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MINIMAL MODELS AND ABUNDANCE FOR POSITIVE
CHARACTERISTIC LOG SURFACES

HIROMU TANAKA

Abstract. We discuss the birational geometry of singular surfaces in positive
characteristic. More precisely, we establish the minimal model program and
the abundance theorem for Q-factorial surfaces and for log canonical surfaces.
Moreover, in the case where the base field is the algebraic closure of a finite
field, we obtain the same results under much weaker assumptions.
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§1. Introduction

In this paper, we consider the minimal model theory for surfaces with

some singularities in positive characteristic. If the singularities areQ-factorial

or log canonical, then we establish the minimal model program and the

abundance theorem. In the case where the base field is the algebraic closure

of a finite field, we obtain the same result under much weaker assumptions.

More precisely, we prove the following two theorems in this paper.

Theorem 1.1 (Minimal model program). Let X be a projective normal

surface X, which is defined over an algebraically closed field k of positive

characteristic. Let Δ be an R-divisor on X, and let Δ=
∑

j∈J δjΔj be its

prime decomposition. Assume that one of the following conditions holds:

Received November 17, 2012. Revised June 9, 2013. Accepted August 18, 2013.
First published online September 9, 2014.
2010 Mathematics Subject Classification. Primary 14E30; Secondary 14J10.

© 2014 by The Editorial Board of the Nagoya Mathematical Journal

http://dx.doi.org/10.1215/00277630-2801646
http://www.ams.org/msc/


2 H. TANAKA

(QF) X is Q-factorial, and 0≤ δj ≤ 1 for all j ∈ J ;

(FP) k = Fp, and 0≤ δj for all j ∈ J ;

(LC) (X,Δ) is a log canonical surface.

Then, there exists a sequence of birational morphisms

(X,Δ) =: (X0,Δ0)
φ0→ (X1,Δ1)

φ1→ · · · φs−1→ (Xs,Δs) =: (X†,Δ†),

where (φi−1)∗(Δi−1) =: Δi, with the following properties.

(1) Each Xi is a projective normal surface.

(2) Each (Xi,Δi) satisfies (QF), (FP), or (LC) according to the above

assumption.

(3) For each i, Ex(φi) =:Ci is a proper irreducible curve such that

(KXi +Δi) ·Ci < 0

and such that Ci generates an extremal ray.

(4) The pair (X†,Δ†) satisfies one of the following conditions:

(a) KX† +Δ† is nef;

(b) there is a surjective morphism μ :X† → Z to a smooth projective

curve Z such that μ∗OX† = OZ , −(KX† + Δ†) is μ-ample, and

ρ(X†/Z) = 1;

(c) −(KX† +Δ†) is ample, and ρ(X†) = 1.

In case (a), we say that (X†,Δ†) is a minimal model of (X,Δ).

In cases (b) and (c), we say that (X†,Δ†) is a Mori fiber space.

Theorem 1.2 (Abundance theorem). Let X be a projective normal sur-

face X, which is defined over an algebraically closed field k of positive char-

acteristic. Let Δ be an R-divisor on X, and let Δ=
∑

j∈J δjΔj be its prime

decomposition. Assume that one of the following conditions holds:

(QF) X is Q-factorial, and 0≤ δj ≤ 1 for all j ∈ J ;

(FP) k = Fp, and 0≤ δj for all j ∈ J ;

(LC) (X,Δ) is a log canonical surface.

If KX +Δ is nef, then KX +Δ is semiample.

Note that, if X is a normal surface over Fp, then X is Q-factorial (see

Theorem 4.5). In particular, KX +Δ is an R-Cartier R-divisor.

In the case where the characteristic of the base field is 0, the above

two theorems are proved by Fujino [F2]. His proofs heavily depend on the
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Kodaira vanishing theorem and its generalizations. Unfortunately, in posi-

tive characteristic, counterexamples to the Kodaira vanishing theorem exist

(see [R]). To prove the above two theorems, we use a result established in

[Ke1].

In characteristic 0, the base-point-free theorem follows from the Kawa-

mata–Viehweg vanishing theorem, which is a generalization of the Kodaira

vanishing theorem (see [KoM, Theorem 3.3]). Although we cannot use the

Kodaira vanishing theorem, we can show the following base-point-free the-

orem.

Theorem 1.3 (Base-point-free theorem). Let X be a projective normal

Q-factorial surface X, which is defined over an algebraically closed field k

of positive characteristic. Let Δ be a Q-divisor. Let Δ=
∑

j∈J δjΔj be its

prime decomposition, and assume that 0≤ δj < 1 for all j ∈ J . Let D be a

nef Cartier divisor satisfying one of the following properties:

(1) D− (KX +Δ) is nef and big;

(2) D− (KX +Δ) is semiample.

Then D is semiample.

Although counterexamples to the Kodaira vanishing theorem exist, we

can use the relative Kawamata–Viehweg vanishing theorem for birational

morphisms of surfaces [KoK, Section 2.2]. Then, we obtain the following

result on rational singularities.

Theorem 1.4. Let X be a projective normal surface X, which is defined

over an algebraically closed field k of positive characteristic. Let Δ be an

R-divisor on X. Let Δ=
∑

j∈J δjΔj be its prime decomposition, and assume

that 0≤ δj ≤ 1 for all j ∈ J . Assume that X has at worst rational singular-

ities. Then, the following assertions hold.

(1) The surface X is Q-factorial. In particular, by Theorem 1.1, we can

run a (KX +Δ)-minimal model program:

(X,Δ) =: (X0,Δ0)
φ0→ (X1,Δ1)

φ1→ · · · φs−1→ (Xs,Δs),

where (φi−1)∗(Δi−1) =: Δi.

(2) Each Xi has at worst rational singularities.

1.1. Overview of related literature

We summarize some literature related to this paper with respect to the

surface theory, the minimal model theory, and Keel’s result (Theorem 2.2).
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1.1.1. Surface theory. The Italian school established the classification

theory for smooth algebraic surfaces, which was generalized by Kodaira,

Shafarevich’s seminar, and Bombieri and Mumford ([BM1], [BM2], [Mu2]).

Theories of log surfaces and normal surfaces have been developed by Iitaka,

Kawamata, Miyanishi, Sakai, and many others (see, e.g., [S], [Mi]). Fujita

[Fu] established the abundance theorem for pairs (X,Δ) where X is a

smooth projective surface and Δ is a Q-boundary, that is, where Δ is a

Q-divisor such that, for the prime decomposition Δ =
∑

j∈J δjΔj , all the

coefficients δj satisfy 0≤ δj ≤ 1. In characteristic 0, Fujino [F2] generalized

this result. More precisely, [F2] shows that the abundance theorem holds

for pairs (X,Δ) where X is a projective normal Q-factorial surface and Δ

is an R-boundary. In this paper, we generalize this result to positive char-

acteristic.

1.1.2. Minimal model theory. In characteristic 0, the minimal model the-

ory has been developed by Kawamata, Kollár, Mori, Shokurov, and many

others (see, e.g., [KoM], [KMM]). To establish fundamental theorems in

minimal model theory, we use the Kodaira vanishing theorem and its gen-

eralizations.

However, in positive characteristic, counterexamples to the Kodaira van-

ishing theorem exist even in the case of dimension 2 (see [R]). In [T], the

author established a weak Kodaira vanishing theorem for positive charac-

teristic surfaces and established a base-point-free theorem for klt surfaces.

Kollár [Ko1] established the contraction theorem for smooth 3-folds in pos-

itive characteristic. Kawamata [K] established the minimal model program

for semistable 3-folds in positive characteristic.

Fujino [F2] established the minimal model theory for Q-factorial surfaces

and log canonical surfaces in characteristic 0. In the current article, we

generalize this result to positive characteristic.

1.1.3. Keel’s result. Keel’s result (Theorem 2.2) is a key theorem in this

paper. Thus, we summarize here some literature related to Keel’s result.

Theorem 2.2 is the surface version of [Ke1, Theorem 0.2]. Keel’s proof

depends on the Frobenius maps and the theory of the algebraic spaces.

Note that Keel’s result (Theorem 2.2) holds only in positive characteristic

(see [Ke1, Section 3]). See [CMM] and [FT] for alternative proofs of [Ke1,

Theorem 0.2] that do not depend on the theory of algebraic spaces. In [FT],

Fujino and the author consider only the case of surfaces.
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The article [Ke1] also shows the base-point-free theorem for Q-factorial

3-folds over Fp with nonnegative Kodaira dimension. Over Fp, we can often

obtain some strong results. The reason is owing to Corollary 2.4 (see also

[A], [Ke2], [M], [To]).

1.2. Overview of contents

Section 2 summarizes the notation and two known results: Keel’s result

(Theorem 2.2) and Fact 2.3, which play crucial roles in this paper.

In Section 3, we prove the case (QF) of Theorems 1.1 and 1.2. To show the

case (QF) of Theorem 1.1, we establish the cone theorem and the contraction

theorem. The cone theorem follows from Mori’s bend-and-break lemma and

the minimal resolution. We consider the bend-and-break method for proper

normal surfaces in Section 3.1. The contraction theorem (Theorem 3.21) is

obtained by Keel’s result (Theorem 2.2).

To show the case (QF) of Theorem 1.2, we divide the argument into two

cases: k �= Fp and k = Fp. We treat the case k = Fp in Section 4, so we

prove Theorem 1.2 only for the case k �= Fp. By a standard argument, we

may assume that Δ is a Q-divisor (Section 3.7). First, we prove that κ :=

κ(X,KX +Δ)≥ 0 (Theorem 3.30). This follows from the same argument as

in [F2, Theorem 5.1]. Second, we consider the three cases κ= 0, κ= 1, and

κ= 2. If κ= 1, then the assertion follows from a more general known result

(Proposition 3.23). By using Keel’s result and the contraction theorem, we

can prove the case of κ = 2 (Proposition 3.29). In the case where κ = 0

(Theorem 3.34), we use the arguments in [F2] and [Fu], which depend on

the classification of smooth surfaces.

In Section 4, we prove the case (FP) of Theorems 1.1 and 1.2. The case

(FP) of Theorem 1.1 follows from Keel’s result (Theorem 2.2) and Corol-

lary 2.4. Proof of the case (FP) of Theorem 1.2 is almost the same as in [M,

Theorem 2]. In Section 4, we also show that normal surfaces over Fp are

Q-factorial (Section 4.2).

In Section 5, we consider the case (LC) of Theorems 1.1 and 1.2. To

show the case (LC) of Theorem 1.1, we describe the log canonical surface

singularities by using results obtained in Section 3. This is discussed in

Section 5.1. The case (LC) of Theorem 1.2 follows from a known result (see

[Fu, (1.4) Main Theorem]).

In Section 6, we generalize the results in Sections 3–5 to relative situa-

tions. The relative version of Theorems 1.1 and 1.2 are Theorem 6.5 and

Corollary 6.10, respectively.
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In the Appendices, we prove Theorems 1.3 and 1.4. Note that, in char-

acteristic 0, the base-point-free theorem holds for log canonical varieties

(see [F1, Theorem 13.1]). Its proof heavily depends on the Kodaira van-

ishing theorem and its generalizations. Although, in positive characteristic,

counterexamples to the Kodaira vanishing theorem exist (see [R]), we can

establish the base-point-free theorem for surfaces (Theorem 1.3). Our proof

depends on Keel’s result (Theorem 2.2), the classification of smooth sur-

faces, and the Riemann–Roch theorem.

Theorem 1.4 follows from the relative Kawamata–Viehweg vanishing the-

orem for birational morphisms of surfaces.

§2. Notation and known results

2.1. Notation

2.1.1. Notation. We will freely use the notation and terminology in

[KoM]. We will not distinguish the notation for line bundles, invertible

sheaves, and Cartier divisors. For example, we will write L +M for line

bundles L and M .

Throughout this article, we work over an algebraically closed field k,

whose characteristic chark =: p is positive unless otherwise mentioned.

In this paper, a variety means an integral scheme which is separated and

of finite type over k. A curve or a surface means a variety whose dimension

is 1 or 2, respectively.

Let D be an R-divisor, and let D =
∑

j∈J djDj be its prime decomposi-

tion. For a real number a, we define D ≥ a by dj ≥ a for all j ∈ J . We define

D ≤ a, D> a, and D< a in the same way.

We say thatD is an R-boundary (resp., a Q-boundary) ifD is an R-divisor

(resp., a Q-divisor) and if 0≤D ≤ 1.

Definition 2.1 (Semiample R-divisors). Let π :X → S be a proper mor-

phism between varieties. Let D be an R-Cartier R-divisor. We say that D

is π-semiample if

D =
∑

1≤i≤N

diDi,

where di ∈R≥0 and Di is a π-semiample Cartier divisor for every i (for more

details, see [F1, Section 4]).

2.2. Known results

2.2.1. Keel’s result. In positive characteristic, we cannot use the Kodaira

vanishing theorem, but we can use the following theorem by Keel. The
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following assertion is the surface version of the original theorem by Keel.

(For an alternative proof, see [CMM] and [FT, Section 2].)

Theorem 2.2 (Keel’s result). Let X be a projective normal surface over

an algebraically closed field k of positive characteristic. Let L be a nef and

big line bundle. Let E(L) be the reduced subscheme whose support is the

union of all the curves C with L ·C = 0. Then, L is semiample if and only

if L|E(L) is semiample.

Proof. For a proof, see [Ke1, Theorem 0.2].

2.2.2. Difference between k �= Fp and k = Fp. In this paper, we often

divide the argument into the two cases k �= Fp and k = Fp. The reason for

this comes from the following fact.

Fact 2.3. Let k be an algebraically closed field of arbitrary characteris-

tic.

(1) If k �= Fp, all abelian varieties over k have infinite rank.

(2) If k = Fp, all group schemes of finite type over Fp are torsion groups.

Proof. (1) For a proof, see [FJ, Theorem 10.1].

(2) Let X be a group scheme of finite type over Fp. Let P be a closed

point of X . Then we see that P and X are defined over a finite field. Thus,

we can consider P as a rational point of a group scheme of finite type over

a finite field. Since this group is finite, P is a torsion.

As a corollary, we obtain the following information on the line bundles of

varieties over Fp.

Corollary 2.4. Let X be a projective variety over Fp, and let D be a

Cartier divisor. If D ≡ 0, then D is a torsion in PicX.

Proof. Consider the Picard space of X , and apply Fact 2.3 (for more

details, see [Ke1, Lemma 2.16]).

§3. Q-factorial surfaces

3.1. Bend and break

In this section, we consider Mori’s bend-and-break method for proper

normal surfaces. We use the following intersection theory for normal surfaces

by Mumford [Mu1].
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Definition 3.1 (Intersection theory by Mumford [Mu1]). Let X be a

normal surface, and let f : X ′ → X be a resolution of singularities. Let

E1, . . . ,En be the exceptional curves of f . Let C be a proper curve in X ,

and let D be an R-divisor on X . Let C ′ and D′ be their proper transforms,

respectively.

(1) We define f∗D :=D′ +
∑

eiEi, where all ei are real numbers uniquely

determined by the linear equations (D′+
∑

eiEi) ·Ej = 0 for j = 1, . . . , n.

Note that the intersection matrix (Ei ·Ej) is negative definite (see [KoM,

Lemma 3.40]).

(2) We define the intersection pairing by C ·D := f∗C · f∗D =C ′ · f∗D.

(3) If X is proper, then we can naturally extend this intersection theory to

Weil divisors with Q or R coefficients by linearity.

Definition 3.2. Let X be a proper normal surface, and let D and D′ be
R-divisors. We denote D ≡Mum D′ if D ·C =D′ ·C for every curve C in X .

Let us define the bend and break. This is the key method for the proof of

the cone theorem.

Definition 3.3 (Bend and break). Let X be a proper normal surface.

We say that X satisfies bend and break if X satisfies the following two

conditions.

(BB1) If Z is a rational curve in X , then Z ≡Mum Z1+ · · ·+Zr, where each

Zi is a rational curve and −Zi ·KX ≤ 3.

(BB2) Let C be a curve in X with C · KX < 0. Then for an arbitrary

point c0 ∈C \SingX , there exists a positive integer n(X,C, c0) with

the following conditions. For an arbitrary positive integer n with

n ≥ n(X,C, c0), there exist a nonnegative integer αn, a curve Cn,

and an effective 1-cycle Zn with the following four conditions:

(a) pnC ≡Mum αnCn +Zn;

(b) Zn = Zn,1 + · · ·+Zn,rn , where each Zn,i is a rational curve;

(c) −αnCn ·KX ≤ 2g(Cnormal), where Cnormal is the normalization

of C;

(d) c0 ∈ SuppZn.

The smooth case is the original bend and break proved by Mori, as follows.

Proposition 3.4. If X is a projective smooth surface, then X satisfies

bend and break.

Proof. For a proof, see [Mo1, Theorems 4 and 5] and their proofs.
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Using this result, we extend the bend and break to the proper normal

surfaces.

Proposition 3.5. If X is a proper normal surface, then X satisfies bend

and break.

Proof. Let f :X ′ →X be the minimal resolution, and let KX′ +
∑

eiEi =

f∗(KX), where all Ei are exceptional curves and ei ≥ 0.

(BB1): Let Z be a rational curve in X , and let Z ′ be its proper transform.

Here, Z ′ is rational. Since X ′ is smooth, X ′ satisfies (BB1). Therefore,

Z ′ ≡ Z ′
1 + · · ·+Z ′

r, all Z
′
i are rational curves, and −Z ′

i ·KX′ ≤ 3. Apply f∗
to this equation. We obtain that Z ≡Mum Z1 + · · ·+ Zr, where f∗Z ′

i = Zi.

Note that Zi may be 0. But if all of the Zi are 0, then we have Z ≡Mum 0.

