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BERTINI THEOREM FOR NORMALITY ON LOCAL
RINGS IN MIXED CHARACTERISTIC (APPLICATIONS

TO CHARACTERISTIC IDEALS)

TADASHI OCHIAI and KAZUMA SHIMOMOTO

Abstract. In this article, we prove a strong version of the local Bertini theorem
for normality on local rings in mixed characteristic. The main result asserts that
a generic hyperplane section of a normal, Cohen–Macaulay, and complete local
domain of dimension at least 3 is normal. Applications include the study of
characteristic ideals attached to torsion modules over normal domains, which
is fundamental in the study of Euler system theory, Iwasawa’s main conjectures,
and the deformation theory of Galois representations.

§1. Introduction

The classical Bertini theorem says that a generic hyperplane section of

a smooth complex projective variety is smooth. We would like to designate

as a local Bertini theorem the following problem for a local Noetherian ring

(R,m,k):

Let P be a ring-theoretic property (e.g., regular, reduced, normal, seminormal, and
so on). Then if R is P and x ∈m is a nonzero divisor, is it true that R/xR is P for
a generic choice of x?

We refer the reader to Definition 2.3 for a more precise formulation of

the problem. A local Bertini theorem (in a slightly weak form) was first

raised by Grothendieck in [8, Exposé XIII, Conjecture 2.6] and was proved

by Flenner [4] and Trivedi [19]. We use the following notation. For an ideal

I ⊆ R, we denote by U(I) the set including all primes of R which do not

contain I , and we denote by V (I) the complement of U(I) in SpecR. For a

graded ring R with a graded ideal I , we use the notation V +(I) and U+(I)

for a closed subset with its complement in ProjR. Before stating our main

theorems, let us recall the following result from [4].
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Theorem 1.1 ([4, Satz 2.1], [19, Theorem 1]). Let (R,m) be a local Noe-

therian ring, and let I ⊆m be an ideal. Assume that Q is a finite subset of

U(I). Then there exists an element x ∈ I such that

(1) x /∈ p(2) for all p ∈ U(I),

(2) x /∈ p for all p ∈Q,

for p(n) := pnRp ∩R, the nth symbolic power ideal of p.

We remark on the second symbolic power of ideals. Let (R,m) be a local

ring, let x ∈ p be a nonzero divisor, and let x /∈ p(2) for a prime ideal p⊆R.

Then Rp is regular if and only if Rp/xRp is regular. Many ring-theoretic

properties such as regular, normal, and reduced can be verified at the local-

ization Rp, which is the reason why we require x /∈ p(2) (but not merely

x /∈ p2), which is equivalent to the condition: x /∈ p2Rp∩R. A strong version

of the local Bertini theorem similar to our main theorem below was already

proved for local rings containing a field in [4, Korollar 4.2]. To extend it to

the mixed characteristic case, we need to introduce some new ideas. Theo-

rem 1.1 has the following implication. If (R,m) is a complete local normal

domain of depthR ≥ 3, then there is a nonzero element x ∈ m for which

R/xR is normal (see [4, Korollar 3.4]). However, this does not suffice for

our purpose, because we would like to give a family of infinitely many such

specializations R/xR which are parameterized by a certain explicit p-adic

space.

The notation which will be used throughout this article is the follow-

ing. We denote by Pn(S) (resp., An(S)) the set of S-rational points of

the n-dimensional projective space (resp., affine space) over an integral

domain S. In cases when S is a field or a discrete valuation ring, these spaces

come equipped with some topology (see the discussions in Section 2). For

a complete discrete valuation ring (A,πA,k), we have a specialization map

SpA : Pn(A)→ Pn(k) (see Definition 2.1).

This article has the following organization. In Sections 2 and 3, we provide

discussions on basic tools and prove some requisite results, including the

specialization map and basic elements, due to Swan [18].

In Section 4, we prove the first main theorem (see Theorem 4.4 together

with Theorem 4.3) in this article, as follows.

Main Theorem A (Local Bertini theorem). Let (R,m,k) be a complete

local domain of mixed characteristic p > 0, and suppose that we have the

following conditions:
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(1) let A→ R be a coefficient ring map for a complete discrete valuation

ring (A,πA);

(2) let x0, x1, . . . , xd be a fixed set of minimal generators of m;

(3) let R be normal, of depthR≥ 3, and let the residue field k be infinite.

Then there exists a Zariski-dense open subset U ⊆ Pd(k) satisfying the fol-

lowing properties: for any a= (a0 : · · · : ad) ∈ Sp−1
A (U), the quotient R/xãR

is a normal domain of mixed characteristic p > 0 (see Definition 2.3 for the

notation xãR).

By the minimality condition of x0, x1, . . . , xd, it is immediate to see that

xã �= 0, that is, R/xãR is a nontrivial quotient of R. We will also discuss a

version of the above theorem for the case when the residue field is finite at

the end of Section 4. The above theorem allows us to find sufficiently many

local normal domains of mixed characteristic as specializations, but it does

not tell us how to find U . We will show how to find U in Example 4.9. It is

worth pointing out that if dimR= 2, the local Bertini theorem fails due to

a simple reason. In fact, if the quotient R/yR is normal, then it is a discrete

valuation ring, so R must be regular. By Cohen’s structure theorem, there

is a surjection A[[z0, . . . , zd]]�R, where d+1 is the number of the minimal

generators of m, so that the minimal generators of m are just the image of

z0, z1, . . . , zd under this surjection. Related to our main result, we mention

that if (R,m) is a local ring and y ∈m is a nonzero divisor such that R/yR

is normal, then R is normal (see [7, Corollaire 5.12.7]).

In Section 5, we establish the fact that the parameter set of specializations

in the local Bertini theorem is infinite (see Proposition 5.1), which is used

to prove the main result on characteristic ideals.

In Section 6, we prove a version of the local Bertini theorem in the case

when Serre’s condition (Rn) or (Sn) is satisfied.

In Section 7, we define characteristic ideals of finitely generated torsion

modules over a Noetherian normal domain as reflexive ideals, following [17].

In Section 8, our main purpose is to generalize the results proved in [14]

over a regular ring to the case over a Noetherian normal domain. First, we

prove some preliminary results on characteristic ideals. Then, combining this

with Main Theorem A, we prove another main theorem (see Theorem 8.8)

as follows.

Main Theorem B (Control theorem for characteristic ideals). Let (R,

m,k) be a complete local domain of mixed characteristic p > 0 satisfying

the conditions (1), (2), and (3) of Main Theorem A, except that we now
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assume the residue field to be finite. Let M and N be finitely generated

torsion R-modules. Then for certain infinite subsets LW (F)(MW (F)) and

LW (F)(NW (F)) of the projective space Pd(W (F)) defined in a natural way

(see Definition 8.1), the following statements are equivalent:

(1) charR(M)⊆ charR(N), where charR(−) denotes the characteristic ideal

(see Definition 7.1);

(2) for all but finitely many height 1 primes

xãRW (F) ∈ LW (F)(MW (F))∩LW (F)(NW (F))

we have

charRW (F′)/xãRW (F′)
(MW (F′)/xãMW (F′))

⊆ charRW (F′)/xãRW (F′)
(NW (F′)/xãNW (F′)),

where F′ is any finite field extension of F depending on ã such that

xã ∈RW (F′);

(3) for all but finitely many height 1 primes

xãRW (F) ∈ LW (F)(MW (F))∩LW (F)(NW (F))

we have

charRW (F)/xãRW (F)
(MW (F)/xãMW (F))⊆ charRW (F)/xãRW (F)

(NW (F)/xãNW (F)).

Main Theorem B will be crucial in a forthcoming sequel [15], where we

plan to compare characteristic ideals of certain torsion modules arising from

Iwasawa theory as developed in [14] (e.g., those torsion modules arise as

the Pontryagin dual modules of Selmer groups associated with certain 2-

dimensional Galois representations with values in a complete local ring with

finite residue field).

§2. Specialization map and the topology for Bertini-type theo-

rems

In this section, we introduce notation and make definitions. We fix a

prime integer p > 0. First, we discuss the specialization map. Let (A,πA,k)

be a complete discrete valuation ring, and let us choose a point

a= (a0 : · · · : an) ∈ Pn(A).
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Suppose that the valuation v of πA is equal to 1 and that the ith coordinate

ai has the minimal valuation vi := v(ai) among the valuations of a0, . . . , an.

We put a′j = aj/π
vi
A (0≤ j ≤ n). Then we have a presentation a= (a′0 : · · · :

a′n), so that aj ∈A (0≤ j ≤ n) and that a′i is a unit of A. So we may (and

will) think of the projective space as

Pn(A) =
{
homogeneous coordinates (a0 : · · · : an) in A

∣∣
ai ∈A× for some i

}
/∼,

where the equivalence relation ∼ is a simultaneous multiplication by a unit

of A.

Definition 2.1. Let (A,πA,k) be a complete discrete valuation ring, and

pick a point a= (a0 : · · · : an) ∈ Pn(A).

(1) We define a lift ã= (ã0, . . . , ãn) ∈An+1(A) of a ∈ Pn(A) to be an element

belonging to the set consisting of all inverse images of a ∈ Pn(A) via the

projection map

An+1(A) \ {points whose coordinates are all nonunits}� Pn(A).

(2) Let ã ∈ An+1(A) be a lift of a ∈ Pn(A). Then ã gets mapped to a

point a= (a0 : · · · : an) ∈ Pn(k) via the surjection map A→ k :=A/πAA.

Thus, we construct a specialization map

SpA : Pn(A)→ Pn(k)

by setting SpA(a) = a. This map does not depend on the choice of the

lift of a.

The set Pn(k) is endowed with the Zariski topology, while Pn(A) is

endowed with the topology induced by the valuation on A. Hence we sim-

ply regard Pn(A) as a set of points equipped with this topology. It is also

straightforward from the definition that we naturally identify the set Pn(A)

with Pn(Frac(A)) as well as the induced topology.

We begin to pin down the suitable topology for formulating Bertini-type

theorems in mixed characteristic. Let (R,m,k) be a local Noetherian ring.

Then we say that a reduced local ring (R,m,k) is of mixed characteristic

p > 0 if every component of the total ring of fractions of R is of characteristic

zero and the residue field k is of characteristic p.
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Now we assume that (R,m,k) is a complete reduced local ring of mixed

characteristic p > 0 and that (A,πA,k) is a complete discrete valuation ring

such that πAA = pA and such that there is an injection A ↪→ R of rings,

which induces an isomorphism on residue fields, say, k=A/πAA
R/m. In

this situation, we call (A,πA,k) together with a map A ↪→ R a coefficient

ring of R.

Example 2.2. Let R := Zp[[x, y]]/(p− xy). Then R is a finite extension

of Zp[[x+ y]] defined by the Eisenstein equation t2 − (x+ y)t+ p= 0, and

Zp is a coefficient ring of R.

In what follows, we will fix a coefficient ring (A,πA,k). We denote by

Loc.alg/A the category of complete local A-algebras for a discrete valua-

tion ring A. Note that the category of complete local k-algebras is a full

subcategory of Loc.alg/A. Let (R,m,k) be a local Noetherian ring, and let

M be a finitely generated R-module. We say that a set of elements x0, . . . , xd
of M are the minimal generators of M , if the following conditions hold:

d∑
i=0

k · xi =M/mM and dimkM/mM = d+ 1,

where xi denotes the image of xi in M/mM .

Definition 2.3. Let (R,m,k) ∈ Loc.alg/A be a reduced local ring of

mixed characteristic p > 0.

(1) Fix a set of minimal generators x0, . . . , xn ∈ m, and let a = (a0 : · · · :
an) ∈ Pn(A). For any lift ã= (ã0, . . . , ãn) ∈An+1(A) of a in the sense of

Definition 2.1, we put

xã :=
d∑

i=0

ãixi.

By definition, the element xã ∈R depends on the choice of a lift ã, but

the ideal xãR depends only on a ∈ Pn(A).

(2) With the notation as above, assume that P is a ring-theoretic property

on Noetherian rings. We say that (R,m,k) ∈ Loc.alg/A satisfies a local

Bertini theorem for the property P if for a fixed set of minimal genera-

tors x0, . . . , xn ∈m there exists a Zariski (-dense) open subset U ⊆ Pn(k)

such that R/xãR has P for all a= (a0 : · · · : an) ∈ Sp−1
A (U)⊆ Pn(A).

