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LOG-CANONICAL THRESHOLDS ON DEL PEZZO
SURFACES OF DEGREES ≥ 2

JIHUN PARK and JOONYEONG WON

Abstract. We compute the global log-canonical thresholds (lct) of del Pezzo
surfaces of degrees ≥ 2 with du Val singularities.

§1. Introduction

Unless otherwise mentioned, all varieties are assumed to be projective,
normal, and defined over C.

Let X be a variety with at worst log-canonical singularities, and let D

be an effective divisor on X . The log-canonical threshold cp(X,D) of D at
a point p in X is defined as

cp(X,D) = sup
{
c

∣∣ the pair (X,cD) is log-canonical at the point p
}
.

The log-canonical threshold c(X,D) of the divisor D is defined as

c(X,D) = sup
{
c

∣∣ the pair (X,cD) is log-canonical
}

= inf
p∈X

{
cp(X,D)

}
.

The log-canonical threshold, like multiplicity, measures how singular a
divisor is. It has many amazing properties and has important applications
to various areas such as birational geometry and Kähler geometry.

The following theorem is one of the motivations of this article.

Theorem 1.1. Suppose that X is an n-dimensional Fano orbifold. If
there is a positive real number ε such that, for every effective Q-divisor D

numerically equivalent to −KX , the pair (X, (n+ ε)/(n+1)D) is Kawamata
log-terminal, then X has a Kähler-Einstein metric.

Proof. See [4, Theorem 1.17] and [6, page 549].
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This means that it is worthwhile for us to define the following numerical
invariants.

Definition 1.2. Let X be a Fano variety with at worst log-terminal
singularities. The mth global log-canonical threshold of X is defined by the
number

lctm(X) = sup
{

λ ∈ Q

∣∣∣∣the pair
(
X, λ

mD
)

is log-canonical
for any effective divisor D ∈ |−mKX |

}
.

The global log-canonical threshold is defined by lct(X) = inf{lctm(X) | m ∈
N}. Here, we do not define the mth global log-canonical threshold of X if
the linear system |−mKX | is empty.

We can see that lct(X) is the supremum of the values c such that the
pair (X,cD) is log-canonical for every effective Q-divisor D numerically
equivalent to −KX . Using the global log-canonical threshold, Theorem 1.1
can be read as meaning that the Fano manifold X admits a Kähler-Einstein
metric if

lct(X) >
dim(X)

dim(X) + 1
.

Pukhlikov [14] also shows that the global log-canonical threshold plays
an important role in rationality problems.

In this article, we study the global log-canonical thresholds of del Pezzo
surfaces. The global log-canonical thresholds of smooth del Pezzo surfaces
have been computed already. It turns out that they coincide with the first
global log-canonical thresholds.

Theorem 1.3. Let X be a smooth del Pezzo surface. Then

lct(X) = lct1(X)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/3 when X ∼= F1 or K2
X ∈ {7,9},

1/2 when X ∼= P1 × P1 or K2
X ∈ {5,6},

2/3 when K2
X = 4,

2/3 when X is a cubic in P3 with an Eckardt point,

3/4 when X is a cubic in P3 without Eckardt points,

3/4 when K2
X = 2 and |−KX | has a tacnodal curve,

5/6 when K2
X = 2 and |−KX | has no tacnodal curves,

5/6 when K2
X = 1 and |−KX | has a cuspidal curve,

1 when K2
X = 1 and |−KX | has no cuspidal curves.
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Proof. See [2, Theorem 1.7] and [10, Corollary 3.3].

The global log-canonical thresholds of del Pezzo surfaces with du Val
singularities have been studied in [2], [3], and [9]. In [3], the global log-
canonical thresholds of cubic surfaces with du Val singularities have been
computed. Kosta [9] computes the global log-canonical thresholds of del
Pezzo surfaces of degree 1 with du Val singularities and del Pezzo surfaces
of Picard rank 1 with du Val singularities.

In this paper, we compute the global log-canonical thresholds of all the
del Pezzo surfaces of degree ≥ 2 with du Val singularities. Even though the
global log-canonical thresholds of all cubic surfaces with du Val singulari-
ties and del Pezzo surfaces of Picard rank 1 with du Val singularities have
already been computed, we also compute them again here, since this article
provides a simpler method.

Throughout, we call an algebraic surface S with ample anticanonical divi-
sor a del Pezzo surface of degree d if it has at worst du Val singularities and
if the self-intersection number of the anticanonical divisor is d. Also, we call
a smooth algebraic surface S̃ with nef and big anticanonical divisor a weak
del Pezzo surface.

For the global log-canonical thresholds, we need to distinguish some sin-
gularity types of del Pezzo surfaces of degree 2 with the same dual graphs.
We distinguish A5 singularities into two types: one has a −1 curve inter-
secting the −2 curve corresponding to the vertex v in the dual graph of A5

such that A5 − v = 2A2 on the minimal resolution of the del Pezzo surface,
and the other does not. In the former case, the type of singularities are
denoted by A′

5, and in the latter case, by A′ ′
5 . For singularity types A5 and

A5 + A1 on del Pezzo surfaces of degree 2, there are two types for each (see
[15, page 590]): one is for A′

5, and the other is for A′ ′
5 . For singularity type

A5 + A2 on del Pezzo surfaces of degree 2, there is only one type (see [15,
page 590]). The singularity A5 in this type is A′

5.
Also, there are two types of singularities on del Pezzo surfaces of degree 2

with the dual graph 3A1 (resp., 4A1; see [15, page 590]): one has a −1 curve
on the del Pezzo surface which passes through three A1 singular points
(denoted by (3A1)′; resp., (4A1)′), and the other does not (denoted by
(3A1)′ ′; resp., (4A1)′ ′). For singularity type A2 + 3A1 on del Pezzo surfaces
of degree 2, there is only one type (see [15, page 590]). The singularities 3A1

in this type are (3A1)′.
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The first global log-canonical threshold may be a cornerstone to get the
global log-canonical threshold. For a del Pezzo surface S, the first global log-
canonical threshold lct1(S) is meaningful by itself. It has a nice application
to birational maps between del Pezzo fibrations (see [10] or [11]). In [11] and
[12], the first global log-canonical thresholds of all del Pezzo surfaces have
been computed. For convenience, we state all the first global log-canonical
thresholds of del Pezzo surfaces of degrees ≥ 2.