This is a contradiction. Moreover, the above relation between KX and KX′

shows that −Zi ·KX ≤ 3.

(BB2): Let C be a curve in X with C ·KX < 0, and let C ′ be its proper

transform. We see that C ′ ·KX′ < 0 from the above relation between canon-

ical divisors. Let c0 be an arbitrary element of C \ SingX , and let c′0
be a point of C ′ such that f(c′0) = c0. Since X ′ is smooth, X ′ satisfies

(BB2). Thus, we obtain n(X ′,C ′, c′0), α
′
n, C

′
n, and Z ′

n. Let n(X,C, c0) :=

n(X ′,C ′, c′0), αnCn := f∗(α′
nC

′
n), and Zn := f∗(Z ′

n). It is easy to see that

these satisfy (BB2).

From now on, let us generalize this result for pairs (X,Δ).

Definition 3.6 ((KX +Δ)-bend and break). Let X be a proper normal

surface, and let Δ be an effective R-divisor. Let Δ =
∑

biBi be its prime

decomposition. We say that (X,Δ) satisfies (KX +Δ)-bend and break if X

and Δ satisfy the following two conditions.

(BB1) There exists a positive integer L(X,Δ) which satisfies both of the

following conditions.

(1) If Z is a rational curve in X , then Z ≡Mum Z1 + · · ·+Zr, where

all Zi are rational curves and −Zi · (KX +Δ)≤ L(X,Δ).

(2) If B2
i < 0, then −Bi · (KX +Δ)≤ L(X,Δ).

(BB2) Let C be a curve inX with C ·(KX+Δ)< 0 and C �=Bi for all i such

that B2
i < 0. Then, for an arbitrary point c0 ∈C \SingX , there exists

a positive integer n(X,Δ,C, c0) with the following conditions. For an

arbitrary integer n with n≥ n(X,Δ,C, c0), there exist a nonnegative

integer αn, a curve Cn, and an effective 1-cycle Zn with the following

four conditions:
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(a) pnC ≡Mum αnCn +Zn;

(b) Zn = Zn,1 + · · ·+Zn,rn , where all Zn,i are rational curves;

(c) −αnCn · (KX +Δ)≤ 2g(Cnormal), where Cnormal is the normal-

ization of C or Cn =Bi for some i such that B2
i < 0;

(d) c0 ∈ SuppZn.

We obtain the following main result in this section.

Theorem 3.7. If X is a proper normal surface, and if Δ is an effective

R-divisor, then (X,Δ) satisfies (KX +Δ)-bend and break.

Proof. We write the prime decomposition Δ=
∑

biBi.

(BB1): Let

L(X,Δ) :=max
(
{3} ∪

{
−(KX +Δ) ·Bμ

})
,

where Bμ ranges over the prime components of Δ with B2
μ < 0. We check

conditions (1) and (2). Condition (2) is obvious. Thus, let us prove (1). Let Z

be a rational curve in X . By Proposition 3.5, we have Z ≡Mum Z1+ · · ·+Zr,

where any Zj is rational and satisfies −Zj ·KX ≤ 3. If Zj =Bμ with B2
μ < 0,

then we obtain −Zj · (KX +Δ)≤ L(X,Δ). If Zj �=Bμ, then we have

−Zj · (KX +Δ)≤−Zj ·KX ≤ 3≤ L(X,Δ).

(BB2): Let C be a curve in X with C · (KX +Δ)< 0 and with C �= Bi

for all Bi such that B2
i < 0. Then we obtain the following inequalities:

C ·KX ≤C · (KX +Δ)< 0.

By Proposition 3.5, we can use the bend and break in the sense of Defini-

tion 3.3. Let

n(X,Δ,C, c0) := n(X,C, c0).

This satisfies the four conditions of (BB2) of Definition 3.6. Indeed, condi-

tions (a), (b), and (d) are obvious. We consider (c). If Cn �= Bi for all Bi

such that B2
i < 0, then we have

−αnCn · (KX +Δ)≤−αnCn ·KX ≤ 2g(Cnormal).

This completes the proof.

Let us calculate L(X,Δ) in the case where Δ is an R-boundary.
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Proposition 3.8. Let X be a proper normal surface, and let Δ be an R-

boundary. Then (X,Δ) satisfies (KX +Δ)-bend and break for L(X,Δ) = 3.

Proof. By the proof of Theorem 3.7, (X,Δ) satisfies (KX +Δ)-bend and

break for

L(X,Δ) =max
(
{3} ∪

{
−(KX +Δ) ·Bμ

})
,

where Bμ ranges over the prime components of Δ with B2
μ < 0. Thus, the

assertion follows from the following lemma.

Lemma 3.9. Let X be a normal surface, and let Δ be an R-boundary. If

C is a proper curve in X such that C2 ≤ 0, then −(KX +Δ) ·C ≤ 2.

Proof. Let f : Y →X be the minimal resolution, and let CY be the proper

transform of C. We define ΔY by

KY +CY +ΔY = f∗(KX +C).

Note that ΔY ≥ 0 and that CY �⊂ SuppΔY . Then, we see that (KY +CY ) ·
CY ≥−2. We obtain

(KX +Δ) ·C ≥ (KX +C) ·C

= f∗(KX +C) ·CY

= (KY +CY +ΔY ) ·CY

≥ (KY +CY ) ·CY

≥−2.

3.2. Cone theorem

In this section we prove the cone theorem. We use the bend-and-break

method in the sense of Definition 3.6. Thus, in this section we use the

notation in Definition 3.6.

Here, let us recall the definition of the Kleiman–Mori cone.

Definition 3.10. Let X be a projective variety. Then we define

N(X) := {r1Z1 + · · ·+ rsZs | ri ∈R and Zi is a curve in X}≡

NE (X) :=
{
[r1Z1 + · · ·+ rsZs]

∣∣ ri ≥ 0,Zi is a curve in X
}
⊂N(X),

where [r1Z1 + · · ·+ rsZs] means the equivalence class.
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Note that N(X) is the quotient space by ≡. Although we often use the

intersection theory by Mumford, we do not take the quotient by ≡Mum. The

numerical equivalence ≡ is induced by the intersections only with R-Cartier

divisors.

In this section, we use the following lemma repeatedly.

Lemma 3.11. Let a, b ∈R and c, d ∈R>0. Then,

a+ b

c+ d
≤max

{a

c
,
b

d

}
.

Proof. The proof is easy. Thus, we omit it.

The following lemma is key to this section.

Lemma 3.12. Let X be a projective normal surface, and let Δ be an

effective R-divisor such that KX +Δ is R-Cartier. Let Δ=
∑

biBi be the

prime decomposition. Let H be an R-Cartier ample R-divisor. If C is a

curve in X such that C · (KX +Δ)< 0, then there exists a curve E in X

with the following properties:

(1) E is rational or E =Bj for some j such that B2
j < 0;

(2) 0<−E · (KX +Δ)≤ L(X,Δ);

(3)
−C · (KX +Δ)

C ·H ≤ −E · (KX +Δ)

E ·H .

(The following proof is very similar to that of [KoM, Theorem 1.13].)

Proof of Lemma 3.12. In this proof, we use the notation (BB1) and (BB2)

in the sense of Definition 3.6. First, if C =Bj with B2
j < 0, then the asser-

tion is obvious. We may assume that C �=Bj for all Bj with B2
j < 0. Then,

we can use (BB2). However, since we do not use c0, we fix c0 ∈C \ SingX .

Set C ′
n := αnCn. We consider the following number:

M :=
−C · (KX +Δ)

C ·H

=
−pnC · (KX +Δ)

pnC ·H

=
−C ′

n · (KX +Δ)−Zn · (KX +Δ)

C ′
n ·H +Zn ·H

=
an + bn
cn + dn

,
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where an, bn, cn, and dn are defined by

an :=−C ′
n · (KX +Δ),

bn :=−Zn · (KX +Δ),

cn := C ′
n ·H,

dn := Zn ·H.

Step 1. In this step, we reduce the proof to the case where αn > 0 for

all n
 0.

Assume that there is a positive integer n such that n≥ n(X,Δ,C, c0) and

αn = 0. Then we have

−C · (KX +Δ)

C ·H =
−Zn · (KX +Δ)

Zn ·H
≤ −Zn,i · (KX +Δ)

Zn,i ·H

for some i by Lemma 3.11. Moreover, by (BB1) and Lemma 3.11, we obtain

the desired result.

Step 2. In this step, we reduce the proof to the case where

an =−αnCn · (KX +Δ)≤ 2g(Cnormal)

for all n
 0.

Suppose the contrary. Then, by condition (c) of (BB2), we obtain Cn =Bj

for some j such that B2
j < 0. By Lemma 3.11, we have the following equality:

−C · (KX +Δ)

C ·H =
−αnBj · (KX +Δ)−Zn · (KX +Δ)

αnBj ·H +Zn ·H

≤max
{−Bj · (KX +Δ)

Bj ·H
,
−Zn · (KX +Δ)

Zn ·H
}
.

If
−C · (KX +Δ)

C ·H ≤ −Bj · (KX +Δ)

Bj ·H
,

then this is the desired result. If

−C · (KX +Δ)

C ·H ≤ −Zn · (KX +Δ)

Zn ·H
,

then, by (BB1) and Lemma 3.11, we obtain the desired result.

From now on, we consider the asymptotic behaviors of an, bn, cn, and dn.
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Step 3. The sequence an is bounded, and the sequence bn is not bounded.

Indeed, the boundedness of an follows from Step 2. Since an+bn =−pnC ·
(KX +Δ) is not bounded, bn is not bounded.

Step 4. In this step, we prove that for an arbitrary positive real number

ε, there exists a curve E in X with the following properties:

(1)′ E is rational;

(2)′ 0<−E · (KX +Δ)≤ L(X,Δ);

(3)′

M − ε <
−E · (KX +Δ)

E ·H .

If an/cn <M for some n
 0, then we have bn/dn ≥M , which gives us

the desired result by (BB1) and Lemma 3.11. Thus, we may assume that

an/cn ≥M for all n
 0. Then, since an is bounded, so is cn because M is a

positive number. Because cn + dn = pnC ·H , dn is not bounded. Therefore,

for sufficiently large n, we obtain

bn
dn

+ ε >
an + bn

dn
>

an + bn
cn + dn

=M.

By (BB1) and Lemma 3.11, there exists a rational curve E with the desired

properties.

Step 5. We take an arbitrary positive real number ε with 0< ε≤M/2.

Then, by Step 4, we obtain

E ·H <
−E · (KX +Δ)

M − ε
≤ L(X,Δ)

M/2
=

2L(X,Δ)

M
.

Since H is ample, the subset in numerical classes of effective 1-cycles in X

with integral coefficients
{
[E]

∣∣∣E ·H <
2L(X,Δ)

M

}

has only finitely many members. Therefore, the set
{−E · (KX +Δ)

E ·H

∣∣∣E ·H <
2L(X,Δ)

M
and E satisfies (1)′, (2)′

}

is also a finite set, because KX +Δ is R-Cartier. Take a sufficiently small

ε > 0. Then, by Step 4, we obtain a rational curve E in X such that

E satisfies (1)′, (2)′ and
−E · (KX +Δ)

E ·H ≥M.

This completes the proof.
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Let us prove the cone theorem.

Theorem 3.13 (Cone theorem). Let X be a projective normal surface,

and let Δ be an effective R-divisor such that KX + Δ is R-Cartier. Let

Δ=
∑

biBi be the prime decomposition. Let H be an R-Cartier ample R-

divisor. Then the following assertions hold:

(1) NE (X) =NE (X)KX+Δ≥0 +
∑

R≥0[Ci];

(2) NE (X) =NE (X)KX+Δ+H≥0 +
∑

finiteR≥0[Ci];

(3) each Ci in (1) and (2) is rational or Ci =Bj for some Bj with B2
j < 0;

(4) each Ci in (1) and (2) satisfies 0<−Ci · (KX +Δ)≤ L(X,Δ).

This proof is essentially the same as that of [KoM, Theorem 1.24].

Proof of Theorem 3.13. (1) Let W be the right-hand side in (1); that is,

W :=NE (X)(KX+Δ)≥0 +
∑

Ci satisfies (3), (4)

R≥0[Ci].

Note that W is a closed set by the same proof as in [Ko2, Chapter 3,

Theorem 1.2]. We would like to prove that NE (X) = W . The inclusion

NE (X)⊃W is clear. Let us assume that NE (X)�W and derive a contra-

diction. Then we can find a Cartier divisor D which is positive on W \ 0
and which is negative on some element of NE (X). Let μ be a positive real

number such that H + μD is nef and H + μ′D is ample for all positive real

numbers μ′ with μ′ < μ. Then we can take a 1-cycle Z with Z ∈NE (X)\{0}
and (H + μD) · Z = 0. Since Z ·H > 0 means that Z ·D < 0, Z is not in

W . By the definition of W , we obtain Z · (KX +Δ)< 0. Because Z is an

element of NE (X), there exist effective 1-cycles Zk =
∑

ak,jZk,j such that

the limit of Zk is Z. Take an arbitrary positive real number μ′ with μ′ < μ.

By the ampleness of H + μ′D, we have

max
j

−Zk,j · (KX +Δ)

Zk,j · (H + μ′D)
≥ −Zk · (KX +Δ)

Zk · (H + μ′D)
.

We may assume that the maximum on the left-hand side occurs when j is 0.

By Lemma 3.12, we obtain

−Ek · (KX +Δ)

Ek · (H + μ′D)
≥ −Zk,0 · (KX +Δ)

Zk,0 · (H + μ′D)
≥ −Zk · (KX +Δ)

Zk · (H + μ′D)
.
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Here, Ek satisfies (3) and (4). Thus, we have Ek ∈W , and this means that

Ek ·D ≥ 0. Therefore, we have

−Ek · (KX +Δ)

Ek ·H
≥ −Ek · (KX +Δ)

Ek · (H + μ′D)
≥ −Zk · (KX +Δ)

Zk · (H + μ′D)
.

Take a large positive number r such that rH + (KX +Δ) is ample. This

shows that

r >
−Ek · (KX +Δ)

Ek ·H
.

Combining the inequalities, we obtain

r >
−Zk · (KX +Δ)

Zk · (H + μ′D)
.

Recall that we choose μ′ as an arbitrary positive real number with μ′ < μ.

By taking the limit μ′ to μ, we obtain

r ≥ −Zk · (KX +Δ)

Zk · (H + μD)
.

Moreover, by taking the limit k to ∞, we obtain

r ≥ lim
k→∞

−Zk · (KX +Δ)

(Zk ·H + μD)
=

(positive)

+0
=+∞.

This is a contradiction. This completes the proof of (1).

(2) If Ci · (KX +Δ+H)< 0, then we have

Ci ·H <−Ci · (KX +Δ)≤ L(X,Δ).

There are only finitely many numerical classes of curves like this. This

shows (2). The remaining assertions (3) and (4) have already been proved

in the above arguments.

Remark 3.14. In Theorem 3.13, L(X,Δ) gives an upper bound of length

of extremal rays. By the proof of Theorem 3.7,

L(X,Δ) :=max
(
{3} ∪

{
−(KX +Δ) ·Bμ

})
,

where Bμ ranges over the prime components of Δ with B2
μ < 0. In the case

where Δ is an R-boundary, we can set L(X,Δ) = 3 by Proposition 3.8.
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Moreover, in the case where Δ is an R-boundary, every (KX+Δ)-negative

extremal ray is generated by a rational curve.

Proposition 3.15. Let X be a projective normal surface, and let Δ be

an R-boundary such that KX +Δ is R-Cartier. If R is a (KX +Δ)-negative

extremal ray of NE (X), then R=R≥0[C], where C is a rational curve such

that −(KX +Δ) ·C ≤ 3.

Proof. By Theorem 3.13 and Remark 3.14, we can write R = R≥0[C],

where C is a curve such that −(KX +Δ) ·C ≤ 3 and such that C is rational

or C2 < 0. Assume that C2 < 0. Then, we obtain

(KX +C) ·C ≤ (KX +Δ) ·C < 0.

Thus, the assertion follows from the following lemma.

Lemma 3.16. Let X be a normal surface, and let C be a proper curve

in X. If (KX +C) ·C < 0, then C is a rational curve.

Proof. Let f : Y →X be the minimal resolution, and let CY be the proper

transform of C. We define ΔY by KY +CY +ΔY = f∗(KX +C). Then, we

see that

(KY +CY ) ·CY ≤ (KY +CY +ΔY ) ·CY = (KX +C) ·C < 0.

Then, since CY is a rational curve, so is C.

3.3. Results on adjunction formulas

In this section, we summarize results on adjunction formulas.

Proposition 3.17. Let X be a projective normal surface, and let C be a

curve in X. Then, there exists an exact sequence

0→T → ωX(C)|C → ωC → 0,

where T is the torsion subsheaf of ωX(C)|C .

Proof. For a proof, see [F2, Lemma 4.4].

Using this adjunction formula, we obtain the following result on global

sections.

Lemma 3.18. Let X be a projective normal surface, and let C be a

curve in X. Fix a positive integer r ∈ Z>0. If H
1(C,OC) �= 0, then H0(C,

ωX(C)[r]|C) �= 0, where ωX(C)[r] is the double dual of ωX(C)⊗r.
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Proof. We consider the exact sequence

0→T → ωX(C)|C → ωC → 0.

