of rational polynomials in V s such that
∫ 1

0 | fi (x) − f j (x)|
dx ≤ 2−i if i ≤ j ∈ Ns. Then there exist a rational polynomial f ∗ and a se-
quence 〈A∗

n ⊆ � | n < H〉 in V ∗ such that H ∈ N∗
\ Ns, L(

⋃
n∈Ns A∗

n) = 1,
and

∀x ∈

⋃
n∈Ns

A∗
n lim

m→Ns
fm(x) ≈ f ∗(x),

where

lim
m→Ns

α∗

k ≈ β∗
⇔ ∀n ∈ Ns

∃m ∈ Ns
∀k ∈ Ns k ≥ m → |α∗

k − β∗
| < 2−n .

Proof We first prove (1). Let As
⊆ [0, 1] be an open set in V s and l ∈ Ns. Take

p, q ∈ �Ns such that µ(As) − 2−l
≤ p < µ(As) < q ≤ µ(As) + 2−l . By the

definition of µ(As), there exists a finite sequence of intervals 〈[ai , bi ] | i < k〉

in V s such that k ∈ Ns, ai , bi ∈ �Ns , bi ≤ a j if i < j ,
⋃

i<k[ai , b j ] ⊆ As,
and

∑
i<k(bi − ai ) ≥ p. Then A∗

− := {x ∈ � | ∃i < k ai ≤ x ≤ bi } is the
desired finite set in V ∗. On the other hand, by the definition of µ(As), there exists
a sequence of intervals 3s

= 〈[ci , di ] | i ∈ Ns
〉 in V s such that ci , di ∈ �Ns ,

(ci , di ) ∩ (c j , d j ) = ∅ if i 6= j ,
⋃

i∈Ns [ai , b j ] ⊇ As, and
∑

i∈Ns(ci − di ) ≤ q .
By 60

1 -OS, there exists m ∈ N∗
\ Ns such that 3s

√

� m = 〈[ci , di ] | i < m〉 is an
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extended sequence of3s in V ∗ such that ci , di ∈ �m and
∑

i<m(ci − di ) ≤ q. Then
A∗

+ := {x ∈ � | ∃i < m ci ≤ x ≤ di } is the desired finite set in V ∗.
Next we prove (2). Let F s

= 〈 fi | i ∈ Ns
〉 be a sequence of rational polynomials

in V s such that
∫ 1

0 | fi (x) − f j (x)|dx ≤ 2−i if i ≤ j ∈ Ns. By 60
1 -OS, there exists

H ∈ N∗
\ Ns such that F s

√

�H+1= 〈 fi | i ≤ H〉 is a sequence of polynomials in
V ∗ which satisfies the following:∫ 1

0
| fi (x)− f j (x)|dx ≤ 2−i if i ≤ j ≤ H ;

H max{ | f ′

i (x)| | i ≤ H, x ∈ [0, 1]} < ω.

Define a sequence 〈C∗
n | n < H〉 of finite unions of closed intervals in V ∗ as

C∗
n =

z∗
∈ [0, 1]

∣∣∣∣ ∀k ≤ H
H−1∑

i=n+2k+3

| fi (z∗)− fi+1(z∗)| ≤ 2−k

 .
We show that card(([0, 1] \ C∗

n ) ∩ �) ≤ 2ω−n . Let M > max{ | f ′

i (x)| | i ≤ H, x
∈ [0, 1]}, and let pnk = card({x ∈ � |

∑H
i=n+2k+3 | fi (x)− fi+1(x)| > 2−k

}). Then∣∣∣∣∣∑
x∈�

| fi (x)− fi+1(x)|2−ω
−

∫ 1

0
| fi (x)− fi+1(x)|dx

∣∣∣∣∣ ≤
M
2ω
.

Thus,

pnk · 2−k−ω
≤

∑
x∈�

H∑
i=n+2k+3

| fi (x)− fi+1(x)|2−ω

≤
M H
2ω

+

H∑
i=n+2k+3

∫ 1

0
| fi (x)− fi+1(x)|dx

< 2−n−2k−1.