One may formulate the local Bertini theorem in a different way. For exam-

ple, the completeness of R may be dispensed with, or a set of minimal gen-
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erators of the maximal ideal of R may be replaced with a set of minimal

generators of a smaller ideal. In this article, we adopt the above definition.

Remark 2.4. The naturality of the Definition 2.3 is explained as fol-

lows. We endow Pn(k) with the Zariski topology. Let f ∈ k[x0, . . . , xn] be a

nonzero homogeneous polynomial, let f ∈A[x0, . . . , xn] be any fixed homo-

geneous lifting of f , and let U+(f) ⊆ Pn(k) be an open subset defined by

f �= 0. Then the inverse image of the open subset U+(f) under the map

SpA : Pn(A)→ Pn(k) can be described as

Sp−1
A

(
U+(f)

)
=
{
a= (a0 : · · · : an) ∈ Pn(A)

∣∣ f(a) ∈A×}.
This is an admissible open subset of Pn(A) (see [5] for this fact). Our objec-

tive is to show that this topology is suitable in formulating the local Bertini

theorem in the mixed characteristic case.

The following proposition is indispensable for the proof of Theorem 4.3

and Theorem 4.4.

Proposition 2.5. Let U ⊆ An(L) be any nonempty Zariski-open subset

for an infinite field L. Then U is dense. Furthermore, if K ⊆ L is any

subfield of L such that K is infinite, the intersection U ∩ An(K) is also

a Zariski-dense open subset of An(K). The above assertions hold over the

projective space as well.

Proof. The first assertion about density is obvious. So we prove the second

assertion. It suffices to prove the following statement.

• Let V := V (I) be a Zariski-closed subset of An
L := SpecL[X1, . . . ,Xn],

where I is an ideal of L[X1, . . . ,Xn]. If An(K) is contained in the set of

K-rational points of V , then V is equal to An
L.

Let us prove this. If An(K) is contained in the set of K-rational points of

V , we have

I ⊆
⋂

(a1,...,an)∈Kn

(X1 − a1,X2 − a2, . . . ,Xn − an)⊆ L[X1, . . . ,Xn].

Since K is infinite, we have⋂
(a1,...,an)∈Kn

(X1 − a1,X2 − a2, . . . ,Xn − an) = 0

and thus I = (0). This implies that V (I) =An
L.
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§3. Discussion on basic elements

We start with the definition of basic elements.

Definition 3.1. Let R be a Noetherian ring, and let M be a finitely

generated R-module.

(1) Assume that (R,m) is local. The depth of M , denoted by depthRM , is

defined to be the maximal length of all M -regular sequences contained

in m.

(2) Let p ∈ SpecR. Then μp(M) denotes the number of minimal generators

of the Rp-module Mp.

(3) (Swan) Let p ∈ SpecR. We say that an element m ∈M is basic at p if

we have

μp(M)− μp

(
M/(R ·m)

)
= 1.

More generally, we say that a set of elements m1, . . . ,mn of M is k-fold

basic at p, if the following inequality holds:

μp(M)− μp

(
M/

( n∑
i=1

R ·mi

))
≥ k,

that is, N =R ·m1+ · · ·+R ·mn contains at least k minimal generators

at p (see [18]).

Remark 3.2. Under the setting of the above definition, let M (r) :=

M/(
∑r

i=1R ·mi) for a set of elements m1, . . . ,mk of M and r satisfying

0≤ r ≤ k− 1, and pick a prime ideal p of R. Then

μp(M
(r))− μp

(
M (r)/(R ·mr+1)

)
= 1 ⇐⇒ mr+1 /∈ pM

(r)
p

for 0 ≤ r ≤ k − 1 by Nakayama’s lemma. In other words, m1, . . . ,mk form

partial generators of the k(p)-vector space M ⊗R k(p) with k(p) :=Rp/pRp.

We will use (finite) Kähler differentials (see [10] as a reference). For a

complete local ring (R,m) with its coefficient ring A, the usual module of

Kähler differentials ΩR/A is not a finitely generated R-module. Instead, one

uses the completed module Ω̂R/A. This is the m-adic completion of ΩR/A

and it is a finitely generated R-module. It can be also defined as follows.

Let I denote the kernel of the map μ :R ⊗̂AR→R defined by μ(a⊗ b) = ab.

Then Ω̂R/A := I/I2. Let d : R→ Ω̂R/A be the canonical derivation defined

by a �→ a⊗ 1− 1⊗ a. The connection of Kähler differential modules with
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the symbolic power ideals is expressed by the following simple fact (see [4,

Lemma 2.2] for its proof).

Lemma 3.3. Let M be a module over a ring R, let p be a prime of R,

and let d :R→M be a derivation. If for x ∈R, dx ∈M is basic at p, then

x /∈ p(2).

Let I ⊆R be an ideal. We denote by MinR(I) the set of all prime ideals

that are minimal over I . (The authors are grateful to Prof. V. Trivedi for

explaining the proof of the following lemma).

Lemma 3.4 ([4, Lemma 1.2]). Suppose that R is a Noetherian ring, that

M is a finitely generated R-module, that U ⊆ SpecR is a Zariski-open sub-

set, and that {m0, . . . ,mn} is a set of elements of M , which generates the

submodule N ⊆M . Suppose that we have t ∈ Z (which can be negative) such

that

μp(M)− μp(M/N)≥ dim
(
V (p)∩U

)
− t

for every p ∈ U . Let (φ∗)−1(U) be the inverse image of U under φ∗ :

SpecR[X0, . . . ,Xn] → SpecR induced by the natural injection φ :

R→R[X0, . . . ,Xn]. Then there exists an ideal (F1, . . . , Fr)⊆R[X0, . . . ,Xn]

such that

dim
(
V (F1, . . . , Fr)∩ (φ∗)−1(U)

)
≤ n+ 1+ t

and the element

n∑
i=0

mi ⊗Xi ∈M ⊗R R[X0, . . . ,Xn]

is basic on U(F1, . . . , Fr)∩ (φ∗)−1(U).

We need the following technical lemma for the proof of the main theorem.

We recall that a local domain S is catenary if and only if htp+ dimS/p=

dimS for all p ∈ SpecS.

Lemma 3.5. Let (R,m) be an excellent local domain, and let φ : R →
R[X0, . . . ,Xd] be a natural injection with an ideal (F1, . . . , Fr)⊆R[X0, . . . ,

Xd]. Suppose that the following conditions hold:

(1) dim(V (F1, . . . , Fr)∩ (φ∗)−1(U(m)))≤ d+ 1;

(2) (F1, . . . , Fr)⊆mR[X0, . . . ,Xd].
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Then the set of prime ideals P ∈ SpecR[X0, . . . ,Xd] satisfying the property

(F1, . . . , Fr)⊆ P ⊆mR[X0, . . . ,Xd]

is finite.

Proof. Let I := (F1, . . . , Fr), and consider the finite set

S :=
{
P ∈MinR[X0,...,Xd](I)

∣∣ P ⊆mR[X0, . . . ,Xd]
}
.

We would like to show that

(3.1) 0≤ ht
(
mR[X0, . . . ,Xd]

)
− htP ≤ 1

for P ∈ S. If (3.1) is true for P ∈ S, then it is immediate that a prime

ideal between P and mR[X0, . . . ,Xd] is either P or mR[X0, . . . ,Xd]. Hence

if (3.1) is proved for all P ∈ S, the lemma follows. So we will prove (3.1) for

all P ∈ S.

Since R is an excellent local domain, R[X0, . . . ,Xd] is a catenary domain.

From this it follows that 0 ≤ ht(mR[X0, . . . ,Xd]) − htP for P ∈ S. If we

have ht(mR[X0, . . . ,Xd]) = htP , then mR[X0, . . . ,Xd] = P . So it suffices to

establish the inequality

ht
(
mR[X0, . . . ,Xd]

)
− htP ≤ 1.

Let T be the localization of R[X0, . . . ,Xd] at the prime ideal mR[X0, . . . ,Xd].

Then R→ T is a flat local map of local domains, and dimR= dimT . Now

assume that P �= mR[X0, . . . ,Xd] for P ∈ S. Since R is an excellent local

domain, T is a catenary local domain and we have htP = dimT−dimT/PT .

So if we can prove

dimT/PT = 1,

then the relation (3.1) follows from this and we are done. Let

(3.2) P0 := P � P1 � · · ·� Ps =mR[X0, . . . ,Xd]

be a chain of prime ideals of maximal length. Since dimT/PT = s, it suffices

to prove s= 1. Consider a chain of prime ideals (0≤ k ≤ s) in R[X0, . . . ,Xd]:

(3.3) P0 � · · ·� Pk � Pk +(X0)� Pk +(X0,X1)� · · ·� Pk +(X0, . . . ,Xd).
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On the other hand, dim(V (F1, . . . , Fr)∩(φ∗)−1(U(m))) is equal to the length

of the chain of prime ideals of maximal length in R[X0, . . . ,Xd]:

(3.4) Q0 �Q1 � · · ·�Qt such that I ⊆Q0 and φ−1(Qt) �=m.

First, note that s= 0 is impossible, since we assumed P �=mR[X0, . . . ,Xd].

So in the rest of the proof, let us assume that s ≥ 2 and derive a contra-

diction. In this case, taking k = 1 in (3.3), we get a chain of prime ideals of

length d+ 2:

(3.5) P0 � P1 � P1 + (X0)� P1 + (X0,X1)� · · ·� P1 + (X0, . . . ,Xd).

Since P1 � P2 ⊆mR[X0, . . . ,Xd] by s≥ 2, we have φ−1(P1+(X0, . . . ,Xd)) �=
m. By comparing (3.4) and (3.5), we must have d+ 2≤ t, because (3.4) is

of maximal length. However, this is not compatible with the condition (1).

Therefore, we get s= 1, as desired.

In this article, the Noetherian induction and the lemma of generic freeness

are important tools. For this, we often need the following fact and use it

freely.

Lemma 3.6. Let R be a Noetherian ring, and let M be a finitely generated

R-module. Let I be an ideal of R, and let p be a prime ideal of R satisfying

I ⊆ p. We denote the quotient ring R/I by R and the image of p in R by p.

Then an element x ∈M is basic at p ∈ SpecR if and only if x ∈M :=M/IM

is basic at p ∈ SpecR.

Proof. Note that there is a commutative square

M −−−−→ M

π

⏐⏐� π

⏐⏐�
M ⊗R k(p) M ⊗R k(p)

In this diagram, we have π(x) = π(x). By Remark 3.2, x ∈M (resp., x ∈M )

is basic at p ∈ SpecR (resp., p ∈ SpecR) if and only if π(x) ∈M ⊗R k(p)

(resp., π(x) ∈M ⊗R k(p)) is not zero. This completes the proof.

Let R be a Noetherian ring, and let M be a finitely generated R-module.

Fix an element x ∈M . Let us define

Zx := {p ∈ SpecR | x is basic at p}.

Then Zx is not necessarily a Zariski-open subset. However, we have the

following result.
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Proposition 3.7. Let R be a Noetherian ring, and suppose that M is a

finitely generated R-module. Fix an element x ∈M , and let Zx be as above.

Then Zx is a (possibly empty) constructible subset of SpecR.

Proof. First, we consider the special case where M is finitely generated

and projective over R. Recall that for a finitely generated projective R-

module N , x ∈N is basic at p ∈ SpecR if and only if Rp · x spans a direct

summand of Np (see [2, Lemma 1] for the proof). Note that, for any short

exact sequence of R-modules, the locus on which it splits is a Zariski-open

subset of SpecR. Hence, we proved that Zx is Zariski-open when M is

finitely generated and projective over R.

Then we will prove the case for general R-modules M . First, we apply

Lemma 3.6 by taking I to be the nilradical
√
0 of R and by taking R to

be Rred := R/
√
0. Since R � Rred induces an isomorphism of topological

spaces SpecRred
∼−→ SpecR, we may (and will) assume that R is reduced

from now on. Thus there exists f ∈ R for which M [f−1] is a free R[f−1]-

module. Denote by U ⊆ SpecR[f−1] the locus on which x ∈M [f−1] is basic.

Continuing this process, we may find a chain of closed subsets

V (f) =: V1 ⊇ V2 ⊇ V3 ⊇ · · ·

such that x ∈ M is basic at p ∈ Vi if and only if p ∈ Zi := Vi \ Vi−1 ⊆ Vi.

