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Infinite Time Decidable
Equivalence Relation Theory

Samuel Coskey and Joel David Hamkins

Abstract We introduce an analogue of the theory of Borel equivalence rela-
tions in which we study equivalence relations that are decidable by an infinite
time Turing machine. The Borel reductions are replaced by the more general
class of infinite time computable functions. Many basic aspects of the classical
theory remain intact, with the added bonus that it becomes sensible to study some
special equivalence relations whose complexity is beyond Borel or even analytic.
We also introduce an infinite time generalization of the countable Borel equiv-
alence relations, a key subclass of the Borel equivalence relations, and again
show that several key properties carry over to the larger class. Lastly, we collect
together several results from the literature regarding Borel reducibility which ap-
ply also to absolutely 11

2 reductions, and hence to the infinite time computable
reductions.

1 Introduction

The subject of Borel equivalence relation theory—by now a highly developed,
successful enterprise—begins with the observation (see Friedman-Stanley [3] and
Hjorth-Kechris [11]) that many classification problems arising naturally in mathe-
matics can be regarded as relations, often Borel relations, on a standard Borel space.
For example, since groups are determined by their multiplication functions, the
isomorphism relation on countable groups can be regarded as a relation on the sub-
space of 2ω×ω×ω corresponding to the graphs of such functions. This isomorphism
relation is properly analytic, but its restriction to finitely generated groups is Borel.
The subject aims to understand these and many other relations by placing them into
a hierarchy of relative complexity measured by Borel reducibility. Specifically, an
equivalence relation E on a standard Borel space is Borel reducible to another, F , if
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there is a Borel function f such that

x E y ⇐⇒ f (x) F f (y)

for all x, y in the underlying space. In this case, we write E ≤B F , and we think
of this reducibility as asserting that F at least as complex as E . Indeed, the function
[x]E 7→ [ f (x)]F is an explicit classification of the E-equivalence classes using
F-equivalence classes. More generally, composition with f gives an explicit method
of turning any F-invariant classification into an E-invariant classification, and in this
sense, the classification problem for F is at least as hard as the classification problem
for E .

In this article, a small project, we aim to extend the analysis from the Borel con-
text to a larger context of effectivity. Namely, we shall consider the context of infinite
time computability, a realm properly between Borel and 11

2. Specifically, we shall
enlarge the reducibility concept by allowing infinite time computable reduction func-
tions (a class of functions we review in Section 2). This is sensible for several rea-
sons. First, the class of infinite time computable functions properly extends the class
of Borel functions—a function is Borel exactly when it is infinite time computable
in uniformly bounded countable ordinal time—while retaining much of the effec-
tive flavor and content of the Borel context. The infinite time computable functions,
determined by the operation of a finite Turing machine program computing in trans-
finite ordinal time, seem in many ways as “explicit” as the Borel functions are some-
times described to be, but they reach much higher into the descriptive set-theoretic
hierarchy, well into the class 11

2. Second, meanwhile, many natural sets and equiva-
lence relations that lay outside the Borel boundary are captured within the bounds of
infinite time computability. For instance, it is infinite time computable, but not Borel,
to decide whether a given real codes a well-order. Hence, our framework allows for
the study of the isomorphism relation on well-ordered sets. More generally, the iso-
morphism relation for arbitrary countable structures in arbitrary countable languages
is infinite time computable, but not Borel. Third, it will turn out that much (but not
all) of the Borel theory carries over to our enlarged context, at least for many of the
relations studied by that theory. Positive instances of Borel reducibility, of course,
carry over directly because Borel functions are infinite time computable. Conversely,
a deep aspect of the Borel theory is that many of the proofs of nonreducibility, that
is, instances of equivalence relations E and F for which E 6≤B F , actually overshoot
the Borel context by showing, for example, that there are no measurable reduction
functions for a given pair of equivalence relations; since infinite time computable
functions are measurable, these arguments also rule out reducibilities in our context.
The point is that such nonreduction arguments lay at the center of the Borel theory,
and the overshooting phenomenon means that in these instances, the nonreduction
results transfer largely intact to the infinite time computable context. Thus, in our
project we explore the limits of this phenomenon. In summary, we propose to study
the hierarchy of equivalence relations under the concepts of reducibility provided by
infinite time computability.

In contrast, recent work of Knight [17] and others aim far in the other direction,
by restricting the notion of reducibility from Borel functions down to the class of
(ordinary) Turing computable functions. Since this is a very restrictive notion of
reduction, it allowed them to separate many complexity classes more finely and to
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analyze even classes of finite structures. Our work here can be seen as complemen-
tary to theirs, since we consider comparatively generous notions of reducibility.

This paper is organized as follows. In Section 2, we shall describe in detail the
infinite time Turing machines, the class of sets which they decide, and the class of
functions which they compute. In fact, we shall define several distinct ways in which
these machines can accept their input, leading to distinct but closely related notions
of effectivity. In Section 3, we give some basic facts about Borel equivalence rela-
tions and Borel reductions and compare this situation with the case of infinite time
computable equivalence relations and functions. In Section 4, we consider the spe-
cial case of countable Borel equivalence relations (i.e., those with countable classes).
We define the class of infinite time enumerable equivalence relations, which is a nat-
ural generalization of the class of countable Borel equivalence relations to the infinite
time context. In the last section, Section 5, we give a survey of methods of demon-
strating non-reducibility results in the case of absolutely 11

2 reductions. We use these
methods to determine the relationships between the infinite time computable equiv-
alence relations discussed in this paper, and these relationships are summarized in
Figure 3 at the conclusion of the paper.

2 The Infinite Time Complexity Classes

Infinite time Turing machines, introduced in [8], generalize the operation of ordi-
nary Turing machines into transfinite ordinal time. An infinite time Turing machine
has three one-way infinite tapes (the input tape, the work tape, and the output tape),
each with ω many cells exhibiting either 0 or 1, and computes according to a finite
program with finitely many states. Successor stages of computation proceed in ex-
actly the classical manner, with the machine reading from and writing to the tape
and moving the head left or right according to the program instructions for the cur-
rent state. At limit time stages, the configuration of the machine is determined by
placing the head on the left-most cell, setting the state to a special “Limit” state,
and updating each cell of the tape with the lim sup of the previous values exhib-
ited by that cell (which is the limit value, if the value had stabilized, otherwise 1).
Computation stops only when the “Halt” state is explicitly attained, and in this case,
the machines outputs the contents of the output tape. Since the input and output
tapes naturally accommodate infinite binary sequences, that is, elements of Cantor
space 2ω, the machines provide infinitary notions of computability and decidability
on Cantor space. The machines can be augmented with additional input tapes to ac-
commodate real parameters or oracles. We denote by ϕz

e(x) the output of program e
on input x with parameter z, if this computation halts; if it doesn’t halt, then ϕz

e(x) is
undefined, or diverges. A partial function f ... 2ω → 2ω is infinite time computable if
there exists e and z such that f = ϕz

e . For a program e operating on a machine with-
out a parameter tape, we denote the output as ϕe(x), and say that the corresponding
function ϕe is infinite time computable without parameters.

A simple cofinality argument [8, Theorem 1.1] shows that if an infinite time com-
putation halts, then it does so in a countable ordinal number of steps. And if a
computation does not halt, then it is necessarily due to the fact that it is caught in an
infinite loop, in the strong sense that at limits of repetitions of this loop, the compu-
tation remains inside the loop. (Looping phenomenon in ordinal time is complicated
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by the curious fact that an infinite time computation can exactly repeat a configu-
ration, looping ω many times, but nevertheless escape the loop at the limit of these
repetitions.)

A subset A ⊂ 2ω is infinite time decidable if its characteristic function is infinite
time computable, and infinite time semidecidable if it is the domain of an infinite
time computable function. These concepts naturally extend to subsets of (2ω)n for
n ≤ ω by the use of canonical pairing functions (or by using extra input tapes).
We warn the reader that a function can have an infinite time decidable graph, as
a subset of the plane, without being an infinite time computable function (see [8,
Lost Melody Theorem 4.9]). The reason has to do with the inability of the infinite
time machines to search entirely through Cantor space in a computable manner, and
so the analogue of the classical algorithm showing this doesn’t happen for finite-
time computations on ω simply does not work here. We say that a function f is
infinite time semicomputable if the graph of f is infinite time decidable. Thus, every
infinite time computable function is infinite time semicomputable, but not generally
conversely.