Theorem 1.4. Let Sd be a del Pezzo surface of degree d, and let Σd be
the set of singular points in Sd. Suppose that Σd �= ∅. Then

lct1(S2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/6 if Σ2 = {E7};

1/4 if Σ2 = {E6},Σ2 ⊇ {D6};

1/3 if Σ2 ⊇ {D5}, {(A5)′ };

1/2 if Σ2 ⊇ {(3A1)′ }, {(4A1)′ }, {5A1}, {A3}, {A4}, {(A5)′ ′ };

{A6}, {A7}, {D4};

2/3 otherwise.

lct1(S3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1/6 if Σ3 = {E6};

1/4 if Σ3 ⊇ {A5},Σ3 = {D5};

1/3 if Σ3 ⊇ {A4}, {2A2},Σ3 = {D4};

2/3 if Σ3 = {A1};

1/2 otherwise.

lct1(S4) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/6 if Σ4 = {D5};

1/4 if Σ4 ⊇ {A1 + A3},Σ4 = {A4},Σ4 = {D4};

1/3 if Σ4 = {A3},Σ4 ⊇ {A1 + A2};

1/2 otherwise.

lct1(S5) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/6 if Σ5 = {A4};

1/4 if Σ5 = {A3},Σ5 = {A1 + A2};

1/3 if Σ5 = {A2}, {2A1};

1/2 if Σ5 = {A1}.

lct1(S6) =

⎧⎪⎨
⎪⎩

1/6 if Σ6 = {A1 + A2};

1/4 if Σ6 = {A2},Σ6 = {2A1};

1/3 if Σ6 = {A1}.



LOG-CANONICAL THRESHOLDS ON DEL PEZZO SURFACES OF DEGREES ≥ 2 5

lct1(S7) = 1/4 if Σ7 = {A1}.

In this article, we prove the following two theorems that complete the
results of [2] and [9].

Theorem 1.5. Let S be a del Pezzo surface of degree ≥ 3. Then lct1(S) =
lct(S).

Theorem 1.6. Let S be a del Pezzo surface of degree 2. Then

lct(S2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/6 if Σ2 = {E7};

1/4 if Σ2 = {E6},Σ2 ⊇ {D6};

1/3 if Σ2 ⊇ {D5}, {(A5)′ }, {A7};

2/5 if Σ2 = {A6};

1/2 if Σ2 ⊇ {(3A1)′ }, {(4A1)′ }, {5A1}, {A3}, {A4}, {(A5)′ ′ },

{A6}, {D4};

2/3 otherwise.

If the singularity type of S is neither A7 nor A6, then lct(S) = lct1(S).

From the proof of Theorem 1.6, we can notice that lct(S) = lct2(S) �=
lct1(S) if the del Pezzo surface S of degree 2 has either an A7 or A6 singular
point.

§2. Preliminaries

For the rest of this article, a del Pezzo surface will always be denoted by
S, and its minimal resolution will be denoted by π : S̃ → S. The surface S̃

is a weak del Pezzo surface. For a constant λ and an effective divisor C on
S, we have

π∗(KS + λC) = KS̃ + λπ∗(C).

The pair (S,λC) is log-canonical if and only if the pair (S̃, λπ∗(C)) is log-
canonical. Since every effective Q-divisor numerically equivalent to −KS̃

(resp., −KS) is the pullback (resp., pushforward) of an effective Q-divisor
numerically equivalent to −KS (resp., −KS̃) by the birational morphism π,
we have lct(S) = lct(S̃). Thus, it is sufficient to consider effective Q-divisors
numerically equivalent to −KS̃ on S̃ to compute lct(S).

Lemma 2.1. Let D1 and D2 be effective Q-divisors on S̃ with D1 ≡ D2.
Suppose that the pair (S̃,D1) is not log-canonical at a point p ∈ S̃, while
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the pair (S̃,D2) is log-canonical at the point p. Then there is an effective
Q-divisor D on S̃ such that
• D ≡ D1,
• at least one irreducible component of D2 is not contained in the support

of D,
• the pair (S̃,D) is not log-canonical at the point p.
Moreover, if D1 ≡ −λKS̃ for some positive number λ and if the point p lies
on a −2 curve, then the support of D must contain the support of every −2
curve over the singular point π(p).

Proof. Write D2 =
∑r

i=1 biCi, where bi are positive rational numbers and
Ci are distinct irreducible and reduced divisors. Also, we write D1 = Δ +∑r

i=1 eiCi, where ei are nonnegative rational numbers and Δ is an effective
Q-divisor whose support contains no Ci.

Let
α = min

{ei

bi

∣∣∣ i = 1,2, . . . , r
}
.

Then the nonnegative rational number α is less than 1 since D1 ≡ D2. Put

D =
1

1 − α
D1 − α

1 − α
D2

=
1

1 − α
Δ +

r∑
i=1

(ei − αbi

1 − α

)
Ci.

It is easy to see that the divisor D satisfies the first two conditions. If
the pair (S̃,D) is log-canonical at the point p, then the pair (S̃,D1) =
(S̃, (1 − α)D + αD2) must be log-canonical at the point p. Therefore, the
divisor D also satisfies the last condition. For the last statement, do the
same with the divisors π(D1) and π(D2) on S and then take the pullback
of the obtained divisor by the birational morphism π.