Since T is a skyscraper sheaf, we have H1(C,T ) = 0. By H0(C,ωC) �= 0, we

obtain H0(C,ωX(C)|C/T ) �= 0. Thus, there exists a map

OC → ωX(C)|C

such that this is injective on some nonempty open set. Therefore, we obtain

a map

OC → ωX(C)⊗r|C ,

which is injective on some nonempty open set. On the other hand, there is

a natural map

ωX(C)⊗r|C → ωX(C)[r]|C ,

which is bijective on some nonempty open set. Combining these maps, we

have the map

OC → ωX(C)[r]|C ,

which is injective on some nonempty open set. Thus, the kernel K of this

map is a torsion subsheaf of OC . Then, we have K = 0. Therefore, we obtain

an injection OC ↪→ ωX(C)[r]|C . This means that H0(C,ωX(C)[r]|C) �= 0.

Using this lemma, we obtain the following theorem, which plays a crucial

role in this paper.

Theorem 3.19. Let X be a projective normal surface, and let C be a

curve in X such that r(KX +C) is Cartier for some positive integer r.

(1) If C · (KX +C)< 0, then C  P1.

(2) If C · (KX +C) = 0, then C  P1 or OC((KX +C)[r])OC .

Proof. (1) Since C · (KX +C)< 0 means that H0(C,ωX(C)[r]|C) = 0, the

curve C must be P1 by Lemma 3.18.

(2) Assume that C � P1. Then we can apply Lemma 3.18 and obtain

H0(C,ωX(C)[r]|C) �= 0. By C · (KX +C) = 0, we have ωX(C)[r]|C OC .
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3.4. Contraction theorem

In this section, we show that extremal rays are contractible for Q-factorial

surfaces with R-boundaries. First, we consider the following theorem, which

we will use later.

Theorem 3.20. Let k be an algebraically closed field of arbitrary char-

acteristic. Let π : Y → B be a surjective morphism over k from a smooth

projective surface Y to a smooth projective irrational curve B. Let f : Y →X

be a birational morphism to a projective normal Q-factorial surface. If k is

not the algebraic closure of a finite field, then all f -exceptional curves are

π-vertical.

This proof is essentially due to [F2, Lemma 5.2].

Proof of Theorem 3.20. We assume that C is an f -exceptional curve with

π(C) = B and want to derive a contradiction. We may assume that C is

smooth by taking a sequence of blowups of singular points of C. We have

π|C :C −→ B,

Pic0C
(π|C)∗←− Pic0B.

We prove that the image (π|C)∗(Pic0B) is an abelian group whose rank is

infinite. By considering (π|C)∗ as a morphism between Jacobian varieties,

we see that (π|C)∗(Pic0B) is an abelian variety. Note that the dimension

of (π|C)∗(Pic0B) as a scheme is not 0 by (π|C)∗ ◦ (π|C)∗ = deg(π|C) and

by the irrationality of B. Thus, by Fact 2.3, the rank of (π|C)∗(Pic0B) is

infinite. Then, we have

(π|C)∗(Pic0B)⊗Z Q
∖ r∑

i=1

Q(Ei|C) �= ∅,

where E1, . . . ,Er are the f -exceptional curves. Therefore, we can take a

Q-divisor D on B such that

(π∗D)|C /∈
r∑

i=1

Q(Ei|C).

On the other hand, since X is Q-factorial, we obtain

π∗D− f∗f∗π
∗D ∈

r∑
i=1

QEi.
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Restricting this relation to C, we have the contradiction

(π∗D)|C ∈
r∑

i=1

Q(Ei|C)

because C is f -exceptional.

Originally, [F2] uses this theorem to prove the nonvanishing theorem. We

use this theorem not only for the nonvanishing theorem but also for the

following contraction theorem.

Theorem 3.21 (Contraction theorem). Let X be a projective normal

Q-factorial surface, and let Δ be an R-boundary. Let R=R≥0[C] be a (KX+

Δ)-negative extremal ray. Then there exists a surjective morphism φR :X →
Y to a projective variety Y with the following properties.

(1) Let C ′ be a curve on X. Then φR(C
′) is one point if and only if [C ′] ∈R.

(2) We have (φR)∗(OX) =OY .

(3) If L is an invertible sheaf with L ·C = 0, then nL= (φR)
∗LY for some

invertible sheaf LY on Y and for some positive integer n.

(4) We have ρ(Y ) = ρ(X)− 1.

(5) If dimY = 2, then Y is Q-factorial.

We divide the proof into the three cases: C2 > 0, C2 = 0, and C2 < 0.

Proof of the case where C2 > 0. The inequality C2 > 0 shows that C is

a nef and big divisor. Therefore, for an arbitrary curve C ′, there exists an

effective Cartier divisor E and positive integers n and m such that nC ∼
mC ′ +E by Kodaira’s lemma. Since C generates an extremal ray, we have

C ′ ≡ qC for some rational number q. Recall that we choose C ′ as an arbitrary

curve. Thus, we obtain ρ(X) = 1 and −KX is ample. Then let Y be one

point, and properties (1), (2), and (4) are satisfied. We want to prove (3);

that is, we must show that for a Q-divisor D, if D ≡ 0, then D is a torsion. It

is sufficient to prove that κ(X,D)≥ 0. Thus, we assume that κ(X,D) =−∞
and derive a contradiction. Let f :X ′ →X be the minimal resolution, let

D′ = f∗D, and let KX′ +E′ = f∗KX , where E′ is an effective f -exceptional

Q-divisor. Then we obtain

κ(X ′,KX′)≤ κ(X ′,KX′ +E′)

= κ(X,KX) =−∞.
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First we prove that X ′ is an irrational ruled surface. By Serre duality, we

obtain h2(X ′,D′) = h0(X ′,KX′ −D′). Moreover, we get

κ(X ′,KX′ −D′)≤ κ(X ′,KX′ +E′ −D′)

= κ
(
X ′, f∗(KX −D)

)

= κ(X,KX −D) =−∞

by the antiampleness of KX − D. Hence, h2(X ′,D′) = 0. Then, by the

Riemann–Roch theorem, we obtain

−h1(X ′,D′) = χ(OX′) +
1

2
D′ · (D′ −KX′) = χ(OX′)

because D′ = f∗D ≡ 0. This shows that

0≥−h1(X ′,D′) = 1− h1(X ′,OX′).

Thus, we obtain h1(X ′,O′
X) ≥ 1, and this means that X ′ is an irrational

ruled surface. Let π : X ′ → B be its ruling. Here, if k = Fp, then D is a

torsion by Corollary 2.4. Hence, we consider the case k �= Fp. Then we can

apply Theorem 3.20, and all f -exceptional curves are π-vertical. This shows

that π factors through X ′ → X → B. A curve in a fiber has nonpositive

self-intersection number. But this is a contradiction because each curve in

X is ample. This completes the proof of the case C2 > 0.

Proof of the case where C2 = 0. First let us prove that ρ(X) = 2. It is

sufficient to show that, for an arbitrary divisor F , if F ·C = F ·(KX+Δ) = 0,

then F ≡ 0. We need the following lemma.

Lemma 3.22. If D1,D2 ∈ C⊥ = {D |D is a divisor and D ·C = 0}, then
D1 ·D2 = 0.

This proof is essentially due to [Mo2, Lemma 3.29].

Proof of Lemma 3.22. We consider the quadratic form Q :C⊥
R →R. Here

we consider C⊥
R as a subvector space of the numerical equivalence classes of

R-divisors, and Q is defined by the self-intersection. We want to prove that

Q is identically 0. Take a nef divisor G such that NE (X)∩G⊥ =R≥0[C]. By

the nefness of G, we obtain G2 ≥ 0. But G2 must be 0 because G2 > 0 shows

that G is nef and big. Then, by G ·C = 0, we obtain C2 < 0, a contradiction.

This shows that Q is 0 in a nonempty dense subset of an open subset in C⊥
R

by the cone theorem. Therefore, Q must be identically 0.
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Since F ∈ C⊥, we obtain D · F = 0 for any divisor D ∈ C⊥. The R-

subvector-space C⊥
R in numerical classes of divisors has codimension 1. Take

its basis D1, . . . ,Dρ−1. Then we get the basis D1, . . . ,Dρ−1, KX + Δ of

the whole space. Indeed, by C · (KX + Δ) �= 0, these vectors are linearly

independent. Since F ·D1 = · · ·= F ·Dρ−1 = F ·(KX +Δ) = 0, we get F ≡ 0.

Thus, we obtain ρ(X) = 2.

Next, let us prove that the divisor C is semiample. By C2 = 0 and (KX +

Δ) ·C < 0, we obtain KX ·C < 0. Let f :X ′ →X be a resolution. By

(f∗C)2 = f∗(f
∗C) ·C =C ·C = 0 and

KX′ · f∗C = f∗(KX′) ·C =KX ·C < 0,

the Riemann–Roch theorem shows that κ(X ′, f∗C) ≥ 1. Note that h2(X ′,
nf∗C) = h0(X ′,KX′ −nf∗C) = 0 for all n
 0. Therefore, we get κ(X,C) =

κ(X ′, f∗C)≥ 1. Because C2 = 0 implies that κ(X,C) = 1, then by the fol-

lowing proposition, C is a semiample divisor.

Proposition 3.23. Let X be a projective normal surface, and let L be a

nef line bundle. If κ(X,L) = 1, then L is semiample.

Proof. For a proof, see [Fu, Theorem 4.1].

Hence, the complete linear system |mC| induces a morphism φR :X → Y

to a smooth projective curve Y . This morphism satisfies (1), (2), and (4). We

would like to show (3). Take a line bundle L with L ·C = 0. Since ρ(X) = 2,

we have L≡ qC for some rational number q. We take a large positive integer

s such that q+ s is positive. Then we have

L+ sC ≡ (q+ s)C.

By the same argument as above, we see that L+ sC is semiample. Then

a sufficiently large multiple of L+ sC induces a morphism ψ :X → Z to a

smooth projective curve Z. Moreover, since this morphism satisfies condition

(1), we obtain the factorization

ψ :X
φR→ Y

σ→ Z

with σ∗OY =OZ . Since Y and Z are smooth projective curves, σ must be

an isomorphism. Then n(L+ sC) is a pullback of a line bundle on Y for

some positive integer n. Thus, we have (3).
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Before stating the proof of the case where C2 < 0, we state a proposition

on the contraction of P1.

Proposition 3.24. Let X be a projective normal surface, and let C be

a curve in X isomorphic to P1. Assume that G is a nef and big line bundle

on X such that, for every curve C ′ in X, G ·C ′ = 0 if and only if C ′ = C.

Then, G is semiample.

Proof. By Keel’s result (Theorem 2.2), if G|C is semiample, then G is

semiample. But, by C = P1, this is obvious.

Proof of the case where C2 < 0. By C · (KX +Δ)< 0, we have C · (KX +

C)< 0. Therefore, by Theorem 3.19, we see that C  P1. Let G be a nef and

big divisor such that for any curve C ′, G ·C ′ = 0 if and only if C ′ =C. (The

way to construct such a divisor G is to let H be an ample divisor and to let

G be the divisor such that G=H + qC and G ·C = 0 for rational number

q.) Then, by Proposition 3.24, there exists φR satisfying (1) and (2). The

remaining assertions (3), (4), and (5) hold from the following propositions.

First we prove (3). We generalize the setting a little for a later use.

Proposition 3.25 (Proof of (3)). Let f :X → Y be a proper birational

morphism from a normal Q-factorial surface X to a normal surface Y .

Assume that C := Ex(f) is a proper irreducible curve and that f(C) is one

point. Let L be a Cartier divisor on X with L ·C = 0. If L|C is a torsion,

then nL= f∗(LY ) for some Cartier divisor LY on Y and for some positive

integer n.

Proof. We have the following.

Step 1. In this step, we assume that X and Y are projective, and we

prove the assertion.

Let G be the pullback of an ample divisor. By Kodaira’s lemma, G =

A+E, where A is an ample Q-divisor and E is an effective Q-divisor. By

replacing G by its suitable multiple, it is easy to see that we may assume

that E = qC for some q ∈Q>0. Consider the divisor

G′ =mG+L= (mA+L) +mqC

for m
 0. Since mA+ L is ample for m
 0, we see that G′ · C ′ > 0 for

every curve C ′ �=C. On the other hand, we have

G′ ·C = (mG+L) ·C = 0.
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Thus, for a sufficiently large integer m
 0, the Cartier divisor G′ =mG+L

is nef and big such that G′ ·C ′ = 0 if and only if C ′ =C for every curve C ′.
Since L|C is a torsion, G′ =mG+ L is semiample by Keel’s result (Theo-

rem 2.2). By Zariski’s main theorem, |nG′| induces the same morphism as f

for some n ∈ Z>0. Thus, nG
′ = nmG+nL is a pullback of some line bundle

on Y , and so is the difference nL= nG′ − nmG.

Step 2. In this step, we assume that Y is quasiprojective, and we prove

the assertion.

Take a compactification Y ⊂ Y such that Y is projective and is smooth on

Y \Y . We define X by patching X and Y along X \C  Y \ {f(C)}. Then,
X is projective because X is proper and Q-factorial (see [F2, Lemma 2.2]).

Thus, by Step 1, we obtain the required assertion.

Step 3. In this step, we prove the assertion.

Let f(C) ∈ Y0 ⊂ Y be an affine open subset, and let X0 := f−1(Y0). Let

f |X0 =: f0. Then, by Step 2, we obtain nL|X0 = (f0)
∗LY0 . Let LY be the

Z-divisor on Y such that LY |Y0 = LY0 and such that LY has no prime

component contained in Y \Y0. Then, LY is Q-Cartier. Consider the prime

decomposition

L=
∑

liCi =
∑

Ci⊂X\X0

liCi +
∑

Cj �⊂X\X0

ljCj .

We see that nf∗LY =
∑

Cj �⊂X\X0
ljCj . Since

∑
Cj⊂X\X0

ljCj is the pullback

of some Q-Cartier divisor, we obtain the assertion.

The condition (4) is an immediate corollary from (3). Thus, we prove (5).

Proposition 3.26 (Proof of (5)). Let f :X → Y be a proper birational

morphism from a normal Q-factorial surface X to a normal surface Y .

Assume that C := Ex(f) is a proper irreducible curve and that f(C) is one

point. Assume the following condition.

(3) If L is a Cartier divisor with L · C = 0, then nL = (φR)
∗LY for some

Cartier divisor LY on Y and for some positive integer n.

Then, Y is Q-factorial.

Proof. Let E be a prime divisor on Y , and let D be its proper transform.

Since C2 < 0, there exists a rational number q such that (D+ qC) ·C = 0.

By (3), we have n(D+ qC) = f∗(LY ) for some Cartier divisor LY . By oper-

ating f∗, we obtain the equality nE = LY as Weil divisors. Therefore, E is

Q-Cartier.
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Since we have the cone theorem and the contraction theorem, we obtain

the minimal model program for Q-factorial surfaces with boundaries.

Theorem 3.27 (Minimal model program). Let X be a projective nor-

mal Q-factorial surface, and let Δ be an R-boundary. Then, there exists a

sequence of projective birational morphisms

(X,Δ) =: (X0,Δ0)
φ0→ (X1,Δ1)

φ1→ · · · φs−1→ (Xs,Δs) =: (X†,Δ†),

where (φi−1)∗(Δi−1) =: Δi, with the following properties.

(1) Each Xi is a projective normal Q-factorial surface.

(2) Each Δi is an R-boundary.

(3) For each i, Ex(φi) =:Ci is an irreducible curve such that

(KXi +Δi) ·Ci < 0

and such that Ci generates an extremal ray.

(4) The pair (X†,Δ†) satisfies one of the following conditions:

(a) KX† +Δ† is nef;

(b) there is a projective surjective morphism μ :X† → Z to a smooth

projective curve Z such that μ∗OX† =OZ , −(K†
X +Δ†) is μ-ample,

and ρ(X†) = 2;

(c) −(KX† +Δ†) is ample, and ρ(X†) = 1.

3.5. Finite generation of canonical rings

It is important to consider the finite generation of canonical rings, which

is closely related to the minimal model program. In this section, we prove

the following theorem.

Theorem 3.28 (Finite generation theorem). Let X be a projective normal

Q-factorial surface over k, and let Δ be a Q-boundary. Then R(X,KX +

Δ) :=
⊕

m≥0H
0(X,�m(KX +Δ)�) is a finitely generated k-algebra.

Proof. Let us consider the Kodaira dimension κ := κ(X,KX +Δ). It is

obvious for the case κ = −∞ and the case κ = 0. In particular, we may

assume that KX +Δ is effective. Then, by Theorem 3.27, we may assume

that KX +Δ is nef. The case κ= 1 follows from Proposition 3.23. Therefore,

we may assume that κ= 2, that is, that KX +Δ is nef and big. This case

follows from Proposition 3.29.
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Proposition 3.29. Let X be a projective normal Q-factorial surface,

and let Δ be a Q-boundary. If KX + Δ is nef and big, then KX + Δ is

semiample.

Proof. By Keel’s result (Theorem 2.2), it is sufficient to prove that if

E :=
⋃

C·(KX+Δ)=0

C =C1 ∪ · · · ∪Cr,

then (KX +Δ)|E is semiample. Let C ⊂E. Then we have

(KX +C) ·C ≤ (KX +Δ) ·C = 0.

Step 1. In this step, we reduce the proof to the case where, if C ⊂ E,

then (KX +C) ·C = 0.

Assume that C ⊂ E and that (KX + C) · C < 0. Then C is a (KX +

C)-negative extremal curve. Thus, by Theorem 3.21, we can contract C.

Let f :X → Y be its contraction, and let ΔY := f∗(Δ). Then since KX +

Δ= f∗(KY +ΔY ) and Y is Q-factorial, if we can prove that KY +ΔY is

semiample, then KX +Δ is semiample. We can repeat this procedure and

obtain the desired reduction.