We let D denote the class of infinite time decidable subsets of 2ω. Since we
have allowed a real parameter z in the definition of an infinite time decidable set,
the class D fits naturally into the boldface descriptive set theory context. Similarly,
let sD denote the class of semidecidable subsets of 2ω, and s̃D the class of co-
semidecidable subsets of 2ω. The classes of infinite time decidable sets and functions
subsume the corresponding Borel classes. In fact, we have the following remarkable
characterization.

Theorem 2.1 A set A is Borel if and only if it is decided by a program which,
for some countable ordinal α, halts uniformly on all inputs in fewer than α steps.
Similarly, a function f is Borel if and only if it is computed by a program which, for
some countable ordinal α, halts uniformly in fewer than α steps.

Thus, Borel effectivity is the entry into the larger hierarchy of computability provided
by infinite time Turing machines. Before the proof, let us fix the notation ω1,ck for
the supremum of the ordinals that are computable by a classical Turing machine. If
z ∈ 2ω, then let ωz

1,ck denote the relativized version, the supremum of the ordinals
that are computable by a classical Turing machine with oracle parameter z. The
ordinal ωz

1,ck is known to be the least ordinal which is admissible in the parameter z.
The proof of Theorem 2.1 is then an easy consequence of [8, Theorem 2.7], which
states that A is11

1 if and only if it can be decided by a program which halts uniformly
in fewer than ω1,ck steps.

Proof of Theorem 2.1 To establish the first statement, we need only observe that
the proof of [8, Theorem 2.7] relativizes to show that a set A is 11

1(z) if and only if
it can be decided by a program which halts uniformly in fewer than ωz

1,ck steps. This
implies directly that every Borel set is infinite time decidable in uniformly bounded
time. Conversely, if A is infinite time decidable from parameter z in time uniformly
bounded by α, then simply augment z with a real y coding α, so that α < ω

z⊕y
1,ck , and

conclude that A ∈ 11
1(z ⊕ y) and therefore A is Borel.

For the second statement, suppose that f is infinite time computable uniformly
in some number of steps which is bounded below ω1. It follows that the graph of
f is infinite time decidable in some bounded number of steps, and therefore, by the
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first paragraph, the graph of f is Borel. Conversely, if f is a Borel function, then for
each n, the set

An := {x ∈ 2ω : f (x)(n) = 0}

is Borel, and hence it is infinite time decidable by a program which halts uniformly
in fewer than αn steps. It follows that f (x) is infinite time decidable by a program
which halts uniformly in fewer than sup(αn)+ ω steps. �

In the following proposition, Abs11
2 denotes the class of absolutely 11

2 sets, where a
set A is absolutely 11

2 when it is defined by a 51
2 formula ϕ and by a 61

2 formula ψ
such that the formulas ϕ,ψ remain equivalent in any forcing extension.

Proposition 2.2 The classes of infinite time decidable, semidecidable, and co-
semidecidable sets lie within the projective hierarchy as follows.

61
1 sD

D ⊂⊂
Abs11

2 ⊆ 11
2

⊂

51
1

⊂ s̃D ⊂
⊂

Moreover, we have that sD ∩ s̃D = D.

Proof That 51
1 sets are infinite time decidable follows from the fact that an infinite

time Turing machine can detect whether a given relation is wellfounded (see [8,
Count-Through Theorem]). That every sD set is 11

2 is shown in [8, Complexity
Theorem], but we briefly sketch the argument. The idea is that any run of an infinite
time computation can be coded by a real, namely, a code for a well-ordered sequence
〈rα〉, where each rα is just a code for the configuration of the machine at stage α. It
is 51

1 to check that a given real codes a well-order, and hence it is 51
1 to check that

a given real codes a computation history.
Now, if A is semidecidable, then for some program e we have that x ∈ A if and

only if there exists a real code for a halting computation history for e on input x , and
hence A ∈ 61

2. But also x ∈ A if and only if every real coding a settled run of the
program e on input x shows that it accepts x . (A snapshot is said to be settled if and
only if it shows that the program halts or is caught in a strongly repeating infinite
loop and hence cannot halt.) This shows that A ∈ 51

2, and since our 61
2 and 51

2
descriptions of A are absolutely equivalent, we have that sD ⊂ Abs11

2.
Finally, sD ∩ s̃D = D holds for the usual reason: given a program which halts

if and only if x ∈ A and a program which halts if and only if x ∈ 2ω \ A, then one
can decide if x ∈ A by running them simultaneously and outputting “yes” or “no”
depending on which one halts. �

Note that the inclusions in Proposition 2.2 are proper (except, consistently, the last),
since by the classical diagonalization argument the halting set

H := {(x, p) : p halts on input x}

is infinite time semidecidable but not infinite time decidable. It follows that the
complement 2ω × ω r H is a set which is absolutely 11

2 but not semidecidable. It
follows that the function which maps each x ∈ 2ω to its infinite time (lightface) jump

xO
:= {p : p halts on input x}

is not infinite time computable. Although one might expect that the jump function
is semicomputable, we shall see shortly that this is not the case. However, there is a
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program which eventually writes the jump, in the sense that on input x the program
will write xO on the output tape and never change it after some ordinal stage. Indeed,
consider the “universal” program which simulates all programs simultaneously on
the input x . Each time one of the simulated programs halts, the master program adds
a code for that program to a list on the output tape. Since each halting program will
do so in countably many steps, the output tape will eventually converge to a code for
xO. We are thus led to study the following broader classes of infinite time effective
sets and functions.

Definition 2.3

◦ A partial function f ... 2ω → 2ω is infinite time eventually computable if
there exists a program e such that on any input x ∈ dom( f ), the computation
of e on x has the feature that from some ordinal time onward, the output
tape exhibits the value f (x), and for x /∈ dom( f ), the output tape does not
eventually stabilize in this way.

◦ A subset A ⊂ 2ω is infinite time eventually decidable if its characteristic
function is infinite time eventually computable. We let E denote the class of
infinite time eventually decidable sets.

◦ A subset A ⊂ 2ω is infinite time semieventually decidable if it is the do-
main of an infinite time eventually computable function. Denote by sE the
class of semieventually decidable sets and by s̃E the class of infinite time
co-semieventually decidable sets.

Unlike the semicomputable functions, it is easy to see that the class of infinite time
eventually computable functions is indeed closed under composition. The class of
infinite time eventually computable functions retains many of the descriptive prop-
erties of the infinite time computable functions, and as we have hinted, it contains
some useful noninfinite time computable functions.

Proposition 2.4 We can now extend Proposition 2.2 to show the containments
among these new classes of subsets of 2ω.

61
1 sD sE

D ⊂⊂
E ⊂⊂

Abs11
2 ⊆ 11

2

⊂

51
1

⊂ s̃D ⊂⊂

s̃E ⊂
⊂

Each of these containments (except, consistently, the last) is proper. Moreover, we
have that sE ∩ s̃E = E.

Proof Suppose that A is semidecidable and let e be a program which halts if and
only if x ∈ A. Let q be the program which initially writes 0, and then simulates e,
changing its output to 1 whenever e halts. Then q converges to 1 if e halts and to 0 if
e does not, and so A is infinite time eventually decidable. To see that every infinite
time semieventually decidable set is absolutely 11

2, use the same argument as Propo-
sition 2.2, but replace the halting notion of acceptance with eventual convergence,
which is observable in the settled snapshot sequences.

To see that the inclusions are proper, consider the following analogue of the halt-
ing set. Namely, let S denote the “stabilizing” set {(x, p) : p stabilizes on input x}.
Then S is easily seen to be infinite time semieventually decidable but not infinite
time eventually decidable. It follows that Sc is absolutely 11

2 but not infinite time
semieventually decidable.
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Finally, suppose that both A and Ac are sE. Let e be a program which eventually
stabilizes if and only if the input x ∈ A and let q be a program which eventually
stabilizes if and only if x 6∈ A. Then consider the program r which simulates both e
and q, writing 1 whenever q changes its output, and writing 0 whenever e changes
its output. r does not change its output until either of these events occurs. Clearly, r
will eventually write 1 if and only if x ∈ A and it will eventually write 0 if and only
if x 6∈ A. �

The relationship between the corresponding classes of functions is slightly different.