Lemma 2.2. Let X be a smooth surface, and let B be an effective Q-
divisor on X. If the pair (X,B) is not log-canonical at a point p ∈ X, then
multp(B) > 1. For a smooth curve C on X and a nonnegative number m ≤ 1,
if the pair (X,mC +B) is not log-canonical at a point p ∈ C, then C · B > 1.

Proof. This immediately follows from [8, Theorem 17.7].

Lemma 2.3. Let S̃ be a weak del Pezzo surface, and let D be an effective
Q-divisor numerically equivalent to −KS̃ . For a positive number λ < 1, the
locus where the pair (S̃, λD) is not Kawamata log-terminal is connected.
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Proof. See [8, Theorem 17.4].

Corollary 2.4. Let C be an effective Q-divisor on P2 with degC < 2.
If the pair (P2,C) is not Kawamata log-terminal, then it is not Kawamata
log-terminal along a curve.

Proof. Suppose that the locus of non-Kawamata log-terminal singularities
of the pair (P2,C) is 0-dimensional. It follows from Lemma 2.3 that the locus
consists of a single point p. Let L be a general line on P2. Put

D =
3

1 + deg(C)
(C + L), λ =

1 + deg(C)
3

.

The divisor D is an effective Q-divisor numerically equivalent to −KP2 , and
λ < 1. However, the locus of non-Kawamata log-terminal singularities of
the pair (P2, λD) consists of the point p and the line L. Since these two
components are disconnected, it is a contradiction.

The following variant of [4, Lemma 4.9] will be useful here. In fact, the
proof of [4, Lemma 4.9] is also based on Lemma 2.3.

Corollary 2.5. Let S be a smooth del Pezzo surface of degree 7. Let L1,
L2, and L3 be the three −1 curves on S with L1 · L3 = 0. For an effective
Q-divisor D on S numerically equivalent to −KS and with λ ≤ 1/2, if the
pair (S,λD) is not log-canonical at some point p, then it is not log-canonical
along the curve L2.

Proof. For a sufficiently small positive real number ε, the pair (S, (λ −
ε)D) is not log-canonical at the point p. Then [4, Lemma 4.9] implies that
the pair (S, (λ − ε)D) is not Kawamata log-terminal along the curve L2.
Therefore, the pair (S,λD) is not log-canonical along the curve L2.

Lemma 2.6. Let S be a del Pezzo surface of degree ≥ 2. For an effective
Q-divisor D numerically equivalent to −KS and for a positive number λ

with λK2
S ≤ 1, the pair (S,λD) is log-canonical at every smooth point.

Proof. Suppose that the pair (S,λD) is not log-canonical at some smooth
point p. Then λmultp D > 1. We can choose an irreducible curve C in the
anticanonical linear system |−KS | such that it passes through the point p

but its support is not contained in the support of D. However,

λK2
S = λD · C ≥ λmultp(D) > 1.

This is a contradiction.
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The following lemma is the main tool for this article.

Lemma 2.7. Let S̃ be a weak del Pezzo surface. Suppose that the surface
S̃ has mutually disjoint −1 curves L1, . . . ,Lt and M1, . . . ,Ms. Let S̃L be the
smooth surface obtained by contracting all the curves Li, and let S̃M be the
smooth surface obtained by contracting all the curves Mj . Then

lct(S̃) ≥ min
{
lct(S̃L), lct(S̃M )

}
.

In particular, if lct1(S̃) ≤ min{lct(S̃L), lct(S̃M )}, then lct1(S̃) = lct(S̃).

Proof. Let πL : S̃ → S̃L be the contraction of the −1 curves L1, . . . ,Lt,
and let πM : S̃ → S̃M be the contraction of the −1 curves M1, . . . ,Ms. For
every effective Q-divisor D on S̃ numerically equivalent to −KS̃ , the effec-
tive divisors πL(D) and πM (D) are effective Q-divisors numerically equiv-
alent to −KS̃L

and −KS̃M
, respectively.

For an arbitrary positive number λ ≤ min{lct(S̃L), lct(S̃M )} and for an
effective Q-divisor D on S̃ numerically equivalent to −KS̃ , the pairs (S̃L,

λπL(D)) and (S̃M , λπM (D)) are log-canonical. The birational morphism πL

is an isomorphism in the outside of
⋃t

i=0 Li. The birational morphism πM is
an isomorphism in the outside of

⋃s
i=0 Mi. Since

(⋃t
i=0 Li

)
∩

(⋃s
i=0 Mi

)
= ∅,

the pair (S̃, λD) is log-canonical. This implies the first inequality.
The second statement is obvious since lct1(S̃) ≥ lct(S̃).

The proofs of Theorems 1.5 and 1.6 are inductive. If we compute all the
global log-canonical thresholds of del Pezzo surfaces of degrees > d, we can
easily compute the global log-canonical thresholds of almost all del Pezzo
surfaces of degree d by using Lemma 2.7.

To use Lemma 2.7, we need to find some −1 curves on weak del Pezzo
surfaces. The configurations of −2 curves and −1 curves on weak del Pezzo
surfaces of degrees ≥ 4 can be found in [5].

For weak del Pezzo surfaces of degrees ≤ 3, we refer the reader to [15,
Table], which completely classifies subsystems of the root systems E6 and E7

up to actions of their Weyl groups. Furthermore, [15] shows that singularity
types of del Pezzo surfaces of degree 2 and classes of subsystems of the
root system E7 (except for the subsystem of type 7A1) are in one-to-one
correspondence. It is also well known that singularity types of del Pezzo
surfaces of degree 3 and classes of subsystems of the root system E6 are
in one-to-one correspondence (see [1] or [13]). Since these correspondences
preserve the intersection forms for the Picard groups of weak del Pezzo
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surfaces of del Pezzo surfaces and for the root subsystems, we can conclude
from [7, théorème III.2 and corollaire] that a given singularity type has a
unique configuration of −1 curves and −2 curves. (The configurations of
−1 curves and −2 curves in [5] have been obtained by the same method.)
Consequently, for a given singularity type of del Pezzo surfaces of degree d