Then card(([0, 1] \ Cn) ∩�) ≤
∑

k≤H 2−n−2k−1
≤ 2ω−n .

Define A∗
n ⊆ � as A∗

n = C∗
n ∩ � and define f ∗ as f ∗(x) = fH (x). Then

L(A∗
n) ≥ 1−2−n and L(

⋃
n∈Ns A∗

n) = 1. We can easily check that for any n, k ∈ Ns,
n ≤ m ∈ Ns and x ∈ A∗

n , | fm(x)− f ∗(x)| ≤ 2−k ; that is, limm→Ns fm(x) ≈ f ∗(x)
for any x ∈

⋃
n∈Ns A∗

n . �

Remark 4.4 Theorem 4.3(2) showed that “every L1-convergent sequence of ra-
tional polynomials converges almost everywhere in V ∗” within ns-BASIC. How-
ever, this does not imply “every L1-convergent sequence of rational polynomials
converges almost everywhere in V s” within ns-BASIC, which means that the same
statement holds in RCA0 by conservativity, since we cannot prove that the standard
part of measure one set is measure one within ns-BASIC. Compare this with Theo-
rem 2.2 of [12].

On the other hand, we need ns-WWKL0 for a nonstandard approximation for a mea-
sure or an integral. A (nonstandard) continuous function F∗ in V ∗ is said to be
s-bounded if ∀x∗

∈ dom(F∗) ∃K ∈ Ns
|F∗(x∗)| < K ; that is, if each element of the

range of F∗ is bounded above by a standard integer.
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Theorem 4.5 The following are equivalent over ns-BASIC.

1. ns-WWKL0.

2. Let ω ∈ N∗
\ Ns, and let � = �ω, L = Lω, and st−1

= st−1
ω . Then,

for any standard open set As
⊆ [0, 1] and l ∈ Ns, there exist nonstan-

dard finite sets A∗
+, A∗

− ⊆ � such that A∗
− ⊆al st−1(As) ⊆al A∗

+ and
µ(As) − 2−l

≤ L(A∗
−) ≤ µ(As) ≤ L(A∗

+) ≤ µ(As) + 2−l , where µ is the
internal measure for open sets. Particularly, L(st−1(As)) = µ(As).

3. Let f s be a continuous function on [0, 1] in V s and F∗ be an s-bounded
continuous function on [0, 1] in V ∗ such that f s is a prestandard part of F∗;
that is, st(F∗(x∗)) = f s(x s) if st(x∗) = x s. Then f s is Riemann integrable
on [0, 1], and for any ω ∈ N∗

\ Ns,∫ 1

0
f s(x)dx = st

(∑
i<2ω

F∗(i2−ω)

2ω

)
.

Proof We first show (1) → (2). We reason within ns-WWKL0. Let l ∈ Ns, and let
As

⊆ [0, 1] be a standard open set. By Theorem 4.3(1), there exist nonstandard finite
sets A∗

+, A∗
− ⊆ � such that

A∗
− ⊆ (As)� ⊆ A∗

+

and

µ(As)− 2−l
≤ L(A∗

−) ≤ µ(As) ≤ L(A∗
+) ≤ µ(As)+ 2−l .

Since st−1(As) ⊆ (As)�, A∗
+ ⊇al st−1(As). If B∗

⊆ A∗
− \ st−1(As), then

st(B∗) = ∅; thus L(B∗) = 0 by LMP. Therefore, A∗
− ⊆al st−1(As).

Next we show (1) → (3). We reason within ns-WWKL0. Let f s be a continuous
function on [0, 1] in V s and F∗ be an s-bounded continuous function on [0, 1] in V ∗

such that f s is a prestandard part of F∗. Since F∗ is s-bounded, for any K ∈ N∗
\Ns,

|F∗
| < K on [0, 1]. Thus, by 60

1 -OS, there exists K ∈ Ns such that |F∗
| < K .