Proposition 2.5 A function f is infinite time computable if and only if it is both
infinite time eventually computable and infinite time semicomputable.

It follows that the jump function x 7→ xO is indeed not semicomputable.

Proof If f is infinite time eventually computable by program e and semicomputable
by program q , then it can be computed by the program which simulates e, at each
step using q to check to see if the value on the output tape for e is correct. �

We have already observed that even the infinite time semieventually decidable sets
lie within the class of absolutely 11

2 sets. When it comes to functions, the absolutely
11

2 property only extends to the infinite time eventually computable functions. Here,
a function f is said to be absolutely 11

2 if and only if its diagram

diag( f ) :=
{
(x, s) ∈ 2ω × 2<ω | s ⊂ f (x)

}
is absolutely 11

2. By Theorem 3.7 in the next section, not every semicomputable
function is absolutely 11

2.

Theorem 2.6 Every infinite time eventually computable function is absolutely 11
2.

Proof Let f be a function which is infinite time eventually computable using the
program p, and (x, s) be given. We can eventually decide whether s ⊂ f (x) by
simulating p on input x and checking at each stage whether s is contained in the
output. �

The following result will be of fundamental importance in later sections.

Corollary 2.7 Every infinite time eventually decidable set is measurable. Every
infinite time eventually computable function is a measurable function.

When we speak of measure, we are of course referring to the natural coin-flipping
probability measure on 2ω, also called the Lebesgue or Haar measure. It is just the
ω-fold product of the

{
1
2 ,

1
2

}
measure on {0, 1}.

Proof By [14, Exercise 14.4] every provably 11
2 set is measurable. It is not difficult

to check that the proof also shows that every absolutely 11
2 set is measurable as well.

It follows that every infinite time eventually decidable set is measurable. Next, if f
is an infinite time eventually computable function, it follows from Theorem 2.6 that
for every open U ⊂ 2ω, f −1(U ) is absolutely 11

2. Hence f −1(U ) is measurable,
and so f is measurable. �
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3 Infinite Time Effective Reductions

We are now ready to begin our generalization of Borel reducibility to the infinite time
computability context. We shall introduce several classical results of Borel equiva-
lence relation theory in turn and inquire how they are transferred or transformed to
the infinite time computability context. And we shall also introduce several of the
natural equivalence relations that we aim to fit into our new hierarchy. In the follow-
ing section, we will begin to treat the infinite time analogue of the countable Borel
equivalence relations.

Recall that if E, F are equivalence relations on 2ω, then f is a reduction from E
to F if and only if it satisfies

x E y ⇐⇒ f (x) F f (y) .

We say that E is Borel reducible to F , written E ≤B F , if there is a Borel reduction
from E to F . We propose to focus on the following generalizations of the reduc-
tion concept to the context of infinite time computability, corresponding to the two
notions of computability that we have discussed.

◦ The relation E is infinite time computably reducible to F , written E ≤c F , if
there is an infinite time computable reduction from E to F .

◦ The relation E is infinite time eventually reducible to F , written E ≤e F , if
there is an infinite time eventually computable reduction from E to F .

To begin with some elementary considerations from the Borel theory, let
1(1), 1(2), . . . , 1(ω) denote arbitrary but fixed Borel equivalence relations with
1, 2, . . . , ω classes, respectively. Then 1(1) <B 1(2) <B · · · <B 1(ω), and,
moreover, these are the simplest relations in the sense that for any E with infinitely
many classes, 1(ω) ≤B E . The next least complex Borel equivalence relation is the
equality relation on 2ω, sometimes denoted 1(2ω) or simply =.

Theorem 3.1 (Silver dichotomy) If E is a Borel (or even 51
1) equivalence relation

then either E has at most countably many classes or else = ≤B E.

Equivalence relations E which are Borel reducible to = are called smooth or com-
pletely classifiable, since the corresponding reduction function shows how to con-
cretely compute complete invariants for E . One step further up the hierarchy, one
finds the almost equality relation E0, which is defined by x E0 y if and only if
x(n) = y(n) for almost all n.

We now present a proof that E0 is not Borel reducible to =. This will be the
first example of a proof that there cannot be a Borel reduction from E to F which
overshoots and shows more. In this case, it shows that there cannot be a measurable
reduction from E to F , and hence there cannot be an infinite time decidable or even
provably 11

2 such reduction. We shall discuss this phenomenon further in Section 5.

Proposition 3.2 There is no measurable reduction from E0 to equality =, and
hence = <c E0.

Proof Suppose that f is a measurable reduction from E0 to =. Then for every
U ⊂ 2ω, f −1(U ) is closed under E0 equivalence; that is, it is closed under finite
modifications. Such a set is called a “tail set,” and a direct argument shows that such
sets have measure 0 or 1. Letting U run over the basic sets, we obtain that f is
constant on a set of measure 1. But f is countable-to-one, and since the measure is
nonatomic, this is a contradiction. �
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We presently discuss a second dichotomy theorem (see [9]).

Theorem 3.3 (Glimm-Effros dichotomy) If E is any Borel equivalence relation then
either E is smooth or else E0 ≤B E.

Neither the Silver dichotomy nor the Glimm-Effros dichotomy can hold in the case of
infinite time decidable equivalence relations and infinite time computable reductions
for the simple reason that there exist infinite time computable equivalence relations
which necessarily have ℵ1 many classes. But it is conceivable that this is the only
obstruction, and many questions about E0 and infinite time computable equivalence
relations remain open.

Question 3.4 Do any useful generalizations of the Silver dichotomy or Glimm-
Effros dichotomy hold in the case of infinite time decidable equivalence relations
and infinite time computable reductions?

One might ask if there is any difference whatsoever between the Borel and infinite
time computable theories. Of course, not every infinite time computable reduction
can be replaced by a Borel reduction. To give a trivial counterexample, consider
an infinite time decidable equivalence relation E with just two non-Borel classes:
clearly, in this case we have E ≤c 1(2) and E 6≤B 1(2). Of course, such counterex-
amples must be pervasive in the hierarchy, for instance, by replacing one of those
equivalences classes with another entire equivalence relation. In Proposition 3.6 we
shall give a naturally occurring pair of equivalence relations such that E ≤c F and
E 6≤B F . However, our example will be of high descriptive complexity, and so we
are left with the following interesting problem.

Question 3.5 Are there Borel equivalence relations E, F such that E ≤c F but
E 6≤B F?

For an example of such E and F of higher complexity, we consider the following
two equivalence relations.

◦ Let x ∼=WO y if and only if x and y, thought of as codes for binary relations
on ω, code isomorphic well-orders on ω.

◦ Let x Eck y if and only if ωx
1,ck = ω

y
1,ck , that is, if and only if x and y can

write the same ordinals in ω steps.
Note that ∼=WO is the first example of an equivalence relation whose domain is not
all of 2ω. Indeed, x ∼=WO y only makes sense for those x, y ∈ 2ω which code a
well-order. This issue of an equivalence relation that is merely partial doesn’t arise
in Borel equivalence relations since the domain of any Borel (partial) equivalence
relation is a standard Borel space in its own right, and hence can be assumed to
be total. For the purposes of this paper, when considering infinite time computable
reductions between partial relations, we shall require the domain of the reduction
(that is, the domain of the source relation) to be infinite time decidable.

Proposition 3.6 The equivalence relations Eck and ∼=WO are infinite time com-
putably bireducible. On the other hand, Eck is not Borel reducible to ∼=WO.