Step 2. In this step, we prove that E is a disjoint union of irreducible

curves and that if C ⊂E, then (KX +Δ)|C = (KX +C)|C .
Let C ⊂ E. By Step 1, we have (KX + C) · C = 0. Then, the inequality

over Step 1 is an equality. Thus, C ⊂ SuppΔ, and C is disjoint from any

other component of Δ.

By Step 2, it is sufficient to prove that, if (KX +C) ·C = 0, then (KX +

C)|C is semiample. This is satisfied by Theorem 3.19.

3.6. Abundance theorem (k �= Fp)

In this section, we prove the abundance theorem for Q-factorial surfaces

with Q-boundary over k �= Fp. The case where k = Fp will be treated in

Section 4. In the case where κ(X,KX + Δ) = 0, we give a proof of the

abundance theorem which does not depend on the characteristic of the base

field k (see Theorem 3.34).

First we present the following nonvanishing theorem.

Theorem 3.30 (Nonvanishing theorem). Let k be an algebraically closed

field of arbitrary characteristic. Let X be a projective normal Q-factorial

surface over k, and let Δ be a Q-boundary. If k is not the algebraic closure

of a finite field and if KX +Δ is pseudoeffective, then κ(X,KX +Δ)≥ 0.
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Proof. For a proof, see [F2, Theorem 5.1, Lemma 5.2]. Note that in this

article, instead of [F2, Lemma 5.2], we use Theorem 3.20 of this paper.

Before the proof of the abundance theorem, we present the definition of

indecomposable curves of canonical type in the sense of [Mu2, p. 330].

Definition 3.31. Let k be an algebraically closed field of arbitrary char-

acteristic. Let X be a smooth projective surface over k, and let Y =
∑

niEi

be an effective divisor with ni ∈ Z>0. We say that Y is an indecomposable

curve of canonical type if Y �= 0, KX · Ei = Y · Ei = 0 for all i, SuppY is

connected, and gcd(ni) = 1.

We present criteria for the movability of indecomposable curves of canon-

ical type.

Proposition 3.32. Let k be an algebraically closed field of arbitrary char-

acteristic. Let X be a smooth projective surface over k, and let Y be an inde-

composable curve of canonical type in X. Assume that one of the following

assertions holds:

(1) chark = p > 0;

(2) H1(X,OX) = 0.

If OY (Y ) is a torsion, then κ(X,Y ) = 1.

The proof of (2) is very similar to that of [To, Theorem 2.1].

Proof of Proposition 3.32. (1) For a proof, see [M, lemma on p. 682].

(2) Assume that H1(X,OX) = 0. Let m be the order of OY (Y ), and let

a be an integer with 1≤ a ≤m− 1. The case where OY (Y ) =OY is easy,

so we exclude this case and can assume that m ≥ 2. Let us consider the

following exact sequence:

H0
(
Y,OY (aY )

)
→H1

(
X, (a− 1)Y

)
→H1(X,aY )→H1

(
Y,OY (aY )

)
.

By Serre duality and [Mu2, Corollary 1 on p. 333], we obtain

h1
(
Y,OY (aY )

)
= h0

(
Y,OY (KY − aY )

)
= h0

(
Y,OY (−aY )

)
.

The choice of a shows that

h0
(
Y,OY (aY )

)
= h0

(
Y,OY (−aY )

)
= 0.
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Indeed, suppose the contrary; for example, suppose that h0(Y,aY |Y ) �= 0.

Then we have OY (aY ) =OY by [Mu2, lemma on p. 332]. This is a contra-

diction. Therefore, we get

0 = h1(X,OX) = h1(X,Y ) = · · ·= h1
(
X, (m− 1)Y

)
.

This leads to the following exact sequence:

0→H0
(
X, (m− 1)Y

)
→H0(X,mY )→H0(Y,OY )→ 0.

Thus, Y is an effective semiample divisor on X , and Y 2 = 0. This shows

that κ(X,Y ) = 1.

Now, we prove the abundance theorem.

Theorem 3.33 (Abundance theorem). Let k be an algebraically closed

field of positive characteristic. Let X be a projective normal Q-factorial

surface over k, and let Δ be a Q-boundary. If k is not the algebraic closure

of a finite field and KX +Δ is nef, then KX +Δ is semiample.

Proof. By Theorem 3.30, we may assume that κ(KX +Δ)≥ 0. Moreover,

we may assume that κ(KX +Δ) = 0 by Propositions 3.23 and 3.29. Thus,

it is sufficient to prove the following theorem.

Theorem 3.34. Let k be an algebraically closed field of arbitrary charac-

teristic. Let X be a projective normal Q-factorial surface over k, and let Δ

be a Q-boundary. If k is not the algebraic closure of a finite field, KX +Δ

is nef, and κ(X,KX +Δ) = 0, then KX +Δ∼Q 0.

This proof is very similar to that of [F2, Theorem 6.1] and uses many of

the techniques in [Fu, Section 5].

Proof of Theorem 3.34. Let f : V →X be the minimal resolution. We set

KV +ΔV = f∗(KX +Δ). We note that ΔV is effective. It is sufficient to see

that KV +ΔV ∼Q 0. Let

ϕ : V =: V0

ϕ0→ V1

ϕ1→ · · ·
ϕk−1→ Vk =: S

be a sequence of blowdowns such that

(1) ϕi is a blowdown of a (−1)-curve Ci on Vi,

(2) ΔVi+1 = ϕi∗ΔVi , and

(3) (KVi +ΔVi) ·Ci = 0,
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for every i. We can assume that there are no (−1)-curves C on S with

(KS +ΔS) ·C = 0. We note that KV +ΔV = ϕ∗(KS +ΔS). It is sufficient

to show that KS +ΔS ∼Q 0. Since κ(S,KS +ΔS) = 0, there is a member

Z of |m(KS +ΔS)| for some positive integer m. Then, for every positive

integer t, tZ is the unique member of |tm(KS + ΔS)|. We will derive a

contradiction assuming that Z �= 0.

Step 1. In this step, we prove that for each prime component Zi of Z,

we have

KS ·Zi =ΔS ·Zi = Z ·Zi = 0.

Since (KS +ΔS) ·Z =m(KS +ΔS)
2 = 0 and (KS +ΔS) is nef, (KS +ΔS) ·

Zi = 0 for all i. This means that

Z ·Zi = 0

and that Z2
i ≤ 0. Now, we prove that KS ·Zi ≥ 0 for every i. If KS ·Zi < 0,

then we obtain (KS + Zi) · Zi < 0 and Zi
∼= P1. If Z2

i ≥ 0, then we obtain

κ(S,Z) ≥ κ(S,Zi) > 0. This contradicts κ(S,KS + ΔS) = κ(S,Z) = 0. If

Z2
i < 0, then Zi is a (−1)-curve with (KS +ΔS) · Zi = 0. This contradicts

the definition of S. Regardless, we have KS ·Zi ≥ 0 for every i. This implies

that KS · Z =KS ·m(KS +ΔS) ≥ 0. The nefness of KS +ΔS shows that

(KS+ΔS) ·ΔS ≥ 0. By (KS+ΔS)
2 = 0, we see that (KS+ΔS) ·KS = (KS+

ΔS) ·ΔS = 0. This is equivalent to Z ·KS = Z ·ΔS = 0. Since KS · Zi ≥ 0,

we see that

KS ·Zi =ΔS ·Zi = 0.

Step 2. We can decompose Z into the connected components as follows:

Z =
r∑

i=1

μiYi,

where μiYi is a connected component of Z such that μi is the greatest

common divisor of the coefficients of prime components of Yi in Z for every

i. Then we see that, for every i, each Yi is an indecomposable curve of

canonical type by Step 1. We obtain ωYi OYi by [Mu2, Corollary 1 on p.

333].

Step 3. In this step, we assume that κ(S,KS)≥ 0 and prove the asser-

tion. Since

0≤ κ(S,KS)≤ κ(S,KS +ΔS) = 0,

we obtain κ(S,KS) = 0. Let us prove that S is a minimal surface.
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Suppose the contrary; that is, suppose that there exists a (−1)-curve E.

Then we have the contraction g : S → S′ of E, and we obtain a morphism

S
g→ S′ h→ Smin

to a minimal surface Smin. Since 0 = κ(S,KS) = κ(Smin,KSmin), we see that

KSmin ∼Q 0. Because

KS = g∗KS′ +E = g∗
(
h∗(KSmin) + (effective divisor)

)
+E,

we see that KS ∼Q (effective divisor) +E. This means that

nZ ∼ nm(KS +ΔS)∼ (effective divisor) + nmE + nmΔS

for some n ∈ Z>0. Since κ(S,Z) = 0,

nZ = (effective divisor) + nmE + nmΔS

as Weil divisors. In particular, we have E ⊂ SuppZ and E = Zi for some i.

This implies that Zi · (KS +ΔS) = 0 and that Zi is a (−1)-curve, a contra-

diction to the construction of S. Therefore, S is minimal.

Then we obtain the contradiction

κ(S,KS +ΔS) = κ(S,Z)≥ κ(S,Yi)≥ 1

from the known result κ(S,Yi)≥ 1 (see, e.g., [Bă1, Theorem 7.11]).

Step 4. By Step 3, we may assume that κ(S,KS) = −∞. In Steps 5

and 6, we assume that S is rational and prove the assertion. In Steps 7–

12, we assume that S is irrational and we prove the assertion. Note that

since κ(X,Z) = 0, in order to derive a contradiction, we want to prove that

κ(X,Yi)≥ 1 for some i.

We assume that S is rational.

Step 5. In this step, we prove that

ΔS =
∑

yiYi and yi > 1.

We fix i. By H1(S,OS(KS)) = 0 and the exact sequence

0→OS(KS)→OS(KS + Yi)→ ωYi → 0,
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we obtain the surjection

H0
(
S,OS(KS + Yi)

)
→H0(Yi, ωYi)H0(Yi,OYi).

Thus, there exists Wi ∈ |KS + Yi| such that Wi has no components of Yi.

For Z̃i = Z − μiYi, we obtain the equation

mμiWi +mμiΔS +mZ̃i = (μi +m)Z.

Note that this equality holds as Weil divisors because κ(S,Z) = 0. From this

equation, SuppΔS ⊂ SuppZ. Since Wi and Z̃i are free from the components

of Yi, we have ΔS =
∑

((μi +m)/m)Yi. We set yi := (μi +m)/m> 1.

We fix i, and we denote Y instead of Yi.

Step 6. In this step,weprove thedesired assertion.ByProposition 3.32(2),

it is sufficient to prove that OY (aY )OY for some positive integer a. We set

Y(k) := Y and construct Y(j) inductively. It is easy to see that ϕj : Vj → Vj+1

is the blowup at Pj+1 with multPj+1 ΔVj+1 ≥ 1 for every j since ΔVj is effec-

tive. If multPj+1 Y(j+1) = 0, then we set Y(j) = ϕ∗
jY(j+1). If multPj+1 Y(j+1) >

0, then we set Y(j) = ϕ∗
jY(j+1)−Cj , where Cj is the exceptional curve of ϕj .

Thus, we obtain Y(0) on V0 = V . Note that multP ΔVj+1 >multP Y(j+1) for

every P ∈ SuppY(j+1) by Step 5 and the above inductive construction. More-

over, since multP Y(j+1) ∈ Z, we see that Y(0) is effective and that SuppY(0) ⊂
SuppΔ>1

V where, for the prime decomposition ΔV =
∑

δlΔV,l, we define

Δ>1
V :=

∑
δl>1 δlΔV,l. Then, we have ϕj∗OY(j)

OY(j+1)
for every j. Indeed,

ϕj∗OVj (−Y(j))OVj+1(−Y(j+1)) and R1ϕj∗OVj (−Y(j)) = 0 for every j. See

the following commutative diagram:

0 −−−−→ OVj+1(−Y(j+1)) −−−−→ OVj+1 −−−−→ OY(j+1)
−−−−→ 0⏐⏐�

⏐⏐�
⏐⏐�

0 −−−−→ ϕj∗OVj (−Y(j)) −−−−→ ϕj∗OVj −−−−→ ϕj∗OY(j)
−−−−→ 0

Therefore, we obtain ϕ∗OY(0)
OY . Since SuppY(0) ⊂ SuppΔ>1

V , we see that

Y(0) is f -exceptional. SinceKV +ΔV = f∗(KX+Δ), we obtainOY(0)
(b(KV +

ΔV ))OY(0)
for some positive divisible integer b. Thus,

OY

(
b(KS +ΔS)

)
 ϕ∗OY(0)

(
b(KV +ΔV )

)
 ϕ∗OY(0)

OY .

This means that

OY (μbY )OY (bZ)OY

(
bm(KS +ΔS)

)
OY .

This completes the proof of the rational case.
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We assume that S is an irrational ruled surface. Let π : S → B be its

ruling, and let F be one of its smooth fibers.

Step 7. In this step, we prove that each connected component μY of Z

satisfies F · Y > 0.

We assume that F · Y = 0 and derive a contradiction. Since Y is con-

nected, Y is contained in some fiber F0. Then we have the equality

F0 = yY + Y ′

for some effective Q-divisor Y ′ with SuppY �⊂ SuppY ′ and for some positive

rational number y. By KS ·F0 =−2 and KS · Y = 0, it is sufficient to prove

that Y ′ = 0. Thus, assume that Y ′ �= 0. Take a prime component Y(1) of

Y which is not a component of Y ′. The equalities F0 · Y(1) = Y · Y(1) =

0 show that Y ′ · Y(1) = 0. Thus, if Y(2) is a prime component of Y such

that Y(1) ∩ Y(2) �= ∅, then Y(2) is not a component of Y ′. By repeating this

procedure, we see that Y(i) is not a prime component of Y ′ for each prime

component Y(i) of Y . Since Y ′ �= 0, there exists a prime component Y(j) of

Y with Y(j) ∩ Y ′ �= ∅. This leads to the contradiction

F0 · Y(j) = Y · Y(j) = 0 and Y ′ · Y(j) �= 0.

Step 8. In this step, we prove that both B and Y are elliptic curves. In

particular, Y 2 = 0.

By Step 7, Y has a prime component Y(0) with π(Y(0)) = B. Because

(KS + Y(0)) · Y(0) ≤ 0 by Step 1, Y(0) is a rational curve or an elliptic curve.

But, since B is irrational and π(Y(0)) = B, Y(0) must be an elliptic curve.

Then, B is also an elliptic curve. Moreover, if an indecomposable curve of

canonical type Y is reducible, then every prime component of Y must be P1.

Indeed, for every prime component Y(i), we have (KS + Y(i)) · Y(i) ≤ 0.

Assume that a prime component Y(0) satisfies (KS+Y(0)) ·Y(0) = 0. Then, by

KS ·Y(0) = 0, we have Y 2
(0) = 0. Since Y ·Y(0) = 0, we obtain Y(i) ·Y(0) = 0 for

every prime component Y(i). Because Y is connected, Y must be irreducible.

Step 9. In this step, we prove that the coefficient δ of Y in ΔS satisfies

0≤ δ ≤ 1.

Assume the contrary; that is, we assume that δ > 1 and derive a contra-

diction. Take the proper transform YV of Y in V . We see that the coefficient

of YV in ΔV is δ. Then YV is contracted by f because of the assumption of

the boundary. Since X is Q-factorial, we can apply Theorem 3.20, and this

is a contradiction.
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Step 10. In this step, we prove that OY (Y ) is a torsion.

By Step 1, we have Y · (ΔS − δY ) = 0. This means that SuppY ∩
Supp(ΔS − δY ) = ∅. Thus, in PicY , we obtain

μY = Z =m(KS +ΔS) =m(KS + δY ) =m(−Y + δY ).

Therefore, we have (m(1− δ)+μ)Y = 0 in PicY . By m(1− δ)+μ >m(1−
δ)≥ 0, OY (Y ) must be a torsion.

Step 11. Let r be the order of the torsion OY (Y ). In this step, we prove

that

H1
(
S,OS(KS + tY )

)
= 0

for 1≤ t≤ r by induction.

Let us consider the exact sequence

0→OS(KS)→OS(KS + Y )→ ωY → 0.

If the induced map

H0
(
S,OS(KS + Y )

)
→H0(Y,ωY ) = k

is surjective, we get a contradiction by the same argument as in Step 5.

Therefore, this map is 0. Then, the injective map

k =H0(Y,ωY )→H1
(
S,OS(KS)

)
= k

is bijective. This means that the map

H1
(
S,OS(KS + Y )

)
→H1(Y,ωY )

is injective. On the other hand, we have h2(S,OS(KS + Y )) = 0 by Serre

duality. Then we obtain the surjective map

H1(Y,ωY )→H2
(
S,OS(KS)

)
.

But this is bijective by Serre duality. Therefore, we obtain

H1
(
S,OS(KS + Y )

)
= 0,

and this proves the case where t = 1. When 1 < t ≤ r, we have the exact

sequence

H1
(
S,KS + (t− 1)Y

)
→H1(S,KS + tY )→H1(Y,KS + tY ).

By the induction hypothesis, we have H1(S,KS + (t− 1)Y ) = 0. Moreover,

we obtain h1(Y,OY (KS + tY )) = h0(Y,OY (−(t − 1)Y )) = 0 since r is the

order of OY (Y ). Thus, we see that H1(S,KS + tY ) = 0 for 1≤ t≤ r.
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Step 12. By Step 11, we obtain a surjection

H0
(
S,OS

(
KS + (r+ 1)Y

))
→H0

(
Y,OY

(
KS + (r+ 1)Y

))
.

By OY (KS + (r + 1)Y ) = OY (KY + rY ) = OY , there exists an effective

member W ∈ |KS + (r + 1)Y | free from Y . Set Z̃ := Z − μY . We obtain

the equation

μZ + (r+ 1)mZ = μm(KS +ΔS) + (r+ 1)m(μY + Z̃)

= μm
(
KS + (r+ 1)Y

)
+ μmΔS + (r+ 1)mZ̃

= μmW + μmΔS + (r+ 1)mZ̃

as Weil divisors. By considering the coefficients of Y in both sides, we obtain

(
μ+ (r+ 1)m

)
μ= μmδ.