in [15, Table] except 7A1 of E7, we find one weak del Pezzo surface of degree
d whose corresponding singular del Pezzo surface has the given singularity
type. This weak del Pezzo surface gives us the configuration of −1 curves
and −2 curves for the given singularity type since every del Pezzo surface
with the same singularity type has the same configuration of −1 curves
and −2 curves on its weak del Pezzo surface, as explained above. These
configurations are usually complicated since they may have too many −1
curves. Fortunately, to prove Theorems 1.5 and 1.6, we do not have to know
the complete configuration of −1 curves on a given weak del Pezzo surface;
instead, we need information only on appropriate −1 curves on a given weak
del Pezzo surface that make Lemma 2.7 work. Such −1 curves can be found
basically by using [12]. For the reader’s convenience, in the appendix we list
configurations of −2 curves and appropriate −1 curves on weak del Pezzo
surfaces of degrees 2 and 3 that make Lemma 2.7 applicable.

§3. Proof of Theorem 1.5

Throughout this article, a −1 curve is denoted by ◦, and a −2 curve is
denoted by • in every dual graph.

Proposition 3.1. The global log-canonical threshold of Hirzebruch sur-
face Fn = P(OP1 ⊕ OP1(n)), n ≥ 0, is 1/(n + 2).

Proof. Let C be the irreducible curve on Fn with C2 = −n. Let L be
an irreducible curve with L2 = 0. Then −KFn ≡ 2C + (n + 2)L. The pair
(Fn, (2/(n + 2))C + L) is log-canonical.

Suppose that lct(Fn) < 1/(n + 2). Then there is an effective Q-divisor D

on Fn numerically equivalent to −KFn such that the pair (Fn, (1/(n+2))D)
is not log-canonical at some point p ∈ Fn. We may assume that L passes
through the point p. If L is not contained in the support of D, then

2 = L · D ≥ multp(D) > (n + 2)

by Lemma 2.2. This is a contradiction. Therefore, the curve L must be
contained in the support of D. On the other hand, we may assume that
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the curve C is not contained in the support of D by Lemma 2.1. Write
D = aL + Ω, where Ω is an effective Q-divisor whose support does not
contain the curve L. Then 2 − n = D · C = a + C · Ω ≥ a. If n ≥ 2, this is
already a contradiction. If n = 1 or 0, then we obtain an absurd inequality
n + 2 < (D − aL) · L = 2 from Lemma 2.2, since (Fn,L + (1/(n + 2))Ω) is
not log-canonical at the point p.

Corollary 3.2. The global log-canonical threshold of a singular del Pezzo
surface of degree 8 is 1/4.

Proof. Since the minimal resolution of the surface is the surface F2, the
statement immediately follows from Proposition 3.1.

Proposition 3.3. Let S be a singular del Pezzo surface of degree 7. Then
lct(S) = 1/4.

Proof. The surface has one singular point that is of type A1. Since
lct1(S) = 1/4, we have lct(S) ≤ 1/4. The minimal resolution S̃ of S con-
tains two −1 curves L1 and L2 and one −2 curve E, with L1 · L2 = 1,
L1 · E = 1, and L2 · E = 0 (see [5, Proposition 8.1]).

Suppose that lct(S) < 1/4. Then there is an effective Q-divisor D on S̃

numerically equivalent to −KS̃ such that the pair (S̃, (1/4)D) is not log-
canonical at some point p ∈ S̃.

By contracting the curve L1, we obtain a birational morphism of S̃ to
F1. On the other hand, by contracting the curve L2, we obtain a birational
morphism of S̃ to F2. Since lct(F1) = 1/3 and lct(F2) = 1/4, the point p

must be the intersection point of L1 and L2. Furthermore, the multiplicity
of D along the curve L2 must be at most 3.

Write D = aL2 + Ω, where Ω is an effective Q-divisor whose support
does not contain the curve L2. Since a ≤ 3, the pair (S̃,L2 + Ω/4) is not
log-canonical at the point p. Therefore, (Ω/4) · L2 = ((D − aL2)/4) · L2 =
((1 + a)/4) > 1 by Lemma 2.2, and hence a > 3. This is a contradiction.

Proposition 3.4. Let S be a singular del Pezzo surface of degree 6. Then
lct(S) = lct1(S).

Proof. Let S̃ be the minimal resolution of S. Unless the singularity type
of S is A1 + A2, there are two disjoint −1 curves L1 and L2 on S̃ that
intersect a −2 curve (see [5, Proposition 8.3]). By contracting L1, we get a
weak del Pezzo surface S̃′ of degree 7 with lct(S̃′) ≥ lct1(S). By contracting
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L2, we get a weak del Pezzo surface S̃′ ′ of degree 7 with lct(S̃′ ′) ≥ lct1(S).
Therefore, lct(S) = lct1(S) by Lemma 2.7.

Now suppose that the singularity type of S is A1 +A2. Then we have one
−1 curve L on S̃. It intersects the −2 curve F over the singular point of
type A1 and the chain of two −2 curves E1 + E2 over the singular point of
type A2. We may assume that L intersects E1 but not E2.

Suppose that lct(S) < 1/6. Then there is an effective Q-divisor D on S̃

numerically equivalent to −KS̃ such that the pair (S̃, (1/6)D) is not log-
canonical at some point p ∈ S̃. By contracting the −1 curve L, we can see
that the point p must belong to the curve L since the global log-canonical
threshold of a del Pezzo surface of degree 7 is at least 1/4. Since 6L+2E2 +
4E1 + 3F ∼ −KS̃ (see [12, Proposition 2.1]), we may assume that the curve
L is not contained in the support of D by Lemma 2.1. Then

1 = D · L ≥ multp(D).

This is a contradiction.

Lemma 3.5. Let S be a singular del Pezzo surface of degree 5. Then
lct(S) = lct1(S).