Since one does not typically consider Borel reductions with non-Borel domain, one
might say that Eck is Borel incomparable with ∼=WO (admittedly in a weak sense). In
fact, if we were to think of ∼=WO as a relation on all of 2ω by adding an equivalence
class for the non-well-orders, then it is again Borel incomparable with Eck .
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Proof of Proposition 3.6 Results in [8] show that for any real x , the ordinal ωx
1,ck is

infinite time writable from parameter x , and this algorithm is uniform in x . So there
is an infinite time computable function f such that f (x) is a real coding the ordinal
ωx

1,ck . This function is therefore a reduction from Eck to ∼=WO.
Next we show that ∼=WO is infinite time reducible to Eck . Let y be a code for an

ordinal α. We shall compute x = f (y) depending only on α and such that ωx
1 is

equal to the αth admissible ordinal δ. First, given a code z for an ordinal β we can
always find its admissible successor (the least admissible above β). To see this, note
that it must be bounded by ωz

1,ck . So for each β < γ ≤ ωz
1,ck we simply build Lγ

and check to see that it satisfies the KP axioms. Now we can iterate this α times
to find the αth admissible ordinal δ. Next build Lδ , and search inside it to find the
L-least x such that ωx

1,ck = δ. Clearly, x depends only on α and not the given code
y, and so we have built the desired reduction.

It remains only to show that there can be no Borel reduction from Eck to ∼=WO.
Suppose that f is such a reduction. It takes values in WO and since Eck has ω1 many
equivalence classes, the range of f must code unboundedly many ordinals. By the
boundedness theorem (see [16, Theorem 35.23]), im( f ) is not 61

1 and hence f is not
Borel. �

Gao had noted [4, Section 9.2] that there exists a 11
2 reduction from ∼=WO to Eck , but

that the study of 11
2 reducibility is problematic. Thus Proposition 3.6 resolves this

by showing that the reduction from ∼=WO to Eck is infinite time computable. To see
that the 11

2 reductions can pose difficulties, we now show that in L the 11
2 functions,

and indeed the semicomputable functions, collapse a large portion of the hierarchy
of equivalence relations.

Theorem 3.7 If V = L, then whenever E is an infinite time decidable equivalence
relation, there exists an infinite time semicomputable function f : 2ω → 2ω such that
x E y if and only if f (x) = f (y).

Proof Following the L-code argument of [5, Theorem 38], given x ∈ 2ω we shall
encode its equivalence class by a pair of reals. Let α < ω1 be least such that Lα
contains a member of the E-equivalence class of x , and Lα |H “some (fixed) large
fragment of ZFC and ω1 exists.” The idea is that Lα is large enough that all compu-
tations on reals of Lα halt or repeat in fewer than α steps.

Let β > α be least such that β is countable in Lβ+1 and let w ∈ Lβ+1 be the
L-least real coding β. Finally let z be the L-least real which is E-equivalent to x .
Then by our choice of α, we have z ∈ Lα . Now, f (x) := w⊕ z is the code we seek.

We clearly have x E y if and only if f (x) = f (y), but we must verify
that f is infinite time semicomputable. That is, a machine must recognize given
(x, w0 ⊕ z0) ∈ f , whether w0 = w, z0 = z as defined above. The machine first
checks to see that w0 codes an ordinal, and using this ordinal as β it constructs Lα
and checks to see that Lα |H z0 = z. Lastly, note that Lα is correct about this since
it has access to all computations on its reals. �

On the other hand, we have seen that infinite time effective sets and functions derive
many of their properties from the fact that they are absolutely 11

2. It is therefore
natural to study absolutely 11

2 reducibility, as we shall do in Section 5. One might
ask whether there is any sense in which the absolutely 11

2 sets and functions are
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effective. The following result sheds doubt on this by showing first that this question
cannot be separated from that of whether there is a sense in which all 11

2 sets are
effective.

Proposition 3.8 There is a forcing extension of the universe in which every 11
2 set is

absolutely 11
2, and indeed, in which every equivalent pair of 61

2 and 51
2 definitions

remains equivalent after any further forcing.

Proof Let us first show that the desired situation holds under the Maximality Princi-
ple, which is the scheme asserting that any forcibly necessary set-theoretic statement
is already true (see [6], also [18]). A statement is forcibly necessary if it is forceable
in such a way that it remains true in all further forcing extensions. If V satisfies the
Maximality Principle and ϕ and ψ are 61

2 and 51
2 assertions, respectively, which

could become inequivalent in a forcing extension V [G], then there is a real z in
V [G] such that ϕ(z) differs from ψ(z) in V [G]. Since these statements are each
absolute to all further extensions of V [G], this means that the inequivalence of ϕ and
ψ is forcibly necessary over V and therefore true there by the Maximality Principle.
Thus, under the Maximality Principle, any two 61

2 and 51
2 assertions that are equiv-

alent in V remain equivalent in all forcing extensions. In particular, every 11
2 set in

V is absolutely 11
2.

This argument makes use of only a small fragment of the Maximality Principle.
And although it is proved in [6] that if ZFC is consistent, then there is a model of
ZFC plus the Maximality Principle, it is also observed there that some models of
ZFC have no forcing extensions with the Maximality Principle. Nevertheless, the
main argument of [6] does show that every model of ZFC has a forcing extension
with the Maximality Principle restricted to assertions of a given fixed set-theoretic
complexity. Since we only used low projective complexity in the previous paragraph,
there is a forcing extension of the universe in which every 11

2 set is absolutely 11
2 as

described. (The forcing is simply an iteration, where one continues forcing until all
possible inequivalences have been exhibited.) �

On the other hand, there are models with 11
2 sets which are not absolutely 11

2. For
instance in L there is a 11

2 well-ordering of the reals, though no model of ZFC has
an absolutely 11

2 well-ordering of the reals.
We close this section by introducing a number of equivalence relations which are

of natural interest. The notation used here will be repeatedly referenced throughout
the paper.

◦ Let x Eset y if and only if x and y, thought of as countable sequences of
reals, have the same range.

◦ Let x ∼=HC y if and only if x and y, thought of as codes for hereditarily count-
able sets, are isomorphic. (Here, x is said to code a hereditarily countable set
z iff, thinking of x as a binary relation on ω, we have (ω, x) ∼= (tc({z}),∈).)

◦ Let x ∼= y if and only if x and y, thought of as codes for countable structures
in a countable language, are isomorphic.

◦ Let x Eλ y if and only if λx
= λy , that is, if and only if x and y can write

the same set of ordinals. Similarly, define x Eζ y if and only if x and y can
eventually write the same ordinals, and x E6 y if and only if x and y can
accidentally write the same ordinals.

◦ Let x ≡T y if and only if x, y lie in the same classical Turing degree.
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◦ Let x ≡arith if and only if x, y lie in the same arithmetic degree.
◦ Let x ≡hyp if and only if x, y lie in the same hyperarithmetic degree.
◦ Let x ≡∞ y if and only if x and y are infinite time computable from one

another (that is, lie in the same infinite time degree).
◦ Let x ≡e∞ y if and only if x and y are infinite time eventually computable

from one another (that is, lie in the same infinite time eventual degree).
◦ Let x J y if and only if x, y have equivalent infinite time jumps, that is,

xO
≡∞ yO.

Some reductions between these equivalence relations are already apparent. For in-
stance, given a countable sequence of reals 〈an〉, it is not difficult to construct an
HC-code for the set {an}, and hence Eset is infinite time computably reducible to
∼=HC. Next, ∼=HC and ∼=WO are infinite time computably reducible to ∼=, both being
restrictions of ∼= to an infinite time decidable subset of the domain. On the other
hand, ∼= is infinite time computably reducible to ∼=HC since a countable structure in a
countable language can trivially be coded as a hereditarily countable set. Finally, it is
easy to see that the function x 7→ xO is an eventual reduction from J to ≡∞. Many
more details of the interrelationships (with respect to infinite time computable and
infinite time eventually computable reducibility) shall be examined as the exposition
unfolds.

4 Enumerable Equivalence Relations

The classical Borel equivalence relation theory has placed a major focus on the
countable Borel equivalence relations, and the investigation of this natural sub-
hierarchy of the hierarchy of all equivalence relations has led to some of the most
fruitful work (see, for instance, [12]). Here, an equivalence relation E is said to
be countable if every E-equivalence class is countable. Not only do these relations
include many of the most natural examples, but some of the most powerful methods
in the theory apply only to the countable relations. The situation is rather reminiscent
of the focus in computability theory on the c.e. Turing degrees as a subhierarchy of
the hierarchy of all Turing degrees.