For (3), we will show the following by contradiction:

(∗) for any l ∈ Ns, there exists n ∈ Ns such that

∀1 ∈ �Ns(|1| ≤ 2−n
→ S(F∗

;1ω)−2−l
≤ S( f ;1) ≤ S(F∗

;1ω)+2−l).

Assume (∗) fails. Then, without loss of generality, we assume that

¬(∗) there exists l ∈ Ns such that for all n ∈ Ns,

∃1 ∈ �Ns(|1| ≤ 2−n
∧ S(F∗

;1ω)+ 2−l < S( f s
;1)).

Since f s is a prestandard part of F∗, we have

(∗∗) there exists l ∈ Ns such that for all n ∈ Ns,

∃1 ∈ �ω(|1| ≤ 2−n
∧ S(F∗

;1ω)+ 2−l < S(F∗
;1)).

Then, by 60
1 -OS, there exist m̄ ∈ N∗

\ Ns and 1̄ ∈ �ω such that |1̄| ≤ 2−m̄ and
S(F∗

;1ω)+2−l < S(F∗
; 1̄). For x ∈ �ω, we define ix = max{ j | a j ∈ 1̄∧a j ≤ x}

and δx = |F∗(x) − F∗(ξix )|. Define a nonstandard finite set A∗
⊆ �ω as

A∗
= {x ∈ �ω | δx > 2−l−1

}. For any x ∈ �ω, if ∃ys
∈ Rs st(x) = ys,

then st(F∗(x)) = f s(ys) = st(F∗(ξix ) since |x − ξix | ≤ 2−m̄ . Hence, st(A∗) = ∅,
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and Lω(A∗) = st(card(A∗)/2ω) = 0 by LMP. Then

|S(F∗
; 1̄)− S(F∗

;1ω)| ≤

∑
x∈�ω

2−ωδx

≤ 2−l−1
+

∑
x∈A∗

2−ωδx

≤ 2−l−1
+ 2K Lω(A∗).

This contradicts S(F∗
;1ω)+ 2−l < S(F∗

; 1̄); thus (∗) holds.
Finally, we show ¬(1) → ¬(2) and ¬(1) → ¬(3). By ¬ns-WWKL0 and

Lemma 4.2, for any ω ∈ N∗
\ Ns, there exists A∗

⊆ �ω such that Lω(A∗) > 0 but
st(A∗) = ∅. Then µ([0, 1]) = 1 while Lω(st−1([0, 1])) ≤ Lω(� \ A∗) < 1. Thus,
we have ¬(1) → ¬(2). Also, we can easily construct a continuous function F∗ on
[0, 1] such that F∗(x) = 1 if x ∈ A∗ and F∗(x) = 0 if x ∈ � \ A∗. Then F∗ is
s-bounded and f s

= 0 is a prestandard part of F∗. However,

st

(∑
i<2ω

F∗(i2−ω)

2ω

)
= Lω(A∗) > 0.

This means ¬(1)→ ¬(3). �

4.2 Application for standard Reverse Mathematics Using the previous results for
nonstandard Reverse Mathematics, we can use some techniques of nonstandard anal-
ysis for standard Reverse Mathematics within WWKL0, and we can get some non-
standard proofs for some theorems of WWKL0 by the conservation result in Section 3.

The next lemma shows that a standard continuous function in V s can be expanded
to a nonstandard continuous function in V ∗ within ns-BASIC. For this expansion, we
recall the definition of continuous function within RCA0. A (code for a) continuous
function f on [0, 1] is a set of quintuples8 ⊆ N×Q×Q+

×Q×Q+ which satisfies
the following three conditions and the domain condition:

(1) if (a, r)8(b, s) and (a, r)8(b′, s′), then |b − b′
| ≤ s + s′;

(2) if (a, r)8(b, s) and |a′
− a| + r ′ < r , then (a′, r ′)8(b, s);

(3) if (a, r)8(b, s) and |b − b′
| + s < s′, then (a, r)8(b′, s′);

(dom) for any x ∈ [0, 1] and for any ε > 0 there exists (m, a, r, b, s) ∈ 8 such
that |x − a| < r and s < ε,

where (a, r)8(b, s) is an abbreviation for ∃m((m, a, r, b, s) ∈ 8). We define the
value f (x) to be the unique y ∈ R such that |y − b| < s for all (a, r)8(b, s) with
|x − a| < r .