But these two numbers are different by 0 ≤ δ ≤ 1. This is a contradic-

tion.

Remark 3.35. If chark > 0, then we do not need Steps 11 and 12 in the

proof of Theorem 3.34 by using Proposition 3.32(1).

3.7. Abundance theorem for R-divisors (k �= Fp)

In this section, we establish the abundance theorem in the case where Δ

is an R-boundary. We fix the following notation.

Notation 3.36. Let X be a projective normal Q-factorial surface. We

fix prime divisors Λ1, . . . ,Λs and a positive integer λ ∈ Z>0. Let

L :=
{
B ∈

∑
RΛi

∣∣∣ 0≤B ≤ λ
∑

Λi

}
.

Let

M(X,L) := max
(
{3} ∪

{
−(KX + λΛi) ·Λi

})
,

where i ranges over 1≤ i≤ s.

Lemma 3.37 and Proposition 3.39 play key roles in this section. The

arguments are extracted from [Bi, Section 3].

Lemma 3.37. If R is an extremal ray of NE (X) spanned by a curve, then

there exists a curve C such that R=R≥0[C] and −(KX +B) ·C ≤M(X,L)
for all B ∈ L.
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Proof. Let H be an ample line bundle on X . Take a curve C with

R=R≥0[C] and H ·C =min{H ·D},

where D ranges over curves generating R. We want to prove that C satisfies

the desired condition. Set B ∈ L. If −(KX +B) ·C ≤ 0, then there is nothing

to prove. Thus, we may assume that−(KX+B) ·C > 0. This means that R is

a (KX+B)-negative extremal ray. Then, by Theorem 3.13 and Remark 3.14,

there exists a curve C ′ such that R=R≥0[C
′] and

−(KX +B) ·C ′ ≤ L(X,B) =max
(
{3} ∪

{
−(KX +B) ·Λμ

})
,

where Λμ ranges over the prime components Λμ of B with Λ2
μ < 0. Here, by

the definition of M(X,L), we have L(X,B)≤M(X,L). Thus, we obtain

−(KX +B) ·C ′ ≤M(X,L).

By
−(KX +B) ·C

H ·C =
−(KX +B) ·C ′

H ·C ′ ,

we have

−(KX +B) ·C =
(
−(KX +B) ·C ′)H ·C

H ·C ′

≤−(KX +B) ·C ′

≤M(X,L).

This completes the proof.

Definition 3.38. For anR-divisorB ∈
∑s

i=1RΛi and for its prime decom-

position B =
∑

riΛi, we define

‖B‖ :=
(∑

|ri|2
)1/2

,

where |ri| is the absolute value of ri.

Proposition 3.39. Let Γ be a Q-divisor on X. Let M be a positive real

number.

(1) Let Δ ∈ L. Then there exists a positive real number ε depending on

X, L, Δ, Γ, and M , which satisfies the following property: let C be

a curve on X such that −(KX + Γ + B) · C ≤ M for all B ∈ L. If

(KX +Γ+Δ) ·C > 0, then (KX +Γ+Δ) ·C > ε.
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(2) Let Δ ∈ L. Then, there exists a positive real number δ, depending on X,

L, Δ, Γ, and M , which satisfies the following property: if a curve C ′ in
X and an R-divisor B0 ∈ L satisfy ‖B0−Δ‖< δ, (KX+Γ+B0) ·C ′ ≤ 0,

and −(KX +Γ+B) ·C ′ ≤M for all B ∈ L, then (KX +Γ+Δ) ·C ′ ≤ 0.

(3) Let {Ct}t∈T be a set of curves such that −(KX + Γ+B) · Ct ≤M for

all B ∈ L. Then, the set

NT (Γ) :=
{
B ∈ L

∣∣ (KX +Γ+B) ·Ct ≥ 0 for any t ∈ T
}

is a rational polytope.

Proof. Note that, for every B ∈ L, we obtain the irreducible decomposi-

tion

B =

s∑
i=1

liΛi

for some real numbers li with 0≤ li ≤ λ.

(1) We can write Δ :=
∑

liΛi as above. Then we have

(KX +Γ+Δ) ·C =
∑

li(KX +Γ+Λi) ·C.

Suppose that (KX +Γ+Δ) ·C < 1. Then we have

li(KX +Γ+Λi) ·C < 1−
∑
j �=i

lj(KX +Γ+Λj) ·C

≤ 1 +
∑
j �=i

ljM

≤ 1 + (s− 1)λM.

Thus, if li �= 0, then we obtain

−M ≤ (KX +Γ+Λi) ·C <
1

li

(
1 + (s− 1)λM

)
.

Since X is Q-factorial, the Q-divisor KX +Γ+Λi is Q-Cartier. This means

that there are only finitely many possibilities for the number (KX + Γ +

Λi) ·C.

Thus, if (KX +Γ+Δ) ·C < 1, then there are only finitely many possibil-

ities for the number (KX +Γ+Δ) ·C =
∑

li(KX +Γ+Λi) ·C. Therefore,

we can find the desired number ε.
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(2) Suppose that the statement is not true. Then, for an arbitrary positive

real number δ, there exist a curve C ′ and an R-divisor B0 ∈ L which satisfy

‖B0−Δ‖< δ, (KX +Γ+B0) ·C ′ ≤ 0, −(KX +Γ+B) ·C ′ ≤M for all B ∈ L
and (KX +Γ+Δ) ·C ′ > 0. Set δ := 1/m for any m ∈ Z>0. Then we obtain

an infinite sequence of curves Cm and Bm ∈ L which satisfy

(KX +Γ+Bm) ·Cm ≤ 0,

−(KX +Γ+B) ·Cm ≤M for all B ∈ L, and

(KX +Γ+Δ) ·Cm > 0,

and ‖Bm −Δ‖ converges to 0. Let Δ =
∑

liΛi, and let Bm =
∑

li,mΛi as

above. Then we see that li = lim li,m. Here, for each j, the set {(KX +Γ+

Λj) ·Cm}m has a lower bound −M .

We show that, if lj �= 0, then the set {(KX +Γ+Λj) ·Cm}m has an upper

bound. Since 0 < lj = lim lj,m, we may assume that lj,m > 0 for all m by

replacing the sequence with a suitable subsequence. By the inequality

0≥ (KX +Γ+Bm) ·Cm =
∑

li,m(KX +Γ+Λi) ·Cm,

we have

(KX +Γ+Λj) ·Cm ≤ 1

lj,m

(
−
∑
i �=j

li,m(KX +Γ+Λi) ·Cm

)

≤ 1

lj,m

(∑
i �=j

li,mM
)

≤ 1

lj,m
(s− 1)λM.

Since the set {1/lj,m}m has an upper bound, the set {(KX +Γ+Λj) ·Cm}m
also has an upper bound. This is what we want to show.

Then, for m
 0, we have

(KX +Γ+Bm) ·Cm

= (KX +Γ+Δ) ·Cm +
∑

(li,m − li)(KX +Γ+Λi) ·Cm

> ε+
∑

(li,m − li)(KX +Γ+Λi) ·Cm

= ε+
∑
li �=0

(li,m − li)(KX +Γ+Λi) ·Cm +
∑
li=0

li,m(KX +Γ+Λi) ·Cm
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≥ ε+
∑
li �=0

(li,m − li)(KX +Γ+Λi) ·Cm +
∑
li=0

li,m(−M)

> 0.

The first inequality follows from (1). The third inequality follows when

m
 0. Note that, if li �= 0, then the set {(KX +Γ+Λi) ·Cm}i is bounded
from both sides. This is a contradiction.

(3) We show the assertion by the induction on dimL. If dimL= 0, then

there is nothing to show. Thus, we assume that dimL> 0. We may assume

that for each t ∈ T there exists B ∈ L with (KX +Γ+B) ·Ct < 0.

We see that NT (Γ) is a compact set. Then, by (2) and by the compact-

ness of NT (Γ), there exist R-divisors Δ1, . . . ,Δn ∈NT (Γ) and positive real

numbers δ1 > 0, . . . , δn > 0 such that NT (Γ) is covered by Bi := {B ∈ L |
‖B−Δi‖< δi} and such that if B ∈ Bi with (KX +Γ+B) ·Ct < 0 for some

t ∈ T , then (KX +Γ+Δi) ·Ct = 0. Set

Ti :=
{
t ∈ T

∣∣ (KX +Γ+B) ·Ct < 0 for some B ∈ Bi

}
.

Then, for every t ∈ Ti, we have (KX +Γ+Δi) ·Ct = 0. In particular, Δi is

a Q-divisor.

Here, we prove that

NT (Γ) =
⋂

NTi(Γ).

The inclusion NT (Γ) ⊂
⋂
NTi(Γ) is obvious. Thus, we want to prove that

NT (Γ)⊃
⋂
NTi(Γ). Let B /∈NT (Γ). Since NT (Γ) is compact, we can find an

element B′ ∈NT (Γ) with

‖B′ −B‖=min
{
‖B∗ −B‖

∣∣B∗ ∈NT (Γ)
}
.

Here we have B′ ∈ Bi for some i. Since Bi ∩BB′ is an open subset of BB′

where BB′ is the line segment, we have an element B′′ such that B′′ ∈
Bi ∩BB′, B′′ �=B, and B′′ �=B′. This means that there is a real number β

with 0< β < 1 such that

βB + (1− β)B′ =B′′.

We obtain

β(KX +Γ+B) + (1− β)(KX +Γ+B′) =KX +Γ+B′′.
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Moreover, we see that B′′ /∈ NT (Γ). Here, since B′′ ∈ Bi \ NT (Γ), we have

(KX +Γ+B′′) ·Ct < 0 for some t ∈ Ti. Thus, we obtain the inequality

β(KX +Γ+B) ·Ct = (KX +Γ+B′′) ·Ct − (1− β)(KX +Γ+B′) ·Ct

<−(1− β)(KX +Γ+B′) ·Ct

≤ 0.

Therefore, we have (KX +Γ+B) ·Ct < 0. This means that B /∈NTi(Γ).

Therefore, it is enough to prove that each NTi(Γ) is a rational polytope.

By replacing T with Ti, we may assume that there exists a Q-divisor Δ0 ∈
NT (Γ) such that (KX +Γ+Δ0) ·Ct = 0 for every t ∈ T . Let L1, . . . ,Lu be

the proper faces of L with codimension 1. Note that, for every 1≤ u′ ≤ u,

there exists a positive integer i′ such that

(I) Lu′
=
{
B ∈

∑
i �=i′

RΛi

∣∣∣ 0≤B ≤ λ
∑
i �=i′

Λi

}

or such that

(II) Lu′
= λΛi′ +

{
B ∈

∑
i �=i′

RΛi

∣∣∣ 0≤B ≤ λ
∑
i �=i′

Λi

}
.

Let us prove that each N u′
T (Γ) :=NT (Γ) ∩ Lu′

is a rational polytope. If

Lu′
satisfies equation (I), then we see that

N u′
T (Γ) =

{
B ∈ Lu′ ∣∣ (KX +Γ+B) ·Ct ≥ 0 for any t ∈ T

}
.

Hence, N u′
T (Γ) is a rational polytope by the induction hypothesis. Thus,

assume that Lu′
satisfies equation (II). Set Lu′

0 := {B ∈
∑

i �=i′ RΛi | 0≤B ≤
λ
∑

i �=i′ Λi}. Equation (II) implies that

Lu′
= λΛi′ +Lu′

0 .

Then we see that

N u′
T (Γ) =

{
B ∈ Lu′ ∣∣ (KX +Γ+B) ·Ct ≥ 0 for any t ∈ T

}

= λΛi′ +
{
B0 ∈ Lu′

0

∣∣ (KX +Γ+ λΛi′ +B0) ·Ct ≥ 0 for any t ∈ T
}
.

For all B0 ∈ Lu′
0 , we have the inequality

−(KX +Γ+ λΛi′ +B0) ·Ct ≤M.
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Thus, the set

NT (Lu′
0 ,Γ+ λΛi′)

:=
{
B0 ∈ Lu′

0

∣∣ (KX +Γ+ λΛi′ +B0) ·Ct ≥ 0 for any t ∈ T
}

is a rational polytope by the induction hypothesis. Therefore, N u′
T (Γ) is also

a rational polytope, and this is what we want to show.

Here, take an arbitrary element B ∈ NT (Γ) with B �=Δ0. Then we can

find B′ ∈ Lu′
for some 1≤ u′ ≤ u such that B is on the line segment defined

by Δ0 and B′. Since (KX + Γ + Δ0) · Ct = 0 for all t ∈ T , we have B′ ∈
N u′

T (Γ). Thus, we see that NT (Γ) is the convex hull of Δ0 and all the

N u′
T (Γ). Hence, NT (Γ) is a rational polytope.

Corollary 3.40. Let {Rt}t∈T be a family of extremal rays of NE (X)

spanned by curves. Then the set

NT :=
{
B ∈ L

∣∣ (KX +B) ·Rt ≥ 0 for any t ∈ T
}

is a rational polytope.

Proof. By Lemma 3.37, for every t ∈ T there exists a curve Ct such that

Rt =R≥0[Ct] and −(KX +B) ·Ct ≤M(X,L) for all B ∈ L. Let Γ := 0, and

let M :=M(X,L). Then we can apply Proposition 3.39. Therefore, the set

NT =NT (0) is a rational polytope.

Now, we prove the abundance theorem with R-coefficients.

Theorem 3.41. Let X be a projective normal Q-factorial surface over k,

and let Δ be an R-boundary. If k is not the algebraic closure of a finite field

and KX +Δ is nef, then KX +Δ is semiample.

Proof. Let {Rt}t∈T be the set of all the extremal rays of NE (X) spanned

by curves. Then

NT :=
{
B ∈ L

∣∣ (KX +B) ·Rt ≥ 0 for every t ∈ T
}

is a rational polytope by Corollary 3.40. Moreover, by Theorem 3.13, we see

that

NT =
{
B ∈ L

∣∣ (KX +B) ·Rt ≥ 0 for every t ∈ T
}

= {B ∈ L |KX +B is nef}.
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Since Δ ∈NT , we can find Q-divisors Δ1, . . . ,Δl such that Δi ∈NT for all i

and such that
∑

riΔi =Δ, where positive real numbers ri satisfy
∑

ri = 1.

Thus, we have

KX +Δ=
∑

ri(KX +Δi),

and KX +Δi is nef. By Theorem 3.33, KX +Δi is semiample.

§4. Normal surfaces over Fp

4.1. Contraction problem

In this section, let k be an arbitrary algebraically closed field, and let

chark = p ≥ 0. As the introduction of this part, we consider the following

question.

Question 4.1 (Contraction problem). Let X be a smooth projective

surface over k, and let C be a curve in X . If C2 < 0, then is C contractible?

That is, does there exist a birational morphism f :X → Y to an algebraic

surface Y such that f(C ′) is one point if and only if C ′ =C for every curve

C ′?

Answer 4.2. If k �= Fp, then the answer to Question 4.1 is no in general.

We only recall the method of its construction. For more details, see [H,

Example 5.7.3].

Construction. If we obtain an elliptic curve C0 in P2 with rank at least 10,

then we can construct a counterexample as follows. There are 10 points in

C0 which are linearly independent. Blow up P2 at these 10 points. The

proper transform C of C0 is not contractible.

By Fact 2.3, if k �= Fp, then we can use this construction. On the other

hand, if k = Fp, then we have the opposite answer.

Answer 4.3 ([A, Theorem 2.9]). If k = Fp, then the answer to Ques-

tion 4.1 is yes.

To see this answer and its mechanism of this proof, we divide the verifi-

cation into small pieces and prove the more general following result.

Proposition 4.4. Let X be a projective normal Q-factorial surface over

k, and let C be a curve in X.

(1) If C2 < 0, then there exists a nef and big divisor G such that G ·C ′ = 0

if and only if C ′ =C for any curve C ′ in X.
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(2) If the restriction G|C of the divisor G in (1) is a torsion, and if chark =

p > 0, then G is semiample.

(3) If k = Fp, then G|C is torsion.

Proof. (1) Let H be an ample divisor on X . We define a Q-divisor G and

q ∈Q>0 by G=H + qC and G ·C = 0. It is easy to check that G satisfies

the above conditions.

(2) Since p > 0, we can use Keel’s result (Theorem 2.2). Therefore, the

semiampleness of G is equivalent to the semiampleness of G|C . But G|C is

a torsion by the assumption. Thus, G is semiample.

(3) This is an immediate consequence of Corollary 2.4.

For results related to this section, see [A] and [Bă2].

4.2. Q-factoriality

In this section, we prove the following two theorems.

Theorem 4.5. If X is a normal surface over Fp, then X is Q-factorial.

Theorem 4.6. Let f :X → Y be a proper birational morphism between

normal surfaces over Fp. Then f factors into contractions of one curve.

More precisely, there exist proper birational morphisms such that each gi :

Xi →Xi+1 is a proper birational morphism between normal surfaces such

that Ex(gi) is an irreducible curve.

The following lemma plays a key role in this section.

Lemma 4.7. Let f : X → Y be a proper birational morphism over Fp

from a normal Q-factorial surface X to a normal surface Y . Let Ex(f) =

C1 ∪ · · · ∪Cr.

(1) There exists a proper birational morphism g :X → Z to a normal sur-

face Z such that Ex(g) =C1.

(2) The morphism f factors through Z.

(3) The surface Z is Q-factorial.