Proof. Let S̃ be the minimal resolution of S. Unless the singularity type
of S is A4, there are two disjoint −1 curves L1 and L2 on S̃ for which we can
apply Lemma 2.7 (see [5, Proposition 8.5]) to show that lct(S) = lct1(S).

Now suppose that the singularity type of S is A4. Then we have one −1
curve L on S̃. Let Ei, i = 1,2,3,4, be the −2 curves over the singular point
such that E1 · E2 = E2 · E3 = E3 · E4 = 1 and E2 · L = 1.

Suppose that lct(S) < 1/6. Then there is an effective Q-divisor D on S̃

numerically equivalent to −KS̃ such that the pair (S̃, (1/6)D) is not log-
canonical at some point p ∈ S̃. The contraction of L shows that the point
p must lie on the curve L. Since 5L + 3E1 + 6E2 + 4E3 + 2E4 ∼ −KS̃ (see
[12, Proposition 2.1]), we may assume that the curve L is not contained in
the support of D. Then

1 = D · L ≥ multp(D).

This is a contradiction.

Lemma 3.6. Let S be a singular del Pezzo surface of degree 4 with sin-
gularity type 4A1. Then lct(S) = lct1(S) = 1/2.
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Proof. Let S̃ be the minimal resolution of S. The configuration of −1
curves and −2 curves on S̃ is as follows (see [5, Proposition 6.1]):

� ��
E1 L1 E2

� �L4 L2

� ��E4 L3 E3

Suppose that lct(S) < 1/2. Then there is an effective Q-divisor D on S̃

numerically equivalent to −KS̃ such that the pair (S̃, (1/2)D) is not log-
canonical at some point p ∈ S̃. By contracting all the −1 curves Li to P1 × P1,
we see that the point p must be contained in a −1 curve. We may assume
that the point p belongs to the curve L1. Contracting the −1 curves L2 and
L4 and then E4 to a smooth del Pezzo surface of degree 7, we see that the
pair (S̃, (1/2)D) is not log-canonical along the curve E2 by Corollary 2.5.
This is a contradiction since the contraction of all the −1 curves Li to
P1 × P1 shows that the pair (S̃, (1/2)D) is log-canonical at a generic point
of E2.

Lemma 3.7. Let S be a singular del Pezzo surface of degree 4 with sin-
gularity type D5. Then lct(S) = lct1(S) = 1/6.

Proof. Let S̃ be the minimal resolution of S. The configuration of −1
curves and −2 curves on S̃ is as follows (see [5, Proposition 6.1]):

�

�
� ���

�

�
��L E2 E3 E4

E5

E1

Suppose that lct(S) < 1/6. Then there is an effective Q-divisor D on S̃

numerically equivalent to −KS̃ such that the pair (S̃, (1/6)D) is not log-
canonical at some point p ∈ S̃. The contraction of L shows that the point p

must lie on the curve L. Since 4L + 5E1 + 6E2 + 4E3 + 2E4 + 3E5 ∼ −KS̃

(see [12, Proposition 2.1]), we may assume that the curve L is not contained
in the support of D by Lemma 2.1. Then

1 = D · L ≥ multp(D).
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This is a contradiction.

Proposition 3.8. Let S be a singular del Pezzo surface of degree 4. Then
lct(S) = lct1(S).

Proof. Unless the singular type of S is 4A1 or D5, there are two disjoint
−1 curves L1 and L2 on the minimal resolution of S for which we can apply
Lemma 2.7 (see [5, Proposition 6.1]). Therefore, lct(S) = lct1(S).

Lemma 3.9. Let S be a singular del Pezzo surface of degree 3 with sin-
gularity type E6. Then lct(S) = lct1(S) = 1/6.

Proof. Let S̃ be the minimal resolution of S. From [12, Proposition 2.1]
we obtain the configuration of all the −2 curves and some −1 curves on S̃

as follows:

� � � � �
�

�E5 E4 E3 E2 E1

E6

L

In fact, the curve L is the only −1 curve on S̃. However, we do not need
this fact for our proof.

Suppose that lct(S) < 1/6. Then there is an effective Q-divisor D on S̃

numerically equivalent to −KS̃ such that the pair (S̃, (1/6)D) is not log-
canonical at some point p ∈ S̃. Since 2L + 4E1 + 5E2 + 6E3 + 4E4 + 2E5 +
3E6 ∼ −KS̃ (see [12, Proposition 2.1]), we may assume that the curve L is
not contained in the support of D by Lemma 2.1. The same argument as in
the proof of Lemma 3.7 gives us a contradiction.

Lemma 3.10. Let S be a singular del Pezzo surface of degree 3 with sin-
gularity type A3 + 2A1. Then lct(S) = lct1(S) = 1/2.

Proof. Let S̃ be the minimal resolution of S. The configuration of −1
curves and −2 curves on S̃ is as follows (see the appendix, Table 2):

� ��
E1 L4 E4

�� � �E2 L2

L1 L3

� ��E3 L5 E5
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Suppose that lct(S) < 1/2. Then there is an effective Q-divisor D on S̃

numerically equivalent to −KS̃ such that the pair (S̃, (1/2)D) is not log-
canonical at some point p ∈ S̃. By contracting the −1 curve L1, we see that
the point p must be contained in L1. Contracting the −1 curves L4 and L5

and then E1 and E3 to a smooth del Pezzo surface of degree 7, we see that
the pair (S̃, (1/2)D) is not log-canonical along the curve L3 by Corollary 2.5.
This is a contradiction.

Proposition 3.11. Let S be a singular del Pezzo surface of degree 3.
Then lct(S) = lct1(S).

Proof. Unless the singularity type of S is A3 + 2A1 or E6, there are two
disjoint −1 curves L1 and L2 on the minimal resolution of S for which
we can apply Lemma 2.7 (see the appendix, Table 2). Therefore, lct(S) =
lct1(S).