Moreover, Zi is an open subset of Vi. Since SpecR is a Noetherian space, this

chain stabilizes. Thus, there is an integer N > 0 such that VN = VN+1 = · · · .
We set Z := Z1 ∪Z2 ∪ · · · ∪ZN . Then it follows that x ∈M is basic at each

point of Z and that Z is a constructible subset of SpecR. So Zx := U ∪ Z

is the sought one and constructible.

§4. Main theorems

In this section, we establish our main theorems.

Lemma 4.1. Let (A,πA,k) be a discrete valuation ring, and let f ∈
A[y1, . . . , yd] be a nonzero (possibly constant) polynomial. Then there exists

t ∈ Z≥0 such that π−t
A f ∈A[y1, . . . , yd] and the reduction of π−t

A f modulo πA
is a nonzero (possibly constant) polynomial in k[y1, . . . , yd].

Proof. The proof goes by induction on d. If d= 1, we write f = amym1 +

am−1y
m−1
1 + · · ·+ a0 with ai ∈A. Let 0≤ h≤m be such that the valuation

v(ah) is the smallest in the set {v(ai) | 0≤ i≤m}, and write ah = (unit) ·πt
A.

Dividing f by πt
A, we get the desired polynomial.



BERTINI THEOREM FOR NORMALITY ON LOCAL RINGS 137

In general, write f = bny
n
d + bn−1y

n−1
d + · · ·+ b0 for bi ∈ A[y1, . . . , yd−1].

Applying the induction hypothesis to every bi, we may find ti ∈ Z≥0 such

that π−ti
A bi has the desired property. Let ts := min{ti | 0≤ i≤ n}. Then the

term π−ts
A bsy

s
d modulo πA is nonzero, and it is clear that π−ts

A f is contained

in A[y1, . . . , yd]. Hence it suffices to put t := ts.

The following lemma will play a role in the final step of the proof of

Theorem 4.3.

Lemma 4.2. Let (R,m,k) be a complete local domain of mixed character-

istic p > 0 with infinite residue field k and a coefficient ring (A,πA). Fix a

set of minimal generators x0, x1, . . . , xd of m together with a prime ideal p

of R with p �=m. Then there exists a nonempty open subset U ⊆ Pd(k) such

that

xã :=

d∑
i=0

ãixi /∈ p

for every a= (a0 : · · · : ad) ∈ Sp−1
A (U).

Proof. Consider the homogeneous polynomial

F (X0, . . . ,Xd) :=

d∑
i=0

xiXi ∈R[X0, . . . ,Xd].

Then we have an equivalence of conditions

xã =
d∑

i=0

ãixi /∈ p ⇐⇒ F (ã0, . . . , ãd) �≡ 0 (mod p).

We will divide the proof of the lemma into the separate cases.

Case 1 : Assume that πA ∈ p. Let S be the localization of R at p. Then

A→ S is a flat local map of local rings and S is of mixed characteristic. Let

k′ denote the residue field of S. Then we have a mapping

Pd(k)→ Pd(k′).

Since F is a homogeneous polynomial, the condition F (ã0, . . . , ãd) �≡ 0

(mod p) defines an open subset V ⊆ Pd(k′). By Proposition 2.5,

U := V ∩ Pd(k)
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is a dense open subset of Pd(k), since the field k is infinite. Then this U is

a nonempty open subset of Pd(k) with the desired property.

Case 2 : Assume that πA /∈ p. In this case, notation being as in Case 1,

we have a mapping:

Pd
(
Frac(A)

)
→ Pd(k′).

Again, the condition that F (ã0, . . . , ãd) �≡ 0 (mod p) defines a Zariski-open

subset V ⊆ Pd(k′). We use an identification Pd(Frac(A)) = Pd(A).

Proposition 2.5 implies that V ∩ Pd(Frac(A)) is a dense open subset of

Pd(Frac(A)), and it is covered by open sets of the form U+(f) for a homoge-

neous polynomial f ∈A[X0, . . . ,Xd]. Let f ∈ k[X0, . . . ,Xd] be its reduction

modulo πA, and let U+(f) ⊆ Pd(k) be the corresponding open subset. In

view of Lemma 4.1, by replacing f with π−t
A f if necessary, we may assume

that f ∈A[X0, . . . ,Xd] and that f ∈ k[X0, . . . ,Xd] is not equal to zero. Since

f(ã) ∈A× if and only if f(SpA(a)) �= 0, we have

Sp−1
A

(
U+(f)

)
=
{
a= (a0 : · · · : ad) ∈ Pd(A)

∣∣ f(ã) ∈A×}⊆ Pd(A).

Applying this description to the open covering of V ∩Pd(Frac(A)) consisting

of U+(f), the image

U := SpA
(
V ∩ Pd

(
Frac(A)

))
⊆ Pd(k)

is a Zariski-open subset. Then this U is a nonempty open subset of Pd(k)

with the desired property.

Combining Case 1 and Case 2 together, we finish the proof of the lemma.

The following is our first main theorem.

Theorem 4.3. Let (R,m,k) be a complete local domain of mixed char-

acteristic p > 0, and suppose that the following conditions hold:

(1) let A→ R be a coefficient ring map for a complete discrete valuation

ring (A,πA);

(2) let x0, x1, . . . , xd be a fixed set of minimal generators of m;

(3) the residue field k is infinite.

Then there exists a Zariski-dense open subset U ′ ⊆ Pd(k) such that we have

xã =
d∑

i=0

ãixi /∈ p(2)

for every prime p of R and for every a= (a0 : · · · : ad) ∈ Sp−1
A (U ′)⊆ Pd(A).
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Note that x0, x1, . . . , xd are not a system of parameters of R, unless R is

a regular local ring.

Proof. First, the R-module Ω̂R/A is generated by dx0, . . . , dxd, which is

easily verified by considering the surjective ring map A[[X0, . . . ,Xd]]� R

defined by mapping each Xi to xi. Let us recall an important fact. If R is

a complete local domain with (A,πA) as its coefficient ring, it follows from

[4, Lemma 2.6] or [19, Lemma 2] that for any fixed element p ∈ U(m), we

have

μp(Ω̂R/A)≥ dim(R/p)− 1.

Noting that dim(R/p) − 1 = dim(V (p) ∩ U(m)) for a subscheme V (p) ∩
U(m) ⊆ SpecR and applying Lemma 3.4 for the R-module Ω̂R/A, there is

an ideal (F1, . . . , Fr)⊆R[X0, . . . ,Xd] such that we have

(4.1) dim
(
V (F1, . . . , Fr)∩ (φ∗)−1

(
U(m)

))
≤ d+ 1,

where (φ∗)−1(U(m)) is the inverse image of U(m) under φ∗ : SpecR[X0, . . . ,

Xd]→ SpecR and where

d∑
k=0

dxk ⊗Xk ∈ Ω̂R/A ⊗R R[X0, . . . ,Xd]

is basic on U(F1, . . . , Fr) ∩ (φ∗)−1(U(m)). Let T denote the localization

of R[X0, . . . ,Xd] at the prime ideal mR[X0, . . . ,Xd]. Then we have a flat

local map of catenary local domains: (R,m)→ (T,mT ) and dimR= dimT .

By abuse of notation, we denote by φ∗ : SpecT → SpecR the scheme map

induced by R → R[X0, . . . ,Xd] → T . Then since φ∗ is faithfully flat, it is

surjective.

In what follows, it suffices to consider the case when (F1, . . . , Fr)T is a

proper ideal. Let P ⊆ T be any prime ideal containing (F1, . . . , Fr)T . Then it

follows from Lemma 3.5 together with (4.1) above that V := V (F1, . . . , Fr)⊆
SpecT is a finite set and that

d∑
k=0

dxk ⊗Xk

is basic on SpecT \ V (the complement of φ∗(SpecT \ V ) in SpecR is a

finite set). Then it suffices to consider the proof on U(g)⊆ SpecT for some

g ∈ R such that Ω̂R/A ⊗R T [g−1] is a T [g−1]-free module, and we reason
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this as follows by Noetherian induction. By applying the lemma of generic

freeness to the R/p-module Ω̂R/A⊗RR/p for each prime p ∈MinR(gR) and

repeating the same discussion for R/p→ T ⊗R R/p in place of R→ T , we

see that this process stabilizes, because R is a Noetherian ring. Hence it

suffices to prove the theorem on the open subset U(g)⊆ SpecT .

Now there exists a (not necessarily homogeneous) polynomial

G ∈R[X0, . . . ,Xd] \mR[X0, . . . ,Xd]

such that
d∑

k=0

dxk ⊗Xk

is basic on U(g ·G)⊆ SpecR[X0, . . . ,Xd]. Choose a point a= (a0, . . . , ad) ∈
Pd(A) together with its lift ã = (ã0, . . . , ãd) ∈ Ad+1(A) such that G(ã) /∈ m

(such a point exists, because #k =∞ and G /∈ mR[X0, . . . ,Xd]). Then by

Noetherian induction hypothesis,

d∑
k=0

ãkdxk ∈ Ω̂R/A

is basic on φ∗(SpecT \ V )⊆ SpecR in view of [4, Lemma 1.1]. Now we get

the following implication. Let ã ∈Ad+1(A) be such that G(ã) /∈m. Then for

all p ∈ φ∗(SpecT \ V ) = SpecR \ {p1, . . . ,pr,m}, it follows from Lemma 3.3

that

xã =

d∑
k=0

ãkxk /∈ p(2).

So it remains to deal with the issue on a finite set {p1, . . . ,pr,m}. First, if we
have ãi ∈A× for some i, then xã /∈m2 by the minimality of x0, . . . , xd. There-

fore, we have verified the condition xã /∈ p(2) for all p ∈ SpecR \{p1, . . . ,pr},
whenever G(ã) /∈m.

Put U0 := U(G)⊆Ad+1(k)\{0} (the origin of Ad+1(k) is excluded). Then

define an open subset

(4.2) U0 ⊆ Pd(k)

as the image of U0 under the projection map: Ad+1(k) \ {0} → Pd(k). To

deal with the issue on {p1, . . . ,pr}, take the homogeneous polynomial

F (X0, . . . ,Xd) :=
d∑

i=0

xiXi ∈R[X0, . . . ,Xd].
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Then it suffices to force

xã =

d∑
i=0

ãixi /∈ pj

for all 1≤ j ≤ r. We fix a point a= (a0 : · · · : ad) ∈ Pd(A). For each 1≤ j ≤ r,

we have an equivalence of conditions

(4.3) xã =

d∑
i=0

ãixi /∈ pj ⇐⇒ F (ã0, . . . , ãd) �≡ 0 (mod pj).

Moreover, condition (4.3) is stable under taking multiplication by elements

of A×.
Our final goal is to identify the set of points of Pd(A) satisfying condition

(4.3) and to describe it as the inverse image of an open subset under the

map SpA : Pd(A)→ Pd(k). Since the maximal ideal m of R is generated by

x0, . . . , xd, it is clear that m is generated by the set {F (ã0, . . . , ãd) | (a0 : · · · :
ad) ∈ Pd(A)}. Since the union of prime ideals p1, . . . ,pr is strictly contained

in m, there exists a point (a0 : · · · : ad) ∈ Pd(A) for which F (ã0, . . . , ãd) /∈ pi

for all 1 ≤ i ≤ r. In fact, more is true. Applying Lemma 4.2 to the prime

ideals p1, . . . ,pr, each of which is different from m, we find nonempty open

subsets U1, . . . ,Ur of Pd(k) with each Ui attached to pi. Hence U ′ is defined
as the intersection U0 ∩U1 ∩ · · · ∩Ur ⊆ Pd(k), where U0 is as given in (4.2).

This completes the proof of the theorem.

As the main result of this article, we obtain the following theorem.

Theorem 4.4 (Local Bertini theorem). Let (R,m,k) be a complete local

domain of mixed characteristic p > 0, and suppose that the following condi-

tions hold:

(1) let A→ R be a coefficient ring map for a complete discrete valuation

ring (A,πA);

(2) let x0, x1, . . . , xd be a fixed set of minimal generators of m;

(3) let R be normal, of depthR≥ 3, and let the residue field k be infinite.

Then there exists a Zariski-dense open subset U ⊆ Pd(k) satisfying the fol-

lowing properties. For any a= (a0 : · · · : ad) ∈ Sp−1
A (U), the quotient R/xãR

is a normal domain of mixed characteristic p > 0, where we put

xã :=

d∑
i=0

ãixi.
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Proof. The first step of the proof has been completed in Theorem 4.3.