Proof. (1) If X and Y are proper, then the assertion follows from Propo-

sition 4.4. Note that proper Q-factorial surfaces are projective (see [F2,

Lemma 2.2]). In the general case, take the Nagata compactification. Note

that normality and Q-factoriality may break up by compactification. How-

ever, by taking the normalization and the resolution of the locus of X \X ,

we may make these assumptions.

(2) This is obvious.
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(3) The assertion immediately follows from Propositions 3.25, 3.26,

and 4.4.

Corollary 4.8. Let f : X → Y be a proper birational morphism over

Fp from a normal Q-factorial surface X to a normal surface Y . Then Y is

Q-factorial.

Proof. By using Lemma 4.7 repeatedly, f is factored into contractions of

one curve, and Q-factoriality of X descends to Y .

By the same argument, Theorem 4.6 follows from Theorem 4.5. Thus, we

prove only Theorem 4.5.

Proof of Theorem 4.5. Let f :X ′ →X be the resolution of singularities.

Of course, X ′ is Q-factorial. Therefore, X is also Q-factorial by Corol-

lary 4.8.

Remark 4.9. Theorem 4.5 follows from [Bă1, Corollary 14.22] and [Ma,

(24.E)].

4.3. Theorems in Section 3

In this section, we establish the theorems, which we discussed in Section 3,

over Fp under much weaker assumptions.

Theorem 4.10 (Contraction theorem). Let X be a projective normal

surface over Fp, and let Δ be an effective R-divisor. Let R = R≥0[C] be a

(KX +Δ)-negative extremal ray. Then there exists a surjective morphism

φR :X → Y to a projective variety Y with the following properties:

(1) let C ′ be a curve on X, and then φR(C
′) is one point if and only if

[C ′] ∈R;

(2) (φR)∗(OX) =OY ;

(3) if L is an invertible sheaf with L ·C = 0, then nL= (φR)
∗LY for some

invertible sheaf LY on Y and for some positive integer n;

(4) ρ(Y ) = ρ(X)− 1.

Proof. If C2 ≥ 0, then we have

KX ·C ≤ (KX +Δ) ·C < 0.

Then we can apply Theorem 3.21. Thus, we may assume that C2 < 0. But

this curve is contractible, and the proofs of the remaining properties are the

same as those of Theorem 3.21.
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The following theorem is a known result (see [Bă1, Corollary 14.29]). We

give a minimal model-theoretic proof.

Theorem 4.11 (Finite generation theorem). Let X be a projective normal

surface over Fp, and let D be a Q-divisor. Then R(X,D) =
⊕

m≥0H
0(X,

�mD�) is a finitely generated Fp-algebra.

Proof. We may assume that κ(X,D)≥ 1. Then, in particular, D is effec-

tive. If there is a curve with D ·C < 0, then C2 < 0 and C is contractible. Let

f :X → Y be the contraction of C. Note that we obtain D = f∗f∗D + qC,

for a positive rational number q. Therefore, we may assume that D is nef.

If κ(X,D) = 1, then D is semiample by Proposition 3.23. If κ(X,D) = 2,

then D is semiample by the following proposition.

Proposition 4.12. Let X be a projective normal surface over Fp. If D

is a nef and big Q-divisor, then D is semiample.

Proof. If there is a curve C such that D · C = 0, then C2 < 0 and C

is contractible. Let f :X → Y be its contraction, and let f∗DY =D. It is

sufficient to prove that DY is semiample. Repeating the same procedure,

we see that D is a pullback of an ample divisor.

Theorem 4.13 (Nonvanishing theorem). Let X be a projective normal

surface over Fp, and let Δ be an effective Q-divisor. If KX +Δ is nef, then

κ(X,KX +Δ)≥ 0.

The proof of this theorem depends heavily on the argument in [M, The-

orem 2].

Proof of Theorem 4.13. We may assume that X is smooth by replacing

it with its minimal resolution.

Step 1. If κ(X,KX)≥ 0, then κ(X,KX +Δ)≥ κ(X,KX)≥ 0. Thus, we

may assume that κ(X,KX) =−∞.

Step 2. In this step, we show that we may assume that KX +Δ is not

numerically trivial and that h2(X,m(KX +Δ)) = 0 for m
 0.

If KX +Δ is numerically trivial, then KX +Δ is a torsion by Fact 2.3.

Thus, we obtain n(KX +Δ)∼ 0 for some integer n and κ(X,KX +Δ) = 0.

Therefore, we may assume that KX +Δ is not numerically trivial. Then we

obtain h2(X,m(KX +Δ)) = h0(X,KX −m(KX +Δ)) = 0 for m
 0. (We

have (KX +Δ) ·C > 0 for some curve. Then there exist an ample divisor A

and an effective divisor E such that A=C +E. By the nefness of KX +Δ,
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we obtain (KX + Δ) · A > 0. Then since (KX − m(KX + Δ)) · A < 0 for

sufficiently large integer m, we obtain h0(X,KX −m(KX +Δ)) = 0.)

Step 3. In this step we show that we may assume that (KX +Δ)2 = 0.

Suppose the contrary; that is, suppose that (KX +Δ)2 > 0. Then KX +Δ

is nef and big. Then we obtain h0(X,m(KX + Δ)) > 0 for some positive

integer m, and κ(X,KX +Δ)≥ 0.

We consider the two cases: X is rational or irrational.

Step 4. In this step, we prove the assertion when X is rational.

Now χ(OX) = 1 because X is rational. Then, the Riemann–Roch theorem

shows that

h0
(
X,m(KX +Δ)

)

= h1
(
X,m(KX +Δ)

)
+ 1+

1

2
m(KX +Δ) ·

(
m(KX +Δ)−KX

)
,

where m
 0. The right-hand side is positive because

m(KX +Δ) ·
(
m(KX +Δ)−KX

)

=m(KX +Δ) ·
(
(m− 1)(KX +Δ)+Δ

)
≥ 0

by the nefness of KX +Δ. This is what we want to show.

Thus, we may assume that X is an irrational ruled surface. We divide

the proof into three cases: (KX + Δ) · KX < 0, (KX + Δ) · KX > 0, and

(KX +Δ) ·KX = 0.

Step 5. We assume that X is irrational and that (KX +Δ) ·KX < 0.

By Steps 2 and 3 and the Riemann–Roch theorem, h0(X,m(KX+Δ))> 0

for some large integer m. This is what we want to show.

Step 6. We assume that X is irrational and that (KX +Δ) ·KX > 0.

Since (KX +Δ)2 = 0 and (KX +Δ) ·KX > 0, we obtain (KX +Δ) ·Δ< 0.

This contradicts the nefness of KX +Δ.

Step 7. We assume that X is irrational and that (KX +Δ) ·KX = 0.

We assume that κ(X,KX + Δ) = −∞ and derive a contradiction. By

(KX +Δ) ·KX = 0 and (KX +Δ)2 = 0, we obtain (KX +Δ) ·Δ= 0. Let

C be an arbitrary prime component of Δ. Since Δ �= 0, we can take such

a curve. (Indeed, if Δ = 0, then KX is nef. This contradicts that X is
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a ruled surface.) By (KX + Δ) · Δ = 0 and the nefness of KX + Δ, we

have (KX +Δ) ·C = 0. By Fact 2.3, we obtain n1(KX +Δ)|C ∼ 0 for some

n1 ∈ Z>0. Then we get the exact sequence

0→OX

(
n1n2(KX +Δ)−C

)
→OX

(
n1n2(KX +Δ)

)
→OC → 0

for every n2 ∈ Z>0. Here we want to prove that, for every n2 
 0,

h2
(
X,n1n2(KX +Δ)−C

)
= 0.

By Serre duality, we obtain h2(X,n1n2(KX +Δ)− C) = h0(X,KX + C −
n1n2(KX +Δ)). This is 0, by the same argument as in Step 2.

Fix n2 
 0, and let n := n1n2. By h2(X,n(KX +Δ)−C) = 0, we have a

surjection H1(X,n(KX +Δ))→H1(C,OC). This means that

h1
(
X,n(KX +Δ)

)
≥ h1(C,OC).

On the other hand, by h0(X,n(KX +Δ)) = h2(X,n(KX +Δ)) = 0 and the

Riemann–Roch theorem,

−h1
(
X,n(KX +Δ)

)
= χ(OX) +

1

2
n(KX +Δ) ·

{
n(KX +Δ)−KX

}

= χ(OX) = 1− h1(B,OB),

where π :X →B is the ruling. Hence, we have

h1(B,OB)− 1 = h1
(
X,n(KX +Δ)

)
≥ h1(C,OC).

This shows that C is in some fiber of π. In particular, for a smooth fiber

F , we have C ·F = 0. Recall that C is an arbitrary prime component of Δ;

then we obtain Δ · F = 0. Thus, we have

0≤ (KX +Δ) · F =KX · F =−2.

This is a contradiction.

Theorem 4.14 (Abundance theorem). Let X be a projective normal sur-

face over Fp, and let Δ be an effective R-divisor. If KX +Δ is nef, then

KX +Δ is semiample.
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Proof. By the same proof as Theorem 3.41, we may assume that Δ is a

Q-divisor. By Theorem 4.13, we have κ(X,KX +Δ) ≥ 0. By Propositions

3.23 and 4.12, we may assume that κ(X,KX +Δ) = 0. Then we can apply

the argument of Steps 1 and 2 in Theorem 3.34. By Proposition 3.32(1),

we have κ(S,Y ) = 1 for indecomposable curves of canonical type Y in S

over Fp. This contradicts Z �= 0 and κ(S,Z) = 0.

As an immediate corollary, we obtain the following base-point-free theo-

rem.

Theorem 4.15 (Base-point-free theorem). Let X be a projective normal

surface over Fp, and let D be a nef divisor. If κ(X,qD−KX)≥ 0 for some

positive rational number q, then D is semiample.

Proof. Take qD −KX ∼Q Δ. We obtain qD ∼Q KX +Δ and can apply

the abundance theorem.

4.4. Examples

In this section, let k be an algebraically closed field of arbitrary charac-

teristic. We want to see the difference between k = Fp and k �= Fp by looking

at some examples.

Example 4.16 (See Theorems 3.21 and 4.10). If k �= Fp, then there exist

a smooth projective surface X over k and an elliptic curve C in X such that,

for an arbitrary positive real number ε, (KX +(1+ ε)C) ·C < 0, C2 < 0, and

C is not contractible.

Construction. Consider Answer 4.2 and its construction. There exist a

smooth projective surface X and an elliptic curve C in X such that C2 =−1

and C is not contractible. Moreover, we have
(
KX + (1+ ε)C

)
·C = (KX +C) ·C + εC ·C

= εC ·C < 0.

This is what we want to show.

Example 4.17 (See Theorems 3.30 and 4.13). If k �= Fp, then there exist

a smooth projective surface X over k and curves C1 and C2 in X such that

KX + (1+ ε)C1 + (1− ε)C2 ≡ 0 and

κ
(
X,KX + (1+ ε)C1 + (1− ε)C2

)
=−∞

for an arbitrary positive rational number ε.
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Construction. Let P := P1, and let E be an arbitrary elliptic curve. Set

X0 := P ×E. We construct X by applying the elementary transform to the

P1-bundle X0 at two appropriate points. Let e1 and e2 be points in E which

are linearly independent. Fix two different points p1 and p2 in P , and set

S1 := {p1} ×E and S2 := {p2} ×E. Then we see that

KX0 ∼Q −(1 + ε)S1 − (1− ε)S2

for an arbitrary rational number ε. Let x1 := (p1, e1) and let x2 := (p2, e2).

We take the elementary transform of X0 at x1 and x2 and obtain X . (First,

blow up at x1. Then the proper transform of the fiber through x1 is a (−1)-

curve. Second, contract this (−1)-curve and get another P1-bundle. Repeat

the same thing at x2.) Let C1 and C2 be the proper transforms of S1 and

S2, respectively, and let F1 and F2 be the fibers corresponding to x1 and

x2, respectively. Then we see that

KX ∼Q −(1 + ε)C1 − (1− ε)C2 − εF1 + εF2,

which implies that

KX + (1+ ε)C1 + (1− ε)C2 ∼Q ε(−F1 + F2).

This divisor is numerically trivial. Here we want to show that κ(X,−F1 +

F2) = −∞, that is, that −F1 + F2 is not a torsion. Consider the ruling

π :X →E and one of its sections σ :E →X . Then we have F1 = π∗e1 and

F2 = π∗e2. Linear independence of e1 and e2 shows that

OX

(
n(−F1 + F2)

)
� OX .

Indeed, if OX(n(−F1+F2))OX , then we have π∗OE(n(−e1+ e2))OX .

Then, we obtain

OE

(
n(−e1 + e2)

)
 σ∗π∗OE

(
n(−e1 + e2)

)
 σ∗OX OE .

This is a contradiction.

Example 4.18 (See Theorems 3.33 and 4.14). If k �= Fp, then there exist

a projective smooth surface X over k and an elliptic curve C in X such

that, for an arbitrary positive rational number ε, KX + (1 + ε)C is nef,

κ(X,KX + (1+ ε)C)≥ 0, and KX + (1+ ε)C is not semiample.
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Construction. Set X0 := P2. Let C0 be an arbitrary elliptic curve in X0,

and let P1, . . . , P9 be points in C0 which are linearly independent. Blow up

at these nine points; then we obtain the surface X . Let C be the proper

transform of C0. By KX0 =−C0, we have KX =−C. Then

KX + (1+ ε)C = εC

is nef by C2 = 0. It is obvious that κ(X,KX +(1+ ε)C)≥ 0. We prove that

KX + (1 + ε)C is not semiample. It is sufficient to prove that κ(X,C) = 0.

Suppose the contrary; that is, suppose that κ(X,C) ≥ 1. Then we obtain

nC ∼D for some nonzero effective divisor D with C �⊂ SuppD. Since C ·
D = 0, Supp(f∗(D)|C0) must be contained in P1, . . . , P9. This means that

n1P1 + · · · + n9P9 := f∗(D)|C0 ∼ 3nL|C0 . Here L is a line in X0. But this

means that n1P1 + · · · + n9P9 = 0 in the group structure of C0. This is a

contradiction.

§5. Log canonical surfaces

5.1. Log canonical singularities

In this section, we describe the log canonical singularities in surfaces by

using the contraction theorem (Theorem 3.21).

Definition 5.1. We say that a pair (X,Δ) is a log canonical surface if

a normal surface X and an R-divisor Δ satisfy the following properties:

(1) KX +Δ is R-Cartier;

(2) for an arbitrary proper birational morphism f : Y →X and the divisor

ΔY defined by

KY +ΔY = f∗(KX +Δ),

the inequality ΔY ≤ 1 holds;

(3) Δ is effective.

First, we pay attention to only one singular point.

Definition 5.2. We say that (X,Δ) is a local situation of a log canonical

surface if it satisfies the following properties.

(1) The pair (X,Δ) is a log canonical surface.

(2) There exists only one singular point x ∈X .

(3) All prime components of Δ contain x.
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Theorem 5.3. Let (X,Δ) be a local situation of a log canonical surface,

and let f : Y → X be the minimal resolution of X. Then, there exists a

sequence of proper birational morphisms

f : Y =: Y0

f0→ Y1

f1→ · · · fm−1→ Ym =: Z
g→X

with the following properties.

(1) Each Yi is a normal Q-factorial surface.

(2) Each fi is a proper birational morphism, and Ei := Ex(fi) is an irre-

ducible curve.

(3) Each Ei satisfies (KYi +Ei) ·Ei < 0.

(4) Either (a) or (b) holds:

(a) g is an isomorphism;

(b) Δ= 0, and E := Ex(g) is an irreducible curve such that (KY +E) ·
E = 0.

Proof. We assume that we obtain

f : Y =: Y0

f0→ Y1

f1→ · · · fj−1→ Yj
G→X

such that each Yi (as well as each fi) satisfies (1), (2), and (3).

We prove that, if we can find a G-exceptional proper curve Ej such that

(KYj +Ej) ·Ej < 0, then we obtain a contraction of Ej

fj : Yj → Yj+1

to a Q-factorial surface Yj+1. If X and Yj are proper, then we obtain

the required morphism fj by Theorem 3.19 and Propositions 3.24, 3.25,

and 3.26. Note that a proper Q-factorial surface is projective (see [F2,

Lemma 2.2]). For the general case, take compactifications as follows. Let

X be a proper normal surface, and let Δ be an R-divisor on X such that

X ↪→ X is an open immersion, (X,Δ) is a local situation of log canon-

ical surface, and Δ|X = Δ. We define Yj by patching Yj and X along

Yj \ Ex(G)  X \ {x}. Then, Yj is Q-factorial. Thus, we can reduce the

problem to the case where X and Yj are proper.

If G is an isomorphism, then we obtain (a). Thus, we may assume that

G is not an isomorphism. Then, we can take a G-exceptional curve Ej . We

obtain

(KYj +Ej) ·Ej ≤ (KYj +Δj) ·Ej =G∗(KX +Δ) ·Ej = 0,
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where Δj is defined by KYj + Δj = G∗(KX + Δ). We may assume that

(KYj +Ej) ·Ej = 0. In this case, the coefficient of Ej in Δj is 1.

First, assume that Ex(G) is reducible. Then, there exists a G-exceptional

curve E′
j such that Ej ∩E′

j �= ∅. Then, we have

(KYj +E′
j) ·E′

j < (KYj +Δj) ·E′
j =G∗(KX +Δj) ·E′

j = 0.

This is what we want to show.

Second, assume that E := Ex(G) is irreducible. Since (KYj + E) · E ≤
0, we consider the two cases (KYj + E) · E < 0 and (KYj + E) · E = 0. If

(KYj +E) ·E < 0, then this means (a). Assume that (KYj +E) ·E = 0. We

show that Δ= 0. If Δ �= 0, then we have

(KYj +E) ·E < (KYj +Δj) ·E = 0.