§4. Proof of Theorem 1.6

Proposition 4.1. Let S be a singular del Pezzo surface of degree 2 with
singularity type A7. Then lct(S) = 1/3.

Proof. Let π : S̃ → S be the minimal resolution. From [12, Proposi-
tion 2.12] we obtain the configuration of all the −2 curves and some −1
curves on S̃ as follows:

� � � � � � �
� �

E7 E6 E5 E4 E3 E2 E1

L2 L1

In fact, the curves L1 and L2 are the only −1 curves on S̃.
Since the Picard group of S is Z, we can easily check that

4L1 + 3E1 + 6E2 + 5E3 + 4E4 + 3E5 + 2E6 + E7 ≡ −2KS̃ ,

4L2 + E1 + 2E2 + 3E3 + 4E4 + 5E5 + 6E6 + 3E7 ≡ −2KS̃ .

Therefore, lctS ≤ 1/3.
Suppose that lct(S) < 1/3. Then there is an effective Q-divisor D on S̃

numerically equivalent to −KS̃ such that the pair (S̃, (1/3)D) is not log-
canonical at some point p ∈ S̃. By Lemma 2.1, we may assume that neither
the curve L1 nor the curve L2 is contained in the support of D. Write
D = aE2 + bE6 + Ω, where Ω is an effective Q-divisor whose support does
not contain the curves E2, E6.
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Lemma 2.6 shows that the pair (S̃, (1/3)D) is log-canonical in the outside
of the −2 curves. By contracting L1, L2 and then E2, E6 to a weak del
Pezzo surface of degree 6 with only one −2 curve, we can see that the pair
(S̃, (1/3)D) is log-canonical in the outside of E2 and E6 since the global
log-canonical threshold of a weak del Pezzo surface of degree 6 with only
one −2 curve is 1/3. We may assume that the point p is contained in the
curve E2. Since L1 is not contained in the support of D, we have

1 = D · L1 ≥ aE2 · L1 = a.

However, the pair (S̃,E2 + (b/3)E6 + (1/3)Ω) is not log-canonical at the
point p, and hence

3 < (D − aE2) · E2 = 2a

by Lemma 2.2. This is a contradiction.

Proposition 4.2. Let S be a singular del Pezzo surface of degree 2 with
singularity type A6. Then lct(S) = 2/5.

Proof. Let π : S̃ → S be the minimal resolution. The configuration of −1
curves and −2 curves on S̃ is as follows (see the appendix, Table 1):

� � � � � �
� �

� �

L2 L1

E6
E5 E4 E3 E2

E1

L3L4

The Picard group of S is Z ⊕ Z, and the lines π(L1) and π(L3) are linearly
independent in the Picard group of S. Therefore, there must be two rational
numbers m and n such that mπ(L1) + nπ(L3) ≡ −KS . We can check that
m = 3/2 and n = 1/2. Therefore,

3L1 + L3 + 3E1 + 5E2 + 4E3 + 3E4 + 2E5 + E6 ≡ −2KS̃ .

This implies that lct(S) ≤ 2/5.
Suppose that lct(S) < 2/5. Then there is an effective Q-divisor D on S̃

numerically equivalent to −KS̃ such that the pair (S̃, (2/5)D) is not log-
canonical at some point p ∈ S̃. Write D = aL1 + bL3 + c1E1 + c2E2 + c3E3 +
Ω, where Ω is an effective Q-divisor whose support does not contain the
curves E1, E2, E3, L1, L3. Lemma 2.6 shows that the pair (S̃, (2/5)D) is
log-canonical in the outside of the −2 curves. By contracting L1, L2 and
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then E2, E5 to a smooth del Pezzo surface of degree 6, we can see that
the pair (S̃, (2/5)D) is log-canonical in the outside of E2 and E5 since the
global log-canonical threshold of a smooth del Pezzo surface of degree 6 is
1/2. We may assume that the point p belongs to E2.

If a = 0, then 1 = D · L1 ≥ c2. However, we have 5/2 < (D − c2E2) · E2 =
2c2 by Lemma 2.2. This is a contradiction. Therefore, a > 0, and hence we
may assume that b = 0 by Lemma 2.1. Then we have 1 = D · L3 ≥ c1.

Suppose that the point p is the intersection point of E1 and E2. Then we
obtain

5
2

< (D − c1E1) · E1 = 2c1

from Lemma 2.2, and hence 5/4 < c1. This is a contradiction.
By contracting L3, E1, L2, E5, E4 to a smooth del Pezzo surface of

degree 7, we can see that Corollary 2.5 implies that the pair (S̃, (2/5)D) is
not log-canonical along the curve E2. This is a contradiction since the pair
(S̃, (2/5)D) is log-canonical at the intersection point of E1 and E2.

Lemma 4.3. Let S be a singular del Pezzo surface of degree 2 with sin-
gularity type E7. Then lct(S) = lct1(S) = 1/6.

Proof. Let S̃ be the minimal resolution of S. From [12, Proposition 2.1]
we obtain the configuration of all the −2 curves and some −1 curves on S̃

as follows:

� � � � � �
�

�
E6 E5 E4 E3 E2 E1

E7

L

Suppose that lct(S) < 1/6. Then there is an effective Q-divisor D on S̃

numerically equivalent to −KS̃ such that the pair (S̃, (1/6)D) is not log-
canonical at some point p ∈ S̃. Since 2L + 3E1 + 4E2 + 5E3 + 6E4 + 4E5 +
2E6 +3E7 ∼ −KS̃ (see [12, Proposition 2.1]), we may assume that the curve
L is not contained in the support of D due to Lemma 2.1. Then, the same
argument as in the proof of Lemma 3.7 gives us a contradiction.

Lemma 4.4. Let S be a smooth del Pezzo surface of degree 5. For a point p

in S, there are four disjoint −1 curves that do not pass through the point p.