We shall find the following characterization of the countable Borel equivalence
relations useful. Namely, E is countable Borel if and only if it admits a Borel enu-
meration, that is, a Borel function f such that f (x) = 〈x0, x1, . . .〉 codes some
enumeration of [x]E , for all x . (This is a consequence of the Lusin-Novikov theo-
rem, [16, Theorem 18.10].) The natural extension of the class of countable Borel
equivalence relations to the infinite time computable context simply generalizes this
enumerability concept.

Definition 4.1

◦ A countable equivalence relation E is infinite time enumerable if it admits
an infinite time computable enumeration function, that is, a function f for
which f (x) = 〈x0, x1, . . .〉 enumerates [x]E for all x ∈ 2ω.

◦ Similarly, E is infinite time eventually enumerable if it admits an infinite time
eventually computable enumeration function.

Recall that if 0 is any group of bijections of 2ω, we can define the corresponding
orbit equivalence relation E0 by

x E0 y ⇐⇒ 0x = 0y.
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By a theorem of Feldman and Moore [2], E is a countable Borel equivalence relation
if and only if there exists a countable group 0 of Borel bijections of 2ω such that
E = E0 . Our first observation is that the infinite time enumerable relations enjoy an
analogous property.

Theorem 4.2 An equivalence relation E is infinite time enumerable if and only if
there exists a countable group 0 of infinite time computable bijections of 2ω such
that E is precisely the induced orbit equivalence relation E0 . The analogous result
holds for the infinite time eventually enumerable equivalence relations.

Proof Suppose first that there exists such a group 0. Write 0 = 〈γn〉, and let r be a
real code for a sequence 〈rn〉 such that each rn codes a program which computes the
function γn . We claim that E0 is infinite time enumerable in the real r . Indeed, on
input x , a program can simply use r to simulate each γn on input x , and collect the
values γn(x) into a sequence.

Conversely, suppose that E is infinite time enumerable. By the proof of the clas-
sical Feldman-Moore theorem, it suffices to establish the conclusion of the Lusin-
Novikov theorem, namely,

(∗) E can be expressed as a countable union of graphs of infinite time computable
partial functions.

For this, let f be an infinite time computable function which witnesses that E is
infinite time enumerable, that is, for every x ∈ 2ω, f (x) is a code for the E-class
of x . Letting fn(x) denote the nth element of f (x), we have that E = ∪ fn . This
completes the proof. �

Proposition 4.3 The class of infinite time enumerable equivalence relations lies
properly between the countable Borel equivalence relations and the countable infi-
nite time decidable equivalence relations.

Proof That every countable Borel equivalence relation is infinite time enumerable
follows from the previous theorem, and it is immediate from the definition that every
infinite time enumerable equivalence relation is countable and infinite time decid-
able.

We now give an example of a countable infinite time decidable equivalence rela-
tion which is not infinite time enumerable. For each x ∈ 2ω, we let cx denote the
lost melody real relative to x . Recall that cx is a real such that {cx

} is (lightface)
infinite time decidable in x and yet cx is not infinite time writable in x . It follows
that the function f (x) := x ⊕ cx is infinite time semicomputable but not infinite
time computable, even from a real parameter. Now, we let x E y if and only if there
exists n such that x = f n(y) or y = f n(x). Since f is injective, E is an equivalence
relation. Moreover, it is easy to see that E is countable and infinite time decidable.
However, E cannot be infinite time enumerable in the parameter z, for then cz would
be infinite time writable in z, a contradiction. Indeed, E cannot even be accidentally
enumerable.

For an example of an infinite time enumerable equivalence relation which is not
Borel, we shall use hyperarithmetic equivalence ≡hyp. Recall that x ≡hyp y if and
only if x ∈ 11

1(y) and y ∈ 11
1(x). It follows from the proof of Theorem 2.1 that

x ≡hyp y if and only if x is infinite time computable from y in fewer than ωy
1,ck steps



216 Samuel Coskey and Joel David Hamkins

and y is infinite time computable from x in fewer than ωx
1,ck steps. (Recall that ωy

1,ck
denotes the supremum of the ordinals computable in the ordinary sense from y.)

Since ωx
1,ck is infinite time computable from x , the equivalence relation ≡hyp is

clearly infinite time enumerable. But suppose, toward a contradiction, that ≡hyp
is Borel. Then since ≡hyp is also countable, there exists a Borel function f such
that for all x , f (x) codes [x]≡hyp . By Theorem 2.1, there exists a program e in a
parameter z and an ordinal α such that on any input x , e computes f (x) in fewer than
α steps. Replacing z with a more complicated real if necessary, we may suppose that
α ≤ ωz

1,ck . Now, using e it is easy to write a program which first enumerates [z]≡hyp ,
then diagonalizes against this set to write a real r = z ⊕ d such that r 6∈ [z]≡hyp .
Since z is quickly writable from r , we must have that r isn’t writable from z in fewer
than ωz

1,ck steps. This is a contradiction, because we have just described a program
which does so. �

The infinite time eventually enumerable equivalence relations are easily seen to be in-
finite time semidecidable, but as the next proposition (from [8, Theorem 5.7]) shows,
not necessarily infinite time enumerable or even infinite time decidable.

Proposition 4.4 ≡∞ is infinite time eventually enumerable but not infinite time
decidable.

Proof To show that ≡∞ is infinite time semidecidable one can, on input x, y, just
simulate all programs on input x and see if any of them writes y, and vice versa.

Now, suppose toward a contradiction that ≡∞ is infinite time decidable in the real
parameter z. We shall use this to decide the halting problem in z, that is, the real
zO

= {e : ϕz
e(0) halts}. Consider the program which attempts to compute this set.

It runs all programs simultaneously on input 0, and each time one halts, its output
is added to an accumulating set x . Additionally, it checks at each stage whether
x ⊕ z ≡∞ z and halts if this does not hold.

Note that this program halts, since after some stage all programs which halt have
halted. Moreover, at this moment the approximation is correct and so certainly
x ⊕ z 6≡∞ z. It may halt earlier than this, but it must halt with some real x such
that x ⊕ z 6≡∞ z. Hence from z it has computed a real strictly more complex than z,
a contradiction. �

In particular, we have the following consequence.

Corollary 4.5 The relation ≡∞ doesn’t computably reduce to any infinite time
decidable equivalence relation.

Proposition 4.6 The relation ≡e∞ is infinite time eventually decidable but not in-
finite time eventually enumerable.

That the infinite time eventual degree relation ≡e∞ is infinite time eventually decid-
able is due to Welch. This result was very surprising to experts in the area; indeed
Proposition 4.4 shows that the corresponding infinite time Turing degree relation ≡∞

is not infinite time decidable.

Proof First, to see that the set of infinite time eventually writable reals is not infi-
nite time eventually enumerable, suppose that e is a program with oracle z which on
input x , eventually writes a code for the ≡e∞-class of x . Then consider the diago-
nalization program q which simulates e on z, and at each stage of simulation writes
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a real which is not in the set coded on the output tape of e. Then q eventually writes
a real which is not in the ≡e∞-class of z, a contradiction.

Now, to show that ≡e∞ is infinite time eventually decidable, we shall actually just
show that the set of infinite time eventually writable reals is infinite time eventually
decidable. The proposition follows, since this argument relativizes to show that given
z, the set of reals infinite time eventually writable in z is infinite time eventually de-
cidable. Following the infinite time Turing machine literature, we denote by λ the
supremum of the writable ordinals (which is the same as the supremum of the clock-
able ordinals), by ζ the supremum of the infinite time eventually writable ordinals,
and by 6 the supremum of the infinite time accidentally writable ordinals. Results
in [8] establish that λ < ζ < 6, and Welch ([22], [21], see also [7, Theorem 1.1])
has proved, moreover, that Lλ ≺61 Lζ ≺62 L6 , and, furthermore, these ordinals
are characterized as least having this property. This key result is now known as the
λ-ζ -6 theorem. Welch proved that every infinite time Turing machine computation
either halts in time before λ or repeats its stage ζ configuration at 6. Any compu-
tation that eventually stabilizes, reaches its stabilizing configuration before ζ , and
the universal computation simulating all programs on trivial input repeats the stage ζ
configuration at stage6 for the first time. Because of this, it is infinite time decidable
whether a given real codes the ordinal 6, since the machine need merely check that
it does indeed code a well-order, and that the universal computation, when simulated
for that many steps, exhibits this repeating phenomenon exactly at that stage. These
facts relativize easily to a real parameter.