Let Reg(R) denote the regular locus of SpecR. Taking U ′ ⊆ Pd(k) as given

in the conclusion of Theorem 4.3, we have

(4.4) Reg(R)∩ V (xã)⊆Reg(R/xãR)

for all a = (a0 : · · · : ad) ∈ Sp−1
A (U ′). Let us explain the basic ideas of this

proof. In Step 1, we find an open set U ′′ ⊆ Pd(k) to deal with finitely many

bad primes, with the help of Lemma 4.2. Then in Step 2, we show that for

a ∈ Sp−1
A (U ′ ∩U ′′), the quotients R/xãR satisfy the well-known conditions

(R1) and (S2) and thus are normal. Finally, in Step 3, we find an open set

U ′′′ ⊆ Pd(k) to show that the quotient rings R/xãR with a ∈ Sp−1
A (U ′′′) are

of mixed characteristic.

Step 1 : The goal of this step is to find a candidate of an open subset U ′′ ⊆
Pd(k). Since R is a complete local domain, the singular locus Sing(U(m)) of

U(m)⊆ SpecR is a proper closed subset. Hence the set of minimal primes

in Sing(U(m)) is finite, and let

Q1 :=
{
p ∈ U(m)

∣∣ p is a minimal prime in Sing
(
U(m)

)}
.

Note that every prime in Q1 has height at least 2, due to the (R1) condition

on R. On the other hand,

Q2 :=
{
p ∈ U(m)

∣∣ depthRp = 2 and dimRp > 2
}

is also a finite set (by [4, Lemma 3.2] and the (S2) condition on R). Now

let Q1 ∪ Q2 := {p1, . . . ,pm}, and let us put F (X0, . . . ,Xd) =
∑d

i=0 xiXi ∈
R[X0, . . . ,Xd]. Then for each 1≤ j ≤m, it follows that

xã =
d∑

i=0

ãixi /∈ pj ⇐⇒ F (ã0, . . . , ãd) �≡ 0 (mod pj).

Then applying Lemma 4.2 to {p1, . . . ,pm}, we obtain U1, . . . ,Um, which are

nonempty open subsets of Pd(k) with each Ui attached to pi. Put

(4.5) U ′′ := U1 ∩ · · · ∩Um.

Step 2 : The goal of this step is to show that the quotient R/xãR is a

normal domain for a ∈ Sp−1
A (U ′′), or equivalently that xã is contained in no

prime of Q1 ∪Q2. Pick p ∈ U(m) ∩ V (xã) with htp ≥ 2, and assume that
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xã =
∑d

i=0 aixi satisfies condition (4.4) and that xã is contained in no prime

of Q1 ∪Q2.

(i) If we have htp > 2, then since xã is contained in no prime of Q2, it

follows that dim(R/xãR)p ≥ 2 and depth(R/xãR)p ≥ 2.

(ii) If we have htp= 2, then since xã is contained in no prime of Q1 and

the height of every prime in Q1 is at least 2, it follows that Rp is regular.

By (4.4), one finds that (R/xãR)p is a discrete valuation ring. On the other

hand, the hypothesis that depth(R)≥ 3 implies that depth(R/xãR)≥ 2 by

[1, Proposition 1.2.9]. Hence R/xãR is a normal domain in view of Serre’s

normality criterion.

Step 3 : In this final step, we make R/xãR into a local ring of mixed

characteristic p > 0. Let {q1, . . . ,qn} be a set of all height 1 primes of R

lying above πA. Then, again applying Lemma 4.2 to {q1, . . . ,qn}, we find a

nonempty open subset

(4.6) U ′′′ ⊆ Pd(k)

such that, for a= (a0 : · · · : ad) ∈ Sp−1
A (W )⊆Pd(A), we have xã /∈ q1 ∪ · · · ∪

qn.

Combining (4.4) and (4.5), together with (4.6), and taking a nonempty

open subset

U := U ′ ∩U ′′ ∩U ′′′ ⊆ Pd(k),

it turns out that Sp−1
A (U)⊆ Pd(A) has the required property.

Remark 4.5. Assume that R is a Cohen–Macaulay local normal domain.

Then R/xãR is Cohen–Macaulay and normal. One can continue this pro-

cess until dimR = 2 is attained. As to the Cohen–Macaulay property, the

following fact is known. Assume that S →R is a torsion-free module-finite

extension of local domains such that S is regular. Then R is a flat S-module

if and only if R is Cohen–Macaulay by the Auslander–Buchsbaum formula.

Next, let us consider the case when the residue field is finite. Let (R,m,F)
be a complete local normal domain of mixed characteristic p > 0 with finite

residue field F. In other words, R is a finite extension of W (F)[[z1, . . . , zn]],
where W (F) is the ring of Witt vectors of F. Let W (F)ur be the maximal

unramified extension of W (F). Then W (F) is the completion of W (F)ur.
Put

RW (F) :=R ⊗̂W (F)W (F) (resp., RW (F)ur := strict Henselization of R).
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Then RW (F)ur is local Noetherian, but not complete. By [6, Corollary 5.6]

and [11, Theorem 23.9] and its following Corollary, RW (F) is the comple-

tion of RW (F)ur and a local normal domain. From algebraic number the-

ory, W (F)ur is obtained from W (F) by adjoining all nth roots of unity for

(n,p) = 1. There is a structure map W (F)→ RW (F). We define the multi-

plicative map (not additive)

[−] : F→W (F)

as the Teichmüller map (see [16, Chapter II, Section 4, Proposition 8] for

details). An element in the image of [−] is called a Teichmüller lift. In

particular, we have q ◦ [−] = IdF, where q : W (F) → F is the residue field

map. There is a set-theoretic mapping

(4.7) θW (F) : P
d(F)→ Pd

(
W (F)

)

defined by θW (F)(b) := ([b0] : · · · : [bd]) for b = (b0 : · · · : bd) ∈ Pd(F). Then

θW (F) is well defined since [−] is multiplicative. We write RW (F′) :=R⊗W (F)

W (F′) for a finite field extension F→ F′.

Corollary 4.6 (Finite residue field case). Let the hypothesis be as in

Theorem 4.4 for (R,m,F), except that we now assume the residue field F to

be finite. Then there exists a nonempty open subset U ⊆ Pd(F) such that the

following holds.

Fix an element a = (a0 : · · · : ad) ∈ θW (F)(U). Then there exists a finite

extension W (F)→W (F′) such that there is a choice of a lift ãi of ai for each

0 ≤ i ≤ d with ãi ∈W (F′), and the quotient RW (F′)/xãRW (F′) is a normal

domain of mixed characteristic p > 0.

The point of the proof is to construct a multiplicative map: [̃−] : F →
W (F)ur which extends to the map [−] : F→W (F).

Proof. We keep the notation as in Theorem 4.4. First, note that a priori

a choice of a lift ãi of each ai is contained in W (F). Since x0, x1, . . . , xd
are the minimal generators of the maximal ideal of RW (F), the hypotheses

of Theorem 4.4 are fulfilled for the complete local domain RW (F). Let us

construct a multiplicative map [̃−] : F→W (F)ur which extends to the map

[−]. Note that W (F)ur = lim−→λ∈ΛW (Fλ) and that we have the Teichmüller
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mapping Fλ →W (Fλ). Then we have a commutative diagram

Fλ′
Teich−−−−→ W (Fλ′)�⏐⏐ �⏐⏐

Fλ
Teich−−−−→ W (Fλ)

which naturally forms a direct system, so the desired map [̃−] is given by its

direct limit. On the other hand, it is easy to see that the map [−] : F→W (F)
factors as

F
[̃−]−−−−→ W (F)ur −−−−→ W (F),

and thus for any a ∈ θW (F)(U), we have xã =
∑d

i=0 ãixi ∈ RW (F)ur for an

appropriate choice of ãi for every ai. Since the map

RW (F)ur/xãRW (F)ur →RW (F)/xãRW (F)

is local flat, RW (F)ur/xãRW (F)ur is a local normal domain.

By what we have said above, all the coefficients of a linear form xã =∑d
i=0 ãixi are contained in some finite extension W (F)→W (F′). In other

words, for a finite étale extension R→RW (F′) of normal domains, the quo-

tient ring RW (F′)/xãRW (F′) is normal.

Remark 4.7. Let φ : (R,m)→ (S,n) be a flat local map of local rings.

Then one might think of the relationship between R/xR and S/xS for a

nonzero divisor x ∈m. In fact, in order to use the local Bertini theorem for

S in terms of R, for example, assume that R and all fibers of φ are normal.

Then for any x such that R/xR is normal, S/xS is also normal.

It is important and necessary to answer the following question.

Question 4.8. Resume the hypothesis of Theorem 4.4, and assume that

an equality holds: xã = uxã′ for a unit u ∈R×. Then is it true that u ∈A×?

This question is restated as follows: Which subset of Pd(A) parameterizes

the set of height 1 primes {xãR}? In other words, does it give a set of distinct

height 1 primes of R? In Section 5, we will answer the above question. In

fact, we need to restrict our attention to the set of those points which are in

the image of the Teichmüller mapping. This will be important in the proof

of the control theorem, which will be discussed later. We end this section

with an example, which applies Theorem 4.4 and its proof for a given normal

domain R.
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Example 4.9. In this example, we are dealing with the case where the

residue field is finite, since we can find a nonempty set which does the

job. However, the result is valid for any discrete valuation coefficient ring.

Suppose that p≥ 3 and that

R := Zp[[x1, x2, x3]]/(x
2
1 + x22 + x23),

which is a 3-dimensional Cohen–Macaulay local normal domain. Now let us

find a nonempty open subset U ⊆ P3(Fp) by keeping track of the proof of

Theorem 4.4.

(i) We need to have dxã ∈ Ω̂R/Zp
basic at every p ∈ SpecR.

(ii) We need to determine two finite sets of primes Q1 and Q2 in Theo-

rem 4.4.

(iii) We need to avoid Q1 and Q2 as above.

Then we know that

Ω̂R/Zp

 Rdx1 ⊕Rdx2 ⊕Rdx3

R(x1dx1 + x2dx2 + x3dx3)
,

the singular locus of R, is defined by the ideal (x1, x2, x3), Q1 = {(x1,
x2, x3)}, and Q2 = ∅. To get a normal ring of mixed characteristic, take

xã := ã0p+
∑3

i=1 ãixi such that

a= (a0 : a1 : a2 : a3) ∈ U := U+(z0)∩
( 3⋃
i=1

U+(zi)
)
⊆ P3(Fp)

for the homogeneous coordinate (z0 : z1 : z2 : z3). Let us check that this U is

what we want. We have xã /∈Q1. If we assume that ã1 is a unit for simplicity,

we see that

Ω̂R/Zp

[ 1

x3

]

R

[ 1

x3

]
dx1 ⊕R

[ 1

x3

]
dx2

is a free module in which the image of dxã spans a direct summand. On the

other hand, for R :=R/x3R,

Ω̂R/Zp
/x3 · Ω̂R/Zp


 Rdx1 ⊕Rdx2 ⊕Rdx3

R(x1dx1 + x2dx2)
.

To show that the image of dxã is basic on Ω̂R/Zp
/x3 · Ω̂R/Zp

, keep track of

the same steps as above by inverting and killing first x2 and then x1.

Remark 4.10. If one takes R := Zp[[x]], then p /∈ p(2) for every prime p

of R, since p is a regular parameter. But dp = 0, and so the converse of

Lemma 3.3 does not hold true.
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§5. Distinct hyperplane sections in the local Bertini theorem

In this section, we give an answer to Question 4.8. Assume that (R,m,k)

is a complete local (not necessarily normal) domain with perfect residue

field of characteristic p > 0 with its coefficient ring W (k), the ring of Witt

vectors. Then as defined in (4.7), the mapping

θW (k) : P
d(k)→ Pd

(
W (k)

)

is induced by the Teichmüller mapping k → W (k). Note that the field k

can be finite. The following proposition asserts that the parameter set of

specializations in the local Bertini theorem may be identified with a certain

open subset U ⊆ Pd(k).

Proposition 5.1. Let the notation be as above, and let x0, . . . , xd be a set

of minimal generators of the maximal ideal of R. Assume that the following

conditions hold.

(1) If πW (k) ∈m2, we put xã =
∑d

i=0 ãixi.

(2) If πW (k) /∈m2, we put x0 = πW (k) and xã = ã0πW (k) +
∑d

i=1 ãixi.

Suppose that xã = uxã′ for a,a′ ∈ θW (k)(P
d(k)) ⊆ Pd(W (k)) and u ∈ R×.