Lemma 4.6 The following are provable within ns-BASIC.

1. For any continuous function f s on [0, 1] in V s, there exists a continuous
function F∗ on [0, 1] in V ∗ whose prestandard part is f s. Moreover, if f s is
bounded, then we can find F∗ as an s-bounded function.

2. For any monotone sequence of bounded continuous functions { f s
n }n∈Ns on

[0, 1] which converges to a continuous function f s pointwisely in V s, there
exist m ∈ N∗

\Ns and a sequence of s-bounded continuous functions {F∗

i }i≤m
such that if i ∈ Ns then the prestandard part of F∗

i is f s
i and if i ∈ N∗

\ Ns

then the prestandard part of F∗

i is f s.
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Proof We reason within ns-BASIC. We first prove (1). Let8s
⊆ Ns

× Qs
× Qs+

×

Qs
× Qs+ be a code for a continuous function f s on [0, 1]. By 60

1 -OS, there ex-
ists m0 ∈ N∗

\ Ns such that 8s
√

� m0 is a code for a continuous function in V ∗;
that is, 8s

√

� m0 satisfies three conditions for a code for a continuous function.
Since 8s satisfies (dom) in V s and 8s

⊆ 8s
√

� m0, for any k ∈ Ns, there ex-
ists σ = 〈(nx , ax , rx , bx , sx ) | x ∈ �k〉 ⊆ 8s

√

� m0 such that rx , sx < 2−k

and x ∈ (ax − rx , ax + rx ) for any x ∈ �k . Applying 60
1 -OS again, there exists

m ∈ N∗
\ Ns such that there exists σ̄ = 〈(nx , ax , rx , bx , sx ) | x ∈ �m〉 ⊆ 8s

√

� m0
such that rx , sx < 2−m and x ∈ (ax −rx , ax +rx ) for any x ∈ �m . In V ∗, we define a
(piecewise linear) continuous function F∗ as F∗(i2−m

+t2−m) = bi2−m +t (b(i+1)2−m

− bi2−m ) for each i < 2m and t ∈ [0, 1]. For any x ∈ �m , if st(x) ∈ (a − r, a + r)
∧ (n, a, r, b, s) ∈ 8s, then | st(bx − b)| ≤ s. Thus, f s is a prestandard part of F∗.
Moreover, if f s is bounded by K ∈ Ns, then |bx | ≤ K + 1, thus F∗ is s-bounded.

We can prove (2) similarly. Let { f s
i }i∈Ns be a monotone sequence of bounded con-

tinuous functions on [0, 1] which converges to a continuous function f s pointwise
in V s. Then, similar to the previous construction, we can construct a sequence of s-
bounded continuous functions {F∗

i }i≤m (m ∈ N∗
\ Ns) and an s-bounded continuous

function F∗ such that
(i) f s is a prestandard part of F∗ and f s

n is a prestandard part of F∗
n for any

n ∈ Ns,
(ii) F∗

i (x)+ 2−m
≥ F∗

j (x) ≥ F∗(x) if i ≤ j .

Let x ∈ �m , st(x) = ys, and i ∈ N∗
\ Ns. Then, for any l ∈ Ns, there exists

j ∈ Ns such that f s(ys) ≤ f s
j (y

s)+ 2−l
≤ f s(ys); hence st(F∗(x)) ≤ st(F∗

i (x)) ≤

st(F∗

j (x)) ≤ st(F∗(x))+ 2−l . This means that st(F∗

i (x)) = f s(st(x)). �

The following are nonstandard proofs for theorems of measure or integral theory
within ns-WWKL0.

Lemma 4.7 The following assertions (for V s) are provable within ns-WWKL0.