Now, on input x , we can eventually decide whether it is infinite time eventually
writable by the following algorithm. First, write a preliminary default “No” on the
output tape. Next, simulate the universal computation, and search to see if x is
ever shown to be accidentally writable. If so, change the answer on the output tape
provisionally to “Yes,” and then run the universal program with parameter x to see
if there is an x-writable real coding the ordinal 6. By the remarks in the previous
paragraph, any instance of this is infinite time decidable. If 6 is ever found to be
x-writable, then change the answer finally back to “No” and halt; otherwise, keep
searching.

Let’s argue that this algorithm works. If x is eventually writable, then it will
appear on the tape before stage ζ , and so we shall pass the first hurdle, where the
answer was changed provisionally to “Yes.” But since x is eventually writable, it
follows that 6 cannot be x-writable, since if it were, then 6 would be accidentally
writable, contradicting the fact that it is larger than all accidentally writable ordinals.
Thus, in this case we shall never pass the second hurdle, and so our final answer will
stabilize on “Yes,” as desired. If x is not eventually writable and also not accidentally
writable, then the algorithm will never pass the first hurdle, and so the algorithm will
stabilize on the first “No,” as desired. Finally, if x is accidentally writable, but not
eventually writable, then x appears accidentally on the universal computation, but
not before time ζ (since otherwise it would be eventually writable). So it appears at
some point between ζ and 6. In this case, the ordinal ζ is below the supremum of
the x-clockable ordinals, and since the supremum of the x-clockable and x-writable
ordinals is the same, it follows that ζ is x-writable. From this, it follows that there are
ordinals above 6 that are x-clockable, since with oracle x we can run the universal
computation, look exactly at the stage ζ configuration, and then wait until stage 6,
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Figure 1 The relationships between various classes of countable
equivalence relations.

when this configuration first repeats. Thus,6 is also x-writable, and so the algorithm
will pass the final hurdle, changing the answer to “No,” and halting, as desired. �

The relationships between various classes of countable equivalence relations are
shown in Figure 1. Each of the inclusions is proper; to establish this fully, it re-
mains only to show the following.

Proposition 4.7 There exists an infinite time eventually enumerable, infinite time
decidable equivalence relation which is not infinite time enumerable.

Proof The equivalence relation we give will not be defined on all of 2ω, but rather
on an infinite time decidable subset. Let A be the set of codes for triples (x, p, y)
satisfying x ∈ 2ω, p is a program, y is a real coding the computation history of
ϕp(x), showing that it halts, and y is the first x-accidentally writable such code
encountered in the standard enumeration of the x-accidentally writable reals by a
universal machine. This set is infinite time decidable, because given (x, p, y), we
can first check if y does code the computation of ϕp(x), showing it to halt, and if this
test is passed, then we start up the enumeration of all x-accidentally writable reals,
and see if y is the first such code encountered. Since we know that ϕp(x) does halt,
we are guaranteed to find such a code, and the only question is if y is the first one or
not.

Now, define the relation E on A by (x, p, y) E (x ′, p′, y′) if and only if x = x ′.
This is clearly a decidable equivalence relation. Also, it is countable, since for any
x , the only things that can be equivalent to (x, p, y) are other (x, q, z), where z is
determined by x and q. This relation is eventually enumerable, because for any x , we
can eventually write out the halting problem xO, which tells us which p have halting
computation ϕp(x), and for each of these we can go find the first x-accidentally
writable real y coding the computation, and then assemble all these triples into a
real to write out the equivalence class of (x, p, y). Finally, E is not infinite time
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Figure 2 The countable Borel equivalence relations.

enumerable, since if it were, we would be able to write out the halting problem xO

just from the code of any halting computation (e.g., from a trivial computation),
which is impossible. �

We now turn toward an analysis of the structure of the infinite time enumerable
equivalence relations. We begin by describing the most basic structure theory of
the countable Borel equivalence relations. First, we have already seen that it is a
consequence of Silver’s theorem that the equality relation = is the minimum count-
able Borel equivalence relation. The relations E which are Borel reducible to = are
called smooth. By the Glimm-Effros dichotomy (Theorem 3.3), E0 is the next-least
countable Borel equivalence relation, in the strong sense that E0 is Borel reducible to
any nonsmooth Borel equivalence relation. Lastly, and somewhat surprisingly, there
exists a universal countable Borel equivalence relation, denoted E∞. It is realized as
the orbit equivalence relation induced by the left-translation action of the free group
F2 on its power set.

There were initially very few countable Borel equivalence relations known to lie
in the interval (E0, E∞). It is a fundamental result of Adams and Kechris [1, Theo-
rem 1] that there exists a sequence {AKα} of continuum many pairwise incomparable
countable Borel equivalence relations. In summary, we have that the countable Borel
equivalence relations are organized as in Figure 2.

We would like to develop an analogous picture for the infinite time enumerable
relations. We first consider the question of whether the Silver dichotomy holds for
the infinite time enumerable relations, that is, whether = is the least complex such
relation.

Theorem 4.8

◦ There is a perfect set of infinite time eventual degrees.
◦ If E is infinite time eventually enumerable then = ≤B E.

The proof hinges on an unpublished result of Welch, which is stated below in The-
orem 4.9. We shall present a new proof which is due to Hamkins. Welch’s original
proof (based on methods from [20]) made use of the theory of forcing over models of
very weak set theories, an approach that has also been suggested by Lubarsky and the
referee of this paper. The idea is to develop and analyze the general theory of forcing
over models of such weak theories, and in particular to analyze the complexity of the
forcing relation over such structures, which allows one to deduce that λc

= λ and
so on. This general theory succeeds more easily in the case of admissible structures,
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that is, models of KP, and although L6 is not admissible, it is nevertheless a union of
admissible structures, which makes things easier in this application. Nevertheless, in
part in order to avoid the difficulties and uncertainty of the general development, we
have chosen a more concrete approach which does not require that general theory.

Theorem 4.9 (Welch) If c is an L6-generic Cohen real, then λc
= λ, ζ c

= ζ , and
6c

= 6.

We remark that our proof of this result will easily relativize. That is, for any real
z, if c is an L6z [z]-generic Cohen real, then we shall have λz+c

= λz , ζ z+c
= ζ z ,

and 6z+c
= 6z . Admitting this result, let us show how to complete the proof of

Theorem 4.8.

Proof of Theorem 4.8 We begin by arguing that there is a perfect set of eventual
degrees, from which it follows that = ≤B ≡e∞ (in fact, via a continuous reduction
function). Since L6 is countable, there exists a perfect set G of reals which are mutu-
ally generic over L6 . It suffices to show that for g, g′

∈ G, if g 6= g′ then g 6≡e∞ g′.
Indeed, since g, g′ are mutually generic we have g′

6∈ Lζ [g]. Furthermore, since
ζ g

= ζ , it follows that g′
6∈ Lζ g [g]; in other words, g′ is not infinite time eventually

writable from g.
Next, let x ≡

z
e∞ y if and only if x and y are infinite time eventually writable

from one another using the parameter z. Then by our earlier remarks, Theorem 4.9
relativizes and we in fact have = ≤B ≡

z
e∞ for any z ∈ 2ω.

Now, let E be an arbitrary infinite time eventually enumerable relation. There
exists an enumeration function for E which is eventually computable in a parameter
z, and so we have E ⊂ ≡

z
e∞. By the previous paragraph, there exists a Borel reduc-

tion f from = to E z
∞, and this f will also serve as a reduction from = to E . �

It is worth remarking that this argument also gives a reduction (the same function)
from = to J . We now return to the proof of Theorem 4.9. Recall the result of Welch
we mentioned earlier, that for any z, every computation in z either halts before λz

or repeats the stage ζ z configuration by stage 6z , and, moreover, that the universal
computation in z repeats for the first time with this pair of ordinals.