This means (b).

This theorem teaches us that non-Q-factorial log canonical singularities

are made by the case (b). Applying the same argument as above, we obtain

the global version as follows.

Theorem 5.4. Let (X,Δ) be a log canonical surface, and let f : Y →X

be the minimal resolution of X. Then, there exists a sequence of proper

birational morphisms

f : Y =: Y0

f0→ Y1

f1→ · · · fm−1→ Ym =: Z
g→X

with the following properties.

(1) Each Yi is a normal Q-factorial surface.

(2) Each fi is a proper birational morphism, and Ei := Ex(fi) is an irre-

ducible curve.

(3) Each Ei satisfies (KYi +Ei) ·Ei < 0.

(4) Either (a) or (b) holds:

(a) g is an isomorphism;

(b) g(Ex(g))∩SuppΔ= ∅, and, for every pointQ ∈ g(Ex(g)), g−1(Q) =:

E is a proper irreducible curve such that (KY +E) ·E = 0.

In particular, KX and all prime components of Δ are Q-Cartier.

Proof. This follows from the same argument as for Theorem 5.3.

Remark 5.5. By Theorem B.4, we see that Z has, at worst, rational

singularities. But we do not use this fact in this paper.
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5.2. Minimal model theory for log canonical surfaces

In this section, we consider the minimal model theory for log canonical

surfaces. We have already proved the cone theorem in Section 3.2. Thus, let

us consider the contraction theorem.

Theorem 5.6 (Contraction theorem). Let (X,Δ) be a projective log

canonical surface, and let R = R≥0[C] be a (KX + Δ)-negative extremal

ray. Then there exists a morphism φR : X → Y to a projective variety Y

with the following properties:

(1) let C ′ be a curve on X, and then φR(C
′) is one point if and only if

[C ′] ∈R;

(2) φ∗(OX) =OY ;

(3) if L is a line bundle with L ·C = 0, then nL= (φR)
∗LY for some line

bundle LY on Y and for some positive integer n;

(4) ρ(Y ) = ρ(X)− 1;

(5) (Y, (φR)∗(Δ)) is a log canonical surface if dimY = 2.

Proof of the case where C2 > 0. First, we prove that there exists a curve

D in X such that D is Cartier, D is ample, and R≥0[C] = R≥0[D]. Since

X is a projective normal surface, we can apply Bertini’s theorem. Then

the complete linear system of a very ample divisor has a smooth member D

such that D∩Sing(X) = ∅. Note that D is a Cartier divisor. Let f :X ′ →X

be the minimal resolution, and let D′ be the proper transform of D. Since

f∗(C) is a nef and big divisor, we obtain

nf∗(C)∼D′ +E

for some effective divisor E and some positive integer n. By sending this

equation by f∗, we obtain

nC ∼D+ f∗(E).

Since R≥0[C] is extremal, we have R≥0[C] = R≥0[D]. Thus, we obtain

ρ(X) = 1, because we can apply the same argument as the one in the proof

of Theorem 3.21. Set Y := Speck. Then φR :X → Y satisfies (1), (2), and

(4). We want to prove (3). This follows from Lemma 5.7 because KX +Δ

is antiample.

Lemma 5.7. Let (X,Δ) be a projective log canonical surface. Let L be a

nef line bundle such that L− (KX +Δ) is ample. Then, L is semiample.
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Proof. By Bertini’s theorem, there exists a smooth curve C such that

nL− n(KX +Δ)∼C,

C ∩ Sing(X) = ∅, and C is not a component of Δ. Let f :X ′ →X be the

minimal resolution, and let C ′ be the proper transform of C. Then we obtain

nf∗(L)− nf∗(KX +Δ)∼ f∗(C).

Since f∗(C) =C ′, we have

f∗(L)∼Q KX′ +Δ′ +
1

n
C ′,

where Δ′ is defined by KX′ +Δ′ = f∗(KX +Δ). Since Δ′ + (1/n)C ′ is a

boundary, f∗(L) is semiample by Theorems 3.41 and 4.14. Therefore, so

is L.

In the proof of the case where C2 ≤ 0 in Theorem 3.21, we use only the

assumption of Q-factoriality in the form that KX and C are Q-Cartier and

KX +Δ is R-Cartier. Since KX is Q-Cartier and KX +Δ is R-Cartier by

Theorem 5.4, it is sufficient to prove that C is Q-Cartier.

Proof of the case where C2 = 0. It is sufficient to prove that R≥0[C] =

R≥0[D] for some Q-Cartier curve D. Let f :X ′ →X be the minimal reso-

lution. Since f∗(C)2 = 0 and f∗(C) ·KX′ < 0, we obtain κ(X ′, f∗(C)) = 1.

Therefore, f∗(C) is semiample by Proposition 3.23. We consider the fibra-

tion π :X ′ →B obtained by the complete linear system |nf∗(C)| for some

n
 0. For an arbitrary f -exceptional curve E, we have E · f∗(C) = 0. This

means that an arbitrary exceptional curve is in some fiber of π. Thus, there

exists an integral fiber D′ of π with D′∩Ex(f) = ∅ by Proposition 5.8. This

means that f(D′) =D is Cartier and that nC ≡D. This is what we want

to show.

Proposition 5.8. Let π :X → S be a dominant morphism from a normal

surface X to a curve S with π∗OX =OS . Then there exists a nonempty open

subset S′ in S such that all scheme-theoretic fibers of π|π−1(S′) : π
−1(S′)→ S′

are integral.

Proof. See, for example, [Bă1, Corollary 7.3].
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For the proof of the case where C2 < 0, we consider the relation between

the non-Q-factorial log canonical singularities and extremal curves C with

C2 < 0. Since we want to prove that C is Q-Cartier, it is necessary to

consider the case where C passes through the singular points of (b) in

Theorem 5.3. The following lemma demonstrates that these singularities

are actually Q-factorial.

Lemma 5.9. Let (X,Δ= 0) be a local situation of a log canonical surface,

and let x be the singular point of X. Assume that this singularity is (b) in

Theorem 5.3. If a proper curve C in X satisfies C ·KX < 0, C2 < 0, and

x ∈C, then X is Q-factorial.

Proof. We use the notation in (b) of Theorem 5.4. It is sufficient to prove

that E  P1 by Propositions 3.25 and 3.26. Let CZ be the proper transform

of C. Then, we obtain

C2
Z ≤ CZ · g∗(C) =C2 < 0,

CZ ·KZ ≤ CZ · (KZ +E) =CZ · g∗(KX) =C ·KX < 0.

Thus, we obtain CZ  P1, and CZ is a curve generating a KZ -negative

extremal ray. Let φ : Z → Z ′ be the contraction of CZ . Since φ :E → φ(E) =:

E′ is a birational morphism, it is sufficient to prove that E′  P1. We would

like to prove that

(KZ′ +E′) ·E′ < 0.

Let us consider the discrepancy d defined by

KZ +E = φ∗(KZ′ +E′) + dCZ .

Here, by taking the intersection with E, we obtain

0 = (KZ′ +E′) ·E′ + dCZ ·E

by (KZ + E) · E = 0. By x ∈ C, we see that CZ · E is a positive number.

Thus, it is sufficient to prove that d is a positive number. The inequality

0>KX ·C = g∗(KX) ·CZ = (KZ +E) ·CZ = dC2
Z

shows that d is positive.

Proposition 5.10. Let (X,Δ) be a log canonical surface. If a proper

curve C in X satisfies C · (KX +Δ)< 0 and C2 < 0, then C is Q-Cartier.



MINIMAL MODELS AND ABUNDANCE 55

Proof. By Theorem 5.3 and Lemma 5.9, C passes through onlyQ-factorial

points.

Thus, we complete the proof of the Theorem 5.6. Next, we consider the

abundance theorem. But this immediately follows from the Q-factorial case.

Theorem 5.11. Let (X,Δ) be a proper log canonical surface. If KX +Δ

is nef, then KX +Δ is semiample.

Proof. Take the minimal resolution and apply Theorems 3.41 and 4.14.

§6. Relativization

6.1. Relative cone theorem

In this section, we consider the relativization of the cone theorem. But

this is not difficult by the following proposition.

Proposition 6.1. Let π : X → S be a proper morphism from a nor-

mal surface X to a variety S. If dimπ(X)≥ 1, where π(X) is the scheme-

theoretic image of π, then we have

NE (X/S) =NE (X/S) =
∑
finite

R≥0[Ci].

Moreover, the Stein factorization π :X
θ→ T → S satisfies one of the follow-

ing assertions.

(1-irr) If dimπ(X) = 1 and all fibers of θ are irreducible, then NE (X/S) =

R≥0[C] and C2 = 0. In particular, ρ(X/S) = 1.

(1-red) If dimπ(X) = 1 and θ has at least one reducible fiber, then each Ci

has negative self-intersection number.

(2) If dimπ(X) = 2, then each Ci has negative self-intersection number.

Proof. Note that dimπ(X) = dimT and that NE (X/S) =NE (X/T ).

(1-irr) All fibers are numerically equivalent. This is what we want to show.

(1-red) By Proposition 5.8, general fibers of θ are irreducible. Therefore,

there are only finitely many reducible fibers. Since all fibers are numerically

equivalent, NE (X/S) is generated by the curves in the reducible fibers.

Because all fibers of θ are connected, curves in reducible fibers have a neg-

ative self-intersection number.

(2) By θ∗OX = OT , we see that θ is birational. Since the exceptional

locus is a closed set, only finitely many curves are contracted by θ. Each

contracted curve has negative self-intersection number.
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Using this proposition, we obtain the following relative cone theorem.

Theorem 6.2. Let π :X → S be a projective morphism from a normal

surface X to a variety S. Let Δ be an effective R-divisor such that KX +Δ

is R-Cartier. Let Δ=
∑

biBi be the prime decomposition. Let H be an R-

Cartier π-ample R-divisor on X. Then the following assertions hold:

(1) NE (X/S) =NE (X/S)KX+Δ≥0 +
∑

R≥0[Ci];

(2) NE (X/S) =NE (X/S)KX+Δ+H≥0 +
∑

finiteR≥0[Ci];

(3) each Ci in (1) and (2) is rational or Ci =Bj for some Bj with B2
j < 0;

(4) there exists a positive integer L(X,S,Δ) such that each Ci in (1) and

(2) satisfies 0<−Ci · (KX +Δ)≤ L(X,S,Δ).

Proof. If dimπ(X) = 0, then the assertion follows from Theorem 3.13.

If dimπ(X)≥ 1, then assertions (1), (2), and (4) immediately follow from

Proposition 6.1. We prove (3). Let C be a (KX +Δ)-negative proper curve

which generates an extremal ray, and π(C) is one point. We may assume

that C �=Bj for all Bj with B2
j < 0. Take the Stein factorization of π:

π :X
θ→ T → S.

Let us take the Nagata compactification of T and its normalization T .

Moreover, take the normalization X of a compactification of X → T . We

obtain the following commutative diagram:

X
open−−−−−−→

immersion
X

θ

⏐⏐�
⏐⏐�θ

T
open−−−−−−→

immersion
T

In X , we can apply (BB2) in the sense of Definition 3.6 to C. Then we

obtain

pnC ≡Mum αC ′ +Z

for a positive integer n, a nonnegative integer α, a curve C ′, and a sum of

rational curves Z. We consider the two cases dimT = 1 and dimT = 2.

Assume that dimT = 1. Take an ample divisor A on T . Since C ·θ∗A= 0,

the prime components of Z must be θ-vertical. In advance, let c0 ∈ C be

a point, in the notation of Definition 3.6, such that c0 is not contained in

any curve C ′′ �=C which is contained in the fiber containing C. Then, there
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exists a prime component Zj of Z with c0 ∈ Zj . Here Zj must be C. In

particular, C is rational, and this is what we want to show.

Assume that dimT = 2. Then, T is a proper normal surface. Since

θ∗(αC ′ + Z) ≡Mum 0, each prime component of Z is θ-exceptional. The

remaining proof is the same as the case of dimT = 1.

We give an upper bound L(X,S,Δ) in the case where Δ is an R-boundary.

Proposition 6.3. Let π :X → S be a projective morphism from a normal

surface X to a variety S. Let Δ be an R-boundary such that KX +Δ is

R-Cartier. If R is a (KX + Δ)-negative extremal ray of NE (X/S), then

R=R≥0[C], where C is a rational curve such that −(KX +Δ) ·C ≤ 3.

Proof. If dimπ(X) = 0, then the assertion follows from Proposition 3.15.

Thus, we assume that dimπ(X) ≥ 1. We can write R = R≥0[C] for some

curve C. We show that C satisfies the desired properties. By dimπ(X)≥ 1

and Proposition 6.1, we see that C2 ≤ 0. Then, by Lemma 3.9, we have

−(KX +Δ) ·C ≤ 2.

Since

(KX +C) ·C ≤ (KX +Δ) ·C < 0,

by Lemma 3.16, we see that C is rational.

6.2. Relative contraction theorem

In this section, we consider the relativization of the contraction theorem.

Theorem 6.4. Let π :X → S be a projective morphism from a normal

surface X to a variety S. Let Δ be an R-divisor. Moreover, one of the

following conditions holds:

(QF) X is Q-factorial, and Δ is an R-boundary;

(FP) k = Fp, and Δ is an effective R-divisor;

(LC) (X,Δ) is a log canonical surface.

Let R = R≥0[C] be a (KX +Δ)-negative extremal ray in NE (X/S). Then

there exists a surjective S-morphism φR :X → Y to a variety Y projective

over S with the following properties:

(1) let C ′ be a curve on X, and then φR(C
′) is one point if and only if

[C ′] ∈R;

(2) (φR)∗(OX) =OY ;
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(3) if L is an invertible sheaf with L ·C = 0, then nL= (φR)
∗LY for some

invertible sheaf LY on Y and for some positive integer n;

(4) ρ(Y/S) = ρ(X/S)− 1;

(5) if dimY = 2, then Y is Q-factorial (resp., (Y, (φR)∗(Δ)) is log canoni-

cal) in the case of (QF) (resp., (LC)).

These three proofs of (QF), (FP), and (LC) are the same essentially.

Thus, we prove only the case when (QF).

Proof of Theorem 6.4. Let θ :X → T be the Stein factorization of π. We

see that dimT = 0, dimT = 1, or dimT = 2. But the case dimT = 0 follows

from Theorem 3.21. Thus, we may assume that dimT = 1 or dimT = 2.

Now let us take the compactification. First, take the Nagata compactifi-

cation of T and its normalization T . Second, take the compactification X of

X → T . Moreover, if necessary, replace it by its normalization and a reso-

lution of the singular locus in X \X . We obtain the following commutative

diagram:

X
open−−−−−−→

immersion
X

θ

⏐⏐�
⏐⏐�θ

T
open−−−−−−→

immersion
T

Then, X is projective normal Q-factorial and T is proper normal. Let Δ

be the R-boundary such that its restriction to X is Δ and Δ has no prime

components contained in X \X .

Assume that C2 < 0. This follows from Theorem 3.21 because C is a

(KX +Δ)-negative extremal curve in the cone of the absolute case NE (X).

Assume that C2 ≥ 0. Then, by Proposition 6.1, we see that ρ(X/T ) = 1

and that dimT = 1. Set Y := T . The assertions (1), (2), and (4) are trivial.

We want to prove (3). Note that all fibers of θ are irreducible but that the

compactification θ may have reducible fiber G=
∑

Gi. Then, by

0> (KX +Δ) ·G= (KX +Δ) ·
∑

Gi,

we obtain 0 > (KX + Δ) · Gi for some irreducible component Gi of the

fiber G. Thus, by Theorem 3.21, we may assume that all fibers of θ are

irreducible. Therefore, each fiber F of θ is (KX +Δ)-negative. It is sufficient

to prove that F generates an extremal ray of NE (X). By Theorem 3.13, we

have

F ≡D+
∑

riCi,
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where D ∈ NE (X)KX+Δ≥0, ri ∈ R≥0, and each Ci generates a (KX +Δ)-

negative extremal ray. Since F is nef, we have F ·D = F · Ci = 0 for all i.

Here recall that all fibers of θ are irreducible. This means that Ci is some

fiber with the reduced structure. Thus, we obtain F ≡ qCi for some positive

number q, and F generates an extremal ray.

Then, we obtain the minimal model program in full generality.

Theorem 6.5 (Minimal model program). Let π :X → S be a projective

morphism from a normal surface X to a variety S. Let Δ be an R-divisor

on X. Assume that one of the following conditions holds:

(QF) X is Q-factorial, and 0≤Δ≤ 1;

(FP) k = Fp, and 0≤Δ;

(LC) (X,Δ) is a log canonical surface.

Then, there exists a sequence of proper birational morphisms

(X,Δ) =: (X0,Δ0)
φ0→ (X1,Δ1)

φ1→ · · · φs−1→ (Xs,Δs) =: (X†,Δ†),

where (φi−1)∗(Δi−1) =: Δi,

with the following properties.

(1) Each Xi is a normal surface, which is projective over S.

(2) Each (Xi,Δi) satisfies (QF), (FP), or (LC) according to the above

assumption.

(3) For each i, Ex(φi) =:Ci is a proper irreducible curve such that

(KXi +Δi) ·Ci < 0

and such that Ci generates an extremal ray of NE (X/S).

(4) Let π† :X† → S be the S-scheme structure morphism; (X†,Δ†) satisfies
one of the following conditions:

(a) KX† +Δ† is π†-nef;
(b) there is a projective surjective S-morphism μ :X† → Z to a smooth

curve Z such that Z is projective over S, μ∗OX† =OZ , −(K†
X+Δ†)

is μ-ample, and ρ(X†/Z) = 1;

(c) X† is a projective surface, −(KX† +Δ†) is ample, and ρ(X†) = 1.