1. Countable subadditivity of Lebesgue measure: for any open sets 〈As
n ⊆ [0, 1] |

n ∈ Ns
〉 and Bs

⊆ [0, 1],
∑

n∈Ns µ(As
n) ≥ µ(Bs) if

⋃
n∈Ns As

n ⊇ Bs.
2. Existence of Riemann integral: every bounded continuous function on [0, 1] is

Riemann integrable.
3. Ascoli’s lemma: if a monotone sequence of bounded continuous functions

{ f s
n }n∈N on [0, 1] converges to a continuous function f s pointwise, then,

each of f s
n and f s is integrable and

lim
n→∞

∫ 1

0
f s
n (x) dx =

∫ 1

0
f s(x) dx .

Proof We reason within ns-WWKL0. We first show (1) by way of contradiction.
Let ω ∈ N∗

\ Ns, and let � = �ω, L = Lω, and st−1
= st−1

ω . Assume that∑
n∈Ns µ(As

n) < q < q ′ < µ(Bs) for some q, q ′
∈ �Ns and

⋃
n∈Ns As

n ⊇ Bs. With-
out loss of generality, we may assume that As

= 〈As
n | n ∈ Ns

〉 = 〈(an, bn) | n ∈ Ns
〉

with an, bn ∈ �Ns . Then, by 60
1 -OS, there exists m ∈ N∗

\ Ns such that
As

√

� m = 〈(an, bn) | n < m〉 satisfies an, bn ∈ � for any n < m and∑
n<m |an − bn| < q. Define (As

√

� m)� = {x ∈ � | ∃n < m an < x < bn}

(note that (As
√

� m)� is internal, that is, a nonstandard finite set in V ∗). Then
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(
⋃

n∈Ns As
n)
�

⊆ (As
√

� m)� and card((As
√

� m)�) < q2ω. By Theorem 4.5(2),
take B∗

− ⊆al st(Bs) such that L(B∗
−) > q ′. Since st(B∗

−) ⊆ (As
√

� m)�,
L(st(B∗

−) \ (As
√

� m)�) = 0. This contradicts card(st(B∗
−) \ (As

√

� m)�) >
q ′2ω − q2ω.

(2) is a straightforward direction from Theorem 4.5(3) and Lemma 4.6(1).

To prove (3), we only need to show limn→∞

∫ 1
0 f s

n (x) dx =
∫ 1

0 f s(x) dx . Let
{F∗

n }n≤m be a sequence of s-bounded continuous functions taken by Lemma 4.6(2),
and let ω ∈ N∗

\ Ns. Then, for any n ∈ N∗
\ Ns, st(|S(F∗

n ;1ω)− S(F∗
m;1ω)|) = 0

by Theorem 4.5(3). Thus, by 60
1 -OS,

∀k ∈ Ns
∃l ∈ Ns

∀n ≥ l |S(F∗
n ;1ω)− S(F∗

m;1ω)| ≤ 2−k .

Again by Theorem 4.5(3), we have limn→∞

∫ 1
0 f s

n (x) dx =
∫ 1

0 f s(x) dx . �

Theorem 4.8 The following assertions are provable within WWKL0.

1. Countable subadditivity of Lebesgue measure: for any open sets 〈An ⊆ [0, 1] |

n ∈ N〉 and B ⊆ [0, 1],
∑

n∈N µ(An) ≥ µ(B) if
⋃

n∈N An ⊇ B.
2. Existence of Riemann integral: every bounded continuous function on [0, 1] is

Riemann integrable.
3. Ascoli’s lemma: if a uniformly bounded monotone sequence of continuous func-

tions { fn}n∈N on [0, 1] converges to a continuous function f pointwise, then
each of fn and f is integrable and

lim
n→∞

∫ 1

0
fn(x) dx =

∫ 1

0
f (x) dx .

Proof Straightforward application of the previous lemma and Theorem 3.5. �

Note that the assertions of the previous theorem are known theorems of WWKL0.
Actually they are equivalent to WWKL0 ((1) is due to Yu and Simpson [13] and (2)
and (3) are due to Yokoyama [10]).
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