Proof of Theorem 4.9 Our strategy will be to show that for any infinite time Turing
machine program e, ϕe(c) repeats from stage ζ to stage 6. Applying this to the case
when e is the universal program, this implies that ζ c

= ζ and 6c
= 6. After this,

we shall argue separately that λc
= λ.

The main idea is that instead of carrying out the computation ϕe(c), which only
exists in a world having c, we shall instead carry out a Boolean-valued computation
using only the canonical name ċ for the Cohen generic, which is coded by a real in
the ground model. The inspiration here is that if c is fully V -generic, then every
fact or aspect about the computation ϕe(c), whether a given cell shows a 0 or 1 at a
particular ordinal stage or whether the head is on a particular cell at a particular stage,
is forced by some finite piece of the generic real c. This is the magic of forcing. We
shall simply design a computation that keeps careful track of this information.

Let us now describe the Boolean computation or simulation of ϕe(ċ). We em-
bark on a computation that simulates ϕe(ċ) by computing exactly what information
about this computation is forced by which conditions. At each simulated stage of
computation, the algorithm keeps track of the values of the cells, the head position
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and the machine state, not with certainty, but with its corresponding Boolean value.
That is, for each cell in the simulated computation, we reserve space in our actual
computation to keep track of the conditions p ∈ P that force the current value of this
cell to be 0 or to be 1. Similarly, we also keep track of the conditions that force that
the head is currently at this cell, and for each state in the program e we keep track of
the conditions that force that the simulated machine is currently in that state.

Initially, our simulation data should specify that all conditions force that the head
is on the left-most cell and in the start state, and that all the cells on the work and
output tapes are 0. For the input tape, which we intend to hold the generic real c, for
each cell j we say that a condition p forces that the jþ cell has value p( j), if this is
defined. Every condition forces that the cells on the scratch and output tapes are all
initially 0.

At successor stages of simulation, we can easily update this data so as to carry
out the simulated computational step. For example, if p forces that the head is at
a certain position, reading a certain value and in a certain state, then we can adjust
our data for the next step so that p forces the appropriate values and head position
after one step of the program e. There is a subtle tidying-up issue, in that it could
happen at a successor step that after this update, although previously a condition q
did not force, say, a certain head position, nevertheless now q_0 and q_1 both force
the same head positions (perhaps having arrived from different directions). In this
case, we would want to say that q also forces this head position. More generally, if
the collection of conditions forcing a particular feature (cell value, head position, or
state) is dense below a given condition q, then in our update procedure we tidy up
our data to show that q also forces this feature.

Let us now explain how to update the data at limit stages of computation. Of
course, at any simulated limit stage, we want every condition to force that the head
is now on the left-most cell in the limit state. It is somewhat more subtle, however,
to update the cells on the tape correctly. The problem is that the data we now have
available is the lim sup of the previous data for the cell values, which is not the same
as the data for the lim sup of the cell values. Nevertheless, we will be able to recover
the data we need. Note that p forces a particular cell value is 0 at limit time α if and
only if there are densely many q below p such that for some β < α, the condition q
forces that this cell is 0 from β up to α. But we do have this information available
in the lim sup of the previous data, since if q forced the cell was 0 from β up to
α, then the limit of this data will continue to show that. Thus, we can correctly
compute the correct forcing relation for the cell values on the tape at limit stages
of the simulated computation. A simple inductive argument on the length of the
computation now establishes that we have correctly calculated the forcing relation
for the head position, machine states, and cell values at every stage of simulated
computation.

If c is actually generic, then this Boolean-valued computation collapses to the
actual computation of ϕe(c) as follows. At every stage α, there are dense sets of
conditions p forcing exactly where the head is, and what the state is, and what ap-
pears in each particular cell. By genericity, the generic filter will meet each of these
dense sets, and so as far as conditions in c are concerned, the ghostly Boolean-valued
computation follows along with the actual computation ϕe(c). Indeed, we claim that
if c is merely L6-generic (meaning that c meets all predense sets for P coded as
elements of L6), then the computation of ϕe(c) at stage α is exactly what is forced
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by some condition p ∈ c in the Boolean-valued computation. This is certainly cor-
rect at the initial stage, and by induction it is preserved through successor stages and
limits, because all the relevant dense sets are in L6 , and so c meets them as required
in order to collapse the Boolean-valued computation.

The key observation now is that since the Boolean-valued computation is repeat-
ing from ζ to 6, it follows that the true computation ϕe(c) must also be repeating
from ζ to 6. And this is precisely what we had set out to prove. So we have estab-
lished that ζ c

= ζ and 6c
= 6.

We finally argue that λc
= λ. Suppose that some e had the property that ϕe(c)

halts at some ordinal stage α > λ. Then some condition p forces that ϕe(c) halts at
stage α. We may now run Boolean-valued computation and wait until p forces that
halt is achieved. Since the simulated computation takes at least as long as the actual
computation, this would allow us to halt beyond λ, a contradiction, since there are
no clockable ordinals above λ. �

A slew of questions follows. For instance, we have just seen in Theorem 4.8 that
there is a perfect set of eventual degrees, and hence of infinite time computable de-
grees. It is natural to ask just how complex the infinite time Turing degree relations
≡∞ and ≡e∞ actually are.

Question 4.10 Does E0 reduce (in any reasonable sense) to either ≡∞ or ≡e∞?

We have also just seen that a Silver dichotomy holds for infinite time enumerable
relations. This leaves open the following related question.

Question 4.11 Does a Glimm-Effros dichotomy hold for the infinite time enumer-
able equivalence relations? In other words, for any infinite time enumerable equiv-
alence relation E do we have either E ≤c 1(2ω) or E0 ≤c E? (And similarly for
infinite time eventually enumerable relations with respect to eventual reducibility.)

We next address the question of whether there is a universal infinite time enumerable
equivalence relation.

Theorem 4.12

◦ If E is infinite time enumerable, then E ≤c E∞.
◦ If E is infinite time eventually enumerable then E ≤e E∞.

Sketch of proof This is analogous to the proof that any countable Borel equivalence
relation is Borel reducible to E∞. In that argument, the key point is that any count-
able Borel equivalence relation can be expressed as the orbit equivalence relation
induced by the Borel action of a countable group. For our result, the key point is
Theorem 4.2. �

In particular, ≡∞ is eventually reducible to E∞. It is now natural to extend Ques-
tion 4.10 to the following stronger statement.

Question 4.13 Does E∞ reduce (in any sense) to ≡∞? In other words, is ≡∞

universal infinite time eventually enumerable?

Note that Slaman has shown that the arithmetic equivalence relation ≡arith on the
reals is universal countable Borel. On the other hand, it is unknown whether ≡T
is universal countable Borel. If it is, then the Martin Conjecture must fail. For a
discussion of this question see [19].
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Finally, we consider the question of whether there are incomparable infinite time
enumerable relations. Indeed, it is not difficult to see from the proof of the Adams-
Kechris theorem that there cannot even be a measurable reduction between any two
AKα . Hence, we obtain the following result for free.

Theorem 4.14 (Adams-Kechris) There is a sequence {AKα} of continuum many in-
finite time enumerable equivalence relations which are pairwise infinite time (even-
tually) computably incomparable.

We conclude this section with a question regarding the following chain of refine-
ments of ≡∞.

Definition 4.15 For α < ω1, let x ≡α y if and only if x and y are infinite time
computable from one another (without parameters) by computations which halt in
fewer than α steps. This is an equivalence relation whenever α is additively closed.

Proposition 4.16 Each equivalence relation ≡α is countable and Borel.

Proof The main point of interest is that ≡α are Borel. First note that ≡α is infinite
time computable from an oracle for a real coding α, and it is easily seen that it is
infinite time computable uniformly in at most α + α steps. But by Theorem 2.1, any
uniformly infinite time decidable set is Borel. �

We have the equalities ≡0 is 1(2ω) and ≡ω is E0. The union of the ≡α is again
countable; it is precisely ≡∞. Nothing is known about the rest of the ≡α for α < ω1.