Then we have u ∈W (k)×.

Proof. To clarify the notation, we simply write ai in place of ãi.

(1) Assume that πW (k) ∈ m2, and denote for simplicity by ai the image

of ai ∈W (k) under the surjection

W (k)[[X0, . . . ,Xd]]�R(Xi �→ xi).

Let P be its kernel, and we prove that

(5.1) P ⊆ πW (k)W (k)[[X0, . . . ,Xd]] + I2.

Here, we put I := (X0, . . . ,Xd). Let F ∈ P be a nonzero element. We prove

(5.1) by contradiction, and so assume that

(5.2) F /∈ πW (k)W (k)[[X0, . . . ,Xd]] + I2.

Under this assumption, after reducing W (k)[[X0, . . . ,Xd]] by πW (k), we find

that

f := F (mod πW (k)) /∈ I2k[[X0, . . . ,Xd]].
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The number of the minimal generators of the maximal ideal of R/πW (k)R

is equal to

dimkm/(πW (k)R+m2) = dimkm/m2

because we assumed that πW (k) ∈ m2. Hence x0, . . . , xd form the minimal

generators of the maximal ideal of R/πW (k)R.

Claim 5.2. Under the assumption (5.2), we can choose s with 0≤ s≤ d

such that

f =
∞∑
i=0

hiX
i
s ∈ k[[X0, . . . ,Xd]],

where hi ∈ k[[X1, . . . ,Xs−1,Xs+1, . . . ,Xd]] for all i ≥ 0, and where h1 is a

unit.

Proof of Claim 5.2. We explain how to choose h1 as a unit element. Fix a

presentation f =
∑∞

i=0 hiX
i
s ∈ k[[X0, . . . ,Xd]] with respect to s, and assume

that h1 is not a unit. Then since f /∈ I2k[[X0, . . . ,Xd]], the element h0
contains a nonzero linear term after presenting h0 as an (infinite) sum of

homogeneous polynomials. So we can write

h0 =
d∑

i=1,i �=s

aiXi + (terms of degree at least 2),

and we have at �= 0 for some t. By replacing s with t, we can achieve the

requirement that h1 is a unit.

By mapping f =
∑∞

i=0 hiX
i
s to the quotient R/πW (k)R, we get

∞∑
i=1

hix
i
s =−h0 in R/πW (k)R.

Note that
∑∞

i=1 hix
i−1
s is a unit since h1 is a unit of R/πW (k)R. Hence, we

have
xs · (unit) =−h0.

But this gives a contradiction to the fact that x0, . . . , xd are the minimal

generators of the maximal ideal of R/πW (k)R and that −h0 ∈ (x0, . . . , xs−1,

xs+1, . . . , xd). Hence (5.1) is established.

Next, fix an arbitrary lifting ũ ∈W (k)[[X0, . . . ,Xd]] of u ∈R× under the

map W (k)[[X0, . . . ,Xd]]→R. We write

ũ=
∑

s0,...,sd

( ∞∑
r=0

b(s0,...,sd)r πr
W (k)

)
Xs0

0 · · ·Xsd
d ,
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where (s0, . . . , sd) denotes the multi-index and where b
(s0,...,sd)
r are the

Teichmüller lifts. Since ũ is a unit, we have b
(0,...,0)
0 �= 0. By lifting the relation

xã = uxã′ to W (k)[[X0, . . . ,Xd]], we have

d∑
i=0

aiXi ≡
( ∑
s0,...,sd

( ∞∑
r=0

b(s0,...,sd)r πr
W (k)

)
Xs0

0 · · ·Xsd
d

)( d∑
i=0

a′iXi

)
(mod P ).

Rewrite the above equation as

d∑
i=0

(ai − a′ib
(0,...,0)
0 )Xi

≡
( ∑
s0,...,sd

( ∞∑
r=1

b(s0,...,sd)r πr
W (k)

)
Xs0

0 · · ·Xsd
d

)( d∑
i=0

a′iXi

)

+
( ∑
(s0,...,sd)
�=(0,...,0)

b
(s0,...,sd)
0 Xs0

0 · · ·Xsd
d

)( d∑
i=0

a′iXi

)
(mod P ).

Then by mapping the above equation to the quotient k[[X0, . . . ,Xd]], com-

paring the degrees on both sides, and then using the relation (5.1), we find

that

ai = a′ib
(0,...,0)
0 + πW (k) · vi

for some vi ∈W (k). However if vi �= 0, this implies that ai is not a Teich-

müller lift, since both a′i and b
(0,...,0)
0 are Teichmüller lifts. So we must have

vi = 0 for all 0≤ i≤ d, and the following relation holds:

( ∑
s0,...,sd

( ∞∑
r=1

b(s0,...,sd)r πr
W (k)

)
Xs0

0 · · ·Xsd
d

)( d∑
i=0

a′iXi

)

+
( ∑
(s0,...,sd)
�=(0,...,0)

b
(s0,...,sd)
0 Xs0

0 · · ·Xsd
d

)( d∑
i=0

a′iXi

)
∈ P.

Since P is a prime ideal, we deduce that

( ∑
s0,...,sd

( ∞∑
r=1

b(s0,...,sd)r πr
W (k)

)
Xs0

0 · · ·Xsd
d +

∑
(s0,...,sd)
�=(0,...,0)

b
(s0,...,sd)
0 Xs0

0 · · ·Xsd
d

)
∈ P
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and thus ũ≡ b
(0,...,0)
0 (mod P ) and u ∈W (k). Now we obtain u ∈W (k)×.

(2) Assume that πW (k) /∈m2. Then taking x0 = πW (k), we may consider

the surjection W (k)[[X1, . . . ,Xd]]� R (Xi �→ xi), and let P be its kernel.

In this case, we prove that

(5.3) P ⊆M2,

where we put M := (πW (k),X1, . . . ,Xd). Let F ∈ P be any nonzero element.

Then we can write

(5.4) F =
∑

s1,...,sd

( ∞∑
r=0

b(s1,...,sd)r πr
W (k)

)
Xs1

1 · · ·Xsd
d

for Teichmüller lifts b
(s1,...,sd)
r . Now assume that F /∈M2 for a contradiction.

Then the equation (5.4) can be written as

(5.5) F = b0πW (k) +

d∑
i=1

biXi + (terms of degree at least 2)

for Teichmüller lifts bi and at least one of b0, . . . , bd is not zero, say, bk. Then

mapping (5.5) to R, F goes to zero, and we find that xk ∈ (πW (k), x2, . . . ,

xk−1, xk, . . . , xd), due to bk �= 0. But since πW (k), x1, . . . , xd are the minimal

generators of m, this is a contradiction. Thus, we must have F ∈M2 and

(5.3) is proved. Assume that xã = uxã′ for some u ∈R×. Then by applying

the final step of (1), together with the fact that P ⊆M2, we conclude that

u ∈W (k)×, as desired.

Now Proposition 5.1 assures us that there are sufficiently many normal

hyperplane sections for a local normal domain. We start with the following

lemma.

Lemma 5.3. Let R be a Noetherian domain, and let {Pλ}λ∈Λ be an infinite

set of distinct height 1 primes. Then we have⋂
λ∈Λ

Pλ = 0.

Proof. Assume that there is a nonzero element a ∈
⋂

λ∈ΛPλ. Let P λ

denote the image of Pλ under the surjection R�R/aR. Then since a ∈ Pλ

for all λ, the set {P λ}λ∈Λ gives an infinite set of minimal prime ideals of

the Noetherian ring R/aR. But this is a contradiction, and we must have⋂
λ∈ΛPλ = 0, as desired.
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Applying this lemma, we get the following.

Corollary 5.4. In addition to the hypothesis of Proposition 5.1, assume

that S ⊆ Pd(k) is an infinite subset such that the quotient R/xãR is an

integral domain for every a ∈ θW (k)(S). Then we have

⋂
a∈θW (k)(S)

xãR= 0.

Proof. In this case, by Proposition 5.1 and our assumption, we see that

{xãR}a∈θW (k)(S) is an infinite set of height 1 primes of a Noetherian

domain R. Now the corollary follows from Lemma 5.3.

It is not clear if the proof of Proposition 5.1 can be modified so that it

holds for any residue field. Via the proof of the proposition, we obtain the

following corollary, which is useful in dealing with the unramified case.

Corollary 5.5. In addition to the hypothesis of Proposition 5.1, assume

that πW (k) is part of the minimal generators of m and that R/xãR is an

integral domain of mixed characteristic for

xã = ã0πW (k) +

d∑
i=1

ãixi

and that a = (a0 : · · · : ad) ∈ Pd(W (k)). Then πW (k) is part of the minimal

generators of the maximal ideal of the quotient ring R/xãR.

Note that the linear form xã is not assumed to define a normal quotient

R/xãR.

Proof. Let W (k)[[X1, . . . ,Xd]]�R be a surjective ring map with its ker-

nel P such that the images of πW (k),X1, . . . ,Xd are the minimal generators

of m. Then we obtain that P ⊆ (πW (k),X1, . . . ,Xd)
2 as in the proof of Propo-

sition 5.1. Let

x̃ã = ã0πW (k) +

d∑
i=1

ãiXi ∈W (k)[[X1, . . . ,Xd]]

be a lift of xã. Since R and R/xãR are integral domains of mixed charac-

teristic by assumption, ai ∈W (k) must be a unit for some 1≤ i≤ d, which

gives an isomorphism

W (k)[[X1, . . . ,Xd]]/(x̃ã)
W (k)[[X1, . . . ,Xi−1,Xi+1, . . . ,Xd]],
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together with

πW (k) /∈ (πW (k),X1, . . . ,Xi−1,Xi+1, . . . ,Xd)
2.

But since P ⊆ (πW (k),X1, . . . ,Xi−1,Xi+1, . . . ,Xd)
2, where P denotes the

image of P in the quotient W (k)[[X1, . . . ,Xd]]/(x̃ã), it follows that πW (k)

forms part of the minimal generators of the maximal ideal of R/xãR, as

required.

Remark 5.6. In this section, it is essential to assume that the residue field

is perfect, which allows us to present an element in the ring W (k)[[X1, . . . ,

Xd]] in a unique way using the Teichmüller mapping. Note that the results

in this section as well as Theorem 4.4 can be applied to a complete local

normal domain (R,m,k) with infinite perfect residue field and depthR≥ 3.

§6. Serre’s conditions (Rn) and (Sn)

In this section, we prove Bertini theorems in the case when R satisfies

Serre’s conditions on the punctured spectra of local rings. The essential part

for these cases is found in the proof of Theorem 4.4. As usual, we put

xã =
d∑

i=0

ãixi

for a= (a0, . . . , ad) ∈ Pd(A).

Corollary 6.1. Suppose that (R,m,k) is a complete local reduced ring

of mixed characteristic p > 0, that conditions (1) and (2) of Theorem 4.4

hold, and that the residue field k is infinite. If Rp has Serre’s (Rn) (resp.,

(Sn)) for all p ∈X, then there exists a Zariski-dense open subset U ⊆ Pd(k)

such that for every

a= (a0 : · · · : ad) ∈ Sp−1
A (U),

the quotient Rp/xãRp has (Rn) (resp., (Sn)) for all p ∈ U(m)∩ V (xã).

Proof. We briefly sketch the proof of the corollary. Since R is complete

local and reduced, the nonsingular locus of R is nonempty. Thus, the set

Q1 :=
{
p ∈ U(m)

∣∣ p is a minimal prime in Sing
(
U(m)

)}
is finite. Let

Q2 :=
{
p ∈ U(m)

∣∣ depthRp = n and dimRp > n
}
,
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which is also finite by [4, Lemma 3.2]. The proof is similar to that of The-

orem 4.4. So it suffices to avoid the union of finite sets of prime ideals

in Q1 ∪ Q2. Namely, for any a = (a0 : · · · : ad) ∈ Sp−1
A (U), the localization

Rp/xãRp has (Rn) (resp., (Sn)) for all p ∈ U(m) ∩ V (xã) and Reg(R) ∩
V (xã)⊆Reg(R/xãR).

The above proof also shows that the Bertini theorem holds for mixed

Serre’s conditions. That is, if R has (Rs) + (Sr), then so does Rp/xãRp

for all a= (a0 : · · · : ad) ∈ Sp−1
A (U) and all p ∈ U(m) ∩ V (xã). For instance,

we obtain the Bertini theorem for reduced rings, since we know that R is

reduced if and only if R has (R0)+(S1). To be precise, we have the following

version of the local Bertini theorem.