Proof. The surface S has ten −1 curves. Their configuration is as follows:
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� ���
�
�

�
�
��

�
�

�
�
�

� �

�

�
� ��

This can be obtained by contracting the −1 curve l24 in the configuration
of 2A1 with nine lines in [5, Proposition 6.1]. The configuration of the ten
−1 curves immediately implies the statement.

Lemma 4.5. Let S be a del Pezzo surface of degree 2 with at least two
singular points. Let π : S̃ → S be the minimal resolution of S, and let D

be an effective Q-divisor numerically equivalent to −KS̃ . If lct1(S) ≥ 2/3,
then for a positive number λ < 2/3, the pair (S̃, λD) is log-canonical in the
outside of a single point p ∈ S̃.

Proof. We have a double cover ρ : S → P2 ramified along a quartic curve
R with simple singularities in P2. The pullback of a line in P2 by the mor-
phism ρ is an effective anticanonical divisor on S.

Since lct1(S) ≥ 2/3, the surface S has only A1 or A2 singularities by
Theorem 1.4. Suppose that there is a line L on S that passes through three
singular points. Then the line ρ(L) passes through three singular points
of the curve R, and hence ρ(L) is a component of the quartic curve R.
This contradicts lct1(S) ≥ 2/3 since 2L ∼ −KS . Therefore, there is no line
passing through three singular points on S.

Suppose that the pair (S̃, λD) is not log-canonical at a generic point of
an irreducible curve C on S̃. Write D = aC + Ω, where Ω is an effective
Q-divisor whose support does not contain the curve C. Then

2 = −KS̃ · D ≥ −aKS̃ · C >
3
2
(−KS̃ · C),

and hence the curve C must be either a −1 curve or a −2 curve.
Suppose that the curve C is a −1 curve. Then there is another −1 curve

C ′ on S̃ such that ρ∗(
ρ(π(C))

)
= π(C) + π(C ′) ∼ −KS . We may assume
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that C ′ is not contained in the support of D. (The proof of Lemma 2.1
shows that we can do this keeping aλ > 1.) Then

1 = D · C ′ = aπ(C) · π(C ′) + π(Ω) · π(C ′) ≥ aπ(C) · π(C ′) ≥ 2
3
a.

This is a contradiction.
Suppose that the curve C is a −2 curve. Let L be the line on P2 passing

through the point ρ(π(C)) and another singular point of R. Then ρ∗(L)
consists of two lines M1 and M2 on S such that ρ∗(L) = M1 + M2 ∼ −KS .
Let Li be the −1 curve on S̃ with π(Li) = Mi. Since the pair

(
S̃, λπ∗(ρ∗(L))

)
is log-canonical, we may assume that L2 is not contained in the support of
D. (The proof of Lemma 2.1 shows that we can do this keeping aλ > 1.)

If π(C) is an A1 singular point, then 1 = D · L2 ≥ aC · L2 = a. This is a
contradiction.

Suppose that π(C) is an A2 singular point. If L2 intersects C, then we
obtain a contradictory inequality 1 = D · L2 ≥ aC · L2 = a. If L2 does not
intersect C, then there is another −2 curve C ′ such that C · C ′ = 1 and
C ′ · L2 = 1. Write D = aC + bC ′ + Δ, where Δ is an effective Q-divisor
whose support does not contain the curves C and C ′. The pair (S̃, λD) is
not log-canonical at the intersection point p of C and C ′. Since 1 = D · L2 ≥
bC ′ · L2 = b, the pair (S̃,C ′ +aλC +λΔ) is not log-canonical at the point p.
Therefore, Lemma 2.2 implies that

3
2

< (D − bC ′) · C ′ = 2b.

However, 0 ≤ (−KS̃ − C − C ′) · Δ = 2 − (a + b), and hence a < 5/4. This is
a contradiction. Therefore, the pair (S̃, λD) is log-canonical in the outside
of finitely many points. Then Lemma 2.3 completes the proof.

Lemma 4.6. Let S be a singular del Pezzo surface of degree 2 with sin-
gularity type 3A2, 2A2 + A1, or 2A2. Then lct(S) = lct1(S) = 2/3.

Proof. Let π : S̃ → S be the minimal resolution of S. Then for each case
the smooth surface S̃ has six −1 curves Li, i = 1,2, . . . ,6, that have the
following configuration with −2 curves (see the appendix, Table 1):
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(3A2)

� �L1 ��
�

�

�
�
�

� �L2 �
� � � �L5 L3 L4 L6

� �

�
�
�

�
�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�

�

(2A2 + A1)

� ��
L1

��
��

��
����

��
��

��

�
� �
� �

L5 L6

L3 L4

� ��L2

(2A2)

� ��
L1L3 L4

� �

� �

� ��L2L5 L6

Suppose that lct(S) < 2/3. Then for lct(S) < λ < 2
3 there is an effective

Q-divisor D on S̃ numerically equivalent to −KS̃ such that the pair (S̃, λD)
is not log-canonical only at a single point p ∈ S̃ by Lemma 4.5.

Contracting either three −1 curves L1, L5, L6 or three −1 curves L2, L3,
L4, we can obtain a birational morphism of S̃ to a smooth del Pezzo surface
of degree 5, which is an isomorphism around the point p. By Lemma 4.4,
we can obtain an effective Q-divisor C on P2 numerically equivalent to
−KP2 such that the pair (P2, λC) is not log-canonical only at a single point.
However, this contradicts Corollary 2.4.

Proposition 4.7. Let S be a singular del Pezzo surface of degree 2. If
the singularity type of S is neither A7 nor A6, then lct(S) = lct1(S).

Proof. If the singularity type of S is not E7, 3A2, 2A2 + A1, or 2A2,
then there are disjoint −1 curves on the minimal resolution of S for which
we can apply Lemma 2.7 (see the appendix, Table 1). Therefore, lct(S) =
lct1(S).