In case (a), we say that (X†,Δ†) is a minimal model of (X,Δ) over S.

In cases (b) and (c), we say that (X†,Δ†) is a Mori fiber space over S.
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6.3. Relative abundance theorem

In this section, we consider the relativization of the abundance theorem.

To restate the problem from the absolute case to the relative case, let us

consider the following lemma.

Lemma 6.6. Let π :X → S be a morphism from a projective normal Q-

factorial surface X to a projective variety S. Let Δ be an R-boundary on

X. If KX +Δ is π-nef, then there exists an ample line bundle F on S such

that Δ+ π∗(F )∼R Δ′ for some R-boundary Δ′ and KX +Δ′ is nef.

Proof. Take the Stein factorization of π

π :X
θ→ T

σ→ S.

Take an arbitrary ample line bundle H on S. Since σ is a finite morphism,

σ∗(H) is also ample. We may assume that σ∗(H) is very ample by replacing

H with its multiple. Note that σ∗(4H) is very ample. We want to prove

that F := 4H satisfies the assertion. If dimT = 0, then the assertion is

obvious. Thus, we can consider the following two cases: (1) dimT = 1 and

(2) dimT = 2.

(1) Assume that dimT = 1. In this case, T is a smooth projective curve,

and general fibers of θ are integral by Proposition 5.8. Thus, we can take a

hyperplane section

P1 + · · ·+ Pn =G ∈
∣∣σ∗(4H)

∣∣

such that Pi �= Pj for all i �= j, θ−1(Pi) is integral for each i, and θ−1(Pi) is

not a component of Δ for each i. Therefore, for an R-boundary Δ′ defined
by

Δ′ := Δ+ θ∗(G),

KX +Δ′ is nef by Theorem 3.13 and Proposition 3.15.

(2) Assume that dimT = 2. In this case, T is a normal projective surface,

and θ is birational. By Bertini’s theorem, we can take an irreducible smooth

hyperplane section G ∈ |σ∗(4H)| such that SuppG∩ θ(Ex(θ)) = ∅ and G is

not a component of θ∗(Δ). Then, Δ′ := Δ + θ∗(G) is an R-boundary, and

KX +Δ′ is nef by Theorem 3.13 and Proposition 3.15.

We can prove the relative abundance theorem for Q-factorial surfaces

with R-boundary.
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Theorem 6.7. Let π :X → S be a projective morphism from a normal

Q-factorial surface X to a variety S. Let Δ be an R-boundary. If KX +Δ

is π-nef, then KX +Δ is π-semiample.

Proof. We may assume that S is affine. Moreover, by taking Nagata’s

compactification, we may assume that S is projective and that X is projec-

tive Q-factorial. Note that the hypothesis of π-nefness may break up by tak-

ing the compactification. But, by running a (KX +Δ)-minimal model pro-

gram over S, we may assume this hypothesis. Thus, we can apply Lemma 6.6.

Note that F and Δ′ are the same notation as Lemma 6.6. Since KX +Δ′ is
nef, KX +Δ′ is semiample by the abundance theorem of the absolute case.

By KX +Δ′ ∼R KX +Δ+ π∗(F ), KX +Δ is π-semiample.

We obtain the following theorem by applying the same argument.

Theorem 6.8. Let π :X → S be a projective morphism from a normal

surface X to a variety S, defined over Fp. Let Δ be an effective R-divisor.

If KX +Δ is π-nef, then KX +Δ is π-semiample.

Proof. We can apply the same proof as the one for Theorem 6.7.

The log canonical case immediately follows from the Q-factorial case.

Theorem 6.9. Let π :X → S be a projective morphism from a log canon-

ical surface (X,Δ) to a variety S. If KX + Δ is π-nef, then KX + Δ is

π-semiample.

Proof. Take the minimal resolution, and apply Theorem 6.7.

We summarize the results obtained in this section.

Corollary 6.10. Let π :X → S be a projective morphism from a normal

surface X to a variety S. Let Δ be an R-divisor on X. Assume that one of

the following conditions holds:

(QF) X is Q-factorial, and 0≤Δ≤ 1;

(FP) k = Fp, and 0≤Δ;

(LC) (X,Δ) is a log canonical surface.

If KX +Δ is π-nef, then KX +Δ is π-semiample.
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Appendix A. Base-point-free theorem

In this section, we consider the base-point-free theorem. First, we prove

the following nonvanishing theorem.

Theorem A.1. Let X be a projective normal Q-factorial surface, and

let Δ be a Q-boundary. Let D be a nef Cartier divisor. Assume that D −
(KX +Δ) is nef and big and that (D − (KX +Δ)) ·C > 0 for every curve

C ⊂ Supp�Δ�. Then κ(X,D)≥ 0.

Proof. If k = Fp, then the assertion follows from Theorem 4.15. Thus, we

may assume that k �= Fp.

Assume that κ(X,D) =−∞, and we derive a contradiction. Let f :X ′ →
X be the minimal resolution, let KX′ +Δ′ = f∗(KX +Δ), and let D′ = f∗D.

Step 1. We may assume that κ(X ′,KX′) =−∞.

Indeed, we have κ(X ′,KX′) ≤ κ(X ′,KX′ +Δ′) = κ(X,KX +Δ) = −∞.

Note that, if κ(X,KX +Δ)≥ 0, then we have κ(X,D) = κ(X,D − (KX +

Δ)+ (KX +Δ))≥ 0. This is what we want to show.

Step 2. In this step, we show that h2(X ′,D′) = 0.

By Serre duality, we have

h2(X ′,D′) = h0(X ′,KX′ −D′) and

κ(X ′,KX′ −D′)≤ κ(X ′,KX′ +Δ′ −D′) = κ(X,KX +Δ−D) =−∞

because −(KX +Δ−D) is nef and big.

Step 3. In this step, we prove that X ′ is an irrational ruled surface.

It is sufficient to prove that χ(OX′)≤ 0. Since h0(X ′,D′) = h2(X ′,D′) =
0, by the Riemann–Roch theorem, we obtain

−h1(X ′,D′) = χ(OX′) +
1

2
D′ · (D′ −KX′).

Since

D′ · (D′ −KX′) =D · (D−KX) and

κ(X,D−KX)≥ κ
(
X,D− (KX +Δ)

)
= 2,

we have D′ · (D′ − KX′) ≥ 0 by the nefness of D. Therefore, we get 0 ≥
−h1(X ′,D′)≥ χ(OX′).
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Let π :X ′ → Z be its ruling. By Theorem 3.20, π factors through X .

Step 4. We reduce the proof to the case where there is no curve C in X

such that D ·C = 0 and C2 < 0.

Let C be such a curve. We have (KX + C) · C < 0 by the assumption.

(Indeed, if C ⊂ Supp�Δ�, then

−(KX +C) ·C ≥−(KX +Δ) ·C =
(
D− (KX +Δ)

)
·C > 0.

If C �⊂ Supp�Δ�, then

−(KX +C) ·C >−(KX +Δ) ·C =
(
D− (KX +Δ)

)
·C ≥ 0.)

This shows that C = P1 and that C is contractible. Moreover, this induces a

contraction map g :X → Y to a Q-factorial surface Y , and the irrationality

of X shows that π factors through Y . Let g∗D =DY , and let g∗(Δ) =ΔY .

Then, we have KX +Δ= g∗(KY +ΔY )+aC for some nonnegative rational

number a. Therefore, it is easy to see that Y has all the assumptions of X .

Step 5. We reduce the proof to the case where KX +Δ is not nef. In

particular, there is at least one (KX +Δ)-negative extremal ray.

If KX +Δ is nef, then D =D − (KX +Δ) + (KX +Δ) is nef and big,

and this is what we want to show. Thus, we may assume that KX +Δ is

not nef.

Step 6. We reduce the proof to the case where D ≡ 0.

The nefness of D and κ(X,D) = −∞ show that D2 = 0. Since D and

D− (KX +Δ) are nef, we have (D− (KX +Δ)) ·D =−(KX +Δ) ·D ≥ 0.

We consider the two cases −(KX +Δ) ·D = 0 and −(KX +Δ) ·D > 0. If

−(KX +Δ) ·D = 0, then we obtain D ≡ 0 by the bigness of D− (KX +Δ).

This is what we want to show. If −(KX +Δ) ·D > 0, then we have KX ·
D < 0. Two conditions KX ·D < 0 and D2 = 0 mean that κ(X,D) = 1 by

resolution and the Riemann–Roch theorem. This case is excluded.

Step 7. By Steps 4 and 6, there exists no curve C with C2 < 0. By Step 5

and the classification of extremal rays, we have ρ(X)≤ 2. Since there is a

surjectionX → Z to a curve Z, we have ρ(X) �= 1. Thus, we obtain ρ(X) = 2.

Here, −(KX +Δ) is ample because −(KX +Δ) is nef and big and because of

Step 4. Moreover, by Step 4, there are two extremal rays inducing the struc-

ture of the Mori fiber space to a curve. By Proposition 3.15, every extremal

ray is generated by a rational curve. This contradicts the irrationality of Z.
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This completes the proof.

Using the nonvanishing theorem, we obtain the following base-point-free

theorem.

Theorem A.2. Let X be a projective normal Q-factorial surface, and

let Δ be a Q-boundary. Let D be a nef Cartier divisor. Assume that D −
(KX +Δ) is nef and big and that (D − (KX +Δ)) ·C > 0 for every curve

C ⊂ Supp�Δ�. Then D is semiample.

Proof. By Theorem A.1, we may assume that κ(X,D)≥ 0. But by Propo-

sition 3.23, we may assume that κ(X,D) = 0 or 2. By the same argument as

Step 4 in the proof of Theorem A.1, we may assume that there is no curve

C in X with D ·C = 0 and C2 < 0. Thus, if κ(X,D) = 2, then D is ample.

This is what we want to show. Hence, the remaining case is κ(X,D) = 0. We

have linear equivalence to the effective divisor nD ∼
∑

diDi. Assume that∑
diDi �= 0, and let us get a contradiction. Since D2 = 0 and D is nef, we

have D ·Di = 0 for all i. Moreover, we get D2
i ≥ 0 by the above reduction.

Then, we obtain D2
i =Di ·D = 0. Since D − (KX +Δ) is nef and big, we

have (
D− (KX +Δ)

)
·Di =−(KX +Δ) ·Di > 0.

This means that KX · Di < 0. Then D2
i = 0 and KX · Di < 0 show that

κ(X,Di) = 1 by taking a resolution and applying the Riemann–Roch theo-

rem. This contradicts κ(X,D) = 0.

The following example demonstrates that the base-point-free theorem

does not hold only under the boundary condition.

Example A.3. If k �= Fp, then there exist a smooth projective surface X

over k, an elliptic curve C in X, and a divisor D such that KX + C = 0

and the divisor D =D− (KX +C) is nef and big but not semiample.

Construction. Let X0 := P2, and let C0 be an elliptic curve in X0. Let

P1, . . . , P10 be 10 points which are linearly independent. Blow up these 10

points. We obtain the surface X , and let C be the proper transform of

C0. Then KX + C = 0 and C is not contractible by Answer 4.2 and its

construction. On the other hand, take an ample divisor H , and let D be

the divisor D :=H + qC with (H + qC) ·C = 0. It is easy to check that D

is nef and big. Because C is not contractible, D is not semiample.

We can also prove a base-point-free theorem under the following assump-

tion.
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Theorem A.4. Let X be a projective normal Q-factorial surface, and let

Δ be a Q-boundary. Let D be a nef Cartier divisor. Assume that D− (KX +

Δ) is semiample. Then D is semiample.

Proof. Set κ := κ(X,D − (KX + Δ)). There are three cases: (0) κ = 0,

(1) κ= 1, and (2) κ= 2.

(0) Assume that κ = 0. By the semiampleness, we obtain D − (KX +

Δ)∼Q 0. Thus, we can apply the abundance theorem to D. Then we obtain

the desired result.

(1) Assume that κ= 1. By the semiampleness, the complete linear system

|n(D − (KX +Δ))| induces a morphism σ :X →B to a smooth projective

curve. By Proposition 5.8, we can find a boundary

Δ′ ∼Q D− (KX +Δ)

such that Δ + Δ′ is a Q-boundary. Thus, we can apply the abundance

theorem to KX +Δ+Δ′.
(2) Assume that κ = 2. The complete linear system |n(D − (KX +Δ))|

induces a birational morphism f : X → Y to a normal projective surface.

Since n(D− (KX +Δ)) = f∗(HY ), HY is an very ample line bundle on Y .

By Bertini’s theorem, we can find a member G ∈ |HY | such that

Δ+
1

n
f∗(G)

is a boundary. Thus, we can apply the abundance theorem.

Appendix B. Rational singularities

In this section, we consider the relation between the minimal model pro-

gram and the rational singularities.

Definition B.1. Let X be a normal surface, and let f : Y → X be a

resolution of singularities. We say that X has at worst rational singularities

if R1f∗OY = 0. This property is independent of the choice of resolutions of

singularities.

If X is a normal surface whose singularities are at worst rational, then

X is Q-factorial by [L, Proposition 17.1]. Let us give an alternative proof of

this result.
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Proposition B.2. Let X be a normal surface. If X has at worst rational

singularities, then X is Q-factorial.

Proof. Note that, if g : Z →X is a proper birational morphism, and if E

is a g-exceptional curve, then E  P1.

We may assume that X is affine. Thus, we may assume that X is projec-

tive. Let f : Y →X be the minimal resolution. Let E be an f -exceptional

curve. By Proposition 3.24, we can contract E, and we obtain

f : Y → Y ′ f ′
→X.

By Propositions 3.25 and 3.26, X ′ is Q-factorial. Assume that f ′ is not an
isomorphism. Then we can take an f ′-exceptional curve E′. By the same

argument, we can contract E′ to a Q-factorial surface. Repeat the same

procedure. Then, we see that X is Q-factorial.

The Kodaira vanishing theorem does not hold in positive characteristic.

But we obtain the following relative vanishing theorem.

Theorem B.3. Let f :X → Y be a proper birational morphism from a

smooth surface X to a normal surface Y . Let L be a line bundle on X such

that

L≡f KX +E +N,

where E is an effective f -exceptional R-boundary and N is an f -nef R-

divisor. If Ei ·N > 0 for every curve Ei with Ei ⊂ �E�, then R1f∗(L) = 0.

Proof. For a proof, see [KoK, Section 2.2].

In this paper, we often use the contraction of P1. For example, the minimal

model program of Theorem 3.27 is the composition of the contractions of

C  P1 with (KX +C) ·C < 0. The following theorem shows that the R1 of

such contractions vanishes.

Theorem B.4. Let g : Y → Z be a proper birational morphism between

normal surfaces such that C := Ex(g) is an irreducible curve. If (KY +C) ·
C < 0, then R1g∗(OY ) = 0.

Proof. Let f :X → Y be the minimal resolution of Y , and let CX be the

proper transform of C. Set KX +CX +ΔX = f∗(KY +C). Then we have

−�ΔX�=KX +
(
{ΔX}+CX

)
− f∗(KY +C).
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We apply Theorem B.3 and obtain

R1(g ◦ f)∗OX(−�ΔX�) = 0

by −f∗(KY +C) ·CX > 0.

If �ΔX�= 0, then we obtain

R1g∗(OY ) =R1g∗(f∗OX)⊂R1(g ◦ f)∗(OX) = 0

by the Grothendieck–Leray spectral sequence. Thus, we may assume that

�ΔX� �= 0. Since

0→OX(−�ΔX�)→OX →O�ΔX� → 0,

we obtain

0→ f∗OX(−�ΔX�)→OY →C → 0,

C ⊂ f∗O�ΔX�,

where C is the cokernel of f∗OX(−�ΔX�)→OY . Since f∗O�ΔX� is a sky-

scraper sheaf, so is C. Thus, we obtain

R1g∗
(
f∗OX(−�ΔX�)

)
→R1g∗(OY )→R1g∗(C) = 0.

By the Grothendieck–Leray spectral sequence, we obtain

R1g∗
(
f∗OX(−�ΔX�)

)
⊂R1(g ◦ f)∗OX(−�ΔX�) = 0.

Therefore, we have R1g∗(OY ) = 0.

As corollaries, we obtain the results on minimal models and canonical

models for surfaces with rational singularities.

Corollary B.5. Let π :X → S be a projective morphism from a normal

surface X to a variety S. Let Δ be an R-boundary. Assume that X has at

worst rational singularities. Then, the following assertions hold.

(1) The surface X is Q-factorial. In particular, by Theorem 6.5, we can

run a (KX +Δ)-minimal model program over S

(X,Δ) =: (X0,Δ0)
φ0→ (X1,Δ1)

φ1→ · · · φs−1→ (Xs,Δs),

where (φi−1)∗(Δi−1) =: Δi.
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(2) Each Xi has at worst rational singularities.

Proof. Assertion (1) follows from Proposition B.2. Each extremal con-

traction in a minimal model program of (X,Δ) satisfies the condition of

Theorem B.4. This implies (2).

Corollary B.6. Let π :X → S be a projective morphism from a normal

surface X to a variety S. Let Δ be an R-divisor such that 0 ≤ Δ < 1. If

X has at worst rational singularities, and if KX + Δ is π-big, then the

canonical model of (X,Δ) over S has at worst rational singularities.

Proof. By Corollary B.5 we may assume that KX +Δ is π-nef and π-big.

If (KX +Δ) · C = 0 for some curve C such that π(C) is one point, then

(KX +C) ·C < 0 because 0≤Δ< 1. Therefore, we can contract this curve

C, and C satisfies the condition of Theorem B.4. Repeat this procedure and

obtain the required assertion.
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