Corollary 6.2. Suppose that (R,m,k) is a complete local normal do-

main of dimension 2 in mixed characteristic p > 0, that conditions (1) and

(2) of Theorem 4.4 hold, and that the residue field k is infinite. Then there

exists a Zariski-dense open subset U ⊆ Pd(k) such that for every

a= (a0 : · · · : ad) ∈ Sp−1
A (U),

the quotient R/xãR is a reduced ring of mixed characteristic p > 0.

Proof. We first show that there exists a Zariski-dense open subset U ′ ⊆
Pd(k) for which R/xãR is reduced for all a ∈ Sp−1

A (U ′). Since R is a domain,

Rp has (R0) + (S1) for all p ∈ SpecR. Then by Corollary 6.1, we find a

desired U ′ ⊆ Pd(k) such that, for a ∈ Sp−1
A (U ′), Rp/xãRp is reduced for all

p ∈ U(m) ∩ V (xã). It remains to show that the localization of R/xãR at

m, which is R/xãR itself, has (S1). But since R is a local normal domain

of dimension 2, it is Cohen–Macaulay and thus R/xãR has (S1). Hence,

R/xãR is reduced for all a ∈ Sp−1
A (U ′).

To make the quotient R/xãR into a ring of mixed characteristic, we need

to shrink U ′ to an open subset U . To this aim, it suffices to choose U such

that πA is not a zero divisor of R/xãR for all a ∈ Sp−1
A (U). In fact, we may

take xã so that it is contained in none of the prime ideals in MinR(πAR),

since every system of parameters of R is a regular sequence. Let U ′′′ ⊆ Pd(k)

be an open subset as in Step 3 of Theorem 4.4. Then the required open

subset is defined as U := U ′ ∩U ′′′.

Remark 6.3. In place of the hypothesis of Corollary 6.2, assume that

R is only an integral domain. Then can one find xã such that R/xãR is

also an integral domain? In the mixed characteristic case, the answer to this
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question is not clear yet. But there is a 2-dimensional complete local normal

domain over C without any principal prime ideals at all (such an example

is due to Laufer, as mentioned in [4, p. 108]; however, an explicit example is

not given there). In light of this, both Corollary 6.1 and Corollary 6.2 seem

to be the best results.

§7. Characteristic ideals of torsion modules over normal domains

Throughout this section, we assume that R is a Noetherian normal do-

main and that M is a finitely generated torsion R-module. Then the local-

ization of R at every height 1 prime is a discrete valuation ring. We introduce

an invariant of the module M . For an ideal I of R, let M [I] denote the max-

imal submodule of M which is annihilated by I . We follow the definition

of characteristic ideals by Skinner and Urban as in [17, p. 22]. (For more

results and properties on characteristic ideals with its relation to the Fitting

ideal, see Section 8.) For a finitely generated R-module M , we denote by

M rc := HomR

(
HomR(M,R),R

)
the reflexive closure of M .

Definition 7.1. Let the notation be as above. Then the characteristic

ideal is an ideal of R defined by

charR(M) =
{
x ∈R

∣∣ vP (x)≥ �RP
(MP ) for any height 1 prime P

}
,

where vP (−) is the normalized valuation of RP ; that is, vP (PRP ) = 1.

Since M is torsion, �Rp
(Mp) = 0 for all but finitely many height 1 primes

p of R and it suffices to take only height 1 primes in the support of M in

the definition. When M is not a torsion R-module, we put charR(M) = 0.

Remark 7.2. The formation of characteristic ideals does not commute

with base change in general. For example, let R = Zp[[x, y]], and let M =

R/xR. Then M is a torsion module and charR(M) = xA. However, the

R/xR-module M/xM is not torsion. Therefore,

0 = charR/xR(M/xM)� xR= charR(M)R/xR

in this case. In general, even when M/xM is a torsion R/xR-module, it

may happen that charR/xR(M/xM) �= charR(M)R/xR, which is caused by

the presence of pseudonull submodules (see the definition below).
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Definition 7.3. A finitely generated module M over a Noetherian nor-

mal domain R is pseudonull if Mp = 0 for all height 1 primes p ∈ SpecR.

A homomorphism of R-modules f :M →N is a pseudoisomorphism if both

ker(f) and coker(f) are pseudonull modules.

The proof of the next lemma is found in [12].

Lemma 7.4 ([12, Proposition 5.1.7]; structure theorem). Let M be a

finitely generated torsion module over a Noetherian normal domain R. Then

there exist a finite set of height 1 primes {Pi}i∈I (which is not necessarily a

redundant set of height 1 primes) and a set of natural numbers {ei}i∈I such

that there is a homomorphism

f :M →
⊕
i∈I

R/P ei
i

that is a pseudoisomorphism. Moreover, both {Pi}i∈I and {ei}i∈I are

uniquely determined.

Henceforth, we use the notationM ≈N to indicate that there is a pseudo-

isomorphism between M and N . As mentioned before, the formation of

characteristic ideals does not commute with base change in general, which

can produce extra error terms.

Proposition 7.5. Let M be a finitely generated torsion module over a

Noetherian normal domain R. Let x be an element of R which satisfies the

following conditions:

(1) R/xR is a normal domain (which implies that xR is a prime ideal);

(2) x is contained in no prime ideal of height 1 in the support of M (which

implies that M/xM is a torsion R/xR-module).

Then we have

charR/xR(M/xM)

=
(
charR/xR

(
M [x]

)
·

∏
htp=1,

p∈SpecR

(
p(R/xR)

)�Rp(Mp)
)rc

.

Proof. Note from Proposition A.6 in the Appendix that, if 0→ L→M →
N → 0 is a short exact sequence of finitely generated R-modules, then
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charR(M) = (charR(L) · charR(N))rc. The condition stated in the propo-

sition implies that all relevant modules are torsion. First off, we claim

that

charR/xR

( ⊕
htp=1

R/(p+ xR)�Rp(Mp)
)

(7.1)
=
( ∏

htp=1,
p∈SpecR

(
p(R/xR)

)�Rp(Mp)
)rc

.

For the proof of (7.1), let {P1, . . . , Pm} be a set of all height 1 primes of

R/xR which contain p(R/xR). Then the localization (R/xR)Pi is a discrete

valuation ring, and we have

p(R/xR)Pi = P
�(R/xR)Pi

((R/(p+xR))Pi
)

i (R/xR)Pi

for all i. Then (7.1) follows from this and the definition of characteristic

ideals. Thus, it suffices to prove the following equality:(
charR/xR(M/xM) ·

(
charR/xR

(
M [x]

))−1)rc
(7.2)

= charR/xR

( ⊕
htp=1,

p∈SpecR

R/(p+ xR)�Rp(Mp)
)
,

which is regarded as an element in the group of reflexive fractional ideals of

R, and (charR/xR(M [x]))−1 is the unique fractional ideal which is an inverse

of charR/xR(M [x]).

By considering all torsion R-modules satisfying condition (2) with respect

to x ∈R, we show that both sides of (7.2), regarded as operations on such

R-modules, are multiplicative on short exact sequences. Let

0→ L→M →N → 0

be a short exact sequence of R-modules satisfying condition (2). Then since

the function �(−) is additive, it follows that the right-hand side of (7.2) is

multiplicative. On the other hand, there follows the exact sequence

0→ L[x]→M [x]→N [x]→ L/xL→M/xM →N/xN → 0

by the snake lemma. If p is a height 2 prime ideal of R containing x ∈R, we

may localize the above exact sequence at p, so it follows that the left-hand

side of (7.2) is multiplicative as well.
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Hence we are reduced to the case that M = R/q for a prime ideal q by

the prime filtration argument. Assume first that htq= 1. Then we clearly

have Supp(M) = {q}, M [x] = 0, and �Rq
(Mq) = 1, because Mq is a simple

R-module. Now (7.2) is obviously true. Next assume that htq > 1. Then

it is easy to see that both sides of (7.2) are equal to a unit ideal, which

completes the proof.

§8. Applications to characteristic ideals

Our final goal is to prove Theorem 8.8. The aim of the main theorem is

to establish some techniques which enable us to study the Iwasawa’s main

conjecture attached to a p-adic family of modular forms (see our forthcoming

paper [15]). For this reason, it is necessary to deal with local rings with finite

residue field. Let (R,m,F) be a complete local normal domain of mixed

characteristic with finite residue field. In other words, R is the integral

closure of Zp[[z1, . . . , zn]] in a finite field extension of the field of fractions

of Zp[[z1, . . . , zn]]. We recall the setup of Corollary 4.6, and we prove some

preliminary results.

Let RW (F) := R ⊗̂W (F)W (F) with its coefficient ring W (F). Then if

depthR≥ 3, the complete local ring RW (F) fits into the hypothesis of The-

orem 4.4. We have the set-theoretic mapping: θW (F) : P
d(F)→ Pd(W (F)) as

constructed in (4.7).

To establish the fundamental theorem for characteristic ideals, we need to

relate torsion R-modules to torsion RW (F)-modules and then descend to R

by faithful flatness. The advantage of working with RW (F) is that the residue

field is the algebraic closure of a finite field. We introduce some notation.

Denote by FittA(M) the Fitting ideal of an A-module M . We make free use

of results and notation from the Appendix.

Definition 8.1. Under the notation as above, fix a set of minimal gen-

erators x0, . . . , xd of the unique maximal ideal of R, and let U ⊆ Pd(F) be

as given in Corollary 4.6. Then we set

LW (F) :=
{
xãRW (F)

∣∣ a= (a0 : · · · : ad) ∈ θW (F)(U)
}

for the mapping θW (F) : P
d(F)→ Pd(W (F)). For a finitely generated torsion

RW (F)-module M , we define a subset

LW (F)(M)⊆LW (F)
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which consists of all height 1 primes xãRW (F) ∈ LW (F) such that the follow-

ing conditions are satisfied:

(A) M/xãM is a torsion RW (F)/xãRW (F)-module;

(B) the following equalities of ideals hold in RW (F)/xãRW (F):

charRW (F)/xãRW (F)
(M/xãM)

=
(
charRW (F)

(M)(RW (F)/xãRW (F))
)rc

=
(
FittRW (F)

( m⊕
i=1

RW (F)/P
ei
i

)
(RW (F)/xãRW (F))

)rc
,

where M ≈
⊕m

i=1RW (F)/P
ei
i is a fundamental pseudoisomorphism.

When the base ring R is isomorphic to a power series ring over a discrete

valuation ring, compare the above definition with the one given in [14, Def-

inition 3.2]. The way of interpreting condition (B) in Definition 8.1 is that

one wants to consider the characteristic ideals through the Fitting ideal as

an intermediate invariant. Note that all of three ideals appearing in (B) may

differ in general.

We are going to prove a number of lemmas to describe an explicit struc-

ture of the set LW (F)(M) (see Lemmas 8.5 and 8.6). To this aim, we prove

some preliminary results from [14] over general normal domains by making

necessary modifications. The next lemma is necessary for a technical reason,

and we will show in Lemma 8.4 how to use it in a more concrete situation.

The reader may skip the proof at the first reading.

Lemma 8.2. Under the notation and the hypothesis as in Corollary 4.6,

assume that M is a finitely generated torsion RW (F)-module. For a funda-

mental pseudoisomorphism M ≈
⊕m

i=1RW (F)/P
ei
i , set

I =FittRW (F)

( m⊕
i=1

RW (F)/P
ei
i

)
,

and consider the natural injection I → Irc with its cokernel N . Then there

exists a finite set {Qi}1≤i≤� consisting of height 2 primes of RW (F) with the

following condition.

Fix an arbitrary element

xãRW (F) ∈
⋂

1≤i≤�

LW (F)(RW (F)/Qi),
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and let P ∈ SpecRW (F) be any prime ideal such that xã ∈ P and htP ≤ 2.

Then NP = 0.

Proof. By definition, the module N is supported on a closed subset of

codimension 2 in SpecRW (F). So there are only finitely many height 2 primes

contained in SuppN . Then we show that it is sufficient to choose Q1, . . . ,Q�

as those height 2 primes contained in SuppN . Let Ni :=RW (F)/Qi. Then Ni

is a pseudonull RW (F)-module, and we have charRW (F)
(Ni) = RW (F). Then

by the condition (B), we have

charRW (F)/xãRW (F)
(Ni/xãNi) =RW (F)/xãRW (F),

and this implies that Ni/xãNi is a pseudonull RW (F)/xãRW (F)-module. In

other words, xã /∈Qi for all 1≤ i≤ �. So if we choose a prime ideal P such

that xã ∈ P and htP ≤ 2, then we must have P /∈ SuppN , which proves the

lemma.