Question 4.17 What is the structure of the ≡α under infinite time computable
comparability? Are they linearly ordered with respect to infinite time computable
reducibility?

5 Some Tools for Showing Nonreducibility

In this section we will establish several nonreducibility results, that is, results which
state that some equivalence relation E is not reducible to another equivalence rela-
tion F . As we have mentioned, many such nonreducibility results from the theory
of Borel equivalence relations come from arguments which show that there cannot
be an absolutely 11

2 reduction from E to F . In this section, we give a survey of
some of the nonreducibility results which apply also to 11

2 reducibility. An account
of further results of 11

2 reducibility, including versions of the dichotomy theorems,
can be found in [10, Chapter 9].

We begin with a sequence of absoluteness results which will pave the way for
forcing arguments later on.

Proposition 5.1 If A is an infinite time decidable set, then in any forcing extension
there is an unambiguous interpretation of A and, moreover, it remains an infinite
time decidable set.

Proof If A is infinite time decidable by the program p and the real parameter z,
define A of the forcing extension to be the set decided by p and z. To see that this
is well-defined, suppose that programs p, q both compute A in the ground model.
This is a 51

2 fact, and so by Shoenfield’s absoluteness theorem, it remains true in the
forcing extension. �
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We remark that the analogue of Proposition 5.1 holds for infinite time eventually
decidable, infinite time semidecidable, and even for absolutely 11

2 sets. Similarly,
we have the following result.

Proposition 5.2 If an equivalence relation E is infinite time enumerable, then E is
infinite time enumerable in any forcing extension.

Proof If E is infinite time enumerable, then there exists an infinite time computable
f such that f (x) codes [x]E . Hence we have that for all x, y ∈ 2ω, the relation x E y
holds if and only if there exists n ∈ ω such that y = f (x)n . This is a 51

2 assertion
about the programs computing f and deciding E and hence it is absolute to forcing
extensions. �

Proposition 5.3 Suppose that E, F are absolutely 11
2 equivalence relations, and

let f be an infinite time eventually computable reduction from E to F. Then in any
forcing extension, f remains such a reduction.

Proof By the remarks following Proposition 5.1, E , F , and f may be unambigu-
ously interpreted in any forcing extension. Clearly, since E, F are 11

2, the statement

∀x∀y(x E y ↔ f (x) F f (y))

is 51
2 and hence absolute to forcing extensions. We must additionally check that

f remains a total function in any extension. Indeed, suppose that the program e
eventually computes the function f . Then f is total if and only if for every x ∈ 2ω

and every settled well-ordered sequence of snapshots according with e, the value
f (x) eventually appears on the output tape. This demonstrates that the assertion “ f
is total” is 51

2 and hence it is absolute to forcing extensions. �

We remark that by Theorem 3.7, Proposition 5.3 fails for infinite time semicom-
putable reductions f . On the other hand, the conclusion of Proposition 5.3 does hold
for absolutely 11

2 functions.
We now give several classical forcing methods for establishing nonreducibility

results.

Definition 5.4 Let E be any equivalence relation. If P is a notion of forcing then
a P-name τ is said to be a virtual E-class if the following hold:

◦ If G is P-generic, then in V [G], τG 6E x for any x ∈ V ;
◦ If G × H is P2-generic, then in V [G × H ], τG E τH .

We say that E is pinned if it doesn’t admit a virtual class.

For instance, Eset admits a virtual class via the forcing P = Coll(ω, 2ω) which
adds an ω-sequence of reals with finite conditions. Any P-generic sequence will list
precisely the collection of ground model reals, and hence any two generics will be
Eset equivalent. Similarly, it is easily seen that ∼=WO admits a virtual class via the
forcing Q = Coll(ω, ω1).

The key facts, essentially due to Hjorth, are that the countable Borel equivalence
relations are pinned (see [15, Theorem 22]) and that there cannot be a Borel reduction
from a nonpinned equivalence relation to a pinned equivalence relation (see [15,
Lemma 20]). Using exactly the same methods, can show the following.

Proposition 5.5 If E is an absolutely 11
2 equivalence relation such that in any

forcing extension, none of its classes can be changed by forcing, then E is pinned.
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Proof Suppose that E is not pinned, and let P be a notion of forcing with a P-name
σ for a virtual class of E . Let g, h be mutually generic for P, so that σg E σh holds
in V [g, h]. Since the classes of E , as interpreted in V [g], cannot be changed by
forcing, we must have σh ∈ V [g]. Since g, h are mutually generic, it follows that
V = V [g] ∩ V [h], and hence σh ∈ V , a contradiction. �

For instance, any countable infinite time eventually decidable equivalence relation
satisfies the hypothesis of Proposition 5.5.

Proposition 5.6 Let E and F be absolutely 11
2 equivalence relations. If E ≤e F

and F is pinned, then E is pinned.

Proof Suppose that E is not pinned, and let P be a notion of forcing with a P-name
σ for a virtual class of E . If f is an eventual reduction from E to F , it is easy to see
that the natural P-name for f applied to σ (let us call it f (σ )) has the property that
if G × H is P2-generic, then in V [G × H ], we have f (σ )G F f (σ )H . Since F is
pinned, P forces that f (σ ) F y for some ground model real y. Now, by Shoenfield’s
absoluteness theorem, there exists a ground model real x such that f (x) F y. It
follows that P forces that f (σ ) F f (x), and hence that σ is E-equivalent to the
ground model real x , a contradiction. �

Corollary 5.7 Eset isn’t eventually reducible to E∞, or even to ≡e∞.

But recall that ≡e∞ is infinite time eventually decidable; it is now unclear just where
it should fit into the picture.

Question 5.8 Is ≡e∞ eventually reducible to the isomorphism relation ∼= for count-
able structures?

We next turn to cardinality arguments.

Proposition 5.9 No infinite time computable equivalence relation which necessar-
ily has 2ω many classes is eventually reducible to ∼=WO.

Proof Under ¬CH, this is clear since ∼=WO only has ω1 many classes. So just force
¬CH and appeal to Shoenfield’s absoluteness theorem. �

Corollary 5.10 Equality = on 2ω is not eventually reducible to ∼=WO. Hence also
E0, E∞, Eset, ∼=HC, and so on, are not eventually reducible to ∼=WO.

The following result shows that, moreover, ∼=WO does not reduce to E∞.

Proposition 5.11 The equivalence relation ∼=WO does not computably reduce to
any equivalence relation which is necessarily countable. In particular, ∼=WO does
not eventually reduce to any infinite time enumerable equivalence relation.

We should remark that similar arguments show that ∼=WO is not reducible to Eset (for
instance, see [10, Theorem 9.4]).

Proof Let E be such a relation, and let f be an infinite time computable reduc-
tion from ∼=WO to E . Then im( f ) is 61

2, so we may let a be a parameter such
that S is 61

2(a). By the Mansfield-Solovay theorem (see [13, Theorem 25.23]), if
ωL[a]

1 < ω1 < 2ω, then there is no 61
2(a) set of size ℵ1. Since im( f ) is clearly

a 61
2(a) set of size ℵ1, we have reached a contradiction under these hypotheses.
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Moreover, this situation can be forced over any model of ZFC. Since the proposition
“the relation ∼=WO doesn’t computably reduce to E” is 51

2, Shoenfield’s absoluteness
theorem implies that it holds. �

Some of the relationships between the equivalence relations considered in this paper
are summarized in Figure 3 (see the end of Section 3 for the definitions of these
symbols). The dashed circles in the diagram indicate open questions—recall from
Question 4.17 that the structure of the ≡α is not known. Similarly, it is not known
how Eζ , E6, and ≡e∞ compare with the other relations in the diagram.

=

E0

≡α

Eζ
E6

≡e∞

Ehyp

J

≡T ≡∞

E∞

Eset

Eλ

∼=HC

∼=W O Eck

∼=

Figure 3 Solid arrows denote computable (or better) reductions;
dotted arrows denote eventual reductions. The inner ellipse sur-
rounds the nonsmooth countable Borel equivalence relations; the
outer ellipse surrounds the infinite time eventually enumerable
equivalence relations.
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