§5. Appendix

The following tables show the configurations of the −2 curves and some
−1 curves on weak del Pezzo surfaces of del Pezzo surfaces with given singu-
larity types. The columns labeled “Example” show configurations of some
effective divisors on certain blow-ups of P2 in order to show existence of the
configurations in the second columns on weak del Pezzo surfaces correspond-
ing to the given singularity types. In each example, solid lines, which denote
the exceptional curves of blow-ups of P2, show the manner of performing
blow-ups from P2. Among the solid lines, thin lines (always drawn horizon-
tally) denote −1 curves and thick lines (always drawn diagonally) denote
−2 curves. The dotted curves in each example are the strict transform of
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a line, an irreducible conic, or an irreducible cubic via the blow-ups. The
letters L, Q, and C beside the dotted curves mean that the corresponding
curves are the strict transforms of a line, an irreducible conic, and an irre-
ducible cubic, respectively. In Table 1, in the examples for 3A2, 2A2 + A1,
and A2 + 2A1, ◦ means that the two curves with the circle do not intersect
at the circled point.

Table 1: Degree 2

Singularity Configuration Example
type

E7 � � � � � � ��
L

������������

E6
� � � � ��� � LL

����������

D6 + A1 � � � � ��� � �� Q

L

����������

D6 �� � � � � �� L

����������

D5 + A1 � � � ��� �� L L

Q
��������

D5

� � � ���
�

L L��������

D4 + 3A1
� � �� ��� �� � L L

L
Q������

��

D4 + 2A1 ��
�	� �

� � ���
�

�
�

L L

L

������
��

D4 + A1

� � � ���
�
� L L

������
��

D4
��
��

��
��

�
�� ��

� LL

L

������

(continued)
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Table 1: Degree 2 (continued)

A7
��
��

��
��

�
�� � � � ��

�
L Q

������������

A6 � � � � � �� �
� �

L

C

Q

������������

A5 + A2 ��
�	� ��� � � �

��
L

L Q

��������
��

(A5 + A1)′ � � � � ��� � ��
L

L

��������
��

(A5 + A1)′ ′
��
�	� �

�
�
��

�
�

�
�

L Q
Q

L

����������

(A5)′ � � � � �
�

�
L

L

��������

(A5)′ ′ ��
��

��
��

�
�� � ��

�
L Q

����������

A4 + A2 ��
�	� �

� ��
�

�
� Q

Q

��������
��

A4 + A1 ��
�	�� � � �

��
Q

L
��������
��

A4
��
��

��
��

�
�� ��

� Q

L��������
��

2A3 + A1
� � �� � � ��� �

L

Q

C

L������
������

2A3 ��
�	� �

� �� ��
�

�
� L

Q

LL

������
����

A3 + A2 + A1 �� � � � � ��
Q

L����
����

(continued)
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Table 1: Degree 2 (continued)

A3 + A2 ��
�	�� � � �

��
Q

L������
����

A3 + 3A1

� � �� � �
�

�
� L

Q

����
��

��

(A3 + 2A1)′
��
�	� �

� ��
�

�
� QL

������
��

(A3 + 2A1)′ ′
� � �� � �

�
Q

����
��

��

(A3 + A1)′
��
�	
�

�
�� �

�
L

Q
������
��

(A3 + A1)′ ′
� � � � ��

� L

L

����
��

A3

�
� � �

�
��
��

��
�� Q

L������
����

3A2

� � ��� ��
� � �

� � � �
� �

��
��

��
��

�
�
��

�
�
��

����

L

L

L

L

L L


 
 
���

��� �
��

2A2 + A1

� ���
�

���
�

��

�� �
� �

� ��
L

Q
Q

L

L


 


������

������

2A2 � ��
� �
� �

� �� L

Q
����
����

A2 + 3A1 ��
�	� ��
�

�
� � � � L

LL

L

����

��
��

(continued)
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Table 1: Degree 2 (continued)

A2 + 2A1 �� � �� �
� �

L

L

Q
Q



���

���

���

���

A2 + A1 ��
�	� ��
� �

Q

L
����
��

A2 ��
�	� �

� � Q

L

����

6A1 � � � �� � �� � �
��
�� L

L Q Q Q

��
��

5A1 � � �� �� �
��
�� ��

��� �� L

L

Q��
��

��

(4A1)′
� ��� � �

�
�

L

L

��
��

��

(4A1)′ ′ ��
�	
�

�
�� �

�
��

� �
L

LL

Q

����

��

(3A1)′
� � � � ��

�
L

L

��
��

(3A1)′ ′ ��
�	
�

�
�� �

�
��

�

L

LL

����

��

2A1 ��
�	� �

� �
Q

L

����

A1 ��
�	
�

�
�

Q

L

��
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Table 2: Degree 3

Singularity Configuration Example
type

E6
� � � � ��� L

����������

D5
� � � � ��� L

��������

D4

� � � ���
�

L L������

A5 + A1
��
��

��� � � ��
�

L Q

����������

A5
��
��

��
��

�
�� � � ��

�
L Q

����������

A4 + A1
��
��

� � ��
� � � L L

������
��

A4
��
��

��
��

�
�� � ��

�
L Q

��������

A3 + 2A1 ��
�	� �

� ��
�

�
� Q

L
������
��

A3 + A1
��
��

�� ��
� � L L

������
��

A3
��
��

��
��

�
�� ��

� Q

L������

��

3A2 ��
�	� ��� � � �

��
L

L

L
��

��
��

2A2 + A1 ��
�	� �

� ��
�

�
�

QL����
����

2A2 ��
�	�� � � �

��
QL����

����

(continued)
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Table 2: Degree 3 (continued)
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�	�� � � �

��
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L

��
����
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��
��

� ��
� �

L

L

����
��
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L
����
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�	
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�
�� �

�
��

� �

L
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Q

����

��
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�	
�

�
�� �

� L

L

L

����
��

2A1 ��
�	� ��
� �

L
L

L

��
��

A1 ��
�	� �

� � Q
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