We will discuss when equalities occur between various ideals in condition

(B) in Definition 8.1.

Discussion 8.3. Suppose that M is a finitely generated torsion module

over a Noetherian normal domain A. Then we have

FittA(M)⊆ charA(M) and FittA(M)rc = charA(M)

(see Proposition A.6 in the Appendix). Take a fundamental pseudoisomor-

phism

M ≈
m⊕
i=1

RW (F)/P
ei
i

for a (not necessarily redundant) finite set of height 1 primes {Pi} of RW (F).

Choose xã ∈ RW (F) such that RW (F)/xãRW (F) is normal and such that

M/xãM is a torsion RW (F)/xãRW (F)-module. In particular, the multipli-

cation map
m⊕
i=1

RW (F)/P
ei
i

xã−−−−→
m⊕
i=1

RW (F)/P
ei
i

is injective. Then since FittB(M ⊗A B) = FittA(M)B for any Noetherian

A-algebra B, letting A=RW (F) and B =RW (F)/xãRW (F), we have
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(
FittRW (F)

( m⊕
i=1

RW (F)/P
ei
i

)
(RW (F)/xãRW (F))

)rc

(8.1)

=
(
FittRW (F)/xãRW (F)

( m⊕
i=1

RW (F)/(xãRW (F) + P ei
i )

))rc
.

Let I := FittRW (F)
(
⊕m

i=1RW (F)/P
ei
i ). Then we have a commutative square

I(RW (F)/xãRW (F))
φ−−→ Irc(RW (F)/xãRW (F))∥∥∥ ∥∥∥

FittRW (F)
(
⊕m

i=1RW (F)/P
ei
i )(RW (F)/xãRW (F)) −−→ charRW (F)

(M )(RW (F)/xãRW (F))

Applying Lemma 8.2 to the inclusion I → Irc, we have a set of height 2

primes {Qi}1≤i≤�. Therefore, the localization of φ at any height 1 prime

of RW (F)/xãRW (F) is an isomorphism if and only if the following condition

holds:

(8.2) xãRW (F) ∈
⋂

1≤i≤�

LW (F)(RW (F)/Qi).

We conclude that if (8.2) is satisfied, then we have

(
charRW (F)

(M)(RW (F)/xãRW (F))
)rc

(8.3)

=
(
FittRW (F)

( m⊕
i=1

RW (F)/P
ei
i

)
(RW (F)/xãRW (F))

)rc
.

It also yields that

(
charRW (F)

(M)(RW (F)/xãRW (F))
)rc

(8.4)

= charRW (F)/xãRW (F)

( m⊕
i=1

RW (F)/(xãRW (F) + P ei
i )

)
.

We state the conclusion of the above discussion as a lemma.

Lemma 8.4. Let the setup be as in Discussion 8.3. Then the equation

(8.1) holds true without any condition, and if (8.2) is satisfied, then the

equations (8.3) and (8.4) hold true.

We prove a lemma which describes the set LW (F)(M).
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Lemma 8.5. Under the notation and the hypothesis as in Corollary 4.6,

assume that M is a finitely generated torsion RW (F)-module. Then the fol-

lowing assertions hold.

(1) The set LW (F)(M) is identified with the intersection

{xãRW (F) |M/xãM is a torsion RW (F)/xãRW (F)-module}

∩ LW (F)(Mnull)∩
⋂

1≤i≤�

LW (F)(RW (F)/Qi),

where Mnull is the maximal pseudonull submodule of M , and {Qi}1≤i≤�

is a set of height 2 primes attached to M as stated in Lemma 8.2.

(2) Assume that N is a finitely generated pseudonull RW (F)-module and

that {Q′
i}1≤i≤k is a set of all associated prime ideals of height two for

the module N . Then we have

LW (F)(N) =
⋂

1≤i≤k

LW (F)(RW (F)/Q
′
i).

Proof. (1) This is taken from [14, Lemma 3.4], but we give its proof, as it

requires some modifications. Let Mnull be the maximal pseudonull submod-

ule of M . Then by Lemma 7.4, there is a fundamental pseudoisomorphism

M →
⊕m

i=1RW (F)/P
ei
i , together with the commutative diagram with exact

rows

0 −−−−→ M/Mnull −−−−→
⊕m

i=1RW (F)/P
ei
i −−−−→ N −−−−→ 0

xã

⏐⏐� xã

⏐⏐� xã

⏐⏐�
0 −−−−→ M/Mnull −−−−→

⊕m
i=1RW (F)/P

ei
i −−−−→ N −−−−→ 0

for a (not necessarily redundant) set of height 1 primes {Pi}1≤i≤m of RW (F),

and N is a pseudonull module.

First, we note that LW (F)(M) is contained in the intersection as stated

in the lemma. So we need to establish the other inclusion. Now assume that

xãRW (F) satisfies the following conditions:

• M/xãM is a torsion RW (F)/xãRW (F)-module;

• xãRW (F) ∈
⋂

1≤i≤�LW (F)(RW (F)/Qi).

Then the set of all elements xãRW (F) satisfying the above conditions con-

tains LW (F)(M) as a subset. So assuming that xãRW (F) satisfies the above

conditions, it suffices to prove the following implication:

(8.5) xãRW (F) ∈ LW (F)(Mnull)⇒ xãRW (F) ∈ LW (F)(M).
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We establish (8.5) below. By our choice, the multiplication map

m⊕
i=1

RW (F)/P
ei
i

xã−→
m⊕
i=1

RW (F)/P
ei
i

is injective. So the snake lemma yields the following exact sequence:

0→N [xã]→M/(xãM +Mnull)→
m⊕
i=1

RW (F)/(xãRW (F) + P ei
i )

(8.6)
→N/xãN → 0.

There is a short exact sequence

(8.7) 0→N [xã]→N
xã−→N →N/xãN → 0

of pseudonull RW (F)-modules, where both N [xã] and N/xãN are naturally

RW (F)/xãRW (F)-modules. Localizing both (8.6) and (8.7) at all height 2

primes P of RW (F) containing xã, a length computation for the sequence

localized at P reveals that

charRW (F)/xãRW (F)

(
M/(xãM +Mnull)

)
(8.8)

= charRW (F)/xãRW (F)

( ⊕
1≤i≤m

RW (F)/(xãRW (F) + P ei
i )

)
.

On the other hand, Lemma 8.4 shows that

(
charRW (F)

(M)(RW (F)/xãRW (F))
)rc

(8.9)
= charRW (F)/xãRW (F)

( ⊕
1≤i≤m

RW (F)/(xãRW (F) + P ei
i )

)
.

Then combining both (8.8) and (8.9), we get

(
charRW (F)

(M)(RW (F)/xãRW (F))
)rc

(8.10)
= charRW (F)/xãRW (F)

(
M/(xãM +Mnull)

)
.

Finally, since the multiplication on M/Mnull by xã is injective, we have

an exact sequence

(8.11) 0→Mnull/xãMnull →M/xãM →M/(xãM +Mnull)→ 0.
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Taking characteristic ideals to (8.11), in view of (8.10) and condition (B) in

Definition 8.1, it follows that the desired implication (8.5) holds if Mnull/

xãMnull is a pseudonull RW (F)xãRW (F)-module, which is true if xãRW (F) ∈
LW (F)(Mnull). This completes the proof of (1).

(2) This part is done in [14, Lemma 3.5] together with Definition 3.1 in

case RW (F) is regular, so we leave the proof with necessary modifications to

the reader.

The next purpose is to show that LW (F)(M) is an infinite set for a finitely

generated torsion RW (F)-module M . We need to have sufficiently many spe-

cializations of RW (F) that are normal in order to prove the control theorem

by combining Proposition 5.1, Lemma 8.2, and Lemma 8.5.

Lemma 8.6. Under the notation and the hypothesis as in Corollary 4.6,

assume that M is a finitely generated torsion RW (F)-module. Then we have

the following assertions.

(1) The subset LW (F)(M) ⊆ θW (F)(U) may be identified with a nonempty

open subset of Pd(F) under the mapping θW (F) : P
d(F)→ Pd(W (F)). In

particular, it is infinite.

(2) Let P be a fixed height 1 prime ideal appearing in charRW (F)
(M). Then

one can find an infinite sequence {xãiRW (F)}i∈N ⊆LW (F)(M) such that

the union ⋃
i∈N

MinRW (F)
(P + xãiRW (F))

is an infinite set.

Proof. (1) By Lemma 8.5, we have xã ∈ LW (F)(Mnull) if and only if

xã ∈ LW (F) is contained in none of the height 2 primes Q′
1, . . . ,Q

′
k ∈

AssRW (F)
(Mnull). Let Q1, . . . ,Q� be prime ideals attached to M as in Lem-

ma 8.2. By the assumption that dimR ≥ 3, all these primes together with

the set of height 1 primes P1, . . . , Pm ∈ SuppM are strictly contained in the

maximal ideal of RW (F). So let us find a nonempty Zariski-open subset of

Pd(F) with the required properties via Lemma 8.5. In other words, it suffices

to choose xã such that

(8.12) xã /∈
( ⋃
1≤i≤m

Pi

)
∪
( ⋃
1≤i≤k

Q′
i

)
∪
( ⋃
1≤i≤�

Qi

)
.

Then applying Lemma 4.2 to each prime appearing in (8.12), we may find

a Zariski-open subset U ⊆ Pd(F) such that the condition (8.12) holds for
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a = (a0 : · · · : ad) ∈ Sp−1
W (F)

(U). Then combining the conclusion of Proposi-

tion 5.1, we complete the proof of (1).

(2) The proof will be completed through inductive steps using (1) as

follows. Let P be a fixed height 1 prime ideal appearing in charRW (F)
(M).

Since P is a nonmaximal prime ideal of RW (F), we can attach a nonempty

Zariski-open subset of Pd(F) by Lemma 4.2, and we may find xã0RW (F) ∈
LW (F)(M), which is not contained in P . Then this initial choice satisfies our

requirement.

Choose xã1RW (F) ∈ LW (F)(M) such that xã1 is contained in no prime of

the set

MinRW (F)
(P + xã0RW (F))

(which is a finite set of primes strictly contained in the maximal ideal of

RW (F) due to dimR≥ 3). Next, choose xã2 ∈ LW (F)(M) such that xã2 is in

no prime ideals contained in the set

MinRW (F)
(P + xã0RW (F))∪MinRW (F)

(P + xã1RW (F)).

By continuing this process, we will eventually obtain a sequence xã0 ,xã1 ,

xã2 , . . . with the required properties.

Let M be a finitely generated module over a complete local normal

domain R with W (F) its coefficient ring, and let W (F) → W (F′) be an

extension induced by an algebraic extension F → F′. We set MW (F′) :=

M ⊗̂W (F)W (F′), which coincides with our previous notation. Let M be a

finitely generated torsion R-module. Then

charRW (F′)(MW (F′)) = charR(M)RW (F′),

which may be verified directly from the definition.

Lemma 8.7. Let M,N be finitely generated torsion R-modules. Then we

have

charR(M)⊆ charR(N) ⇐⇒ charRW (F)
(MW (F))⊆ charRW (F)

(NW (F)).

Proof. The implication ⇒ is obvious. So let us prove the other implica-

tion. Since R→RW (F)ur is ind-étale, it suffices to show that

charRW (F)ur
(M)⊆ charRW (F)ur

(N) ⇐⇒

charRW (F)
(MW (F))⊆ charRW (F)

(NW (F)).
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Note that RW (F)ur →RW (F) is faithfully flat, with trivial residue field exten-

sion. Then the claim follows from this.

Now we prove the following theorem.

Theorem 8.8 (Control theorem for characteristic ideals). With the nota-

tion and the hypothesis as in Corollary 4.6, assume that M and N are

finitely generated torsion R-modules. Then the following statements are

equivalent:

(1) charR(M)⊆ charR(N);

(2) for all but finitely many height 1 primes

xãRW (F) ∈ LW (F)(MW (F))∩LW (F)(NW (F)),

we have

charRW (F′)/xãRW (F′)
(MW (F′)/xãMW (F′))

⊆ charRW (F′)/xãRW (F′)
(NW (F′)/xãNW (F′)),

where F′ is any finite field extension of F depending on ã such that

xã ∈RW (F′);

(3) for all but finitely many height 1 primes

xãRW (F) ∈ LW (F)(MW (F))∩LW (F)(NW (F)),

we have

charRW (F)/xãRW (F)
(MW (F)/xãMW (F))⊆ charRW (F)/xãRW (F)

(NW (F)/xãNW (F)).

Note that dimR≥ 3 holds automatically, due to the hypothesis depthR≥
3.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious in view of Defini-

tion 8.1. So it remains to prove (3)⇒ (1). By Lemma 8.7, it suffices to show

that

charRW (F)
(MW (F))⊆ charRW (F)

(NW (F)).

Take fundamental pseudoisomorphisms for M and N ,

M →
⊕
i

RW (F)/P
ei
i

(
resp., N →

⊕
j

RW (F)/Q
fj
j

)
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for a (not necessarily redundant) finite set of height 1 primes {Pi} (resp.,

{Qj}) of RW (F). Put IM := (
∏

iP
ei
i )rc and IN := (

∏
j Q

fj
j )rc, and condition

(B) in Definition 8.1 allows one to assume that

(8.13) M =
⊕
i

RW (F)/P
ei
i

(
resp., N =

⊕
j

RW (F)/Q
fj
j

)
.

To simplify the notation, assume that {Pi} (resp., {Qj}) is a redundant set

of prime ideals and that all relevant modules are defined over RW (F). We

require several steps to complete the proof of the theorem. Let

{xãiRW (F)}i∈N ⊆LW (F)(MW (F))∩LW (F)(NW (F))

be any infinite sequence of distinct primes of RW (F) satisfying condition (3).

In particular, we have
⋂

i∈N xãiRW (F) = 0.

Step 1 : In this step, we establish Suppht=1N ⊆ Suppht=1M , where

Suppht=1(−) is the set of height 1 primes contained in the support of a

module. By assumption, we have(
IM (RW (F)/xãiRW (F))

)rc ⊆ (
IN (RW (F)/xãiRW (F))

)rc
for all i ∈N. Rewriting this inclusion, we get(

(IM + xãiRW (F))/xãiRW (F)

)rc ⊆ (
(IN + xãiRW (F))/xãiRW (F)

)rc
.

From this description, we deduce the following fact. Fix a height 1 prime

ideal Qk from (8.13). We may choose the set {xãi}i∈N such that

(8.14)
⋃
i∈N

MinRW (F)
(Qk + xãiRW (F))

is an infinite set in view of Lemma 8.6. For every fixed i ∈N, we have

IM ⊆ pi,

where pi ∈MinRW (F)
(Qk + xãiRW (F)) is chosen to be an arbitrary fixed ele-

ment.

On the other hand, since (8.14) is infinite, we may find an infinite subset

{pi}i∈N of (8.14), and we fix it once and for all. Since RW (F)/Qk is an integral

domain and {pi}i∈N is an infinite set of height 2 primes containing Qk, it

follows from Lemma 5.3 that

Qk =
⋂
i∈N

pi.
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Since IM ⊆ pi for all i ∈ N, we have IM ⊆Qk. Since Qk is arbitrary, IM ⊆
(
∏

j Qj)
rc, or equivalently, Suppht=1N ⊆ Suppht=1M .

Step 2 : In this step, we deal with multiplicities of divisors in the char-

acteristic ideal, and we complete this step by induction on the number of

divisors appearing in IM .

First, assume that IM = (P e)rc for e≥ 1. Then we have Suppht=1N =∅
or {P} because of Step 1. If Suppht=1N =∅, there is nothing to prove. So

assume that Suppht=1N = {P}. Both M and N are assumed to be funda-

mental torsion RW (F)-modules, thus M [xãi ] and N [xãi ] are trivial modules

and Proposition 7.5 yields that �(RW (F))P
(MP )≥ �(RW (F))P

(NP ).

In the general case, we prove by contradiction and thus, assume that

IM � IN . Then this implies that we have ek < fk for some k, where ek, fk
are coming from (8.13). Put

(8.15) ĨM := (P−ek
k · IM )rc

(
resp., ĨN := (P−ek

k · IN )rc
)
,

which are both integral reflexive ideals. There are short exact sequences:

0→ ĨM/IM →RW (F)/IM →RW (F)/ĨM → 0

and

0→ ĨN/IN →RW (F)/IN →RW (F)/ĨN → 0,

and it is clear that

charRW (F)
(ĨM/IM ) = charRW (F)

(ĨN/IN ) = (P ek
k )rc,

which induces the following short exact sequences by the snake lemma:

0→ ĨM/(IM ,xãi ĨM )→RW (F)/(IM ,xãi)→RW (F)/(ĨM ,xãi)→ 0

and

0→ ĨN/(IN ,xãi ĨN )→RW (F)/(IN ,xãi)→RW (F)/(ĨN ,xãi)→ 0.

Taking characteristic ideals, we get from condition (3) that

charRW (F)/xãi
RW (F)

(
RW (F)/(ĨM ,xãi)

)
⊆ charRW (F)/xãi

RW (F)

(
RW (F)/(ĨN ,xãi)

)
.
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Since the number of primes ideals in AssRW (F)
(RW (F)/ĨM ) is exactly one less

than that of components of prime ideals in IM , the induction hypothesis on

ĨM yields that

charRW (F)
(RW (F)/ĨM )⊆ charRW (F)

(RW (F)/ĨN ).

However, we deduce from these observations and (8.15) that IM ⊆ IN , which

is a contradiction to our assumption IM � IN . Hence, we obtain IM ⊆ IN ,

as desired.

Remark 8.9. It is worth pointing out that Theorem 8.8 holds for com-

plete local normal rings of mixed characteristic with arbitrary infinite per-

fect residue field as well. More precisely, it can be proven that charR(M)⊆
charR(N) ⇐⇒ charR/xR(M/xM)⊆ charR/xR(N/xN) for sufficiently many

x ∈R.

In this article, we presented an application of the local Bertini theorem to

characteristic ideals. However, we believe that the main theorem has more

interesting applications such as the study of the restriction map on divisor

class (Chow) groups.

Appendix

In this Appendix, we study the relationship between Fitting ideals and

characteristic ideals. (For Fitting ideals, we refer the reader to Northcott’s

book [13], but we review the basic part of the theory. For reflexive sheaves

on normal schemes, see [9]). Throughout, we assume that R is a Noetherian

ring and that M is a finitely generated R-module.

Definition A.1 (Fitting ideal). Let the notation be as above, and assume

that

F1 → F0 →M → 0

is a finite free resolution of the R-module M , where the mapping F1 → F0

is defined via an (m× n)-matrix X with rank(F1) = n and rank(F0) =m.

Then FittR(M) is defined as an ideal of R generated by all m-minors of X .

The Fitting ideal does not depend on the choice of a free resolution and

it enjoys the following properties.

Proposition A.2. Let M be a finitely generated module over a Noether-

ian ring R. Then we have the following properties.
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(1) Let I ⊆R be an ideal. Then FittR(R/I) = I.

(2) Let S be any Noetherian R-algebra. Then FittS(M⊗RS) = FittR(M)S.

(3) Let AnnR(M) be the annihilator of the R-module M . Then

FittR(M)⊆AnnR(M).

(4) If 0→ L→M →N → 0 is a short exact sequence of R-modules, then

FittR(L) ·FittR(N)⊆ FittR(M).

(5) Assume that R is a discrete valuation ring with its uniformizing param-

eter b and that M is a torsion R-module. Then FittR(M) = (b)�R(M).

Proof. These facts are all well known. For (5), it simply follows from the

elementary divisors of modules over a principal ideal domain.

For a Noetherian domain R and an R-moduleM , letM∗ := HomR(M,R),

the dual of M . We say that M rc := (M∗)∗ is the reflexive closure of M . Then

we have the following lemma.

Lemma A.3. Let R be a Noetherian domain, and let I be a fractional ideal

of R. Then the reflexive closure Irc is naturally regarded as a fractional ideal

of R.

Proof. By assumption, there exists α ∈ R such that I 
 α · I ⊆ R. Let

J := α · I , an ideal of R. The short exact sequence 0→ J →R→R/J → 0

induces a short exact sequence

0 = HomR(R/J,R)→R→HomR(J,R)→N → 0,

with N ⊆ Ext1R(R/J,R) cokernel of R → HomR(J,R). Then applying

HomR(−,R) twice, we get an exact sequence

0 = HomR(N,R)→ J rc →R,

because J ·N = 0. This implies that J rc is an ideal of R. Then Irc = α−1 ·J rc

is a fractional ideal.

Note that even when I and J are reflexive, the product I · J need not

be reflexive. Any principal ideal is reflexive. Let I be an ideal of a normal

domain R. Then we recall the fact

Irc =
⋂
P

IP ,
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where P ranges over all height 1 primes of R. The natural inclusion I →
Irc is a pseudoisomorphism, since IP → (Irc)P = (IP )

rc for every height 1

prime P ⊆ R and every ideal in a discrete valuation ring is principal. The

following lemma explains the naturality of reflexive ideals and gives a way

to investigate the inclusion relation between characteristic ideals.

Lemma A.4. Let R be a Noetherian normal domain, and let I and J be

reflexive ideals. Then I ⊆ J if and only if vP (I)≥ vP (J) for a valuation v

attached to every height 1 prime P of R. In particular, the only reflexive

integral ideal containing a prime ideal of R properly is R itself.

If R is only assumed to be Cohen–Macaulay, a similar result holds for

invertible modules (see [3, Lemma 5.3]). We defined characteristic ideals

as reflexive ideals and this is natural from the viewpoint of Iwasawa’s main

conjecture, because the most interesting arithmetic information may be cap-

tured at height 1 primes. For finitely generated torsion R-modules M,N ,

it follows from the above lemma that charR(M)⊆ charR(N) if and only if

charR(M)P ⊆ charR(N)P for every height 1 prime P ∈ Supp(M)∪Supp(N).

Example A.5. Suppose that I is reflexive, and let a ⊆ R be such that

R/a is a normal domain. Then I(R/a) need not be reflexive. For a general

ideal I ⊆R, it can happen that(
I(R/a)

)rc �= (
Irc(R/a)

)rc
.

Here, Irc is the reflexive closure with respect to R and (I(R/a))rc is the

reflexive closure with respect to R/a. Let us take a look at the following sim-

ple example. Take R= Zp[[x, y]], I = (x, y), and a= (x). Then (Irc(R/a))rc =

R/xR, since there is no height 1 prime of R containing I . But (I(R/a))rc =

y(R/xR).

Proposition A.6. Let R be a Noetherian normal domain. Then the fol-

lowing hold.

(1) Let M be a finitely generated torsion R-module. Then we have

charR(M) =
( ∏
htp=1

p
�Rp(Mp)

)rc
=FittR(M)rc.

In particular, FittR(M)⊆ charR(M), and if R is a unique factorization

domain (UFD), then

FittR(M)⊆
∏

htp=1

p
�Rp(Mp) = charR(M).



BERTINI THEOREM FOR NORMALITY ON LOCAL RINGS 171

(2) Let 0→ L→M →N → 0 be a short exact sequence of finitely generated

R-modules. Then

charR(M) =
(
charR(L) · charR(N)

)rc
.

Proof. (1) Since the characteristic ideal is reflexive, the first equality fol-

lows by taking localization at all height 1 primes of R. The second equality

follows from the fact that

FittRP
(MP ) = (PRP )

�RP
(MP )

for any height 1 prime ideal P ⊆R. The second assertion is due to the fact

that a height 1 prime in a UFD is principal.

(2) This is clear, since the length is additive with respect to short exact

sequences. The equality continues to hold true without torsion property of

modules.

Example A.7. The ordinary power of a height 1 prime in a normal

domain is not necessarily reflexive. Here is an example. Let R= Zp[[x
2, xy,

y2]], and let p= (x2, xy). Then R is a normal domain and ht(p) = 1. Then

p2 = (x4, x3y,x2y2) and p2 �= p(2). In fact, x2 /∈ p2, but p(2) = (x2).

Now let q = (xy, y2) and M = R/(p ∩ q), which is torsion over R. Then

one verifies that

FittR(M) = p∩ q�
∏

htp=1

p
�Rp(Mp) = pq,

which tells us that Proposition A.6(1) is the most optimal.
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et des morphismes de schémas, II, Publ. Math. Inst. Hautes Études Sci. 24 (1965).
MR 0199181.

[8] , Cohomologie locale des faisceaux cohérents et théorèmes des Lefschetz locaux
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